
Vol.:(0123456789)

New Generation Computing (2022) 40:403–465
https://doi.org/10.1007/s00354-022-00186-y

123

Codensity Games for Bisimilarity

Yuichi Komorida1,2 · Shin‑ya Katsumata1 · Nick Hu3 · Bartek Klin3 ·
Samuel Humeau5 · Clovis Eberhart1,6 · Ichiro Hasuo1,2

Received: 16 November 2021 / Accepted: 10 July 2022 / Published online: 3 August 2022
© Ohmsha, Ltd. and Springer Japan KK, part of Springer Nature 2022

Abstract
Bisimilarity as an equivalence notion of systems has been central to process theory.
Due to the recent rise of interest in quantitative systems (probabilistic, weighted,
hybrid, etc.), bisimilarity has been extended in various ways, such as bisimula-
tion metric between probabilistic systems. An important feature of bisimilarity is
its game-theoretic characterization, where Spoiler and Duplicator play against each
other; extension of bisimilarity games to quantitative settings has been actively pur-
sued too. In this paper, we present a general framework that uniformly describes
game characterizations of bisimilarity-like notions. Our framework is formalized
categorically using fibrations and coalgebras. In particular, our characterization of
bisimilarity in terms of fibrational predicate transformers allows us to derive what
we call codensity bisimilarity games: a general categorical game characterization of
bisimilarity. Our framework covers known bisimilarity-like notions (such as bisimu-
lation metric and bisimulation seminorm) as well as new ones (including what we
call bisimulation topology).

Keywords Coalgebra · Bisimulation · Safety game · Bisimulation metric · Fibration

To Masami Hagiya on the occasion of his 26 th birthday. Masami’s research career has been a role
model for us theoretical computer scientists who seek real-world impact through the power of logic.
He has shown through his works that one good use of logical abstraction is to tame new computing
paradigms. The current work draws inspiration from this, and uses logical (and categorical)
abstraction to establish a uniform understanding of various bisimilarity-like notions that otherwise
look very different from each other.

 * Yuichi Komorida
 komorin@nii.ac.jp

 * Shin-ya Katsumata
 s-katsumata@nii.ac.jp

 * Ichiro Hasuo
 i.hasuo@acm.org

Extended author information available on the last page of the article

http://orcid.org/0000-0002-3371-5243
http://crossmark.crossref.org/dialog/?doi=10.1007/s00354-022-00186-y&domain=pdf

404 New Generation Computing (2022) 40:403–465

123

1 Introduction

1.1 Bisimilarity Notions and Games

Since the seminal works by Park and Milner [1, 2], bisimilarity has played a central
role in theoretical computer science. It is an equivalence notion between branch-
ing systems; it abstracts away internal states and stresses the black-box observation-
oriented view on process semantics. Bisimilarity is usually defined as the largest
bisimulation, which is a binary relation that satisfies a suitable mimicking condition.
In fact, a bisimulation R can be characterized as a post-fixed point R ⊆ Φ(R) using a
suitable relation transformer Φ ; from this we obtain that bisimilarity is the greatest
fixed point of Φ by the Knaster–Tarski theorem. This order-theoretic foundation is
the basis of a variety of advanced techniques for reasoning about (or using) bisimi-
larity, such as bisimulation up to—see, e.g., [3].

Bisimilarity is conventionally defined for state-based systems with nondetermin-
istic branching. However, as the applications of computer systems become increas-
ingly pervasive and diverse (such as cyber-physical systems), extension of bisimi-
larity to systems with other branching types has been energetically sought in the
literature. One notable example is the bisimulation notion for probabilistic systems
in [4]: it is a relation that witnesses that two states are indistinguishable in their
behaviors henceforth. This qualitative notion has also been made quantitative, as the
notion of bisimulation metric [5]. It replaces a relation with a metric that is induced
by the probabilistic transition structure.

There is a body of literature (including [6–12]) that aims to identify the math-
ematical essences that are shared by this variety of bisimilarity, and to express the
identified essences in a rigorous manner using category theory. Our particular inter-
est is in the correspondence between bisimilarity notions and (safety) games; three
examples of the latter are given below. This interest in bisimilarity games is shared
by the recent work [10], and the comparison is discussed in Sect. 1.4.

1.1.1 Bisimilarity Games

It is well-known that the following game (summarized in Table 1) characterizes the
conventional notion of bisimilarity between Kripke frames. Let (X,→) be a Kripke
frame, where → ⊆ X2 ; the game is played between Duplicator (D) and Spoiler (S).
In a position (x, y), Spoiler challenges Duplicator’s claim that x and y are bisimilar,

Table 1 Game for bisimilarity
in a Kripke frame

Position Player Possible moves

(x, y) ∈ X2 Spoiler (1, x�, y) s.t. x → x′
or (2, x, y�) s.t.
y → y′

(1, x�, y) ∈ {1} × X2 Duplicator (x�, y�) s.t. y → y′

(2, x, y�) ∈ {2} × X2 Duplicator (x�, y�) s.t. x → x′

405New Generation Computing (2022) 40:403–465

123

by choosing one of the states (say x) and further choosing a transition x → x′ . Dupli-
cator responds by choosing a transition y → y′ from the other state, and the game is
continued from (x�, y�) . Duplicator wins if Spoiler gets stuck, or the game continues
infinitely long, and this witnesses that x and y are bisimilar.

1.1.2 Games for Probabilistic Bisimilarity

A recent step forward in the topic of bisimilarity and games is the characterization
of probabilistic bisimulation introduced in [13]. For simplicity, here we describe its
discrete version.

Let (X, c) be a Markov chain, where X is a countable set of states, and
c ∶ X → D≤1X is a transition kernel that assigns to each state x ∈ X a probabil-
ity subdistribution c(x) ∈ D≤1X . Here D≤1X = {d ∶ X → [0, 1] ∣

∑
x∈X d(x) ≤ 1}

denotes the set of probability subdistributions over X. For Z ⊆ X , let c(x)
(Z) denote the probability with which a successor of x is chosen from Z; that is,
c(x)(Z) =

∑
x�∈Z c(x)(x

�) . Since c(x) is only a sub-distribution over X, the probability
c(x)(X) is ≤ 1 rather than = 1 . The remaining probability 1 − c(x)(X) can be thought
of as the probability of x getting stuck.

