
Atkey & Krishnaswami (Eds.): MSFP 2016
EPTCS ??, 2015, pp. 57–75, doi:10.4204/EPTCS.??.3

c© B. Klin, M. Szynwelski
This work is licensed under the
Creative Commons Attribution License.

SMT Solving for Functional Programming
over Infinite Structures∗

Bartek Klin Michał Szynwelski
University of Warsaw

{klin,szynwelski}@mimuw.edu.pl

We develop a simple functional programming language aimed at manipulating infinite, but first-order
definable structures, such as the countably infinite clique graph or the set of all intervals with rational
endpoints. Internally, such sets are represented by logical formulas that define them, and an external
satisfiability modulo theories (SMT) solver is regularly run by the interpreter to check their basic
properties.

The language is implemented as a Haskell module.

1 Introduction

A common theme in computer science is effective manipulation of infinite but finitely presented data
structures. It is one of the main features of functional programming, where computable functions, them-
selves infinite set-theoretic objects, are bona fide data values. In lazy programming languages such as
Haskell one can also conveniently manipulate structures such as infinite lists or trees.

To achieve computability one usually restricts the interface used to manipulate infinite structures to a
few basic and well-behaved operations. For example, the only way to access a function type data value is
to apply it to an argument. Similarly, infinite lists provide a limited interface that allows only continuous
operations on them to be implemented.

In mathematics a rich source of infinite but finitely presented objects are relational structures that are
first-order definable over fixed, well understood structures. Examples include the set of ordered triples
of natural numbers: {

(a,b,c) | a,b,c ∈ N
}
, (1)

or the infinite clique graph, with natural numbers as vertices and unordered pairs of distinct numbers as
edges: (

N,
{
{a,b} | a,b ∈ N, a 6= b

})
. (2)

These structures are first-order defined over the set N of natural numbers with equality. On the other
hand, the set of all closed intervals with rational endpoints:{

{c | c ∈Q, a≤ c≤ b} | a,b ∈Q
}
, (3)

or the same set partially ordered by inclusion, are defined over the set Q of rational numbers with the
ordering relation ≤. The elements of the underlying structure, such as N or Q above, will be called
atoms.

We wish to manipulate first-order definable structures effectively in the context of a functional pro-
gramming language via a limited interface that can only access atoms by relations in their signature.

∗Supported by the Polish National Science Centre (NCN) grant 2012/07/B/ST6/01497.

http://dx.doi.org/10.4204/EPTCS.??.3
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

58 SMT Solving for Functional Programming over Infinite Structures

Therefore, for example, if a set X is definable over N with equality, then we do not have the ambition to
check whether X contains all even numbers as that property is not expressible using equality alone. On
the other hand, we may wish to check whether X is empty or contained in another definable set Y .

Computability of these and other similar conditions relies on first-order properties of the underlying
structures of atoms. For example, to ensure that the set (3) contains some nonempty interval, one needs
to know that there exist some rational numbers a,c,b such that a≤ c≤ b. The structure of atoms should
be simple enough for all such conditions to be effectively checkable. For this purpose, we shall assume
that underlying structures of atoms are uniquely (up to isomorphism) determined as countable models of
their first-order theories and that these first-order theories are decidable. In this paper we concentrate on
two particular structures:

• natural numbers N with equality, understood as the unique countable model of the first-order theory
of equality,

• rational numbers Q with order ≤, understood as the unique countable, total, dense order without
endpoints.

Our goal is a set of programming idioms that would hide from the programmer as much as it is
possible the fact that she or he is dealing with infinite sets presented by first-order formulas rather than
with finite sets presented by enumerating their elements. For example, consider a program to compute
the transitive closure of a binary relation. When only finite relations on a set X are concerned, one can
model them in Haskell as values of the type Set(a,a), assuming that X is a set of values of a type a.
One can then code a function compose that computes the relational composition of two relations and a
function transitiveClosure to compute the transitive closure of a relation as follows:

compose : (Ord a, Ord b, Ord c) => Set(a,b) -> Set(b,c) -> Set(a,c)

compose r s = sum (map (\(a,b) ->

map (\(_,c) -> (a,c))

(filter ((==b) . fst) s))

r)

transitiveClosure : Ord a => Set(a,a) -> Set(a,a)

transitiveClosure r =

let r’ = union r (compose r r)

in if r==r’ then r else (transitiveClosure r’)

using functions from the standard Haskell module Data.Set:

sum = unions . elems :: Set (Set a) -> Set a

map :: Ord b => (a -> b) -> Set a -> Set b

filter :: (a -> Bool) -> Set a -> Set a

union :: Ord a => Set a -> Set a -> Set a

One of our goals is to provide a version of the Set type constructor that would allow the programmer
to construct both finite and infinite first-order definable sets and then treat them uniformly, so that the
above piece of code could be reused to compute the transitive closure of an infinite relation, internally
represented by first-order formulas.

We continue the line of work started in [2], where a core programming language Nλ was introduced,
aimed at direct manipulation of orbit-finite nominal sets [15]. These sets are typically infinite, but they
can be finitely presented and they are in a strong sense equivalent to first-order definable sets over natural

B. Klin, M. Szynwelski 59

numbers with equality.1 In [2], nominal sets were constructed using so-called hulls, i.e., closures of sets
under actions of automorphisms of atoms. Internally they were represented as collections of orbits. For
reasons explained in Section 5, we give up the orbit-based presentation of infinite sets and we use a
representation based on first-order formulas instead. Technically we keep the syntax of Nλ from [2]
with few changes and semantic intuitions remain similar as well: set-typed expressions evaluate to orbit-
finite sets or equivalently to first-order definable sets over atoms. However, we further propose a concrete
semantics and an implementation that is significantly different from the one in [2]. In particular, sets are
represented by first-order formulas rather than on an orbit-by-orbit basis.

Since data values are represented using logical formulas over atoms, in order to evaluate expressions
one often needs to evaluate and compare such formulas to check e.g. whether a set is empty or whether
two sets are equal. This task fits in the well-researched area of satisfiability modulo theories (SMT),
and there are off-the-shelf software tools tuned to that purpose. In our implementation we use the freely
available Z3 checker [4] developed by Microsoft Research, which offers satisfiability checking for first-
order formulas over the theory of equality and over the theory of dense total orders without endpoints.
Our implementation of Nλ intensively interacts with Z3 to analyse formulas that arise in representations
of infinite data structures. We believe that this application of logical satisfiability checking in functional
programming is novel; a similar application in the context of imperative programming has been devel-
oped in [10] where mechanisms for manipulating first-order definable sets are added to the language
C++.

