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Final coalgebras capture system behaviours such as streams, infinite trees and processes.

Algebraic operations on a final coalgebra can be defined by distributive laws (of a syntax

functor Σ over a behaviour functor F ). Such distributive laws correspond to abstract

specification formats. One such format is a generalisation of the GSOS rules known from

structural operational semantics of processes. We show that given an abstract GSOS

specification ρ that defines operations σ on a final F -coalgebra, we can systematically

construct a GSOS specification ρ that defines the pointwise extension σ of σ on a final

FA-coalgebra. The construction relies on adding a family of auxiliary “buffer” operations

to the syntax. These buffer operations depend only on A, and so the construction is

uniform for all σ and F .

1. Introduction

In coalgebra, state-based systems are modelled as F -coalgebras where F is a functor
that determines the system type. By varying F , we obtain (non)deterministic automata,
(labelled) transition systems and many others, see (Rutten 2000) for an introduction
and plenty of examples. Of particular importance are final coalgebras, which represent
abstract behaviours of F -coalgebras. For this reason we refer to elements of a final F -
coalgebra as F -behaviours. Examples of F -behaviours include streams, infinite trees,
causal stream functions and processes. Thanks to the properties of final coalgebras, op-
erations on them can be conveniently defined by coinduction.

In this paper, we focus on pointwise extensions of operations on F -behaviours to opera-
tions on FA-behaviours, where F is an arbitrary functor, and A is a fixed set. Intuitively,
FA-coalgebras behave as F -coalgebras, but are additionally dependent on an external
source of input from the alphabet A. For example, if FX = B×X then FA-coalgebras are
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Mealy machines with input in A and output in B, and FA-behaviours are causal stream
functions f : Aω → Bω. We show that, in general, elements of the set Z of FA-behaviours
can be thought of as certain functions from Aω to a final F -coalgebra Z. An operation σ
on Z can therefore be pointwise extended in the standard way to an operation σ on the
function space ZA

ω

. Depending on σ, the operation σ restricts or not to an operation on
Z.

A well-structured way of defining operations on final coalgebras is by means of dis-
tributive laws of syntax over behaviour (cf. Turi and Plotkin 1997; Bartels 2004; Klin
2009), where syntax is given by an algebraic signature Σ and behaviour is given by a
functor F . The rather abstract notion of a distributive law can often be formulated in
a more intuitive fashion as a set of equations or rules. Concrete examples include Rut-
ten’s behavioural differential equations (see e.g. Rutten 2003) and rules of structural
operational semantics of processes (cf. Aceto et al. 2001).

Distributive laws provide a setting in which specification formats for varying syntax
and behaviour types can be treated in a uniform way (using parametricity in Σ and
F ). In particular, the GSOS format of processes (cf. Aceto et al. 2001) generalises to an
abstract GSOS format for arbitrary Σ and F . A further benefit of working in this more
abstract setting is that a distributive law of Σ over F not only defines Σ-operations on
F -behaviours, but also provides an inductive definition of an F -coalgebra on Σ-terms,
and relates the final semantics of the latter with the initial semantics of the former.

Viewing specification formats as distributive laws, it makes sense to ask the following:
given an operation σ, defined on a final F -coalgebra by a distributive law λ, is its point-
wise extension σ an operation on a final FA-coalgebra defined by another distributive law
λ, and can we obtain λ from λ in a systematic manner? The main technical contribution
of this paper is an affirmative answer to that question under certain conditions. In Theo-
rem 6.1, we show that definitions in a simple format can be extended in a straightforward
manner. Then, in Theorem 6.3, we deal with the more expressive, abstract GSOS for-
mat, where the situation is more subtle. We show that GSOS-defined operations can also
be extended pointwise, but the extension relies on a family of auxiliary operations that
intuitively work as “input buffers” for FA-coalgebras. It is worth noting that the choice
of auxiliary operators depends only on the set A, but does not depend on λ, nor even on
the behaviour functor F . In order to illustrate these general results, we provide several
detailed examples. We mention that an extended abstract of this paper has appeared as
(Hansen and Klin 2010).

The structure of the paper is as follows. In Section 2, basic facts on Set-functors,
algebras and coalgebras are recalled, together with a few examples of F -coalgebras that
are used in the paper. Section 3 contains two simple examples of operations on streams,
and their pointwise extensions to Mealy machines. The techniques used in these examples
motivate, and hopefully provide some intuition about, the abstract development of the
subsequent sections. In Section 4 we show how to interpret elements of FA-coalgebras as
functions from A-streams to final F -coalgebras via their pointwise behaviour; based on
this, we provide an abstract definition of pointwise extension of operations, illustrated by
a few examples. In Section 5 we recall the distributive law approach to defining operations,
as developed in (Turi and Plotkin 1997; Lenisa et al. 2004). Section 6 contains the two
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main technical theorems as described above, followed by a few example applications in
Section 7, and a brief discussion of directions for future work in Section 8. Proofs of the
main theorems are put in an Appendix.

2. Preliminaries

In this section we fix some notation and provide the basic definitions of algebras and
coalgebras needed in this paper. We assume that the reader is familiar with the notions
of category, functor, natural transformation; the notions of adjunction and monad are
mentioned a few times, but their detailed understanding is not necessary to follow the
main development. All functors considered in this paper are endofunctors on Set, the
category of sets and functions.

2.1. Strength and costrength

We recall some basic properties of Set functors that will be useful in the following.
For any set A, there is an adjunction A×− a (−)A. The obvious unit and the counit

of this adjunction will be denoted

ηX : X → (A×X)A εX : A×XA → X.

Any endofunctor F on Set has a strength, i.e., a map

stFA,X : A× FX → F (A×X)

natural in A and X, defined by

stFA,X(a, t) = (Fηa)(t)

where ηa : X → A×X is given by ηa(x) = (a, x). Dually, every F has a costrength

csFA,X : F (XA)→ (FX)A

natural in A and X, defined by

csFA,X(t)(a) = (Fεa)(t)

where εa : XA → X is given by εa(f) = f(a).

2.2. Syntax via algebras

An algebraic signature Σ consists of a collection of function symbols {σi | i ∈ I} where
each σi has an arity ni ∈ N, i ∈ I. A Σ-algebra with carrier set X is a map

∐
i∈I X

ni → X

and we therefore identify a signature Σ with the functor ΣX =
∐
i∈I X

ni . In general,
given a functor G , a G-algebra is a pair 〈X,σ〉 where X is the carrier set and σ : GX → X

is a function.
The set of Σ-terms over a set (of variables) X is denoted by TΣX; we shall omit the

subscript in the following, as it will never lead to any confusion. In fact, T is a functor, and
together with obvious natural transformations ηT : Id =⇒ T (interpretation of variables
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as terms) and µT : TT =⇒ T (glueing terms built of terms) it forms the so-called free
monad over Σ. By structural induction on terms, any algebra σ : ΣX → X induces a
function σ] : TX → X (i.e. term interpretation in σ). The T -algebra σ] satisfies axioms:

σ] ◦ ηTX = idX σ] ◦ Tσ] = σ] ◦ µT
X ,

i.e., σ] is an Eilenberg-Moore algebra for the monad T . The construction of σ] from σ

provides a 1-1 correspondence between Σ-algebras and Eilenberg-Moore T -algebras.

2.3. Behaviour via coalgebras

Coalgebra provides a uniform framework for studying the behaviour of systems such as
automata and labelled transition systems. We only provide the basic definitions here.
For a more thorough introduction to the theory of coalgebra we refer to (Rutten 2000).
Formally, given a functor F , an F -coalgebra is a pair 〈X, ξ〉 where X is a set (called the
carrier, or the set of states) and ξ : X → FX is a function (called the structure). Since
ξ : X → FX implicitly defines the carrier X, we often refer to an F -coalgebra simply
by its structure. Different types of systems emerge by varying F . We provide concrete
examples in Section 2.4.

Behaviour preserving maps are formalised as the general notion of morphism between
F -coalgebras. An F -coalgebra morphism h : 〈X1, ξ1〉 → 〈X2, ξ2〉 is a function h : X1 →
X2 such that ξ2 ◦h = Fh ◦ ξ1. F -coalgebras and F -coalgebra morphisms form a category
Coalg(F ). An abstract notion of behaviour is obtained via finality. An F -coalgebra 〈Z, ζ〉
is final, if for every F -coalgebra 〈X, ξ〉 there is a unique F -coalgebra morphism beh〈X,ξ〉
(called the final map) from 〈X, ξ〉 to 〈Z, ζ〉. A final F -coalgebra 〈Z, ζ〉 can be seen as
a system of behaviours, and we refer to the elements of Z as F -behaviours. By the so-
called Lambek lemma (Lambek 1968), the structure ζ of a final coalgebra is always an
isomorphism. A final F -coalgebra need not always exist due to cardinality reasons, (cf.
Aczel and Mendler 1989), but all functors considered in this paper admit final coalgebras.

The existence and uniqueness of the final map give rise to a definition principle usually
referred to as coinduction. We will use coinduction to define operations on the carriers
of final coalgebras. Let F be a functor and 〈Z, ζ〉 the final F -coalgebra. By defining an
F -coalgebra structure ξ : Z × Z → F (Z × Z) the final map behξ : Z × Z → Z defines
a binary operation ? on Z by coinduction. So the F -coalgebra structure ξ essentially
specifies how x ? y behaves for all x, y ∈ Z. More generally, for an algebraic signature Σ,
an F -coalgebra structure on ΣZ induces a Σ-algebra on Z by coinduction as illustrated
here:

ΣZ

ξ

��

σ // Z

ζ

��

FΣZ
Fσ // FZ

(1)

In Section 5 we will see how certain natural transformations correspond to various kinds
of the specification ξ.
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2.4. Examples

We shall now see a number of concrete examples of functors and their final coalgebras.
All of these are well known, but we include them in some detail as they will be used later
on for illustrating pointwise extensions.

Example 2.1 (Stream automata) Given a set A, a stream automaton (with output in
A) is a coalgebra for the functor A × −, i.e., it is a function 〈o, d〉 : X → A ×X which
maps an x ∈ X to an output value o(x) ∈ A and a next state d(x) ∈ X. We will use
the notation x a→ y to denote that o(x) = a and d(x) = y. The final (A×−)-coalgebra
is obtained as the set Aω of streams over A together with the head and tail maps,
〈hd , tl〉 : Aω → A × Aω. The (A × −)-behaviour of a state x is the stream of outputs
generated on transitions starting in x. We will use the following standard notation. A
stream α ∈ Aω may be written (α(0), α(1), α(2), . . .) or as an ω-regular expression over
A. For α ∈ Aω and n ∈ N, α�n= (α(0), . . . , α(n)) is the prefix of α of length n + 1. For
α ∈ Aω and a ∈ A, we denote with a :α the stream (a, α(0), α(1), . . .). �

Example 2.2 (Mealy machines) Given sets A and B, a (B×−)A-coalgebra m : X →
(B ×X)A is a Mealy machine with input in A and output in B: for each state x ∈ X,
m(x) = 〈ox, dx〉 : A→ B×X defines for each a ∈ A, the output ox(a) and the next state

dx(a). We write x a|b→ y if ox(a) = b and dx(a) = y. The behaviour of a state x is the
input-output mapping computed by m : X → (B × X)A when starting in x. Formally,
beh(x) : Aω → Bω maps α ∈ Aω to the stream beh(x)(α) ∈ Bω where for all n ∈ N:

beh(x)(α)(n) = oxn
(α(n)) x0 := x, xn+1 := dxn

(α(n)). (2)

From (2) it is clear that the n-th element of beh(x)(α) depends only on α(0), . . . , α(n).
A stream function f : Aω → Bω is causal if for all n ∈ N, and all α, β ∈ Aω:

α�n = β�n =⇒ f(α)(n) = f(β)(n).