Recall from [4] that an equivalence relation R ⊆ X2 is a (probabilistic) bisimula-
tion if, for any (x, y) ∈ R and each R-closed subset Z ⊆ X , c(x)(Z) = c(y)(Z) holds.

The game introduced in [13] is in Table 2. It is shown in [13] that Duplicator is
winning in the game at (x, y) if and only if x and y are bisimilar, in the sense of [4]
(recalled above). It is not hard to find an intuitive correspondence between the game
in Table 2 and the definition of bisimulation [4]: Spoiler challenges the bisimilarity
claim between x, y by exhibiting Z such that c(x)(Z) = c(y)(Z) is violated; Duplicator
makes a counterargument by claiming that Z is in fact not bisimilarity-closed, exhib-
iting a pair of states (x�, y�) that Duplicator claims are bisimilar.

1.1.3 Games for Probabilistic Bisimulation Metric

Our following observation marked the beginning of the current work: the game for
(qualitative) bisimilarity for probabilistic systems (from [13], Table 2) can be almost
literally adapted to (quantitative) bisimulation metric for probabilistic systems. This
metric was first introduced in [5].

For simplicity we focus on the discrete setting; we also restrict to pseudometrics
bounded by 1. Let (X, c) be a Markov chain with a countable state space X. The
bisimulation metric d(X,c) ∶ X2 → [0, 1] is defined to be the smallest pseudometric
(with respect to the pointwise order) that makes the transition kernel:

Table 2 Game for probabilistic
bisimilarity from [13]

Position Player Possible moves

(x, y) ∈ X2 Spoiler Z ⊆ X s.t. c(x)(Z) ≠ c(y)(Z)

Z ⊆ X Duplicator (x�, y�) ∈ X2 s.t. x� ∈ Z ∧ y� ∉ Z

406 New Generation Computing (2022) 40:403–465

123

non-expansive with respect to the specified pseudometrics. Here K(d(X,c)) is the so-
called Kantorovich metric over D≤1X induced by the pseudometric d(X,c) over X. It is
defined as follows. For �, � ∈ D≤1X:

where in the above sup,

• f ranges over all non-expansive functions from (X, d(X,c)) to
(
[0, 1], d[0,1]

)
,

• d[0,1] denotes the usual Euclidean metric, and
• E�[f] is the expectation

∑
x∈X f (x) ⋅ �(x) of f with respect to �.

Our observation is that the bisimulation metric d(X,c) is characterized by the game in
Table 3: Duplicator is winning at (x, y, �) if and only if d(X,c)(x, y) ≤ �.

The game seems to be new, although its intuition is similar to the one for Table 2.
Note that the formula (1) appears in the condition of Spoiler’s moves. Spoiler challenges
by exhibiting a “predicate” f that suggests violation of the non-expansiveness of c; and
Duplicator makes a counterargument that f is in fact not non-expansive and thus invalid.

1.1.4 Towards a Unifying Framework

The last two games (Table 2 from [13] and Table 3 that seems new) motivate a
general framework that embraces both. There are some clear analogies: the games
are about indistinguishability of states x, y under a class of observations (Z and f,
respectively), and the predicates usable in those observations are subject to certain
preservation properties (bisimilarity-closedness in the former, and non-expansive-
ness in the latter).

1.2 A Codensity‑Based Framework for Bisimilarity and Games

The main contribution of the current paper is a categorical framework that derives a
variety of bisimilarity notions and corresponding game notions. The correspondence
is proved once and for all on the categorical level of generality. It covers the three
examples introduced earlier in Sect. 1.1, much like the recent categorical framework

c ∶ (X, d(X,c)) ⟶
(
D≤1X, K(d(X,c))

)

(1)K(d(X,c))(�, �) = sup
f

|||E�[f] − E�[f]
|||,

Table 3 Game for (probabilistic)
bisimulation metric, adapting
[13]

Position Player Possible moves

(x, y, �) Spoiler f ∶ X → [0, 1]

∈ X2 × [0, 1] Such that |||Ec(x)[f] − Ec(y)[f]
||| > 𝜀

f ∶ X → [0, 1] Duplicator (x�, y�, ��) ∈ X2 × [0, 1]

Such that || f (x�) − f (y�) || > 𝜀�

407New Generation Computing (2022) 40:403–465

123

in [10] does. However, our fibration-based formalization has another dimension
of generality. For example, besides relations and metrics, our examples include an
existing notion called bisimulation seminorm and a new one that we call bisimula-
tion topology.

The overview of our categorical framework is in the left half of Fig. 1. We
build on our previous works [14, 15]. In [14] a general construction called coden-
sity lifting is introduced (see ➂): given a fibration 𝔼

p
�����→ ℂ and parameters (�, �)

that embody the kind of observations we can make, a functor F ∶ ℂ → ℂ is lifted
to F�,� ∶ � → � . In [15], codensity lifting is used to introduce a generic family of
bisimulation notions called codensity bisimilarity—see ➁. In this paper, we extend
these previous results by

• introducing the notion of codensity bisimilarity game (➀) that comes in two var-
iants (untrimmed (Sect. 4) and trimmed (Sect. 5)),

• establishing the correspondence between codensity bisimulations (➁) and
games (➀) on a fibrational level of generality, and

• working out several concrete examples (➃, ➄).

In general, devising a game notion (➃) directly from a bisimilarity notion (➄) is
far from trivial. Indeed, doing so for an individual bisimilarity notion has itself been
deemed a scientific novelty [13, 16]. Our codensity-based framework (in the left half
of Fig. 1) can automate part of this process in the following precise sense.

We derive concrete notions of bisimilarity (➄) and bisimilarity game (➃) as
instances; then the correspondence between the two is guaranteed by the categorical
general result between ➀ and ➁.