This paper is closely related to its predecessor [2] and to our sister project [10], but the general idea of
symbolic manipulation of infinite sets is far older; indeed, the entire field of constraint programming [16]
is based on it. An example of a simple programming language that integrates with an SMT solver is µZ.
The language SETL [17] operates on set expressions, but it restricts attention to finite sets. Nominal sets,
which are closely related to first-order definable sets, are manipulated in the functional programming
language Fresh O’Caml [18], but the main focus there is on atom binding operations, which we do not
deal with here.

The structure of this paper is as follows. In Section 2, we introduce first-order definable sets; the pre-
sentation is based on [9, 10, 14]. We also relate them to nominal sets [15]. In Section 3, we describe the
syntax and intuitive meaning of Nλ programs; this part of the paper is closely related to [2], although the
language is changed a little to reflect different semantic choices. In Section 4, a new logic-based seman-
tics of Nλ is provided. Section 5 presents a more detailed comparison to [2], and sketches an extension
of the core language of Sections 3–4 with operations to compute hulls and orbits. In Section 6 some
implementation issues are explained, and Section 7 illustrates the use of Nλ on two simple examples.

A prototype implementation of Nλ as a Haskell module is available for download from [13].

Acknowledgments. We are grateful to Eryk Kopczyński and Szymon Toruńczyk, who came up with the
idea of using formulas to represent orbit-finite sets with atoms, and whose work on the LOIS library for
C++ [10] has been a source of constant inspiration. We also thank anonymous reviewers whose insightful
comments helped us improve the paper.

2 Sets with atoms

Fix a countably infinite relational structure A over some finite signature Σ. We call the elements of A
atoms. It would be enough to assume that A has a decidable first-order theory and it is an ultrahomoge-

1Other underlying structures of atoms were also considered in [2], with assumptions similar to ours.

60 SMT Solving for Functional Programming over Infinite Structures

nous structure, also known as a Fraı̈ssé limit [7]. In particular, this implies that A :

• is ω-categorical, i.e., it is the only (up to isomorphism) countable model of its first-order theory
and

• has quantifier elimination, i.e., every first-order formula over A is equivalent to a quantifier-free
formula.

In this paper and for the purposes of implementation we focus on two particular structures with all these
properties:

• A = (N,=), i.e., natural numbers with equality (we call these equality atoms)

• A = (Q,≤), i.e., rational numbers with ordering (we call these ordered atoms).

For a fixed structure A , a set expression is

• a variable x from some fixed infinite set of atom variables, or

• a finite sequence, written {ξ1, . . . ,ξn} (or {} for the empty sequence), of expressions of the form

ξ = e : φ for x1, . . . ,xk (4)

where e is a set expression, φ is a first-order formula over Σ, and x1, . . . ,xk are atom variables.

If k = 0 then we write simply e : φ instead of (4). We also omit φ if it is the always true formula >.
The set of free variables in a set expression is defined inductively by:

FV (x) = {x}
FV (e : φ for x1, . . . ,xk) = FV (e)∪FV (φ)\{x1, . . . ,xk}

FV ({ξ1, . . . ,ξn}) = FV (ξ1)∪·· ·∪FV (ξn)

where FV (φ) is the standard set of free (atom) variables in a first-order formula. A valuation for a set
expression e is a function v : FV (e)→ A . A set expression e together with a valuation v denotes a set
(or an atom) [[e]]v in the expected way:

[[x]]v = v(x)

[[e : φ for x1, . . . ,xk]]v =
{
[[e]]v[xi 7→ai] | a1, . . . ,an ∈A s.t. A ,v[xi 7→ ai] |= φ

}
[[{ξ1, . . . ,ξn}]]v = [[ξ1]]v∪·· ·∪ [[ξn]]v

where A ,v |= φ means that the formula φ holds in A with the valuation v of the free variables in φ . We
say that a set of the form [[e]]v is definable over A .

Standard set-theoretic tricks can be used to encode ordered pairs (e.g. as Kuratowski pairs (x,y) =
{{x},{x,y}}), tuples (as nested pairs), and integers (e.g. as von Neumann numerals n= {0,1, . . . ,n−1}).

For example, over equality atoms, the expression

{(x,y) : ¬(x = y) for x,y},

with the empty valuation denotes the set of ordered pairs of distinct atoms. The same definition works
for ordered atoms, where we see x = y as shorthand for x≤ y∧y≤ x. Over ordered atoms, the expression

{x : x≤ u for x, y : w≤ y for y}

B. Klin, M. Szynwelski 61

with a valuation u 7→ 2, w 7→ 5, denotes the set of all atoms outside of the open interval (2;5). The same
set is denoted by the expression

{x : x≤ u∨w≤ x for x}

with the same valuation.
We shall restrict attention to well-typed expressions with a set of types defined by:

τ,ρ ::= A | N | (τ,ρ) | Sτ (5)

where S is a unary type constructor, with Sτ meant to be the type of sets whose elements are of type τ .
Set expressions are provided with types by the following relation (actually, a partial function):

x : A n : N
e1 : τ e2 : ρ

(e1,e2) : (τ,ρ)
e1 : τ · · · en : τ

{e1 : φ1 · · · , . . . ,en : φn · · ·} : Sτ

where x ranges over atom variables and n over integers. Essentially it is required that all elements of a
well-typed set have the same type. Pairs and integers are treated separetely here, since neither Kuratowski
pairs nor von Neumann numerals are well typed in this sense.

The above constructions appear in the literature under various guises. Indeed, sets definable over
atoms A are essentially first-order interpretable structures over A in the sense of model theory [7].
They also correspond to nominal sets [15]; we sketch this connection briefly as it relates this paper to
previous work [2] on extending functional programming to sets with atoms.

Consider a set X with a group action · : Aut(A)× X → X of the automorphism group of the
structure A . A set S ⊆ A supports an element x ∈ X if π · x = x for every π ∈ Aut(A) such that
π(a) = a for all a ∈ S. If every element of X has some finite support, then X is called A -nominal. For
A equality atoms this specializes to the notion considered in [15].

A function f : X → Y between nominal sets is equivariant if f (π · x) = π · f (x) for every x ∈ X and
π ∈ Aut(A).

An orbit of an element x ∈ X is the set {π · x | π ∈ Aut(A)} ⊆ X . Orbits form a partition of the
A -nominal set X ; we call X orbit-finite if it has finitely many orbits.

For every set expression e without free variables, the set [[e]] /0 is equipped with a canonical group
action of Aut(A): for e′ : φ for x1, . . . ,xk a part of e, and for a1, . . . ,an ∈A such that A , [xi 7→ ai] |= φ ,
define

π · [[e′]][xi 7→ai] = [[e′]][xi 7→π(ai)];

A , [xi 7→ π(ai)] |= φ follows from π being an automorphism of A , since FV (φ)⊆{x1, . . . ,xn}. It is easy
to see that [[e′]][xi 7→ai] is supported by {a1, . . . ,an}, so [[e]] /0 is a A -nominal set. Moreover, the set is orbit-
finite; this follows from the fact that for every ω-categorical structure A , the set A n with the pointwise
action of Aut(A) is orbit-finite, by the celebrated Ryll-Nardzewski theorem from model theory [7].