The set Γ = {f : Aω → Bω | f is causal } carries a final Mealy structure as shown in
(Rutten 2006). We briefly summarise the construction. Let f ∈ Γ and a ∈ A. We write
f(a :−) for the stream function which maps α ∈ Aω to f(a :α) ∈ Bω. The initial output
f [a] and the stream function derivative fa of f on a are defined as:

f [a] := hd ◦ f(a :−) ∈ Aω → B

fa := tl ◦ f(a :−) ∈ Aω → Bω
(3)

Since f is causal, f [a] is constant (so we can consider f [a] an element of B) and fa is
causal, hence by defining for all f ∈ Γ and a ∈ A,

γ(f)(a) = 〈f [a], fa〉,

γ is a map of type γ : Γ → (B × Γ)A, and it can be shown that 〈Γ, γ〉 is a final Mealy
machine. �

Example 2.3 (Partial maps) We denote the one-element set by 1 = {⊥}. If we let ⊥
represent the undefined value, then a (1 + −)-coalgebra ξ : X → 1 + X can be seen as
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a partial function on X, and we write x → y if ξ(x) = y (for y ∈ 1 + X). The final
(1 + −)-coalgebra consists of the natural numbers extended with ω together with the
predecessor function pred : N + {ω} → 1 + N + {ω} where pred(0) = ⊥, pred(ω) = ω

and pred(n) = n− 1 for all n ∈ N>0. The behaviour of a state x is the number of steps
that can be made from x. �

Example 2.4 (Partial DLTSs) A (1 + −)A-coalgebra t : X → (1 + X)A can be seen
as a partial, deterministic labelled transition system where the a-successor of a state x
is given by t(x)(a) in case t(x)(a) 6= ⊥. We write x a→ y if t(x)(a) = y (for y ∈ 1 +X).

The final (1 + −)A-coalgebra 〈L, D〉 (cf. Rutten 1991) has as its carrier the set of
non-empty, prefix-closed languages over A, i.e.,

L = {L ⊆ A∗ | L 6= ∅; for all u, v ∈ A∗ : uv ∈ L⇒ u ∈ L}.

For L ∈ L, the function D(L) : A→ 1 + L is defined by

D(L)(a) =

{
La := {w ∈ A∗ | aw ∈ L} if a ∈ L,
⊥ if a 6∈ L.

La is called the language derivative of L with respect to a. Note that if a ∈ L then La is
non-empty, and if L is prefix-closed then La is prefix-closed, hence D is well defined. The
behaviour of a state x is the set L(x) of finite words that label some path in t starting
in x. We illustrate with a small example:

x0
a //

b

��
x1

a

��
x2

b

]]

a // x3

L(x0) = b∗ + b∗a(ab)∗ + b∗a(ab)∗a+ b∗a(ab)∗aa
L(x1) = (ab)∗ + (ab)∗a+ (ab)∗aa
L(x2) = (ba)∗ + (ba)∗a+ (ba)∗b
L(x3) = {ε}

Example 2.5 (Nondeterministic systems) We denote by Pω the finitary (covariant)
powerset functor which maps a set X to the set of all its finite subsets. A Pω-coalgebra
ξ : X → PωX models a finitely branching (nondeterministic) transition system, and we
write x → y if y ∈ ξ(x), and x 6 → if ξ(x) = ∅.

The final Pω-coalgebra 〈T, τ〉 is usually described as the set of strongly extensional,
finitely branching trees together with the subtree relation (cf. Worrell 2005). An alterna-
tive way of thinking about the Pω-behaviour of a state x is as the bisimilarity quotient
of the subsystem generated from x (cf. Rutten and Turi 1994). �

Example 2.6 (LTSs) A (Pω−)A-coalgebra t : X → (PωX)A is an image-finite labelled
transition system with state space X. We use the notation x a→ y if y ∈ t(x)(a),
and x 6 a→ if t(x)(a) = ∅, for all x, y ∈ X and a ∈ A. The final (Pω−)A-coalgebra
〈P, φ〉 is carried by the set P of image-finite processes, which can also be described as
the (Pω−)A-bisimulation classes of all finitely branching, A-labelled trees with possibly
infinite branches (cf. Rutten and Turi 1994). The behaviour of a state x is thus the
(Pω−)A-bisimulation quotient of the substructure generated from x. �
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3. Motivating Examples

To motivate the abstract development of Sections 4 and 6, and provide some intuitions
about the techniques used there, we shall begin with two concrete examples of operations
on the set Rω of streams over the real numbers, i.e. the carrier of a final (R×−)-coalgebra,
and show how to extend their definitions to operations on causal stream functions.

As explained in (Rutten 2003), operations on streams can be defined with the help of
stream differential equations, where the resulting stream is unambiguously specified by
its initial value (head) and its stream derivative (tail) in terms of the initial values and
the derivatives of the argument streams.

Example 3.1 The element-wise addition ⊕ of streams over R is defined by the stream
differential equation:

hd(x0 ⊕ y0) = hd(x0) + hd(y0) tl(x0 ⊕ y0) = tl(x0)⊕ tl(y0)

The above stream differential equation can be formulated as a family of derivation rules:

x0
a→ x1 y0

b→ y1

x0 ⊕ y0
a+b→ x1 ⊕ y1

where a, b range over R. �

The operation ⊕ : Rω × Rω → Rω adds two streams of numbers element-wise:

α⊕ β = (α(0) + β(0), α(1) + β(1), α(2) + β(2), . . .)

for all α, β ∈ Rω. The details of how this follows from the equations (or, equivalently, the
rules) can be found in (Rutten 2003). An alternative but equivalent explanation will be
provided in Section 5, where the equations/rules are interpreted abstractly as distributive
laws.

Here is another, deceptively similar example:

Example 3.2 The operation � : Rω × Rω → Rω is defined by:

hd(x0 � y0) = hd(x0) + hd(y0)
tl(x0 � y0) = x0 � tl(y0)

i.e.
x0

a→ x1 y0
b→ y1

x0 � y0
a+b→ x0 � y1

(4)

The operation � adds the head element of its first argument to each of the elements of
the second argument stream:

α� β = (α(0) + β(0), α(0) + β(1), α(0) + β(2), . . .)

for all α, β ∈ Rω. �

The operations ⊕ and � can be extended pointwise to the set of causal stream functions
ΓR = {f : Rω → Rω | f is causal} by defining

(f⊕̄g)(α) = f(α)⊕ g(α)
(f�̄g)(α) = f(α) � g(α)
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for all f, g ∈ ΓR and α ∈ Rω. Note in particular, that f⊕̄g and f�̄g are again causal,
so ⊕̄ and �̄ are well defined as operations on ΓR. In general, given an n-ary operation
σ on a set Y , the pointwise extension of σ to the function space Y X , is the operation
σ̄ : (Y X)n → Y X defined for all f0, . . . , fn−1 : X → Y by

σ̄(f0, . . . , fn−1)(x) = σ(f0(x), . . . , fn−1(x)).

The question is, can we give a rule-based definition of the pointwise extensions ⊕̄ and �̄,
possibly based on the defining rules for ⊕ and �, respectively?

Recall from Example 2.2 that ΓR is the final (R×−)R-coalgebra under the operations

initial output f [a] and stream function derivative fa. Using the notation f
a|f [a]→ fa,

the pointwise extension ⊕̄ : ΓR × ΓR → ΓR can be defined as follows:

x0
a|b→ x1 y0

a|c→ y1

x0⊕̄y0
a|b+c→ x1⊕̄y1

(5)

To see how this rule works, suppose that α = (a0, a1, a2, . . .) ∈ Rω and f, g ∈ ΓR with
f(α) = (b0, b1, b2, . . .) and g(α) = (c0, c1, c2, . . .). It follows, in particular, that for the
repeated derivatives we have: fa0...an [an+1] = bn+1 and ga0...an [an+1] = cn+1 for all
n ∈ N. The rule in (5) induces the following transitions of f⊕̄g on input α:

f⊕̄g a0|b0+c0→ fa0⊕̄ga0

a1|b1+c1→ fa0a1⊕̄ga0a1

a2|b2+c2→ . . .

and we see that (f⊕̄g)(α) = f(α)⊕g(α). Since α was arbitrary, ⊕̄ is indeed the pointwise
extension of ⊕.

Let us now consider the pointwise extension of �. By analogy with (5), we could try
to define �̄ : ΓR × ΓR → ΓR with the following rule:

x0
a|b→ x1 y0

a|c→ y1

x0�̄y0
a|b+c→ x0�̄y1

(6)

For f, g ∈ ΓR, the rule (6) implies that for all a ∈ R:

(f�̄g)[a] = f [a] + g[a]
(f�̄g)a = f�̄ga

(7)

However, the induced operation on ΓR is not the pointwise extension of �. To see this,
consider id�̄id where id is the identity on Rω. Note that in particular, id[a] = a and
ida = id for all a ∈ R. The rule (6) then yields the following transitions on input
α = (a0, a1, a2, . . .) ∈ Rω:

id�̄id a0|a0+a0→ id�̄id a1|a1+a1→ id�̄id a2|a2+a2→ . . .

hence (id�̄id)(α) 6= α� α = (a0 + a0, a0 + a1, a0 + a2, . . .).
To understand what goes wrong, we must look into the structure of the final Mealy

machine. Recall from Example 2.2 that for all f ∈ ΓR and a ∈ R, fa = tl(f(a :−)). In
order for �̄ to be the pointwise extension of �, the following must hold for all f, g ∈ ΓR,
a ∈ R and α ∈ Rω:

(f�̄g)(a :α) = f(a :α) � g(a :α).
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By taking tails on both sides, and applying the rule (4) for � we get

(f�̄g)a(α) = f(a :α) � ga(α). (8)

Comparing (8) with (7), we see that in the definition of (f�̄g)a, f should be replaced
with the function f(a :−). In order to give a rule-based definition of �̄ (which applies
not only to ΓR, but to all Mealy machines), it makes sense to use a family of auxiliary,
unary operations {a .− | a ∈ R}. These operations act like one-element input buffers:
for a Mealy machine m : X → (R×X)R and x ∈ X, a . x behaves like x as if it had seen
an a already. Formally, beh(a . x)(α) = beh(x)(a :α) for all α ∈ Rω and a ∈ R. We can
now define �̄, together with the buffer operations, by rules:

x0
a|b→ x1 y0

a|c→ y1

x0�̄y0
a|b+c→ (a . x0)�̄y1

x0
a|b→ x1

a . x0
c|b→ c . x1

(9)

To illustrate how this definition works, let α = (a0, a1, a2, . . .) ∈ Rω and f, g ∈ ΓR with
f(α) = (b0, b1, b2, . . .) and g(α) = (c0, c1, c2, . . .). First, the rule for a .− gives us,

f
a0|b0→ fa0 =⇒ (a0 . f) a1|b0→ (a1 . fa0)

=⇒ (a1 . a0 . f) a2|b0→ (a2 . a1 . fa0)

=⇒ (a2 . a1 . a0 . f) a3|b0→ (a3 . a2 . a1 . fa0)

=⇒ . . .