We note, however, that this is no panacea. When one starts with a given concrete
notion of bisimilarity (➄), their next task would be to identify the right choice of
the parameters 𝔼

p
�����→ ℂ,�, � for the codensity lifting (➂). This task is not easy in

general: we needed to get our hands dirty working out the examples in this paper, in
[14], and in [15]. Nevertheless, we believe that the required passage from ➄ to ➂

Fig. 1 Our codensity-based framework for bisimilarity and games

408 New Generation Computing (2022) 40:403–465

123

is much easier than the direct derivation from ➄ to ➃, with our categorical frame-
work providing templates of bisimilarity games (see Tables 8, 10, 11). After all, our
framework identifies which part of the path from ➄ to ➃ can be automated, and
which part remains to be done individually. This is much like what many other cat-
egorical frameworks offer, as meta-level theories.

As an additional benefit, our categorical framework can be used to discover new
bisimilarity notions (➄), starting from (choices of parameters for) ➂. We believe
those derived new bisimilarity notions are useful, since our categorical theory
embodies sound intuitions about observation, predicate transformation, and indistin-
guishability—see e.g., Sect. 2.2.

1.3 Contributions

Our main technical contributions are as follows.

• We introduce a categorical framework that uniformly describes various bisimu-
lation notions (including metrics, preorders and topologies) and the correspond-
ing game notions (Fig. 1). The framework is based on coalgebras, fibrations, and
codensity liftings in particular [14]. Our general game notion comes in two vari-
ants.

– The first (the untrimmed codensity game in Sect. 4) arises naturally in a fibra-
tion, using its objects and arrows as possible moves. The untrimmed game is
theoretically clean, but it tends to have a huge arena.

– We, therefore, introduce a method that restricts these arenas, leading to the
(trimmed) codensity bisimilarity game (Sect. 5). The reduction method is also
described in general fibrational terms, specifically using fibered separators
and join-dense subsets.

• From the general framework, we derive several concrete examples of bisimilarity
and its related notions (➃ and ➄ in Fig. 1). They are listed in Table 7 and elabo-
rated in Sect. 8. Among them, a few bisimilarity notions seem new (especially
bisimulation topology in Sect. 8.3), and several game notions also seem new
(especially those for Λ-bisimulation in Sect. 8.2 and �-bisimulation seminorm in
Sect. 8.6).

• We discuss the transfer of codensity bisimilarity by suitable fibered functors
(Sect. 7). As an example usage, we give an abstract proof of the fact that (usual)
bisimilarity for Kripke frames is necessarily an equivalence (Example 7.4).

In addition, we give a direct proof of the equivalence between our game for bisimu-
lation metric (Table 3), obtained from our general framework, and another game
notion for probabilistic bisimilarity, previously introduced in [16]. In the proof, we
exhibit a mutual translation of winning strategies (Appendix 1).

The current paper is an extended version of our previous paper [17]. The major
additions are the following.

409New Generation Computing (2022) 40:403–465

123

• We show a new transfer result in Sect. 7.2, which has a broader applicability than
the result already presented in [17] (and in Sect. 7.1).

• In Sect. 8.1, we additionally present how to specialize codensity bisimilarity to
recover another known notion of equivalence, namely, behavioral equivalence
(see [18] for its relation to bisimilarity). Some examples (already presented in
[17]) are reorganized using the result.

• In Sect. 8.2, we show a new connection between our codensity bisimulation and
an existing notion of Λ-bisimulation [19]. We also derive a general game charac-
terization of some special cases of it, where all the modalities are unary.

• In Sect. 8.6, we show how to represent �-bisimulation seminorm [20] on weighted
automata as a special case of codensity bisimilarity. We also derive a game char-
acterization.

We included some proofs that were omitted in [17], too.

1.4 Related Work

Besides the one in [13], another game characterization of probabilistic bisimulation
has been given in [16]. It is described later in Sect. 2 (Table 4). The latter game has
a bigger arena than the one in [13]: in [16] both players have to play a subset Z ⊆ X ,
while in [13] only Spoiler does so.

The work that is the closest to ours is the recent work [10] that studies bisimilar-
ity games in a categorical setting. Their formalization uses (co)algebras (following
the (co)algebraic generalization of the Kantorovich metric introduced in [8]) and,
therefore, embraces a variety of different branching types. The major differences
between the two works are as follows.

• Our current work is fibration-based (in particular ����⊓-fibrations), while [10]
is not. As a consequence, ours accommodates an additional dimension of gen-
erality by changing fibrations, which correspond to different indistinguishability
notions (relation, metric, topology, preorder, measurable structures, etc.). In con-
trast, the works [8, 10] deal exclusively with two settings: binary relations and
pseudometrics.

Table 4 Game for probabilistic bisimilarity, from [16]

Position Player Possible moves

(1, x, y) ∈ {1} × X2 Spoiler (2, s, t,Z) ∈ {2} × X2 × PX s.t. {s, t} = {x, y}

(2, s, t,Z) ∈ Duplicator (Z,Z�) ∈ (PX)2 s.t. c(s)(Z) ≤ c(t)(Z�)

{2} × X2 × PX

(Z,Z�) ∈ (PX)2 Spoiler (Z, y�) ∈ PX × X s.t. y� ∈ Z�

or (Z�, y) ∈ PX × X s.t. y ∈ Z

(Z, y�) ∈ PX × X Duplicator (x�, y�) ∈ X2 s.t. x� ∈ Z

410 New Generation Computing (2022) 40:403–465

123

• A relationship to modal logic is beautifully established in [10], while it is not
done in this work. Some results connecting our codensity framework and modal
logic are presented in [21].

• The categorical generalization [10] is based on the game notion in [16], while
ours is based on that in [13]. Therefore, for some bisimulation notions (including
the bisimulation metric), we obtain a game notion with a smaller arena. Compare
Tables 3 (an instance of ours) and 5 (an instance of [10]).

There are a number of categorical studies of bisimilarity notions; notable mentions
include open map-based approaches [22] and coalgebraic ones [23, 24]. The fibra-
tional approach we adopt also uses coalgebras; it was initiated in [6] and pursued,
e.g., in [7, 9, 11, 15]. For example, in the recent work [11], fibrational generality is
exploited to study up-to techniques for bisimilarity metric. They use the Wasserstein
lifting of functors introduced in [8] instead of the codensity lifting that we use (it
generalizes the Kantorovich lifting in [8], see Example 3.5). It is known [8] that the
Wasserstein and Kantorovich liftings can differ in general, while they coincide for
some specific functors, such as the distribution functor.