This means that every set definable by an expression without free variables is A -nominal and orbit-
finite. The converse also holds: every A -nominal, orbit-finite set is equivariantly bijective to a set of the
form [[e]] /0 for some set expression e. Moreover, if pairs are included in the language of expressions, one
can choose e to be well-typed. Details of this correspondence are developed in the first chapter of [14].

In [2], a functional programming language Nλ was designed to compute and manipulate orbit-finite
nominal sets. There, infinite structures were internally represented on an orbit-by-orbit basis using a
representation theorem from [3] saying that every single-orbit set is in equivariant bijection with a set of
tuples of atoms quotiented by an equivalence relation of a certain shape. In this paper we continue the
programme of [2] and develop a language with a new semantics and implementation, where orbit-finite
sets are internally represented by set expressions over atoms.

62 SMT Solving for Functional Programming over Infinite Structures

3 A basic functional language

To provide a functional language to construct and operate on definable sets over atoms, begin with a
lambda calculus with a type A for atoms and a type B for boolean values, extended with a unary type
constructor S that cannot be applied to values of function types. Thus types are defined by the following
grammar:

τ ::= A | B | Sτ

α,β ::= τ | α → β

The intuition is that values of type Sτ are (definable) sets of values of type τ . This excludes function
types, as one expects set elements to be equipped with a computable equality operation.

Terms of the core language are defined by the grammar:

M ::=C | x | λx.M |MM

with the usual typing relation of lambda calculus, where C comes from the following set of typed con-
stants:

empty : Sτ (the empty set)

atoms : SA (the set of all atoms)

insert : τ → Sτ → Sτ (adds an element to a set)

map : (τ1→ τ2)→ Sτ1→ Sτ2 (applies a function to every element)

sum : SSτ → Sτ (union of a family of sets)

true,false : B (boolean values)

not : B→ B (logical negation)

and,or : B→ B→ B (conjunction and disjunction)

isEmpty : Sτ → B (emptiness test)

if : B→ α → α → α (conditional)

We refrain from providing formal semantics for all these operations until the next section, but their
meaning should be intuitively clear as specified on the right above. Additionally, we include some
constants that depend on the signature of the underlying structure A of atoms. For equality atoms we
take simply:

eqA : A→ A→ B (equality relation on atoms)

and for ordered atoms, additionally:

leq : A→ A→ B (ordering relation on atoms).

For other structures A this part of the language may change.
This core language can be extended with product types, integers, (mutually) recursive definitions,

algebraic types and other features using standard techniques; we omit the details for brevity, noting only

B. Klin, M. Szynwelski 63

that the type metavariable τ should include all equality types. One can then define additional functions
such as:

singleton : τ → Sτ singleton x= insert x empty

filter : (τ → B)→ Sτ → Sτ filter f s= sum (map

(λx.if (f x) (singleton x) empty) s)

exists : (τ → B)→ Sτ → B exists f s= not (isEmpty (filter f s))

forall : (τ → B)→ Sτ → B forall f s= isEmpty (filter (λx.not (f x)) s)

contains : Sτ → τ → B contains s x= exists (eq x) s

isSubsetOf : Sτ → Sτ → B isSubsetOf s t= forall (contains t) s

eq : Sτ → Sτ → B eq s t= and (isSubsetOf s t)

(isSubsetOf t s)

union : Sτ → Sτ → Sτ union s t= sum (insert s (singleton t))

intersection : Sτ → Sτ → Sτ intersection s t= filter (contains t) s

and so on. In particular, for an equality type τ , equality can be defined for the type Sτ .
One can also construct sets definable by well-typed set expressions. For example,

atomPairs= sum (map (λx.map (λy.(x,y)) atoms) atoms) : S(A,A)

evaluates to the set of all pairs of atoms, and

filter (λ (x,y).not(eqA x y)) atomPairs : S(A,A)

to the set of all distinct pairs of atoms.
In general, every set over atoms that is definable by a well-typed set expression is a value of some

program. More formally, for every set expression e : τ with free variables x1, . . . ,xk there is a term
sete : Ak→ τ in the programming language, that evaluates to a function from A k that, when applied to
arguments a1, . . . ,ak, returns [[e]][xi 7→ai]. This follows by induction on the structure of expressions. The
only interesting case is

e = {e′ : φ for xk+1, . . . ,xm} : Sτ

for some e′ : τ such that FV (e′),FV (φ) ⊆ {x1, . . . ,xm}. It is easy to generalize the term atomPairs

above to a function
atomTuplesk,m : Ak→ SAm

that extends a given k-tuple of atoms to the set of all m-tuples that arise by putting arbitrary atoms on the
remaining m− k components. Then put

sete t= map sete′ (filter formφ (atomTuplesk,m t))

where sete′ exists by the inductive assumption, and formφ :Am→B is a term that encodes the first-order
formula φ . Such a term exists since A has quantifier elimination, and so without loss of generality we
may assume that φ is quantifier-free.

64 SMT Solving for Functional Programming over Infinite Structures

4 Logic-based semantics

From the description of the language in Section 3 it may not be clear how to implement operations
postulated in it. For example, how to implement the function map so that a function can be applied
to every element of the infinite set of atoms in finite time? In this section we provide a (small-step)
reduction semantics of the core functional language, that implements the set-theoretic intuitions provided
in Section 3, yet is clearly computable.

The semantics is based on the following general ideas:

• Values of set types Sτ are represented not by enumerating their elements (that would be impossible,
as usually they are infinite sets), but by set expressions as in Section 2.

• Values of type B are not just boolean values; they are rather first-order formulas over a special kind
of variables called atom variables that denote atoms.

• Terms are evaluated in contexts that specify what relations hold between atom variables in them.

• Sometimes a condition φ in a conditional expression if φ M N is neither tautologically true nor
false. In such cases it is not clear whether the conditional should evaluate to M or N and the choice
is delayed for as long as possible. When delaying is not further possible, e.g. when M and N are
atom variables, a variant is created that has value M or N, formally depending on the value of φ .

Formally, keeping the set of types as in Section 3, we extend the grammar of terms to:

M ::=C
∣∣∣ x
∣∣∣ λx.M

∣∣∣MM
∣∣∣ a
∣∣∣ φ

∣∣∣ {M : φ for σ , . . . ,M : φ for σ}
∣∣∣M : φ | · · · |M : φ

where:

• C ranges over the same set of typed constants as in Section 3,

• a ranges over a fixed infinite set of atom variables, disjoint from the set of program variables such
as x,

• φ ranges over the set of first-order formulas (with quantifiers allowed) over the signature of A and
over atom variables,

• σ ranges over finite sets of atom variables. We omit “for σ” if σ is empty.