We now find that,

f�̄g
a0|b0+c0→ (a0 . f)�̄ga0

a1|b0+c1→ (a1 . a0 . f)�̄ga0a1

a2|b0+c2→ (a2 . a1 . a0 . f)�̄ga0a1a2

a3|b0+c3→ . . .

So �̄ indeed behaves as the pointwise extension of �.
In the rest of this paper, we show that the constructions used in the above examples

apply more generally. In particular, the idea of defining pointwise extensions by adding
input buffer operations works not only for the specific stream operation �, but in fact
for all GSOS-defined operations on F -behaviours, for any functor F . The meaning of the
phrase “GSOS-defined” is explained in detail in Section 5. Before that, however, we need
to understand the notion of pointwise extension for operations on final F -coalgebras.

4. Pointwise Behaviour and Pointwise Extensions of Operations

In this section, we introduce the notion of pointwise behaviour of F -coalgebras with
input. From now on, let A be a fixed set. An F -coalgebra with input (in A) is a coalgebra
for the functor composition FA = (−)A ◦F . That is, FA(X) = (FX)A and for a function
f : X → Y , FA(f) : (FX)A → (FY )A is defined by FA(f)(t)(a) = (Ff)(t(a)). Our
motivating examples in Section 3 focused on the case where F = (B × −), that is, FA-
coalgebras are Mealy machines, and FA-behaviours are causal stream functions of type
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f : Aω → Bω. Evaluating such a causal stream function at an input stream α ∈ Aω

yields an element in Bω, the set of F -behaviours. We will show that for any functor
F , under the assumption that the final coalgebras for F and FA exist, we can evaluate
FA-behaviours at input streams from Aω to obtain F -behaviours. This observation relies
on a construction which is similar to the wreath product of automata (cf. Carton 2000;
Straubing 1989).

Definition 4.1 Let s : Y → A × Y be an (A × −)-coalgebra. For an FA-coalgebra
m : X → (FX)A, define the F -coalgebra

snm : Y ×X → F (Y ×X)

to be the function composition:

Y ×X s×m→ (A× Y )× (FX)A
∼=→ Y × (A× (FX)A)

idY ×εF X→ Y × FX
stFY,X→ F (Y ×X)

�

If 〈Z, ζ〉 is a final F -coalgebra, then for all s : Y → A × Y and m : X → (FX)A, we
get by finality a unique F -coalgebra morphism behsnm : Y ×X → Z:

Y ×X

snm
��

behsnm
// Z

ζ

��

F (Y ×X)
Fbehsnm

// FZ

We call behsnm(〈y, x〉) the pointwise F -behaviour of x at y for 〈y, x〉 ∈ Y × X. In
this paper we are mainly interested in the case where s is the final (A × −)-coalgebra
〈Aω, 〈hd , tl〉〉, and m is the final FA-coalgebra 〈Z, ζ〉, assuming it exists. The pointwise
F -behaviour map can then be thought of as evaluating FA-behaviours at input streams.
We indicate this by using the notation ev instead of beh〈hd,tl〉nζ :

Aω × Z

〈hd,tl〉nζ
��

ev // Z

ζ

��

F (Aω × Z)
Fev // FZ

(10)

Using the map ev, elements of Z can be interpreted as functions from Aω to Z. In
general, not all such functions arise from elements of Z; nevertheless, this allows us
to meaningfully speak of some operations (algebras) on Z as pointwise extensions of
operations (algebras) on Z. Formally:

Definition 4.2 For a signature Σ, an algebra σ : ΣZ → Z is a pointwise extension of
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σ : ΣZ → Z if the diagram:

Aω × ΣZ

id×σ
��

stΣ
Aω,Z

// Σ(Aω × Z)
Σev // ΣZ

σ

��

Aω × Z ev
// Z

(11)

commutes. �

We now show a few examples of pointwise behaviour and pointwise extensions.

Example 4.3 In our main example of streams and Mealy machines, the relevant functors
are F = (B × −) and FA = (B × −)A, F -behaviours are streams over B and FA-
behaviours are causal stream functions of type f : Aω → Bω (cf. Example 2.2). The
input evaluation and pointwise behaviour of causal stream functions are illustrated in
the diagram below. To ease notation, we write α0 and α′ for hd(α) and tl(α), respectively.

Aω × Γ

〈hd,tl〉nγ
��

〈α, f〉
_

��

� ev // f(α)
_

��

Bω

〈hd,tl〉
��

B × (Aω × Γ) 〈f [α0], 〈α′, fα0〉〉
id×ev

// 〈f [α0], fα0(α′)〉 B ×Bω

Clearly, for all f ∈ Γ and α ∈ Aω, ev(〈α, f〉) = f(α).
In Section 3 we have already seen examples of pointwise extensions of stream operations

to causal stream functions. We note, however, that not all stream operations can be
extended pointwise to Γ. A simple example is given by the tail operation tl : Bω → Bω.
Its pointwise extension t̄l : Γ → Γ would have to be defined for f ∈ Γ and α ∈ Aω by
t̄l(f)(α) = tl(f(α)). But then t̄l(f) is not causal, in general. For example, taking A = B

and f = id, then t̄l(id) = tl which is not causal, so t̄l is not well defined as an operation
on Γ.

On the other hand, causal stream operations can be pointwise extended to Γ. More
precisely, we say that a k-ary operation σ : (Bω)k → Bω is causal if for all β0, . . . , βk−1 ∈
Bω and all n ∈ N, σ(β0, . . . , βk−1)(n) depends only on βi�n for i ∈ {0, . . . , k − 1}. It is
straightforward to show that if σ : (Bω)k → Bω is causal, then its pointwise extension
σ̄ preserves causality, i.e., for f0, . . . , fk−1 ∈ Γ, σ̄(f0, . . . , fk−1) : Aω → Bω is causal, and
hence σ̄ is a well defined operation on Γ. �

Example 4.4 Consider the functor FX = 1 + X. Recall from Examples 2.3 and 2.4
that the set of F -behaviours is the extended natural numbers, and the final FA-coalgebra
〈L, D〉 is carried by the set of non-empty, prefix-closed languages. A transition in the F -
coalgebra 〈hd , tl〉nD is defined by:

Aω × L 〈hd,tl〉nD→ 1 + (Aω × L)

〈α0 :α′, L〉 7−→
{
〈α′, Lα0〉 if α0 ∈ L
⊥ if α0 6∈ L
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Given a state x in an FA-coalgebra t : X → (1 + X)A and an α ∈ Aω, the pointwise
F -behaviour of x on α is the number of steps that can be made in t starting from x on
input α. More precisely,

ev(〈α, x〉) = sup{n ≤ ω | α�n ∈ L(x)} ∈ N + {ω}.

In particular, if α labels an infinite path starting in x, then ev(〈α, x〉) = ω.
As an example, consider the following (fragment of the final) (1 +−)A-coalgebra with

input alphabet A = {a, b}:

x1

a

!!
x2

b

aa

a

ss

We list a few examples of pointwise behaviours:

ev(〈aω, x1〉) = ω, ev(〈aω, x2〉) = ω,

ev(〈bω, x1〉) = 0, ev(〈bω, x2〉) = 1,
ev(〈anbω, x1〉) = n+ 1, ev(〈anbω, x2〉) = n+ 1, ∀n > 0.

Natural operations on F -behaviours are max (∨), plus (+) and times (·) in the extended
arithmetic where ω + x = ω for all x ∈ {ω}+ N and ω · x = ω for all x ∈ {ω}+ N>0 and
ω · 0 = 0. Using the above example, the pointwise extensions of these operations should
satisfy:

ev(〈aω, x1∨̄x2〉) = ω, ev(〈bω, x1∨̄x2〉) = 1,
ev(〈aω, x1 ·̄x2〉) = ω, ev(〈bω, x1+̄x2〉) = 1,
ev(〈aω, x1+̄x2〉) = ω, ev(〈bω, x1 ·̄x2〉) = 0,

ev(〈anbω, x1∨̄x2〉) = n+ 1,
ev(〈anbω, x1+̄x2〉) = 2n+ 2,
ev(〈anbω, x1 ·̄x2〉) = n2 + 2n+ 1, ∀n > 0.

�

Example 4.5 Recall from Examples 2.5 and 2.6 that the final Pω-coalgebra 〈T, τ〉 con-
sists of all strongly extensional, finitely branching trees with the subtree relation, and
the final PA

ω -coalgebra 〈P, φ〉 is carried by the set of image-finite processes. For α ∈ Aω
and p ∈ P ,

Aω × P 〈hd,tl〉nφ→ Pω(Aω × P )

〈α, p〉 7−→ {〈α′, q〉 | p α0→ q}.

Evaluating p ∈ P at an input stream α ∈ Aω can be seen as removing from p the paths
that are not labelled by a prefix of α, and dropping labels. The pointwise behaviour is
obtained by quotienting the resulting tree with Pω-bisimilarity. For example, let A =
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{a, b} and let p0 and q0 be the processes:

�� ��
p1 p0

aoo

a

""
p2

a

bb

b


q0

a

""
q1

b

aa

Then we find that the pointwise behaviours of p0 and q0 on aω, abω and (ab)ω, respec-
tively, are:

ev(〈aω, p0〉) ��
s1 s0oo

!!
s2aa

ev(〈abω, p0〉) ��

t1 t0oo // t2
��

ev(〈(ab)ω, p0〉) ��
u1 u0oo // u2 // u3 // u4

ev(〈aω, q0〉) ��
x0 // x1

ev(〈abω, q0〉) ��
y0 // y1 // y2

ev(〈(ab)ω, q0〉) ��
z0 gg

We consider the following operations on F -behaviours s and t. The join s ∪ t is a root
node which has all the subtrees of s and t as subtrees. The composition s; t plugs in t

at all leaf nodes of s. The interleaving s ⊗ t is a tree version of shuffle product. These
operations are defined by the following rules:

join :
x0 → x1

x0 ∪ y → x1

y0 → y1

x ∪ y0 → y1

composition :
x0 → x1

x0; y → x1; y
x 6 → y0 → y1

x; y0 → y1

interleaving :
x0 → x1 y0 → y1

x0 ⊗ y0 → (x1 ⊗ y0) ∪ (x0 ⊗ y1)

We construct the join s0 ∪ x0 by first computing transitions using the rules for ∪:

��
s1 s0 ∪ x0

//oo

��

s2

!!
s0aa

// s1

x1

Quotienting with bisimilarity, we find that s0 ∪ x0 = s0. Compositions are also easily
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computed:

t0; y0 : ��
◦ ◦oo ◦oo ◦oo // ◦



y0; t0 : ��
◦ // ◦ // ◦

��

// ◦


◦

x0; z0 = z0;x0 : ��
◦ dd

It follows that the pointwise extension ;̄ should satisfy:

ev(〈abω, p0 ;̄ q0〉) = t0; y0, ev(〈(ab)ω, p0 ;̄ q0〉) = z0,

ev(〈abω, q0 ;̄ p0〉) = y0; t0, ev(〈(ab)ω, q0 ;̄ p0〉) = z0.