Some of our new examples are topological: we derive what we call bisimulation
topology and a game notion that characterizes it. The relation between these notions
and the existing works on bisimulation and topology (including [25, 26]) is left as
future work.

In Sect. 5, we reduce the game arena by focusing on a join-dense subset. A game
notion proposed in [27] uses a similar method. A major difference is that they
restrict themselves to continuous lattices, while we only require each fiber to be a
complete lattice. This condition plays a critical role in their framework, but it is a
future work to seek consequences of the continuity assumption in our setting.

1.5 Organization

In Sect. 2, we present preliminaries on a general theory of games (we can restrict
to safety games), and on fibrations. For the latter, we focus on a class called ����⊓

Table 5 Game for bisimulation metric, from [10]

Position Player Possible moves

(x, y, �) ∈ X2 × [0, 1] Spoiler (s, t, f , �) ∈ X2 × [0, 1]X × [0, 1]

s.t. {s, t} = {x, y}

(s, t, f , �) ∈ Duplicator (f , g, �) ∈ ([0, 1]X)2 × [0, 1] such that
X2 × [0, 1]X × [0, 1] max{0,Ec(s)[f] − Ec(t)[g]} ≤ �

(f , g, �) ∈ ([0, 1]X)2 × [0, 1] Spoiler (x�, i, j, �) ∈ X × ([0, 1]X)2 × [0, 1] such that
{i, j} = {f , g}

(x�, i, j, �) ∈ Duplicator (x�, y�, ��) ∈ X2 × [0, 1] such that
X × ([0, 1]X)2 × [0, 1] i(x�) ≤ j(y�) , and

�� = j(y�) − i(x�)

411New Generation Computing (2022) 40:403–465

123

-fibrations, and argue that they offer an appropriate categorical abstraction of sets
equipped with indistinguishability structures. In Sect. 3, we present codensity lift-
ing and codensity bisimilarity (̊2 , 3̊ in Fig. 1). The material is based on [15], but we
introduce some auxiliary notions needed for the correspondence with games. Our
first game notion (the untrimmed one) is introduced in Sect. 4; in Sect. 5, we cut
down the arenas and obtain trimmed codensity bisimilarity game. The theory is fur-
ther extended in Sects. 6 and 7: in Sect. 6 we accommodate multiple observation
domains, and in Sect. 7 we discuss the transfer of codensity bisimilarities by fibered
functors preserving meets. These categorical observations give rise to the concrete
examples in Sect. 8.

2 Preliminaries

Since bisimilarity is defined as the greatest fixed point of a certain map, we will
often be manipulating such fixed points. We recall two well-known characterizations
of fixed points:

Theorem 2.1 (Knaster–Tarski [28]) Let L be a complete lattice and f ∶ L → L be
a monotone map. Then the greatest fixed point of f exists and it is the greatest pre-
fixpoint of f, i.e., the greatest element x ∈ L such that f (x) ≤ x . ◻

Theorem 2.2 (Cousot–Cousot [29]) Let L be a complete lattice and f ∶ L → L be a
monotone map. Using transfinite induction, let us define a sequence (f�)� (indexed by
an ordinal �) by the following:

Note that

1. f0 = ⊤ , the greatest element of L, and
2. f�+1 = f (f�) for any ordinal �.

Then there is an ordinal � such that f� = f�+1 and, for such � , f� is the greatest fixed
point of f. ◻

2.1 Safety Games

Here we recall some standard game-theoretic notions and results. In capturing
bisimilarity-like notions, we can restrict ourselves to safety games—they have a sim-
ple winning condition, where every infinite play is won by the same player (namely,
Duplicator). This winning condition reflects the characterization of bisimilarity-like
notions by suitable greatest fixed points; the correspondence generalizes, for exam-
ple, to the one between parity games and nested alternating fixed points—see [30].
The term “safety game” occurs, e.g., in [31, 32].

f𝛼 = ⊓𝛽<𝛼f (f𝛽).

412 New Generation Computing (2022) 40:403–465

123

Safety games are played between two players; in this paper, they are called
Duplicator (D) and Spoiler (S). We restrict to those games in which Duplicator and
Spoiler alternate turns.

Definition 2.3 (safety game) A (safety game) arena is a triple G = (QD,QS,E) of
a set QD of Duplicator’s positions, a set QS of Spoiler’s positions, and a transition
relation

E ⊆ (QD × QS) ∪ (QS × QD) . Hence G is a bipartite graph. We require that QD and
QS are disjoint, and that QD ∪ QS ≠ � . We write Q = QD ∪ QS.

For a position q ∈ Q , an element of the set {q� ∈ Q ∣ (q, q�) ∈ E} is called a pos-
sible move at q. Unlike some works, we allow positions that have no possible moves
at them.

A play in an arena G = (QD,QS,E) is a (finite or infinite) sequence of positions
q0q1 … , such that (qi−1, qi) ∈ E so long as qi belongs to the sequence.

A play in G is won by either player, according to the following conditions: (1)
a finite play q0 … qn is won by Spoiler (or by Duplicator) if qn ∈ QD (or qn ∈ QS ,
respectively) and (2) every infinite play q0q1 … is won by Duplicator.

Definition 2.4 (Strategy, winning position) In an arena G = (QD,QS,E) , a strat-
egy of Duplicator is a partial function �D ∶ Q∗ × QD ⇀ QS ; we require that
𝜎D(q⃗, q) = q� implies (q, q�) ∈ E . A strategy of Duplicator �D is positional if 𝜎D(q⃗, q)
depends only on q. A strategy of Spoiler is defined similarly, as a partial function
�S ∶ Q∗ × QS ⇀ QD that returns a possible move at the last position in the history. It
is positional if 𝜎S(q⃗, q) does not depend on q⃗.

Given an initial position q ∈ Q and two strategies �D and �S for Duplicator and
Spoiler, respectively, the play from q induced by (�D, �S) is defined in a natural
inductive manner. The induced play is denoted by ��D,�S (q).

A position q ∈ Q is said to be winning for Duplicator if there exists a strategy �D
of Duplicator such that, for any strategy �S of Spoiler, the induced play ��D,�S (q) is
won by Duplicator.