Note that the new terms are unavailable to the programmer and they shall appear only as final or inter-
mediate values in the reduction semantics.

Atom variables in the sets σ in set expressions are binding occurrences, just as the program variable
x is a binding occurrence in λx.M. Terms are considered up to α-equivalence, defined as expected. For
example,

{a : ¬(a = c) for a} and {b : ¬(b = c) for b}

are α-equivalent.
Expressions of the form

M1 : φ1| · · · |Mn : φn

are called variants. They look syntactically similar to set expressions of the form {M1 : φ1, . . . ,Mn : φn},
but their meaning is very different. A variant as above does not denote a set of values, but a single value
whose identity cannot be determined at the moment and will be fixed depending on which one of the
formulas φ1 to φn holds.

B. Klin, M. Szynwelski 65

In addition to standard typing rules for the lambda calculus, the newly added terms are typed accord-
ing to:

a : A φ : B
M1 : τ · · · Mn : τ

{M1 : φ1 for σ1, . . . ,Mn : φn for σn} : Sτ

M1 : τ · · · Mn : τ

(M1 : φ1| · · · |Mn : φn) : τ
(6)

relative to any typing context of free program variables in M1, . . . ,Mn.
We define a small-step operational semantics where terms are evaluated in the context of a formula

over atom variables. The basic semantic statements are of the form

ψ `M→ N

where ψ is a formula and M,N are program terms. Reduction rules are given in Fig. 1.
Rules (7) provide the standard infrastructure of the lambda calculus. The notion of capture-avoiding

substitution M[N/x] works as usual taking into account the fact that atom variables in σ bind in {M :
φ for σ}. We do not commit to any particular reduction strategy allowing reductions both in functions
and in their arguments.

Rules (8)–(14) are mostly self-explanatory and they agree with the intuitive meaning of program
constants as listed in Section 3. We only note that in rule (11), inner expressions Mi : φi for σi may need
to be α-converted so that the side condition of the rule holds. Note also that the rule for atoms in (8) is
the only place where a new atom variable is created and that rule (14) may cause quantified first-order
formulas to appear.

The conditional constant if is evaluated in a special way and it deserves a separate section of the
semantics. A premise A |= ψ ⇒ φ means that the formula ψ ⇒ φ holds in A under every valuation
of its free variables. If some valuation falsifies the formula, we write A 6|= ψ ⇒ φ . Rules (15) apply
where the value of the logical condition φ is determined by the ambient formula ψ . In such situations the
condition φ behaves like a standard boolean value and the conditional expression is resolved as expected.

If the value of φ remains undetermined under the assumption of ψ , then both values to be chosen
from must be combined in the result of the conditional expression. The course of action depends on
the type of those values with the general idea to postpone the choice by pushing it down the structure
of terms. If the two values are functions, in (16) a new “lazy” function is created where the choice
is postponed until the function argument is provided. If they are formulas or set expressions, rules (16)
and (17) combine them in an expected way. The most interesting case is a choice between atom variables:
in rule (18), a variant is created. It may be seen as an “ambiguous atom” equal to a or b depending on
the value of φ . Formally, a separate rule (19) for a choice between variants is required but it works as
expected similarly to rule (17).

Notice that rule (18) is the only place where variants are created, and those variants are always built
of atom variables. One may wonder why the typing rule for variants in (6) allowed arbitrary types τ

instead of simply A. This is in anticipation of other basic types added to the language such as integers
or strings, excluded from the core language for brevity. For each such basic type, a rule corresponding
to (18) would need to be added.

Variants tend to be short-lived intermediate values and they are dissolved as soon as they emerge
as elements of set expressions. Rule (21) shows how this is done. Rules (20) specify how reductions
are done in the context of set expressions and variants; these rules show how ambient formulas ψ are
constructed.

Rule (22) specifies the behaviour of the equality function used for equality atoms. This rule also
applies to single atom variables which are here understood as degenerated variants a : >. For ordered
atoms the function leq is specified analogously.

66 SMT Solving for Functional Programming over Infinite Structures

β -reduction:

ψ ` M → M′

ψ ` MN → M′N
ψ ` N → N′

ψ ` MN → MN′
ψ ` (λx.M) N → M[N/x] (7)

Basic constants:
ψ ` empty→{ } ψ ` atoms→{a :> for a} (8)

ψ ` insert M {M1 : φ1 for σ1, . . . ,Mn : φn for σn}→ {M :>,M1 : φ1 for σ1, . . . ,Mn : φn for σn} (9)

ψ ` map M {M1 : φ1 for σ1, . . . ,Mn : φn for σn}→ {MM1 : φ1 for σ1, . . . ,MMn : φn for σn} (10)

ψ ` sum {. . . ,{M1 : φ1 for σ1, . . . ,Mn : φn for σn} : φ for σ , . . .}
→ {. . . ,M1 : φ1∧φ for σ1∪σ , . . . , Mn : φn∧φ for σn∪σ , . . .}

if σ ∩
n⋃

i=1

σi = /0 (11)

ψ ` true→> ψ ` false→⊥ ψ ` not φ →¬φ (12)

ψ ` or φ1 φ2→ φ1∨φ2 ψ ` and φ1 φ2→ φ1∧φ2 (13)

ψ ` isEmpty {M1 : φ1 for σ1, . . . ,Mn : φn for σn}→
∧

1≤i≤n

∀a1∀a2 · · ·∀ak︸ ︷︷ ︸
σi={a1,...,ak}

.¬φi (14)

Conditional expressions:
A |= ψ ⇒ φ

ψ ` if φ M N→M
A |= ψ ⇒¬φ

ψ ` if φ M N→ N
(15)

A 6|= ψ ⇒ φ A 6|= ψ ⇒¬φ

ψ ` if φ λx.M λx.N → λx.(if φ M N)

A 6|= ψ ⇒ φ A 6|= ψ ⇒¬φ

ψ ` if φ φ1 φ2→ (φ1∧φ)∨ (φ2∧¬φ)
(16)

A 6|= ψ ⇒ φ A 6|= ψ ⇒¬φ

ψ ` if φ {M1 : φ1 for σ1, . . . ,Mn : φn for σn} {N1 : θ1 for π1, . . . ,Nk : θk for πk}
→ {M1 : φ1∧φ for σ1, . . . ,Mn : φn∧φ for σn,N1 : θ1∧¬φ for π1, . . . ,Nk : θk∧¬φ for πk}

(17)