Finally, we compute a few interleaving products. First, s0 ⊗ x0:

��
s0 ⊗ x0

//

��

(s2 ⊗ x0) ∪ (s0 ⊗ x1)

��
(s1 ⊗ x0) ∪ (s0 ⊗ x1) (s0 ⊗ x0) ∪ (s2 ⊗ x1)oo

??

Quotienting with bisimilarity, we find that s0⊗x0 = s0. As a final example, we compute
u0 ⊗ z0. To aid the calculation, we first compute some intermediate transitions:

1. u0 ⊗ z0 −→ (u1 ⊗ z0) ∪ (u0 ⊗ z0),
2. u0 ⊗ z0 −→ (u2 ⊗ z0) ∪ (u0 ⊗ z0),
3. u1 ⊗ z0 6−→ (since u1 6−→),
4. u2 ⊗ z0 −→ (u3 ⊗ z0) ∪ (u2 ⊗ z0),
5. u3 ⊗ z0 −→ (u4 ⊗ z0) ∪ (u3 ⊗ z0),
6. u4 ⊗ z0 6−→ (since u4 6−→).

The transition graph of u0 ⊗ z0 is shown below. We have labelled the transition arrows
with a reference to the intermediate transition from which it arises.

��
(u1 ⊗ z0) ∪ (u0 ⊗ z0)

1

��

2

��

u0 ⊗ z0
1oo

2

ttiiiiiiiiiiiiiiiiii

(u2 ⊗ z0) ∪ (u0 ⊗ z0)

2

YY

1

??

4 //(u3 ⊗ z0) ∪ (u2 ⊗ z0)

4

YY
5 //(u4 ⊗ z0) ∪ (u3 ⊗ z0)

5

YY

No states can terminate, and hence u0⊗z0 = z0. We conclude that the pointwise extension
of ⊗ should satisfy:

ev(〈aω, p0 ⊗̄ q0〉) = s0 and ev(〈(ab)ω, p0 ⊗̄ q0〉) = z0.

�
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In the above examples, pointwise extensions of operations were calculated on some
specific argument values. To check whether these pointwise extensions are well-defined
in general, and whether they can be defined in a rule-based fashion as in Section 3, it is
necessary to understand those rule-based specifications in a general coalgebraic setting.
This is the aim of the next section.

5. Distributive Laws and GSOS Rules

The equation- and rule-based definitions in the examples of Sections 3 and 4 are special
cases of a general framework for defining operations on final coalgebras, parameterized
both by the behaviour functor F and the signature Σ of operations. The framework,
developed in (Turi and Plotkin 1997), is based on the abstract notion of distributive law.

Basic distributive laws. Let F be a behaviour functor, 〈Z, ζ〉 the final F -coalgebra, and
Σ an algebraic signature. A natural transformation λ : ΣF =⇒ FΣ, i.e. a distributive
law of Σ over F , induces a Σ-algebra on Z by finality, as the unique F -coalgebra map
from λZ ◦ Σζ to 〈Z, ζ〉. This is illustrated in the following diagram:

ΣZ
Σζ

//

σ

��

ΣFZ
λZ // FΣZ

Fσ

��

Z ∼=

ζ
// FZ

(12)

For instance, the definition of ⊕ in Example 3.1 induces a natural transformation

λ : (R×−)× (R×−) =⇒ R× (−×−)

(i.e. ΣX = X ×X and FX = R×X) whose X-component is given by:

λX : (R×X)× (R×X) =⇒ R× (X ×X)
〈〈a, x1〉, 〈b, y1〉〉 7→ 〈a+ b, 〈x1, y1〉〉.

(13)

It is straightforward to check that the operation σ : Rω × Rω → Rω arising from this λ
as in (12), is the expected operation ⊕ induced by equations of Example 3.1 according
to (Rutten 2003).

Monadic distributive laws. In specifications associated with basic distributive laws, all
expressions on the right-hand sides of rule conclusions must be Σ-terms of depth exactly
1. Definitions of some useful operations do not conform to this restriction.

For an easy example, consider for FX = R×X a unary “head replacement” operation
a/− : Rω → Rω, defined equivalently by equations or rules by:

hd(a/x0) = a

tl(a/x0) = tl(x0)
i.e.

x0
b→ x1

a/x0
a→ x1

.

Note how the conclusion of the above rule is a variable, i.e., a term of depth 0 rather
than 1. For this reason, the above definition does not correspond to a basic distributive



H.H. Hansen and B. Klin 16

law λ : ΣF =⇒ FΣ. There are also useful examples where the relevant terms have depth
more than 1 (see e.g. the interleaving operation in Example 4.5).

To deal with such examples, one can consider natural transformations of the type
ρ : ΣF =⇒ FT ; these allow arbitrary Σ-terms where only terms of depth 1 were allowed.
Such natural transformations induce Σ-operations on final F -coalgebras much the same
as basic distributive laws, as the unique maps σ : ΣZ → Z that make the diagram:

ΣZ
Σζ

//

σ

��

ΣFZ
ρZ // FTZ

Fσ]

��

Z ∼=

ζ
// FZ,

(14)

commute, where σ] is the T -algebra corresponding to σ as described in Section 2.2.
An alternative way to understand this definition, and convince oneself that σ as above

indeed exists uniquely, is to observe that transformations ρ : ΣF =⇒ FT are in 1-1
correspondence with distributive laws of the monad T over the endofunctor F , i.e.,
natural transformations λ : TF =⇒ FT that respect the monad structure of T . Such
distributive laws induce the algebraic structure σ] uniquely as in (12), with T substituted
for Σ.

GSOS specifications. For an example that does not conform to either of the law types
explained above, consider the definition of � in Example 3.2. It does not correspond to
a natural transformation λ : ΣF =⇒ FΣ (for ΣX = X × X and FX = R × X), and
intuitively, the reason for this is the use of the variable x0 on the right side of an equation,
or in the target of the conclusion of a rule. However, that definition corresponds to a law
of the type

ρ : Σ(Id × F ) =⇒ FΣ

where ρ has X-component:

ρX : (X × R×X)× (X × R×X) =⇒ R× (X ×X)
〈〈x0, a, x1〉, 〈y0, b, y1〉〉 7→ 〈a+ b, 〈x0, y1〉〉

(15)

One can also combine the expressivity of this type of laws with that of monadic distribu-
tive laws described above, and consider the following definition:

Definition 5.1 A GSOS specification (of Σ over F ) is a natural transformation

ρ : Σ(Id × F ) =⇒ FT .

�

GSOS specifications are a particularly useful type of distributive laws, able to describe
many interesting definitions. Their name comes from the fact that for the endofunctor
FX = (PωX)A (see Example 2.6), they correspond (see Turi and Plotkin 1997; Bartels
2004) to structural operational semantic specifications of LTSs in the well known GSOS
format (Aceto et al. 2001).
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To induce a Σ-operation σ on the final F -coalgebra from a GSOS specification ρ,
proceed by analogy with the case of monadic distributive laws and define it as the unique
map that makes the diagram:

ΣZ
Σ〈id,ζ〉

//

σ

��

Σ(Z × FZ)
ρZ // FTZ

Fσ]

��

Z ∼=

ζ
// FZ

(16)

commute. Again, the unique existence of σ follows from the correspondence of GSOS
specifications ρ : Σ(Id × F ) =⇒ FT with distributive laws of the monad T over the
copointed endofunctor (Id×F ), i.e., natural transformations λ : T (Id×F ) =⇒ (Id×F )T
subject to a few axioms, see (Lenisa et al. 2004) for details. Again, such distributive laws
induce the algebraic structure σ] uniquely as in (12), with T substituted for Σ and
(Id × F ) for F .

6. Pointwise Extensions of Distributive Laws

We shall now focus on the problem of extending distributive laws for arbitrary behaviour
functors F to similar laws for (F−)A, so that the resulting operations on final (F−)A-
coalgebras are pointwise extensions of the operations on final F -coalgebras defined by
the original distributive laws. It turns out that the solutions applied to the two particular
examples in Section 3 work also in this general setting.

6.1. Basic Distributive Laws

As before, let F be a behaviour functor, 〈Z, ζ〉 a final F -coalgebra, and Σ an algebraic
signature. Suppose that an operation σ : ΣZ → Z arises from a basic distributive law
λ : ΣF =⇒ FΣ by coinduction as in (12). Assume moreover that 〈Z, ζ〉 is a final (F−)A-
coalgebra.

Define a basic distributive law λ : Σ(F−)A =⇒ (FΣ−)A from λ, with λX given as:

Σ(FX)A
csΣ

A,FX
// (ΣFX)A

λA
X // (FΣX)A, (17)

and define σ : ΣZ → Z from λ as in (12).

Theorem 6.1 Let F be a functor with final coalgebra 〈Z, ζ〉, and let 〈Z, ζ〉 be a final
FA-coalgebra. If

λ : ΣF =⇒ FΣ

is a distributive law (of Σ over F ) which induces a Σ-algebra σ : ΣZ → Z, then λ can be
lifted to a distributive law

λ : Σ(F−)A =⇒ (FΣ−)A

(of Σ over FA) which induces a Σ-algebra σ : ΣZ → Z that is the pointwise extension of
σ.



H.H. Hansen and B. Klin 18

Proof. Define λ by (17) and see the Appendix.

Example 6.2 Let us calculate λ for the law λ in (13) which defines the operation
⊕ : Rω×Rω → Rω from Example 3.1. The syntax and behaviour functors are ΣX = X×X
and FAX = (R×X)R, hence an X-component of λ is of the type:

λX : (R×X)R × (R×X)R =⇒ (R×X ×X)R.