In what follows, for simplicity, we restrict the initial position q of a play ��D,�S (q)
to be in QS . (Note that Spoiler’s position can be winning for Duplicator.)

Any position in a safety game is winning for one of the players. Moreover, the
winning strategy can be taken to be positional one [30, Theorem 6]. Thus, we can
focus on the winning positions of the players.

Winning positions of safety games are witnessed by invariants (Proposition 2.6).
This is a well-known fact.

Definition 2.5 (invariant) Let G = (QD,QS,E) be an arena. A subset P ⊆ QS is called
an invariant for Duplicator if, for each q ∈ P and any possible move q� ∈ QD at q,
there exists a possible move q′′ at q′ that is in P. That is,

∀q ∈ P.∀q� ∈ QD.
(
(q, q�) ∈ E ⇒ ∃q�� ∈ QS. (q

�, q��) ∈ E ∧ q�� ∈ P
)
.

413New Generation Computing (2022) 40:403–465

123

Proposition 2.6

1. Any position q ∈ P in an invariant P for Duplicator is winning for Duplicator.
2. Invariants are closed under arbitrary union. Therefore, there exists the largest

invariant for Duplicator.
3. The largest invariant for Duplicator coincides with the set of winning positions

for Duplicator in QS.

Proof

1. Turn P into a positional strategy of Duplicator that forces a play back in P.
2. Obvious.
3. It suffices to show that every position q ∈ QS winning for Duplicator lies in some

invariant. Let �D ∶ Q∗ × QD ⇀ QS be a strategy of Duplicator ensuring that q is
winning. Define P ⊆ QS as follows:

 Then P is an invariant, because q is winning for Duplicator. ◻

Examples of safety games have been given in Tables 2 and 3. We present two
other examples (Tables 4, 5).

Example 2.7 (Alternative games for probabilistic bisimilarity and bisimulation met-
ric) In [16], the notion of �-bisimulation and a game notion characterizing it are
introduced. In the case where � is 0, �-bisimulation coincides with (qualitative)
probabilistic bisimilarity and thus the game characterizes it. The game in � = 0 case
is in Table 4, presented in a slightly adapted form.

This game notion is categorically generalized in [10]; the generalization has free-
dom in the choice of coalgebra functors (i.e., branching types), as well as in the
choice between relations and metrics. The instance of this general game notion for
bisimulation metric is shown in Table 5.

The two games (Tables 4, 5) characterize the same bisimilarity-like notions as the
games in Table 2 and 3, respectively; so they are equivalent. We can go further and
give a direct equivalence proof by mutually translating winning strategies. Such a
proof is not totally trivial; we do so for the pair for probabilistic bisimilarity.

See Appendix 1.
We note that the game in Table 3 (an instance of our current framework) is sim-

pler than Table 5 (an instance of [10]). Table 3 is not only structurally simpler (it
has fewer rows), but its set of moves are smaller too, asking for functions X → [0, 1]
only at one place.

Our categorical framework based on codensity liftings (presented in later sec-
tions) covers Tables 2 and 3 but not Tables 4 and 5.

P = {q� ∈ QS | ∃�S. q� is visited in ��D,�S(q)}.

414 New Generation Computing (2022) 40:403–465

123

2.2 ����⊓‑Fibrations

2.2.1 Definition and Properties

Here we sketch a basic theory of fibrations—see, e.g., [33] for a comprehensive
account. In particular, we focus on a class of poset fibrations called ����⊓-fibra-
tions. We observe that the simple axiomatics of the class adequately capture all
the examples of interest—and hence the mathematical essences of the logical
phenomena that we wish to model.

Our exposition here is largely based on that in [15]. However, in this paper we
introduce new notation and terminology (such as indistinguishability order and
decent map)—see Sect. 2.2.2. They help to further clarify the intuitions.

In Appendix 2, we include a rather gentle introduction to ����⊓-fibration.
In particular, Definition 9.1 gives a definition of ����⊓-fibration that does not
depend on the notion of (general) fibration.

Here we start with the following shorter definition, which does depend on the
definition of fibration.

Definition 2.8 (����⊓-fibration) A ����⊓-fibration is a fibration 𝔼
p
�����→ ℂ such

that each fiber �X (for each X ∈ ℂ) is a complete lattice, and the pullback functor
f ∗ ∶ �Y → �X (for each f ∶ X → Y in ℂ) preserves all meets ⊓ . The set of objects of
a fiber �X is denoted |�X|.

Via the Grothendieck construction, a ����⊓-fibration is in a bijective corre-
spondence with a functor F

𝔼
∶ ℂ

op → ����⊓ , where ����⊓ is the category of
complete lattices and functions preserving all meets—see [33] and [7], as well
as Appendix 2. The functor F

�
 assigns

• a complete lattice �X (called the fiber over X) to each X ∈ ℂ , and
• a function f ∗ ∶ �Y → �X preserving all meets to each f ∶ X → Y in ℂ . The

map f ∗ is called a pullback (or reindexing); it is also called a pullback functor,
since, in the general theory of fibrations, a fiber �X is a category rather than a
poset.

Although the indexed category presentation F
𝔼
∶ ℂ

op → ����⊓ may be more
intuitive at first, we shall stick to the fibration presentation 𝔼

p
�����→ ℂ , since we will

eventually need some global structures in the total category � . It turns out that
����⊓-fibrations are special kinds of topological functors [34] in which each
fiber category is a poset. Topological functors are a well-studied topic, and many
examples and results are available; a good summary is found in [35].

The use of poset fibrations is common in categorical modeling of logics [7, 9].
����⊓-fibrations additionally require fibered small meets; this simple assumption
turns out to be a mathematically powerful one.

415New Generation Computing (2022) 40:403–465

123

Proposition 2.9 Let 𝔼
p
�����→ ℂ be a ����⊓-fibration.

1. p is split, and faithful as a functor.
2. Each arrow f ∶ X → Y has its pushforward f∗ ∶ �X → �Y , so that an adjunction

f∗ ⊣ f ∗ is formed. This is a consequence of Freyd’s adjoint functor theorem; it
makes p a bifibration [33].