A 6|= ψ ⇒ φ A 6|= ψ ⇒¬φ

ψ ` if φ a b→ a : φ |b : ¬φ
(18)

A 6|= ψ ⇒ φ A 6|= ψ ⇒¬φ

ψ ` if φ (M1 : φ1| · · · |Mn : φn) (N1 : θ1| · · · |Nk : θk)

→M1 : φ1∧φ | · · · |Mn : φn∧φ |N1 : θ1∧¬φ | . . . |Nk : θk∧¬φ

(19)

Set and variant reduction:

ψ ∧φ ` M→ N
ψ ` {. . . ,M : φ for σ , . . .}→ {. . . ,N : φ for σ , . . .}

ψ ∧φ `M→ N
ψ ` · · · |M : φ | · · · → ·· · |N : φ | · · ·

(20)

ψ ` {. . . ,(M1 : φ1| · · · |Mn : φn) : φ for σ , . . .}→ {. . . ,M1 : φ1∧φ for σ , . . . ,Mn : φn∧φ for σ , . . .}
(21)

Equality:
ψ ` eqA (a1 : φ1| . . . |an : φn) (b1 : θ1| . . . |bm : θm)→

∨
1≤i≤n
1≤ j≤m

(ai = b j ∧φi∧θ j) (22)

Figure 1: Reduction semantics

B. Klin, M. Szynwelski 67

This reduction semantics has a few expected properties proved by standard arguments:

• subject reduction holds, i.e., the reduction relation preserves types,

• the Church-Rosser property holds up to first-order formula equivalence, i.e., if φ ` M → N and
φ `M→ N′ then there exist terms Q and Q′ such that φ ` N→∗ Q and φ ` N′→∗ Q′, where→∗
is the reflexive and transitive closure of →, Q and Q′ are equal up to replacing some first-order
formulas with equivalent ones. This follows by a parallel reductions argument as described in [19].

• (weak) normalisation holds, i.e., each term can be reduced to an irreducible value. This is proved
by a standard type of argument [5] assigning degrees to types of the language.

Obviously, normalization fails as soon as the core language is extended with recursion as non-
terminating programs can then be written. Otherwise, the semantics can be routinely extended with
product types and terms, integers, mutually recursive definitions, algebraic types, etc. This is illustrated
by our implementation described in Section 6. Indeed, we do not implement the language from scratch;
instead, we write a Haskell module to support features described here, allowing the programmer to use
them in conjunction with the power of a full-fledged functional programming language.

5 Hulls, supports and orbits

In [2], which is a direct predecessor to this paper, a different internal representation of infinite sets was
used. To construct such sets a programming construction hull was provided, which, given a finite list C
of atoms and a set of values X of some type (possibly built of atoms), returned the closure of X under all
automorphisms of atoms that fix every element of C. For example, the expression

hull [] {2}

evaluates to the set of all atoms, because every atom can be obtained from the atom 2 by an application of
an automorphism of A that fixes (which is a non-condition) every element of the empty list. Similarly,

hull [3] {2} hull [2] {(2,5)}

evaluate respectively to the set of atoms different from 3, and to the set of pairs of atoms where the first
element is 2 and the second is different from 2. If ordered atoms are considered, the expression

hull [] {(2,3)}

evaluates to the set of pairs where the second component is strictly greater than the first one. One could
then manipulate sets constructed in this way using functions such as map and sum, so that, e.g., functions
compose and transitiveClosure could be written more or less as in Section 1. Internally, infinite sets
were not represented by first-order formulas. Rather, the hull construction was used as a basic semantic
construct in computed values of set types; see [2] for details.

The mechanism for representing infinite sets using hulls has a number of disadvantages. Most im-
portantly, the size of the representation of an orbit-finite set is proportional to the number of its orbits.
For example, the set of all triples of atoms is constructed by

hull [] {(1,1,1),(1,1,2),(1,2,1),(2,1,1),(1,2,3)}

and in general the set of ordered n-tuples needs an internal representation of size exponential in n. This
is rather inefficient and as a result in the prototype Haskell implementation of Nλ from [2] only very
rudimentary programs could be evaluated in reasonable time. Note that in our semantics the set of atom
triples is represented internally by the more concise

{(a1,a2,a3) :> for a1,a2,a3}.

68 SMT Solving for Functional Programming over Infinite Structures

Another problem is that hull-based definitions of sets require the use of constants that denote particular
atoms, even if mathematical definitions of the same sets do not need to. For example, even though no
concrete natural numbers are mentioned in a mathematical definition of triples of numbers, as many as
three numbers are used in the hull-based definition above. This is not a major problem when equality
atoms are concerned, but with more sophisticated structures of atoms it would cause difficulties. For
example, although the universal partial order [8] is a legal and well-behaved structure of atoms, no easy
and natural representation of it is known and it is not clear how to denote its particular elements in a
convenient way.

For these reasons, in this paper we replace the hull-based representation with the logic-based se-
mantics from Section 4. One may even contemplate removing the hull construction from the language
available to the programmer, and indeed this is what we did for the core language in Sections 3–4. This
is justified by the observation from Section 3, missed in [2], that every definable set can be denoted by a
program without hull. On the other hand, it is not clear how to define the hull function itself:

hull : [A]→ Sτ → Sτ

in the core language (extended with list types [α] in a standard way). As this function is sometimes
useful to the programmer, we add it to the language along with a few other basic functions:

groupAction : (A→ A)→ τ → τ (renames free atoms in an argument)

supports : [A]→ τ → B (checks if a list of atoms supports the argument)

support : τ → [A] (returns some finite support of the argument; efficient)

leastSupport : τ → [A] (returns the least support of the argument; less efficient)

setOrbit : Sτ → τ → Sτ (returns the orbit of an element in a set)

setOrbits : Sτ → SSτ (returns the (finite) set of orbits of a given set)

In [2], most of these functions or their minor variations were derived from hull. For example, one may
write:

isSingleton : Sτ → B isSingleton s= exists (λx.forall (eq x) s) s

supports : [A]→ τ → B supports c x= isSingleton (hull c (singleton x))

However, such definitions are rather inefficient. Here, we include groupAction and support as basic
operations and define hull and other functions from them, which results in a more efficient implemen-
tation.

6 Implementation

We implement Nλ as a Haskell module (available from [13]), which allows the programmer to use
all benefits of a full-fledged functional programming language. The module introduces new types and
functions operating on infinite structures and first-order formulas.

We shall now explain a few aspects of the implementation worth mentioning.

SMT solving

In Fig. 1, rules (15)–(19) involve premises of the form A |= ψ ⇒ φ , stating that a formula holds in
the structure A . Since we only consider ω-categorical structures of atoms, one may equivalently ask

B. Klin, M. Szynwelski 69

whether ψ⇒ φ follows from the axioms of the first-order theory of A . This is an instance of the general
satisfiability modulo theories (SMT) problem and there are software tools available that perform that task
efficiently for a variety of first-order theories.