Below, for φ ∈ (R × X)R and a ∈ R, we denote the projections of φ(a) by φ0(a) and
φ1(a), i.e., φ(a) = 〈φ0(a), φ1(a)〉. Instantiating (17) and (13), λX is defined by:

〈φ, ψ〉
_

��

∈ (R×X)R × (R×X)R

csΣ
R,R×X

��

λa.〈φ0(a), φ1(a), ψ0(a), ψ1(a)〉
_

��

∈ (R×X × R×X)R

λR
X

��

λa.〈φ0(a) + ψ0(a), 〈φ1(a), ψ1(a)〉〉 ∈ (R×X ×X)R

Formulating the above λ as an inference rule we recognise the rule for ⊕̄ in (5), with
b = φ0(a), c = ψ0(a), x1 = φ1(a) and y1 = ψ1(a). �

It should be noted that the same construction works for the more expressive type of
specifications ρ : ΣF =⇒ FT . To define the pointwise extension of an operation defined
by such a specification, first obtain from ρ a monadic distributive law λ : TF =⇒ FT , and
then apply the construction (17) and Theorem 6.1, with Σ replaced by T throughout.

6.2. GSOS Specifications

We shall now move to define pointwise extensions of operations defined by GSOS speci-
fications ρ : Σ(Id × F ) =⇒ FT .

First, note that unlike in the case of monadic distributive laws above, one cannot use
the correspondence of GSOS specifications and distributive laws of T over Id × F , and
apply (17) and Theorem 6.1 with Σ replaced by T and F replaced by Id×F throughout.
The reason for this is that in the natural transformation λ obtained from (17) in this
case, an X-component has domain T (X × FX)A, and not T (X × (FX)A) as required
to define the pointwise extension operation by (16).

It seems that the problem can be circumvented by precomposing the counterpart
of (17) with an appropriate (co)strength. In this way, from a GSOS specification ρ,
one obtains a GSOS specification ρ : Σ(Id × (F−)A) =⇒ (FT )A with ρX defined by:

Σ(X × (FX)A)
cs

Σ(X×−)
A,FX

// (Σ(X × FX))A
ρA

X // (FTX)A, (18)

and proceeds to define an extended operation σ : ΣZ → Z from (16).
However, it turns out that σ obtained this way is not the pointwise extension of the

operation σ : ΣZ → Z, i.e., the relevant diagram (11) does not commute. Indeed, one
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may repeat the development of Example 6.2 for (18) with ρ defined by (15), and realise
that the resulting ρ corresponds to the rule (6), which does not define the pointwise
extension of � as we saw in Example 3.2.

To treat the case of arbitrary GSOS specifications correctly, we proceed in a more
subtle way, by analogy with the development of Example 3.2. First, extend the syntax Σ
by defining

Σ . = A×− Σ = Σ + Σ . .

This amounts to adding |A| auxiliary unary operations to the syntax. In examples, we
will denote these operations by a .−, for a ∈ A. Their semantics will intuitively be
“one-element buffer” operations. Let T be the free monad over Σ.

The pointwise extension of σ will be defined with the help of an algebra σ : ΣZ → Z

such that the diagram:

Aω × ΣZ

id×ιZ
��

stΣ
Aω,Z

// Σ(Aω × Z)
Σev // ΣZ

σ

��

Aω × ΣZ

id×σ
��

Aω × Z ev
// Z

(19)

commutes (compare (11)), where ι : Σ → Σ is the coproduct injection. To define σ we
provide a GSOS specification ρ : Σ(Id × (F−)A) =⇒ (F T−)A, by cases of Σ: for Σ . ,

A× (X × (FX)A)
π13 // A× (FX)A

εFX // FX EDBC ηFX

GF��
(A× FX)A

(stFA,X)A

// (F (A×X))A � � // (F TX)A

(20)

and for Σ,

Σ(X × (FX)A)
Σ(ηX×id)

// Σ((A×X)A × (FX)A) EDBC cs
Σ(−×−)
A,A×X,FX

GF��
(Σ(A×X × FX))A � � // (Σ((A×X +X)× F (A×X +X)))A EDBC ρA

A×X+X

GF��
(FT (A×X +X))A � � // (F TX)A

(21)

This ρ defines an algebra σ : ΣZ → Z as usual, by (16). With some straightforward,
albeit tedious, diagram chasing one shows that (19) commutes:

Theorem 6.3 Let F be a functor with final coalgebra 〈Z, ζ〉, and let 〈Z, ζ〉 be a final
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FA-coalgebra. If

ρ : Σ(Id × F−) =⇒ (FT−)

is a GSOS specification (of Σ over F ) which induces a Σ-algebra σ : ΣZ → Z, then ρ can
be lifted to a GSOS specification

ρ : Σ(Id × (F−)A) =⇒ (F T−)A

(of Σ over FA) which induces a Σ-algebra σ : ΣZ → Z such that σ ◦ ιZ : ΣZ → Z is the
pointwise extension of σ.

Proof. Define ρ by (20) and (21) and see the Appendix.

We illustrate the construction behind Theorem 6.3 using the operation � from Exam-
ple 3.2.

Example 6.4 Let us calculate ρ : Σ(Id × (F−)A) =⇒ (F T−)A for the law ρ in (15)
which defines the operation � : Rω × Rω → Rω. The syntax and behaviour functors are
ΣX = X ×X and FAX = (R×X)R, hence Σ .X = R×X, ΣX = (X ×X) + (R×X)
and ρ is of type

ρ : Σ(Id × (R×−)R) =⇒ (R× T−)R.

The two cases for ρ have X-components:

ρ .X : R×X × (R×X)R → (R× TX)R

ρΣ
X : Σ(X × (R×X)R) → (R× TX)R

given by (20) and (21), respectively. Intuitively, ρ . specifies the FA-behaviour of the
buffer operations and ρΣ specifies the FA-behaviour of the Σ-operation.

Again, for φ ∈ (R ×X)R we let φ0 and φ1 be defined by φ(a) = 〈φ0(a), φ1(a)〉 for all
a ∈ R. To ease the notational burden, we shall suppress some coproduct injections and
treat them as set inclusions.
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For ρ . , (20) instantiates to:

〈a, x, φ〉
_

��

∈ R× (X × (R×X)R)

π13

��

〈a, φ〉
_

��

∈ R× (R×X)R

εR×X

��

〈φ0(a), φ1(a)〉
_

��

∈ R×X

ηR×X

��

λc.〈c, 〈φ0(a), φ1(a)〉〉
_

��

∈ (R× (R×X))R

(stR×−
R,X )R

��

λc.〈φ0(a), 〈c, φ1(a)〉〉 ∈ (R× (R×X))R
� _

��

λc.〈φ0(a), 〈c, φ1(a)〉〉 ∈ (R× TX)R

The last step involves the inclusion of R ×X = Σ .X into TX. So 〈c, φ1(a)〉 should be
read as c . φ1(a). Formulating ρ . as a GSOS rule we recognise the rule for a . x0 in (9)
(with b = φ0(a), x0 = x and x1 = φ1(a)).

For ρΣ, (21) instantiates to:

〈〈x, φ〉, 〈y, ψ〉〉
_

��

∈ (X × (R×X)R)2

Σ(ηX×id)

��

〈〈λa.〈a, x〉, φ〉, 〈λa.〈a, y〉, ψ〉〉
_

��

∈ ((R×X)R × (R×X)R)2

cs
Σ(−×−)
R,R×X,R×X

��λa.〈〈〈a, x〉, 〈φ0(a), φ1(a)〉〉,
〈〈a, y〉, 〈ψ0(a), ψ1(a)〉〉〉 ∈ (((R×X)× (R×X))2)R

� _

��λa.〈〈〈a, x〉, φ0(a), φ1(a)〉,
〈〈a, y〉, ψ0(a), ψ1(a)〉〉

_

��

∈ (((R×X +X)× R× (R×X +X))2)R

ρR
R×X+X

��

λa.〈φ0(a) + ψ0(a), 〈〈a, x〉, ψ1(a)〉〉 ∈ (R× T (R×X +X))R
� _

��

λa.〈φ0(a) + ψ0(a), 〈〈a, x〉, ψ1(a)〉〉 ∈ (R× T (X))R
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The last step involves the natural inclusion of terms induced by mapping a pair 〈a, x〉 ∈
R×X to the buffer expression a . x ∈ Σ .X ⊆ TX. With this inclusion in mind, we see
that the rule for �̄ in (9) is the rule-based formulation of ρΣ. �

Informally, ρΣ can be described as obtained from ρ by replacing all occurrences of
x0 ∈ X on the right-hand sides with a . x0 and adding input labels to arrows. In the next
section we will see more examples of how ρ is obtained from ρ.

7. Further Examples

We shall now sketch a few more example applications of the constructions and results of
Section 6.

Example 7.1 Taking F = 2 × − and A = 2, (2 × −)-behaviours are bitstreams and
(2 × −)2-coalgebras are binary Mealy machines whose behaviours are causal bitstream
functions (cf. Examples 2.1 and 2.2). In (Hansen and Rutten 2010), a coalgebraic treat-
ment was given of the so-called 2-adic bitstream operations and their pointwise extensions
to causal bitstream functions. The main purpose in (Hansen and Rutten 2010) was to
construct binary Mealy machine realisations from 2-adic function expressions. A cru-
cial step in this result consists of showing that 2-adic function expressions can be given a
Mealy machine structure. It was, however, not clear whether this Mealy machine of terms
comes about from the existence of a distributive law. A reason for this is that the buffer
operations were not explicitly used in (Hansen and Rutten 2010), and so the general
picture did not emerge. Since the 2-adic bitstream operations are defined in the GSOS
format, Theorem 6.3 tells us that a distributive law exists and how to derive it. We now
present this distributive law, except that we leave out the (guarded) inverse operation
in order to simplify the presentation. It is straightforward to apply Theorem 6.3 to also
include the inverse.

The 2-adic bitstream operations arise from viewing (a0, a1, a2, . . .) ∈ 2ω as the coef-
ficients of the power series representation of the 2-adic integer

∑ω
i=0 ai2

i (cf. Koblitz
1984). The 2-adic integers include the set Qodd of rational numbers with odd denomina-
tor via the map B : Qodd → 2ω which converts numbers to their base 2 representation.
For a positive integer n, B(n) is simply obtained by writing n in binary and padding
with a tail of zeros, e.g. B(6) = (0, 1, 1, 0, 0, 0, . . .). Negative integers are represented by
taking an infinitary version of two’s complement, e.g. B(−6) = (0, 1, 0, 1, 1, 1, . . .). More
generally, for any q ∈ Qodd , B(q) is an eventually periodic bitstream.

The 2-adic signature Σ2-adic (without inverse) consists of constants [0], [1] and X denot-
ing B(0), B(1) and B(2), respectively, together with + (addition), − (unary minus), ×
(multiplication). An attractive property of 2-adic representations is that rational arith-
metic can be carried out in a sequential manner very similar to how one computes with
natural numbers in decimal notation (cf. Hehner and Horspool 1979). The rules below de-
fine the 2-adic operations by means of a GSOS specification ρ : Σ(Id×2×−) =⇒ 2×(T−)
where T is the free monad generated by Σ2-adic. In these rules, ∧ and ⊕ denote the bit
operations of Boolean AND and addition modulo 2, i.e., for all a, b ∈ 2: a ∧ b = 1 iff
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a = b = 1 and a⊕ b = 1 iff a 6= b.