3. pop ∶ 𝔼
op → ℂ

op is also a ����⊓-fibration.
4. The change-of-base [33, Lemma 1.5.1] of p along any functor H ∶ 𝔻 → ℂ is also

a ����⊓-fibration.
5. If ℂ is (co)complete, then the total category � is also (co)complete. This follows

from [33, Proposition 9.2.1]. ◻

2.2.2 Notation, Terminology and Intuitions

Our view of a ����⊓-fibration 𝔼
p
�����→ ℂ is that it equips objects of ℂ with what we

call indistinguishability structures. This suits our purpose, since various bisim-
ilarity-like notions are all about degrees of indistinguishability between (the
behaviors of) states of a system. We present examples later in Sect. 2.2.3.

Notation 2.10 (Indistinguishability predicate/order) Let 𝔼
p
�����→ ℂ be a ����⊓-fibra-

tion. An object P ∈ �X in the fiber category �X (i.e., an element of the complete
lattice �X) is called an indistinguishability predicate over X. Our view is that P is an
additional structure on X; therefore, as a convention, an object P ∈ �X shall also be
denoted by (X,P) ∈ �X.

Each fiber �X is a complete lattice; its order is denoted by ⊑ and called the indis-
tinguishability order over X. Intuitively, P ⊑ Q means that Q has a greater degree of
indistinguishability than P—that is, Q is coarser than P, and P is more discriminat-
ing than Q.

The supremum and infimum with respect to the indistinguishability order ⊑ are
denoted by

⨆
 and ⊓ , respectively.

Definition 2.11 (Decent map) Let 𝔼
p
�����→ ℂ be a ����⊓-fibration, f ∶ X → Y be an

arrow in ℂ , (X,P) ∈ �X and (Y ,Q) ∈ �Y be objects in the fibers. We say that f is
decent from P to Q if there exists a (necessarily unique) arrow ḟ ∶ P → Q in � such
that pḟ = f . We write f ∶ (X,P) →̇ (Y ,Q) in this case. The following equivalences
follow.

We write f ∶ (X,P) ↛̇ (Y ,Q) if f is not decent.

The notion of decency is a fibered generalization of continuity, non-expan-
siveness, relation-preservation, etc. Decency f ∶ (X,P) →̇ (Y ,Q) means f
respects indistinguishability, carrying P-indistinguishable elements to Q-indis-
tinguishable ones.

f ∶ (X,P) →̇ (Y ,Q) ⟺ P ⊑ f ∗Q ⟺ f∗P ⊑ Q

416 New Generation Computing (2022) 40:403–465

123

2.2.3 Examples

We first fix some notations.

Definition 2.12 We write P ∶ ��� → ��� for the covariant powerset functor, and 2
for the two-point set 2 = {⊥,⊤} . We define the function ♢ ∶ P2 → 2 called the may-
modality by ♢S = ⊤ if and only if ⊤ ∈ S . We write EqI for the diagonal (equality)
relation over a set I.

As shown in Table 6, various well-known categories can be seen as categories
that equip sets with certain indistinguishability structures. The evident forget-
ful functors from the total categories (��� , ���� , etc.) to ��� in Table 6 are all
����⊓-fibrations.

Specifically, ��� is the category of topological spaces and continuous maps;
���� is that of measurable spaces and measurable maps; ����1 is that of
1-bounded pseudometric spaces (where a pseudo-metric is a metric without the
condition d(x, y) = 0 ⇒ x = y) and non-expansive maps; ���� is that of sets with
endorelations (X,R ⊆ X2) and relation-preserving maps; ��� is that of preordered
sets and monotone maps; and ����� is that of sets with equivalence relations and
relation-preserving maps—see [15] for details.

Note that, in ��� and ���� , the indistinguishability order is the opposite of
the inclusion order. Therefore, the meet of a family of indistinguishability struc-
tures is computed as the one generated from the union of the family.

We also use a few ����⊓-fibrations over categories other than ��� . One is “the
fibration of binary relations”:

Definition 2.13 (���� → ���2) We define the category ���� as follows:

• An object is a triple (X, Y ,R ⊆ X × Y) of two sets and a relation between them.
• An arrow from (X, Y, R) to (Z, W, S) is a pair (f ∶ X → Z, g ∶ Y → W) of func-

tions such that (x, y) ∈ R implies (f (x), g(y)) ∈ S.

Table 6 ����⊓-fibrations over ���

Fibration Indistinguishability
structure

Decent map P ⊑ Q ⊓Pi

��� → ��� Topology Continuous func. P ⊇ Q Generated from
⋃

Pi

���� → ��� �-algebra Measurable func. P ⊇ Q Generated from
⋃

Pi

����1 → ��� Pseudometric non-expansive func. ∀x, y.P(x, y) ≥ Q(x, y) (x, y) ↦ supi Pi(x,y)

���� → ��� Endorelation Relation preserving
func.

P ⊆ Q
⋂

Pi

��� → ��� Preorder Monotone func. P ⊆ Q
⋂

Pi

����� → ��� Equivalence rela-
tion

Relation preserving
func.

P ⊆ Q
⋂

Pi

417New Generation Computing (2022) 40:403–465

123

The forgetful functor ���� → ���2 is then a ����⊓-fibration.
This can be used for modeling bisimulations between two different systems.

See Sect. 8.2.
Another one is “the fibration of (extended) seminorms.”

Definition 2.14 (�����
ℝ
→ ����

ℝ
) We define the category �����

ℝ
 as follows:

• An object is a pair (V, s) where

– V is a real vector space and
– s ∶ V → ℝ ∪ {∞} is an extended seminorm on V, i.e., a seminorm that can

take ∞ as a value.

• An arrow from (U, sU) to (V , sV) is a linear map f ∶ U → V that is also nonex-
pansive, i.e., satisfying sU(u) ≥ sV (f (u)) for all u ∈ U.

Let ����
ℝ
 be the category of real vector spaces and linear maps. The forgetful func-

tor �����
ℝ
→ ����

ℝ
 is then a ����⊓-fibration.

Note that including ∞ as a value is essential to make �����
ℝ
→ ����

ℝ
 a ����⊓

-fibration: without ∞ the fibers fail to be a complete lattice. This is used in analyzing
real-weighted automata. See Sect. 8.6.