To determine whether a formula holds in A the interpreter of Nλ calls the external Z3 solver [4]
via a system call. The implementation can be easily modified to connect to any other solver compatible
with the SMT-LIB standard [1] instead. Currently two SMT-LIB logics are used: LIA (linear integer
arithmetic, for equality atoms) and LRA (linear real arithmetic, for ordered atoms). Formula solving
is a pure function without side-effects, therefore it is invoked within the Haskell unsafePerformIO
function to avoid putting the IO monad in types of all conditional statements in Nλ .

Experiments performed in our companion project LOIS [10] showed that SMT solvers in general
and Z3 in particular do not deal well with quantified formulas that do not involve arithmetic. To improve
performance before calling Z3, the interpreter eliminates all quantifiers from the formula to be checked.
The quantifier elimination algorithm used for ordered atoms is based on the method of infinitesimals for
linear real arithmetic proposed by Loos and Weispfenning [11] and adapted by Nipkow to dense linear
order [12] (for equality atoms it is enough to use a simplified version of this algorithm). Roughly, this
method involves replacing an existentially quantified formula by a disjunction of formulas where the
bound variable is substituted by test points which include values arbitrarily close to either lower or upper
bounds of the eliminated variable.

Conditionals

From rules (15)–(19) in Fig. 1 it is clear that the conditional expression in Nλ is substantially different
from the standard Haskell if...then...else... construction, in that it must deal with conditions that
cannot be resolved to true or false. Since if is a Haskell keyword, a different name must be used for
Nλ conditionals; we choose
ite :: Conditional a => Formula -> a -> a -> a

This function is implemented for all instances of the new Conditional typeclass, which includes several
basic types, the atom and formula types, list and function types. The function ite first tries to determine
the logical value of the condition formula with a SMT solver call; failing that, it calls a function cond of
the same type as ite that is defined in a type-specific manner.

For example, the implementation of cond for the formula type is:
instance Conditional Formula where

cond f1 f2 f3 = (f1 /\ f2) \/ (not f1 /\ f3)

For the function type it works in a lazy way:
instance Conditional b => Conditional (a -> b) where

cond c f1 f2 = \x -> cond c (f1 x) (f2 x)

These definitions correspond to rules (16) in Fig. 1.
The result for the type of (definable) sets includes elements from both input sets but with appropriate

formulas, according to rule (17) in Fig. 1. In other collection types (lists, tuples, etc.), missing from
the core language of Nλ , condition handling is passed to elements. The function for lists with the same
lengths is coded as follows:

cond c l1 l2 = zipWith (cond c) l1 l2

One problem appears for an ambiguous condition on lists of different lengths. To simplify the imple-
mentation we decided to report an error in this case. However, operations on lists can be performed
alternatively using the Variants constructor.

70 SMT Solving for Functional Programming over Infinite Structures

Variants and contexts

Of course some types (such as integer types) cannot cope with an ambiguous condition in any other
way than to somehow return both values. For such types a special type constructor Variants is pro-
vided; values of type Variants a are lists of values of type a coupled with formulas. It comes with its
counterpart of ite function, defined for any type a:

iteV :: Formula -> a -> a -> Variants a

Thus one can implement conditional statements e.g. for integers: iteV (eq a b) 1 2 will return a
variant 1 : a = b | 2 : a 6= b, akin to rule (18) in Fig. 1. The type of atoms Atom itself is actually defined
as the variant type of variable names. Every variant type is an instance of the class Conditional.

However, not always all possible result variants of the program are desired. Sometimes the result is
interesting only in a given context. In such cases the new class Contextual is useful. A function

when :: Contextual a => Formula -> a -> a

introduces a formula into the context of a computation. For example, expression

when (neq a b /\ neq b c /\ neq a c) size (fromList [a,b,c])

will display only the result for distinct atoms. This corresponds to adding formulas to contexts in
rules (20) in Fig. 1.

Nominal types

The basic type class in Nλ is NominalType corresponding to types ranged over by the τ metavariable in
our core language. This class is required by several functions of the language and is important for three
reasons:

• it provides an implementation of the equality predicate eq,

• it has functions that operate on atom variables (mapVariables and foldVariables) and are used
internally for resolving conflicts between atom variable names, and for collecting all or free atom
variables that occur in a set expression,

• it helps split variant values into elements when inserting them to the set (to implement rule (21) in
Fig. 1).

To operate on a set of elements of a given type, the type has to be an instance of NominalType. Addi-
tionally, all instances of this class must be instances of the standard Haskell class Ord. This is to improve
performance.

Set types

The Set type constructor is an implementation of both infinite and finite sets. Generally, it is an alter-
native to the standard Data.Set module with most features that can be found there. These include core
functions of Nλ such map, filter and sum and functions defined from them as in Section 3. One can
find auxiliary functions to deal with pairs, triples or in general tuples and lists of set elements.

Notable omissions among functions provided by Data.Set are those that rely on an ordering of set
elements, such as elemAt, toList but also foldl and foldr. There seems to be no meaningful way to
interpret these functions on infinite, definable sets.

One additional function that is provided calculates the size of a set:

B. Klin, M. Szynwelski 71

size :: NominalType a => Set a -> Variants Int

Certainly one can expect the answer in finite time only for finite sets. This function for consecutive
natural numbers tries to find a list of distinct elements with a given length. This procedure is rather
inefficient for large sets and does not terminate for infinite ones.

Hulls, supports and orbits

As mentioned in Section 5 and as will become apparent in Section 7 sometimes it is useful to the pro-
grammer to be able to operate on orbits of definable sets. For this purpose, functions listed in Section 5
have been added to the language. The implementation of all these functions is derived from two basic
ones:
support :: NominalType a => a -> [Atom]

groupAction :: NominalType a => (Atom -> Atom) -> a -> a

The first returns a list of free atom variables in the argument (this list also serves as a support of it), the
second applies a function to all free atom variables. Both functions invoke functions foldVariables
and mapVariables that must be provided in instances of the NominalType class.