[0] 0→ [0] [1] 1→ [0] X 0→ [1]

x0
b→ x1 y0

c→ y1

x0 + y0
b⊕c→ (x1 + y1) + [b ∧ c]

x0
b→ x1

−x0
b→ −(x1 + [b])

x0
b→ x1 y0

c→ y1

x0 × y0
b∧c→ (x1 × y0) + ([b]× y1)

The rule for + shows that carry bits may propagate infinitely to the right, for example
(1, 0, 0, 0, . . .) + (1, 1, 1, . . .) = (0, 0, 0, . . .), and the rule for × shows that multiplication
is done in the usual shift-add manner. We refer to (Hansen and Rutten 2010) for more
details.

In order to be able to specify bitstream functions rather than just bitstreams, the
syntax is extended with a variable s. The 2-adic function expressions is thus the set
T ({s}) of Σ2-adic-terms freely generated over the single variable s. Algebraically, a term
t in T ({s}) is evaluated in Γ by interpreting s as the identity map id: 2ω → 2ω, and
the 2-adic operations as their pointwise extensions to Γ. The fact that we can define the
pointwise extensions with a distributive law implies that the coalgebraic semantics of
2-adic function expressions coincides with the algebraic semantics. The pointwise exten-
sions of [0], [1], X,+ and − to the binary Mealy functor (2 × −)2 are obtained from the
simple format in (17) and its monadic version. The pointwise extension of multiplication,
however, requires the use of the buffer operations. We omit the overline notation and
simply write + instead of +̄ etc. The typing should be clear from the context.

[0] a|0→ [0] [1] a|1→ [0] X
a|0→ [1]

x0
a|b→ x1 y0

a|c→ y1

x0 + y0
a|b⊕c→ (x1 + y1) + [b ∧ c]

x0
a|b→ x1

−x0
a|b→ −(x1 + [b])

x0
a|b→ x1 y0

a|c→ y1

x0 × y0
a|b∧c→ (x1 × (a . y0)) + ([b]× y1)

x0
a|b→ x1

a . x0
c|b→ c . x1

Interestingly, it was possible to define the Mealy machine of terms in (Hansen and Rutten
2010), without adding the buffer operations, since these can already be expressed in the
existing syntax: for every term t ∈ T ({s}) and every a ∈ 2, there is a term, denoted by
t(a :s) ∈ T ({s}), such that for all input streams α ∈ 2ω, beh(t(a :s))(α) = beh(t)(a :α) =
beh(a . t)(α). We refer to (Hansen and Rutten 2010) for more details on the definition of
t(a :s). �

Example 7.2 Consider the functor FX = 1+X from Example 2.3, that is, F -behaviours
are the extended natural numbers N + {ω}, and FA-behaviours are non-empty, prefix-
closed languages (cf. Examples 2.3 and 2.4). The operations max (∨), plus (+) and
times (·) on the extended natural numbers (cf. Example 4.4) are induced by the following
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rules:

x0 → x1 y0 → y1

x0 ∨ y0 → x1 ∨ y1

x0 → x1 y0 → ⊥
x0 ∨ y0 → x1

x0 → ⊥ y0 → y1

x0 ∨ y0 → y1

x0 → x1

x0 + y → x1 + y

x0 → ⊥ y0 → y1

x0 + y0 → y1

x0 → ⊥ y0 → ⊥
x0 + y0 → ⊥

x0 → x1 y0 → y1

x0 · y0 → (x1 · y0) + y1

x0 → ⊥
x0 · y → ⊥

y0 → ⊥
x · y0 → ⊥

The pointwise extensions of these operations to the final FA-coalgebra are defined by the
following set of rules. Again, we omit the overline notation for the pointwise extended
operations.

x0
a→ x1

a . x0
b→ b . x1

x0
a→ ⊥

a . x0
b→ ⊥

x0
a→ x1 y0

a→ y1

x0 ∨ y0
a→ x1 ∨ y1

x0
a→ x1 y0

a→ ⊥
x0 ∨ y0

a→ x1

x0
a→ ⊥ y0

a→ y1

x0 ∨ y0
a→ y1

x0
a→ x1

x0 + y a→ x1 + (a . y)
x0

a→ ⊥ y0
a→ y1

x0 + y0
a→ y1

x0
a→ ⊥ y0

a→ ⊥
x0 + y0

a→ ⊥

x0
a→ x1 y0

a→ y1

x0 · y0
a→ (x1 · (a . y0)) + y1

x0
a→ ⊥

x0 · y a→ ⊥
y0

a→ ⊥
x · y0

a→ ⊥

To illustrate, let A = {a, b} and for n ∈ N, let an = {ε, a, aa, . . . , an}, that is, an denotes
the prefix-closed language generated by an. We then have for all n ∈ N,

an+1 a→ an, a0 a→ ⊥, an c→ ⊥ if c 6= a.

Applying the rule for buffer expressions, we find that for all c, d ∈ A,

a . an+1 c→ c . an, c . a . an+1 d→ d . c . an, etc.

In general, for all k ∈ N and c1, . . . , ck ∈ A,

ck−1 . . . . c1 . a . a
n+1 ck→ ck . ck−1 . . . . c1 . a

n, and
ck−1 . . . . c1 . a . a

0 ck→ ⊥

Let us check the pointwise extension of + on a3 and a2. For any stream α ∈ Aω that
starts with three a’s, i.e. α�3 = a3, we have ev(〈α, a3〉) + ev(〈α, a2〉) = 3 + 2 = 5. We now
use the above rules to compute the transitions that can be made by a3 + a2 on input
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(a, a, a, c3, c4, c5, . . .) where ci ∈ A, i = 3, 4, 5, . . ., are arbitrary:

a3 + a2 a→ a2 + (a . a2)
a→ a1 + (a . a . a2)
a→ a0 + (a . a . a . a2)
c3→ (c3 . a . a . a1) ( since a0 c3→ ⊥)
c4→ (c4 . c3 . a . a0)
c5→ ⊥

We see that a3 + a2 can make 5 transitions, so indeed ev(〈α, a3 + a2〉) = ev(〈α, a3〉) +
ev(〈α, a2〉) for all α such that α �3 = a3. If now α = (a, a, b, c3, c4, . . .) for arbitrary
c3, c4, . . . ∈ A, then we find:

a3 + a2 a→ a2 + (a . a2)
a→ a1 + (a . a . a2)
b→ (b . a . a1) ( since a1 b→ ⊥)
c3→ (c3 . b . a0)
c4→ ⊥

Hence ev(〈α, a3 + a2〉) = 4 = 2 + 2 = ev(〈α, a3〉) + ev(〈α, a2〉) as desired. Consider now
the product a3 · a2 and the input stream aω:

a3 · a2 a→ a2 · (a . a2) + a1

a→ (a1 · (a . a . a2) + (a . a1)) + (a . a1)
a→ ((a0 · (a . a . a . a2) + (a . a . a1)) + (a . a . a1)) + (a . a . a1)
a→ ((a . a . a0) + (a . a . a . a1)) + (a . a . a . a1)
a→ (a . a . a . a0) + (a . a . a . a . a1)
a→ (a . a . a . a . a0)
a→ ⊥

Hence ev(〈aω, a3 · a2〉) = 6 = ev(〈aω, a3〉) · ev(〈aω, a2〉). �

Example 7.3 We now look at the case where F = Pω. Recall that F -behaviours are
strongly extensional, finitely branching trees, and FA-behaviours are image-finite pro-
cesses (cf. Examples 2.5 and 2.6). The pointwise extensions to the final FA-coalgebra of
the operations join, composition and interleaving from Example 4.5 are defined by the
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rules below. Again, we omit overlines.

buffer:
x0

a→ x1

a . x0
b→ b . x1

x0 6 a→
a . x0 6 b→

join :
x0

a→ x1

x0 ∪ y a→ x1

y0
a→ y1

x ∪ y0
a→ y1

composition :
x0

a→ x1

x0; y a→ x1; (a . y)
x 6 a→ y0

a→ y1

x; y0
a→ y1

interleaving :
x0

a→ x1 y0
a→ y1

x0 ⊗ y0
a→ (x1 ⊗ (a . y0)) ∪ ((a . x0)⊗ y1)

Let us calculate the join of the two processes p0 and q0 from Example 4.5. For convenience,
their transition diagrams are repeated here (recall that A = {a, b}):

�� ��
p1 p0

aoo

a

""
p2

a

bb

b


q0

a

""
q1

b

aa

Applying the rule for ∪ to p0 ∪ q0 we find that:

��
p1 p0 ∪ q0

aoo a //

a

��

q1

b

""
q0

a

aa

p0

a

$$

a

OO

p2

a

dd

b

kk

Recall that evaluating a process p on a stream α means restricting to all paths in p that
are labelled by a prefix in α, and then dropping the labels. Evaluating p0 ∪ q0 at aω,
we first find the structure below on the left. Quotienting with bisimilarity we get the
structure below on the right

�� ��
◦ ◦oo //

��

◦ � beh // ◦ ◦
!!

oo ◦aa

◦
!!

OO

◦aa

In Example 4.5 we saw that the join of s0 = ev(〈aω, p0〉) and x0 = ev(〈aω, q0〉) is equal
to s0. The above shows that ev(〈aω, p0 ∪ q0〉) = ev(〈aω, p0〉) ∪ ev(〈aω, q0〉) = s0.

The join was defined in the simple format, so the buffer operations were not needed.
The rules for the composition and the interleaving product, do use the buffers. We now
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compute part of the transition structure of p0; q0. In order to keep a compact notation, we
will write w .x instead of a1 . . . . . an . x when w = a1 . . . an. Dots after a node indicate
that it has outgoing transitions that are not shown.

��
a . q1 p1; (a . q0)

aoo

b

��

p0; q0
aoo a // p2; (a . q0)

a

��

b // p2; (ba . q0)
b //

a

��

. . .

a . q0

a

OO

b

%%

b . q1

a

dd

b

��

(ba . q1) p0; (a2 . q0)

a

��

boo

a

xxrrrrrrrrrr
p0; (aba . q0) . . .

b . q0 p1; (a3 . q0)

a

zzuuuuuuuuuu
b

��

p2; (a3 . q0)

a

��

b // p2; (ba3 . q0) . . .

a3 . q1 ba2 . q1 p0; (a4 . q0)

a

xxrrrrrrrrrr
a

��

b // ba3 . q1

p1; (a5 . q0)

a

zzuuuuuuuuuu
b

��

p2; (a5 . q0)
b //

a

��

p2; (ba5 . q0) . . .

a5 . q1 ba4 . q1 p0; (a6 . q0) . . .