Yet another class of examples is given as follows: for any well-powered category
� admitting small limits, the subobject fibration ���(�) → � of � is a ����⊓-fibra-
tion. All the algebraic categories over ��� and Grothendieck toposes satisfy these
conditions of � . We note, however, that the forgetful functors from algebraic catego-
ries over ��� are rarely (����⊓-)fibrations.

3 Codensity Bisimilarity

We introduce codensity lifting (̊3 in Fig. 1) and codensity bisimilarity (̊2) based on
[15]. These turn out to subsume many bisimilarity-like notions in the literature. The
material in Sects. 3.1 and 3.2 is largely from [15]; Sect. 3.3 is new, paving the way
to codensity bisimilarity games presented in later sections.

3.1 Codensity Lifting

Definition 3.1 [codensity lifting F�,� [15]] Let 𝔼
p
�����→ ℂ be a ����⊓-fibration, and

F ∶ ℂ → ℂ be a functor. A parameter of codensity lifting of F along p is a pair of

• a ℂ-arrow � ∶ FΩ → Ω (i.e., an F-algebra) called a modality [37, 38] and
• an �-object � above Ω called an observation domain.

The codensity lifting of F ∶ ℂ → ℂ with parameter (�, �) is the endofunctor
F�,� ∶ � → � defined as follows. On objects

418 New Generation Computing (2022) 40:403–465

123

Its action on arrows is as follows. It is not hard to see that, for each arrow
l ∶ P → Q in � , the arrow F(p(l)) is decent from F�,�P to F�,�Q . Then we define
F�,� l ∶ F�,�P → F�,�Q to be the unique arrow in � above F(p(l)).

Let us elaborate on the above definition. Let P ∈ �X and X = pP . The point is to
regard an arrow X → Ω in ℂ as an “observation” on X and an object P ∈ �X as
“information” on X. Our goal is to obtain “information” on FX from that on X.

We begin with taking some k ∶ P → � in � . For such k, p(k) ∶ X → Ω can be
seen as an “observation” on the space X ∈ ℂ . Here, p(k) has to be decent from P
to � . Intuitively, this means that the resulting “information” (p(k))∗� ∈ �X of the
“observation” p(k) must be consistent with the information P on X we already have.
For example, in Example 3.3, the arrow p(k) ∶ X → 2 , intuitively an “observation,”
corresponds to a subset of X. The resulting “information” (p(k))∗Eq2 ∈ �����X of
p(k) is the induced equivalence relation:

and it must be “consistent” with the given equivalence relation (X,R) ∈ ����� , that
is, each equivalence class of (p(k))∗Eq2 must be R-closed.

The “observation” p(k) ∶ X → Ω is simply an arrow, so we can apply the given
functor F ∶ ℂ → ℂ to it. The result is F(p(k)) ∶ FX → FΩ . To obtain an “observa-
tion” on FX, we have to compose it with some modality � ∶ FΩ → Ω . In Exam-
ple 3.3, this process gives an “observation” ♢ ◦ P(p(k)) ∶ PX → 2 on PX , and it
satisfies the following for each S ∈ PX:

Note the existential quantification ∃ above. It is the part, where the modality ♢ comes
up.

Now that we have an “observation” on FX, we obtain “information” on FX by
pullback. The following diagram is the summary of this situation:

Finally, gathering all the “information” (�◦F(p(k)))∗� leads to the definition (Defi-
nition 3.1). In the setting of Example 3.3, the result of this process is the equivalence
relation on PX , defined for each S, T ⊆ X by

It is equivalent to another more familiar definition, as described in Example 3.3.

F�,𝜏P = ⊓k∈�(P,�)

(
𝜏◦F

(
p(k)

))∗
�.

(p(k))∗Eq2 = {(x, y) ∈ X2 | p(k)(x) = p(k)(y)},

(♢ ◦ P(p(k)))(S) = ⊤ ⟺ ∃x ∈ S. p(k)(x) = ⊤.

∀k ∶ X → 2.
(
(∀(x, y) ∈ R. k(x) = k(y))

⟹
(
(∃x ∈ S. k(x) = ⊤) ⟺ (∃x ∈ T . k(x) = ⊤)

))
.

419New Generation Computing (2022) 40:403–465

123

One might wonder how codensity lifting is related with codensity monad [39,
Exercise X.7.3]. The following proposition exhibits the relationship.

Proposition 3.2 Let p ∶ 𝔼 → ℂ be a ����⊓-fibration, F ∶ ℂ → ℂ be a functor and
(�, �) be a parameter of codensity lifting of F along p. Moreover, we assume that �
has powers [39, Section III.4] and p preserves them. For any P ∈ � , F�,�P coincides
with the vertex of the following pullback:

where �P = ⟨�◦F(p(k))⟩k∈�(P,�) is the morphism obtained by the tupling of the power
of Ω in ℂ.

In fact, codensity lifting of monads is first defined in terms of the above pull-
back [14]. The name “codensity lifting” comes from the fact that the above pull-
back involves the codensity monad ��(−,�).

Table 7 lists concrete examples of codensity liftings, with various fibrations p,
functors F, and parameters (�, �) . Some of them coincide with known notions.
For example, the entry 5 of the table says that the functor (D≤1)

�,� , with the des-
ignated � and � , carries a metric space (X, d) to the set D≤1X equipped with the
well-known Kantorovich metric K(d) induced by d. See (1).

Besides the functors listed in the table, there are some natural ways to system-
atically lift polynomial functors, by defining � ∶ FΩ → Ω in an inductive man-
ner—see, e.g., [11].

Example 3.3 Let us take a close look at the entry 4 of Table 7. There we coden-
sity-lift the covariant powerset functor P along the ����⊓-fibration ����� �→ ��� .
We use the parameter ((2,Eq2),♢) , where ♢ ∶ P2 → 2 is the modality given in
Definition 2.12.

We shall abbreviate (2,Eq2) by Eq2 —a notational convention that is used
throughout the paper.

Then PEq2,♢(X,R) relates S, T ∈ PX if and only if

Straightforward calculation shows that this is equivalent to

This lifting is the restriction (to �����) of the standard relational lifting of P along
���� �→ ��� , which is used for the usual bisimulation notion for Kripke frames [40].