Based on support and groupAction we implement the function
orbit :: NominalType a => [Atom] -> a -> Set a

which computes the orbit of an element e under the action of all automorphisms of A that fix all elements
of a given support [a1, . . . ,an]. This function computes the list of free atoms [b1, . . . ,bk] in e, and filters
all lists of atoms of length k:

{[x1, . . . ,xk] : for x1, . . . ,xk ∈ A}
to obtain only these in the same orbit as [b1, . . . ,bk]. To this end, a conjunction formula is built as follows:∧

1≤i, j≤k
i 6= j

r(xi,x j) ⇐⇒ r(bi,b j) ∧
∧

1≤i≤k
1≤ j≤n

r(xi,a j) ⇐⇒ r(bi,a j)

for every relation r in the signature of A . (For equality atoms, it is just the equality relation.) In the last
step, the filtered set of lists is mapped with a function that replaces every atom bi in the element e by xi

for 1≤ i≤ k.
Using orbit an implementation of hull and other functions listed in Section 5 is now easy, for

example:
hull :: NominalType a => [Atom] -> Set a -> Set a

hull supp = sum . map (orbit supp)

7 Examples

We demonstrate the potential and limitations of Nλ on two simple examples: computing transitive clo-
sures of relations and graph k-colorability. Although both examples can be implemented in Nλ , they
are rather different. In the former one, standard Haskell code for calculating transitive closures of finite
relations can be reused almost verbatim for the first-order definable case, sparing the programmer from
considerations regarding finite vs. infinite sets. In the latter example, standard Haskell code for finding
k-colorings in finite graphs does not transport to the infinite setting. Instead, one partitions a given graph
into its orbits, and looks for an equivariant coloring, where all nodes in the same orbit get the same color.
Both the program and the proof of its correctness depend on the programmer’s knowledge of first-order
definable sets and their mathematical theory.

72 SMT Solving for Functional Programming over Infinite Structures

Transitive closures and cycles

We begin by recalling the example presented in Section 1. To compute the composition of two relations
one can define a function compose as follows:

compose :: (NominalType a, NominalType b, NominalType c) =>

Set (a,b) -> Set (b,c) -> Set (a,c)

compose r s = sum (map (\(a,b) ->

map (\(_,c) -> (a,c))

(filter (eq b . fst) s))

r)

This function can be written down more concisely, using some auxiliary functions. In Nλ we provide
some functions similar to the standard Haskell zip and zipWith:

pairs :: (NominalType a, NominalType b) => Set a -> Set b -> Set (a, b)

pairsWith :: (NominalType a, NominalType b, NominalType c) =>

(a -> b -> c) -> Set a -> Set b -> Set c

There are also functions that help filtering pairs:

pairsWithFilter :: (NominalType c, NominalType b, NominalType a) =>

(a -> b -> NominalMaybe c) -> Set a -> Set b -> Set c

maybeIf :: Ord a => Formula -> a -> NominalMaybe a

Using these one can implement compose in a single line:

compose r s = pairsWithFilter (\(a, b) (c, d) -> maybeIf (eq b c) (a, d)) r s

Now, one can code a function transitiveClosure computing the transitive closure of a given
relation:

transitiveClosure :: NominalType a => Set (a,a) -> Set (a,a)

transitiveClosure r = let r’ = union r (compose r r)

in ite (eq r r’) r (transitiveClosure r’)

It should be noted that the implementation of compose and transitiveClosure is similar to the fi-
nite version with only two differences: eq instead of (==) and ite instead of an if...then...else...
statement.

Consider a datatype that describes directed graphs with vertices of any type and edges represented as
pairs of vertices:

data Graph a = Graph {vertices :: Set a, edges :: Set (a,a)}

To check whether a graph has a cycle one could use the function transitiveClosure in the following
way:

hasCycle :: NominalType a => Graph a -> Formula

hasCycle (Graph vs es) = exists (uncurry eq) (transitiveClosure es)

When only odd-length cycles are requested, one could define a function hasOddLengthCycle as pre-
sented below:

hasOddLengthCycle :: NominalType a => Graph a -> Formula

hasOddLengthCycle (Graph vs es) = intersect (map swap es)

(transitiveClosure (compose es es))

B. Klin, M. Szynwelski 73

where (transitiveClosure (compose es es)) returns the set of all pairs of vertices connected
with even-length paths. If some pair of vertices from this set is also connected with an edge from the
original graph, it means that there is an odd-length cycle.

Note how the above fragments of code are essentially the same as ones that would be used for
computing transitive closures or cycle finding on finite graphs.

Graph coloring

Recall that a graph coloring is a valuation of its nodes such that no two adjacent vertices share the same
value. The verification whether a given function is a valid coloring looks as follows:

isColoringOf :: (NominalType a,NominalType b) => (a -> b) -> Graph a -> Formula

isColoringOf c g = forAll (\(v1,v2) -> c v1 ‘neq‘ c v2) (edges g)

A k-coloring is a graph coloring with k colors. In order to check whether a graph is k-colorable in
the finite setting, one could generate all k-partitions of a set of n vertices:

partitions :: Int -> Int -> Set [Int]

partitions n 1 = singleton (replicate n 0)

partitions n k | k < 1 || n < k = empty

partitions n k | n == k = singleton [0..n-1]

partitions n k = union (map (k-1:) $ partitions (n-1) (k-1))

(pairsWith (:) (fromList [0..k-1]) (partitions (n-1) k))

For example, (partitions 3 2) evaluates to a set of three partitions: {[0,0,1], [1,0,0], [1,0,1]}.
For each such partition one could examine if the valuation that arises from it is a valid coloring.

In the world of definable sets the situation is much more complicated. One cannot enumerate and
collect all partitions because the set of partitions of a definable set might not be first-order definable or
even countable. Indeed, at first sight it is not clear that colorability of definable graphs is a decidable
problem. For example, consider the undirected graph:

Graph {vertices= {(a1,a2) : a1 6= a2 for a1,a2 ∈ A},
edges= {{(a1,a2),(a2,a3)} : a1 6= a2∧a1 6= a3∧a2 6= a3 for a1,a2,a3 ∈ A}}

(23)

This graph, used as an example in [9], is not 3-colorable. However, its smallest finite non-3-colorable
graph has as many as 10 vertices and 20 edges. One may try to check larger and larger finite subgraphs
of a given definable graph and check their colorability using the standard code above, but it is not clear
when one can stop and declare the entire graph colorable.

One may make some additional assumptions, for example consider only equivariant colorings, where
nodes in the same orbit must get the same color. (For example, the graph in (23) has no equivariant
colorings, as it only has one orbit of vertices and it has edges.) The problem then reduces to coloring the
finite set of orbits. For a given list of orbits and a list of its partitions one can create a coloring function
that determines which orbit contains a given element and returns the color assigned to such an orbit.

coloring :: NominalType a => [Set a] -> [Int] -> a -> Variants Int

coloring [] [] _ = variant 0

coloring (o:os) (p:ps) a = ite (member a o) (variant p) (coloring os ps a)

Then it remains to check whether a coloring function created by a partition of orbits is a proper
coloring of the graph. This can be implemented as follows:

74 SMT Solving for Functional Programming over Infinite Structures

hasEquivariantColoring :: NominalType a => Graph a -> Int -> Formula

hasEquivariantColoring g k = member true $

pairsWith (\os ps -> (coloring os ps) ‘isColoringOf‘ g)

(replicateSet n orbits)

(partitions n k)

where orbits = setOrbits (vertices g)

n = maxSize orbits

where replicateSet :: NominalType a => Int -> Set a -> Set [a] returns the set of lists
with a given length and elements from a set.