From the above, it is fairly easy to see that evaluating p0; q0 at aω yields a structure
bisimilar to the one below on the left. Quotienting further with bisimilarity, we get
the structure on the right, which is equal to s0;x0 where s0 = ev(〈aω, p0〉) and x0 =
ev(〈aω, q0〉) (cf. Example 4.5), hence ev(〈aω, p0; q0〉) = ev(〈aω, p0〉); ev(〈aω, q0〉).

�� ��
◦ ◦oo ◦oo // ◦

zzuuuuu
� beh // ◦ ◦oo ◦oo

��
◦\\

◦ ◦oo ◦oo // ◦XX

As another example, we compute the transitions of p0; q0 on abω:

// p0; q0

a ))RRRRRRR
a // p2; (a . q0)

b // p2; (ba . q0)
b // p2; (b2a . q0)

b // . . .

p1; (a . q0)
b // b . q1

b // b . q0

Removing the labels results in a tree which is bisimilar to t0; y0 where t0 = ev(〈abω, p0〉)
and y0 = ev(〈abω, q0〉) (cf. Example 4.5), and so indeed we have ev(〈abω, p0; q0〉) =
ev(〈abω, p0〉); ev(〈abω, q0〉). Note that the naive approach to defining the operation ; on
FA-behaviours would lead to the following behaviour on abω:
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// p0; q0

a ))RRRRRR
a // p2; q0

b // p2; q0
b // p2; q0

b // . . .

p1; q0

If we remove the labels, we obtain a tree which is clearly not bisimilar to t0; y0. We leave
it to the reader to check that for α ∈ {aω, abω, (ab)ω}, ev(〈α, p0 ⊗ q0〉) = ev(〈α, p0〉) ⊗
ev(〈α, q0〉). �

8. Conclusions and Future Work

We have shown how GSOS rules that define operations on F -behaviours can be lifted to
GSOS rules that define the corresponding pointwise extensions on FA-behaviours. The
construction is carried out uniformly for all behaviour functors F and it relies on extend-
ing the signature with a family of buffer operations. Although the proof is technically
involved, applying the construction to concrete examples is straightforward. Our original
motivating example was the pointwise extension of the 2-adic operations on bitstreams to
causal bitstream functions (Mealy machine behaviours) from (Hansen and Rutten 2010).
In this example, a specification language for bitstreams is turned into one for bitstream
functions by adding a variable to the syntax as in standard mathematical practice. We
expect that this ‘trick’ is useful in other settings. In this perspective, our result can be
formulated as: a structural operational semantics for Σ-expressions can be systematically
lifted to one for Σ-function expressions in such a way that the operational (coalgebraic)
semantics coincides with the algebraic semantics.

As related work we mention (Jacobs 2006), where it is shown that an Eilenberg-Moore
algebra σ : TB → B for a monad T induces a distributive law of T over the (Moore)
functor FX = B × XA, and the Eilenberg-Moore algebra induced on the carrier BA

∗

of the final F -coalgebra is the pointwise extension of σ. Due to the shape of the functor
FX = B × XA, our present result does not directly relate to that in (Jacobs 2006),
however, it is straightforward to state and prove an analogous one: If σ : TB → B is
an Eilenberg-Moore algebra, then σ gives rise to a distributive law of T over the Mealy
functor (B × −)A such that the induced Eilenberg-Moore algebra σ̂ : T (BA

+
) → BA

+

is the pointwise extension of σ. Note that causal stream functions Aω → Bω are in 1-1
correspondence with functions A+ → B. In our setting, we can describe the pointwise
extension of σ in two steps. First, from σ it is easy to define a simple distributive law λ

of T over the functor (B × −). The element-wise addition of streams over R is such an
example. This λ defines an operation σω on Bω which is the pointwise (i.e. element-wise)
extension of σ. Second, we apply Theorem 6.1 to lift λ and obtain the pointwise extension
σω on Γ. One easily shows that σω corresponds to σ̂ under the bijection Γ ∼= BA

+
.

As mentioned in Section 4, the input evaluation s n m is a construction very similar
to the wreath product of automata (cf. Carton 2000; Pin and Weil 2002; Straubing
1989). The wreath product exists for different types of automata, but the basic idea
in all of them is that the output of the one automaton becomes the input of the other.
Several results in formal language theory have been proved using the wreath product. For
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example, taking the wreath product of a finite deterministic automaton and a sequential
transducer, one easily concludes that sequential functions preserve regularity of languages
under inverse images. Deeper results formulated in terms of decomposition of semigroups
include the Krohn-Rhodes theorem and characterisations of concatenation hierarchies.
We refer to (cf. Carton 2000; Pin and Weil 2002; Straubing 1989) for further references
to the literature. It would be interesting to study wreath products more generally in a
coalgebraic setting, and explore their applicability in the coalgebraic theory of formal
languages (cf. Rutten 2003).

Another observation of the n-operation, is that it suggests a characterisation of FA-
behaviours as causal functions f from Aω to F -behaviours. Here, we call f causal if for
all n ∈ N, α�n= β�n implies that f(α) and f(β) are n-step bisimilar. We leave the details
of such a characterisation for future work.

Appendix A. Proofs

A.1. Preliminaries

We begin with some basic results and definitions that will be useful in the following.
For any functor F , strength stF and costrength csF (see Section 2.1) correspond to

each other via the adjunction A×− a (−)A. In particular, there is a commuting diagram:

A× F (XA)
stF

A,XA
//

id×csF
A,X

��

F (A×XA)

FεX

��

A× (FX)A εF X

// FX.

(22)

Strength respects products: there is

stFA×B,X = stFA,B×X ◦(idA × stFB,X). (23)

Strength transformations compose along functor composition: for endofunctors F and G
on Set, there is

stGFA,X = G stFA,X ◦ stGA,FX (24)

for any A and X. Strength is natural also in the endofunctor F . Indeed, for any natural
transformation α : F =⇒ G, there is:

A× FX
stF

A,X
//

id×αX

��

F (A×X)

αA×X

��

A×GX
stG

A,X

// G(A×X).

(25)

To simplify the notation, we will sometimes use a natural transformation e : Aω ×
(−)A =⇒ Aω ×−, with the component eX defined by:

Aω ×XA
〈tl,hd〉×id

// Aω ×A×XA
id×εX // Aω ×X. (26)
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With this, the definition (10) of the map ev can be rewritten as:

Aω × Z
ev //

id×ζ
��

Z

ζ

��

Aω × (FZ)A

eFZ

��

Aω × FZ

stF
Aω,Z

��

F (Aω × Z)
Fev

// FZ.

(27)

A.2. Proof of Theorem 6.1

Recall that λ is defined by (17), and σ is defined from λ as in (12), specifically by:

ΣZ
Σζ

//

σ

��

Σ(FZ)A
λZ // (FΣZ)A

(Fσ)A

��

Z ∼=

ζ
// (FZ)A.

(28)

We shall prove that (11) commutes. To this end, define an F -coalgebra structure on
Aω × ΣZ:

Aω × ΣZ
id×Σζ

// Aω × Σ(FZ)A
id×λZ // Aω × (FΣZ)A EDBC eFΣZ

GF
��

Aω × FΣZ
stF

Aω,ΣZ
// F (Aω × ΣZ)

and check that both sides of (11) are coalgebra morphisms from it to the final F -
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coalgebra. For the southwestern side, check the diagram:

Aω × ΣZ
id×σ

//

id×Σζ

��

Aω × Z
ev //

id×ζ

��

(i)

Z

ζ

��

(ii)

Aω × Σ(FZ)A

id×λZ

��

Aω × (FΣZ)A
id×(Fσ)A

//

eFΣZ

��

(iii)

Aω × (FZ)A

eFZ

��

Aω × FΣZ
id×Fσ

//

stF
Aω,ΣZ

��

(iv)

Aω × FZ

stF
Aω,Z

��

F (Aω × ΣZ)
F(id×σ)

// F (Aω × Z)
Fev

// FZ

where (i) commutes by (28), (ii) by (27), (iii) by naturality of e and (iv) by naturality
of stF .

For the northeastern side of (11), in the diagram:

Aω × ΣZ

id×Σζ

��

stΣ
Aω,Z

//

(i)

Σ(Aω × Z)
Σev //

Σ(id×ζ)
��

ΣZ
σ //

Σζ

��

(iii)

Z

ζ

��

Aω × Σ(FZ)A

id×csΣ
A,FZ ((QQQQQQQQQQQQ

stΣ
Aω,(FZ)A

//

id×λZ

��

Σ(Aω × (FZ)A)

ΣeFZ

��

(ii)

(v)

Aω × (ΣFZ)A

eΣFZ

��

id×λA
Z

vvmmmmmmmmmmmm

Aω × (FΣZ)A

eFΣZ

��

Aω × ΣFZ

id×λZvvmmmmmmmmmmmmm

stΣ
Aω,FZ

// Σ(Aω × FZ)

Σ stF
Aω,Z

��

Aω × FΣZ

stF
Aω,ΣZ

��

(vi) ΣF (Aω × Z)
ΣFev //

λAω×Z

��

(iv)

ΣFZ

λZ

��

F (Aω × ΣZ)
F stΣ

Aω,Z

// FΣ(Aω × Z)
FΣev

// FΣZ
Fσ

// FZ

(i) commutes by naturality of stΣ, (ii) by (27), (iii) by (12), (iv) by naturality of λ, (v)
follows from (22) and (26) using naturality of stΣ and (23), and (vi) follows from (24)–
(25); the remaining parts commute due to naturality of e and the definition of λ in (17).
qed
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A.3. Proof of Theorem 6.3

We shall now prove that (19) commutes, recalling that ev is defined by (27) and σ is
defined from ρ as in (16), specifically by:

ΣZ
Σ〈id,ζ〉

//

σ

��

Σ(Z × (FZ)A)
ρZ // (F T Z)A

(Fσ])A

��

Z ∼=

ζ
// (FZ)A,

(29)

where ρ is defined by (20) and (21).
In the proof, we shall use an auxiliary natural transformation

θ : Aω × Σ− =⇒ (Σ + Id)(Aω ×−)

with θX defined by cases of Σ: for Σ . ,

Aω ×A×X
〈tl,hd〉−1×id

// Aω ×X � � // (Σ + Id)(Aω ×X)

and for Σ,

Aω × ΣX
stΣ

Aω,X
// Σ(Aω ×X) � � // (Σ + Id)(Aω ×X) .

The diagram (19) can be decomposed as:

Aω × ΣZ

id×ιZ
��

stΣ
Aω,Z

// Σ(Aω × Z)� _

��

Σev // ΣZ� _

��

Aω × ΣZ

id×σ
��

θZ // Σ(Aω × Z) + (Aω × Z)
Σev+ev

// ΣZ + Z

[σ,id]

��

Aω × Z ev
// Z,

(30)

where the top left square commutes by the second clause of definition of θ, and the
top right square commutes obviously. In the following we shall prove that the bottom
rectangle commutes as well.