This solves the problem of finding equivariant colorings of definable graphs. As it turns out it solves
the problem of general k-colorability as well: in [9], it was proved that over ordered atoms a definable
graph has a k-coloring if and only it has an equivariant one. That result relies on deep theorems in topo-
logical dynamics. As we can see, the programmer needs to know the mathematics of first-order definable
structures not only to write the program for k-colorability, but even more so to prove its correctness.

It is worth noting that the problem of finding an equivariant k-coloring may have different solutions
depending on the structure of atoms. For example, the graph:

g = Graph {vertices= {(a1,a2) : a1 6= a2 for a1,a2 ∈ A},
edges= {((a1,a2),(a2,a1)) : a1 6= a2 for a1,a2 ∈ A}}

does not have an equivariant 2-coloring when equality atoms are considered. But for ordered atoms, a
function (uncurry lt) with type: (Atom, Atom) -> Formula is a correct coloring. So for these two
structures of atoms the expression (hasEquivariantColoring g 2) will evaluate to false and true

respectively.
Note that 2-colorings can be looked for in a way very similar to the one used for finite graphs; indeed,

a graph is 2-colorable if and only if it has no cycle of odd length, and an Nλ program to check that was
shown above. The expression (hasOddLengthCycle g) will evaluate to false both over equality and
ordered atoms, indicating that a 2-coloring (not necessarily equivariant) of g exists.

These are only selected examples of programs in Nλ . We have also solved problems such as
reachability, finding weakly or strongly connected components in graphs, the emptiness problem of
automata [3] and a minimization algorithm of automata. None of these require the programmer to ex-
plicitly use orbits and other structure of definable sets. However, as the example of graph k-coloring (for
k > 2) shows, certain problems do seem to require that. We do not understand precisely what it means
for a problem to “require the use of orbits” or where the division lies between problems that do or do not.
A possible connection to descriptive complexity theory and the celebrated “quest for PTIME logic” [6]
could be imagined but this is left for future work.

References

[1] Clark Barrett, Aaron Stump & Cesare Tinelli (2010): The SMT-LIB Standard: Version 2.0. Technical Report,
University of Iowa.

[2] Mikołaj Bojańczyk, Laurent Braud, Bartek Klin & Sławomir Lasota (2012): Towards nominal computation.
In: Procs. POPL 2012, pp. 401–412, doi:10.1145/2103656.2103704.

[3] Mikołaj Bojańczyk, Bartek Klin & Sławomir Lasota (2014): Automata theory in nominal sets. Log. Meth.
Comp. Sci. 10, doi:10.2168/LMCS-10(3:4)2014.

http://dx.doi.org/10.1145/2103656.2103704
http://dx.doi.org/10.2168/LMCS-10(3:4)2014

B. Klin, M. Szynwelski 75

[4] Leonardo De Moura & Nikolaj Bjørner (2008): Z3: An Efficient SMT Solver. In: Procs. of TACAS’08, pp.
337–340, doi:10.1007/978-3-540-78800-3 24.

[5] Jean-Yves Girard, Paul Taylor & Yves Lafont (1989): Proofs and Types. Cambridge University Press.
[6] Martin Grohe (2008): The quest for a logic capturing PTIME. In: Procs. LICS’08, pp. 267–271,

doi:10.1109/LICS.2008.11.
[7] Wilfried Hodges (1993): Model theory. Cambridge University Press, doi:10.1017/CBO9780511551574.
[8] Jan Hubička & Jaroslav Nešetřil (2005): Universal partial order represented by means of oriented trees and

other simple graphs. European Journal of Combinatorics 26, pp. 765–778, doi:10.1016/j.ejc.2004.01.008.
[9] Bartek Klin, Eryk Kopczyński, Joanna Ochremiak & Szymon Toruńczyk (2015): Locally Finite Constraint

Satisfaction Problems. In: Procs. LICS 2015, pp. 475–486, doi:10.1109/LICS.2015.51.
[10] Eryk Kopczyński & Szymon Toruńczyk: Looping over infinite sets. To appear.
[11] Rüdiger Loos & Volker Weispfenning (1993): Applying Linear Quantifier Elimination. The Computer Jour-

nal 36(5), pp. 450–462, doi:10.1093/comjnl/36.5.450.
[12] Tobias Nipkow (2008): Linear Quantifier Elimination. In Alessandro Armando, Peter Baumgartner & Gilles

Dowek, editors: Automated Reasoning, Lecture Notes in Computer Science 5195, Springer, pp. 18–33,
doi:10.1007/978-3-540-71070-7 3.

[13] Nλ . Available from http://www.mimuw.edu.pl/~szynwelski/nlambda/.
[14] Joanna Ochremiak (2016): Extended constraint satisfaction problems. Ph.D. thesis, University of Warsaw.
[15] Andrew M. Pitts (2013): Nominal Sets: Names and Symmetry in Computer Science. Cambridge University

Press, doi:10.1017/CBO9781139084673.
[16] F. Rossi, P. van Beek & T. Walsh, editors (2006): Handbook of Constraint Programming. Elsevier.
[17] J. T. Schwartz, R. B. Dewar, E. Schonberg & E. Dubinsky (1986): Programming with Sets; an Introduction

to SETL. Springer-Verlag.
[18] Mark R. Shinwell (2006): Fresh O’Caml: Nominal Abstract Syntax for the Masses. Electr. Notes Theor.

Comput. Sci. 148(2), pp. 53–77, doi:10.1016/j.entcs.2005.11.040.
[19] M. Takahashi (1995): Parallel reductions in λ -calculus. Information and Computation 118(1), pp. 120 –

127, doi:10.1006/inco.1995.1057.

http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1109/LICS.2008.11
http://dx.doi.org/10.1017/CBO9780511551574
http://dx.doi.org/10.1016/j.ejc.2004.01.008
http://dx.doi.org/10.1109/LICS.2015.51
http://dx.doi.org/10.1093/comjnl/36.5.450
http://dx.doi.org/10.1007/978-3-540-71070-7_3
http://www.mimuw.edu.pl/~szynwelski/nlambda/
http://dx.doi.org/10.1017/CBO9781139084673
http://dx.doi.org/10.1016/j.entcs.2005.11.040
http://dx.doi.org/10.1006/inco.1995.1057

	Introduction
	Sets with atoms
	A basic functional language
	Logic-based semantics
	Hulls, supports and orbits
	Implementation
	Examples