To this end, consider a map γ : Aω × ΣZ → F (Aω × T Z) defined by:

Aω × ΣZ
id×Σ〈id,ζ〉

// Aω × Σ(Z × (FZ)A)
id×ρZ // Aω × (F T Z)A EDBC eFT Z

GF
��

Aω × F T Z
stF

Aω,T Z
// F (Aω × T Z).

Note that in this definition all maps except the first one are natural in Z. This allows
us to use a definition/proof principle similar to that used in (14), and infer that both
sides of the lower part of (30) are equal if they are both “maps” from γ to the final
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F -coalgebra ζ in the following sense:

Aω × ΣZ

γ

��

id×σ
// Aω × Z

ev // Z

ζ

��

F (Aω × T Z)
F(id×σ])

// F (Aω × Z)
Fev

// FZ

(31)

Aω × ΣZ

γ

��

θZ // Σ(Aω × Z) + (Aω × Z)
Σev+ev

// ΣZ + Z
[σ,id]

// Z

ζ

��

F (Aω × T Z)
Fθ]

Z

// FT (Aω × Z)
FTev

// FTZ
Fσ]

// FZ

(32)

where θ] : Aω × T− =⇒ T (Aω ×−) is the obvious inductive extension of θ. The above
two conditions can equivalently be understood as two coalgebra morphism diagrams to
ζ from an F -coalgebra on Aω × T Z easily defined from γ; however, they are are a bit
easier to prove in the present formulation.

The condition (31) is proved by analogy with the corresponding condition in the proof
of Theorem 6.1; chase the diagram:

Aω × ΣZ
id×σ

//

id×Σ〈id,ζ〉
��

Aω × Z
ev //

id×ζ

��

(i)

Z

ζ

��

(ii)

Aω × ΣΣ(Z × (FZ)A)

id×ρZ

��

Aω × (F T Z)A
id×(Fσ])A

//

eFT Z

��

(iii)

Aω × (FZ)A

eFZ

��

Aω × F T Z
id×Fσ]

//

stF
Aω,T Z

��

(iv)

Aω × FZ

stF
Aω,Z

��

F (Aω × T Z)
F(id×σ])

// F (Aω × Z)
Fev

// FZ

where (i) commutes by (29), (ii) by (27), (iii) by naturality of e and (iv) by naturality
of stF .
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The condition (32) requires more care, and is best proved by case analysis of Σ. Unfold
the definition of ρZ in the definition of γ, and recalling the definition of θ by cases, for
Σ . chase the diagram:

Aω ×A× Z
〈tl,hd〉−1×id

//

id×ζ
��

(i)

Aω × Z
ev //

id×ζ
��

(iv)

Z

ζ

��

Aω ×A× (FZ)A

id×εFZ

��

〈tl,hd〉−1×id

// Aω × (FZ)A

eFZ

��

(ii)Aω × FZ

id×ηFZ

�� id

��

Aω × (A× FZ)A

eA×FZ

��

id×(stF
A,Z

)A

uukkkkkkkkkkkkkk
(iii)

Aω × (F (A× Z))A

eF(A×Z)

��

(v) Aω ×A× FZ

id×stF
A,Zuukkkkkkkkkkkkkk

〈tl,hd〉−1×id
// Aω × FZ

stF
Aω,Z

��

Aω × F (A× Z)

stF
Aω,A×Z

��

F (Aω ×A× Z)
F(〈tl,hd〉−1×id)

//

(vi)

F (Aω × Z)
Fev

// FZ

where (i) commutes trivially, (ii) and (iii) by definition of e, (iv) by (27), (v) by naturality
of e and (vi) by (23) and naturality of stF .
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On the other hand, for Σ, chase the diagram:

Aω × ΣZ
stΣ

Aω,Z
//

id×Σ〈id,ζ〉
��

(i)

Σ(Aω × Z)
Σev //

Σ(id×〈id,ζ〉)
��

ΣZ
σ //

Σ〈id,ζ〉

��

(v)

(vii)

Z

ζ

��

Aω × Σ(Z × (FZ)A)

id×Σ(ηZ×id)
��

stΣ
... //

(ii)

Σ(Aω × Z × (FZ)A)

Σ(id×ηZ×id)
��

Aω × Σ((A× Z)A

×(FZ)A)
id×cs

Σ(−×−)
A,A×Z,FZ

��

stΣ
... //

Σ(Aω × (A× Z)A

×(FZ)A)
Σ(id×cs×

A×Z,FZ
)

��

Aω × (Σ(A× Z × FZ))A

eΣ(A×Z×FZ)

��

(iii)

Σ(Aω × (A× Z × FZ)A)

ΣeA×Z×FZ

��

Aω × Σ(A× Z × FZ)

id×ρA×Z+Z

��

stΣ
...

// Σ(Aω ×A× Z × FZ)

Σ(∆×id)
��

Aω × FT (A× Z + Z)� _

��

Σ(Aω ×A× Z
×Aω × FZ)

Σ(〈tl,hd〉−1×id×stF
Aω,Z

)

��

Aω × FT Z

stF
Aω,T Z

��

(iv)
Σ(Aω × Z
×F (Aω × Z))
ρAω×Z

��

Σ(ev×Fev)
//

(vi)

Σ(Z × FZ)

ρZ

��

F (Aω × T Z)
Fθ]

Z

// FT (Aω × Z)
FT ev

// FTZ
Fσ]

// FZ

(33)

where in the top right corner of (iv), ∆ : Aω → Aω × Aω is the diagonal map, with
rearrangement of products left implicit. Here (i) and (ii) commute by naturality of stΣ,
(vi) by naturality of ρ and (vii) by (14). It remains to be shown that (iii)–(v) commute
as well.
(iii) in (33) commutes. First, for any X, the diagram

Aω × ΣXA
stΣ

Aω,XA
//

id×csΣ
A,X

��

Σ(Aω ×XA)

ΣeX

��

Aω × (ΣX)A

eΣX

��

Aω × ΣX
stΣ

Aω,X

// Σ(Aω ×X)

commutes by (22), by the definition (26) of e and by (23). For X = U ×V , this becomes
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the bottom part of

Aω × Σ(UA × V A)

id×Σ cs×U,V

��

stΣ
Aω,UA×V A

// Σ(Aω × UA × V A)

Σ(id×cs×U,V )

��

Aω × Σ(U × V )A
stΣ

Aω,(U×V )A
//

id×csΣ
A,U×V

��

Σ(Aω × (U × V )A)

ΣeU×V

��

Aω × (Σ(U × V ))A

eΣ(U×V )

��

Aω × Σ(U × V )
stΣ

Aω,U×V

// Σ(Aω × (U × V )),

where the top part commutes by naturality of stΣ. Substituting U = A×Z and V = FZ,
we obtain (iii) of (33).
(iv) in (33) commutes. Denoting F̂ = Id × F and defining a function φ : Aω × (A ×
Z + Z)→ Aω × Z by:

Aω × (A× Z + Z)
∼= // Aω ×A× Z +Aω × Z

[〈tl,hd〉−1,id]
// Aω × Z,

chase the diagram

Aω × Σ(A× Z × FZ)
stΣ

Aω,A×Z×F Z
//

� _

��

st
Σ(−×F−)
Aω,A×Z,Z

((

(i)

Σ(Aω ×A× Z × FZ)

Σ(∆×id)

��

Σ(Aω ×A× Z ×Aω × FZ)

Σ(id×stF
Aω,Z

)

��

Σ(Aω ×A× Z × F (Aω × Z))� _

��

Σ(〈tl,hd〉−1×id)

**TTTTTTTTTTTTTTT
(ii)

(iii)

Aω × ΣF̂ (A× Z + Z)
stΣF̂

Aω,A×Z+Z
//

id×ρA×Z+Z

��

(iv)

ΣF̂ (Aω × (A× Z + Z))
ΣF̂φ

//

ρAω×(A×Z+Z)

�� (v)

ΣF̂ (Aω × Z)

ρAω×Z

��

Aω × FT (A× Z + Z)
stF T

Aω,A×Z+Z
//

� _

�� stF
Aω,... **VVVVVVVVVVVVVVVVVV

FT (Aω × (A× Z + Z))
FTφ

//

(vi)

FT (Aω × Z)

Aω × FT Z

stF
Aω,T Z **VVVVVVVVVVVVVVVVVV

(vii) F (Aω × T (A× Z + Z))

F stT
Aω,A×Z+Z

OO

� _

��

F (Aω × T Z) Fθ]

Z

KK

(viii)
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where (i) commutes by (24) (note that ∆ × id = st×
Aω,A×Z,FZ), (ii) by (25) and by the

naturality of the two inclusions, (iii) by definition of φ, (iv) by (25), (v) by naturality of
ρ, (vi) by (24), (vii) by naturality of stF and (viii) follows easily from the definition of θ
and θ], once it is noticed that stT is the inductive extension of stΣ. The outer shape of
this diagram is (iv) of (33).

(v) in (33) commutes. First, chase the diagram

Aω × Z
ev //

〈id,id〉
��

id×〈id,ζ〉

sshhhhhhhhhhhhhhhhhhhhh Z

〈id,ζ〉

��

(iii)

Aω × Z × (FZ)A

id×ηZ×id

��

Aω × Z ×Aω × Z

id×ηZ×id×ζ

��

(i)

Aω × (A× Z)A × (FZ)A

id×cs×
A,A×Z,F Z

��

∆×id

++VVVVVVVVVVVVVVVVVVV

Aω × (A× Z × FZ)A

eA×Z×F Z

��

Aω × (A× Z)A ×Aω × (FZ)A

eA×Z×eF Z

��

(ii)

Aω ×A× Z × FZ

∆×id
++WWWWWWWWWWWWWWWWWWW

Aω ×A× Z ×Aω × FZ

〈tl,hd〉−1×id×stF
Aω,Z

��

Aω × Z × F (Aω × Z)
ev×F ev

// Z × FZ

whose outer shape, mapped along Σ, is (v) of (33). Here, (i) is trivial and (ii) commutes
by the definition (26) of e and by (22). The area (iii) is of the general shape

X
f

//

〈id,id〉
��

Y

〈g,h〉
��

X ×X
k×l

// U × V

(put X = Aω × Z, Y = U = Z, V = FZ), which commutes if and only if k = g ◦ f and
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l = h ◦ f , hence it is enough to check that the following two diagrams commute.

Aω × Z
ev //

id×ηZ

��

Z

id

��

Aω × (A× Z)A

eA×Z

��

Aω ×A× Z

〈tl,hd〉−1

��

Aω × Z ev
// Z

Aω × Z
ev //

id×ζ
��

Z

ζ

��

Aω × (FZ)A

eFZ

��

Aω × FZ

stF
Aω,Z

��

F (Aω × Z)
Fev

// FZ

But the diagram on the left commutes easily by the definition (26) of e, and the one on
the right is (27). qed
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