∀k ∶ X → 2.
(
(∀(x, y) ∈ R. k(x) = k(y))

⟹
(
(∃x ∈ S. k(x) = ⊤) ⟺ (∃x ∈ T . k(x) = ⊤)

))
.

(∀x ∈ S. ∃y ∈ T . (x, y) ∈ R) ∧ (∀y ∈ T . ∃x ∈ S. (x, y) ∈ R).

420 New Generation Computing (2022) 40:403–465

123

Ta
bl

e
7

 C
od

en
si

ty
 li

fti
ng

 o
f f

un
ct

or
s

Th
e

fib
ra

tio
n
U

∗
(�
�
��

1
)
→

�
��
� i

s i
nt

ro
du

ce
d

in
 S

ec
t.

8.
5.

 d
[0
,1
] d

en
ot

es
 th

e
Eu

cl
id

ea
n

m
et

ric
 o

n
th

e
un

it
in

te
rv

al
 [0

, 1
].

Th
e

m
od

al
ity

 ♢
 is

 in
tro

du
ce

d
in

 D
efi

ni
tio

n
2.

12
.

Th
e

fu
nc

tio
ns

 e
∶
D

≤
1
[0
,
1
]
→

[0
,
1
] a

nd
 e
∶
G
≤
1
[0
,
1
]
→

[0
,
1
] b

ot
h

re
tu

rn
 e

xp
ec

te
d

va
lu

es
. T

he
 lo

w
er

, u
pp

er
 a

nd
 c

on
ve

x
pr

eo
rd

er
s

ar
e

kn
ow

n
fo

r p
ow

er
do

m
ai

ns
; s

ee
 e

.g
.,

[3
6]

. T
he

 fu
nc

tio
n
� r

∶
D

≤
1
2
→

2
 is

 in
tro

du
ce

d
in

 E
xa

m
pl

e
8.

15
. T

he
 e

xa
m

pl
es

 m
ar

ke
d

w
ith

 †
in

vo
lv

e
m

ul
tip

le
 m

od
al

iti
es

 a
nd

 o
bs

er
va

tio
n

do
m

ai
ns

 (S
ec

t.
6)

Fi
br

at
io

n
𝔼

p �����→
ℂ

Fu
nc

to
r F

∶
ℂ
→

ℂ
ob

s.
do

m
. �

M
od

al
ity

 �
Li

fti
ng

 F
�
,�

 o
f F

1
�
�
�
→

�
��

Po
w

er
se

t P
(2
,≤

)
♢
∶
P
2
→

2
Lo

w
er

 p
re

or
de

r [
14

]
2

�
�
�
→

�
��

Po
w

er
se

t P
(2
,≥

)
♢
∶
P
2
→

2
U

pp
er

 p
re

or
de

r [
14

]
3

�
�
��
→

�
��

Po
w

er
se

t P
(2
,E

q 2
)

♢
∶
P
2
→

2
(S

ee
 E

x.
 3

.4
 &

 7
.4

)
4

�
�
�
��
→

�
��

Po
w

er
se

t P
(2
,E

q 2
)

♢
∶
P
2
→

2
(S

ee
 E

x.
 3

.3
 &

 7
.4

)
5

�
�
��

1
→

�
��

Su
bd

ist
rib

. D
≤
1

([
0
,1
],
d
[0
,1
])

e
∶
D

≤
1
[0
,1
]
→

[0
,1
]

K
an

to
ro

vi
ch

 m
et

ric
 [1

4]
6

�
�
��

1
→

�
��

Po
w

er
se

t P
([
0
,1
],
d
[0
,1
])

in
f
∶
P
[0
,1
]
→

[0
,1
]

H
au

sd
or

ff
m

et
ric

 (A
pp

x.
 C

)
7

U
∗
(�
�
��

1
)
→

�
��
�

Su
b-

G
iry

 G
≤
1

([
0
,1
],
d
[0
,1
])

e
∶
G
≤
1
[0
,1
]
→

[0
,1
]

K
an

to
ro

vi
ch

 m
et

ric
 [1

4]
8†

�
�
�
→

�
��

Po
w

er
se

t P
(2
,≤

),
(2
,≥

)
♢
∶
P
2
→

2
C

on
ve

x
pr

eo
rd

er
 [1

4]
9†

�
�
�
��
→

�
��

Su
bd

ist
rib

. D
≤
1

(2
,E

q 2
)

(�
r
∶
D

≤
1
2
→

2
) r
∈
[0
,1
]

(F
or

 p
ro

b.
 b

is
im

.,
se

e
Ex

. 8
.1

5)
10

†
�
�
�
→

�
��

2
×
(_
)Σ

Si
er

pi
ns

ki
 sp

.
(S

ee
 E

x.
 6

.1
2)

(F
or

 b
is

im
. t

op
.,

se
e

Ex
. 6

.1
2)

11
†

�
�
��
→

�
��

2
A

ny
 fu

nc
to

r
((
1
,1
),
R
2
)

A
ny

 fa
m

ily
(F

or
 Λ

-b
is

im
.,

se
e

Se
ct

. 8
.2

)

12
†

�
�
��

� ℝ
→

�
��
� ℝ

(⨁
a
∈
Σ
(_
))
⊕

ℝ
(ℝ

,|⋅
|)

(S
ee

 S
ec

t.
8.

6)
(F

or
 b

is
im

. s
em

in
or

m
, s

ee
 S

ec
t.

8.
6)

421New Generation Computing (2022) 40:403–465

123

Example 3.4 In the entry 3 of Table 7, we codensity-lift P along the ����⊓-fibration
���� �→ ��� (instead of ����� �→ ���) with the parameter

(
(2,Eq2),♢

)
.

The characterization of PEq2,♢(X,R) is slightly involved. Its relation part relates
S, T ∈ PX if and only if

where REq denotes the equivalence closure of R.

It is not clear at this stage whether the codensity bisimilarities induced by the
above liftings (Examples 3.3, 3.4, i.e., the entries 4 and 3 of Table 7) coincide with
the usual bisimilarity notion for Kripke frames. This is because of the involvement
of mandatory equivalence closures—specifically by the use of ����� in Exam-
ple 3.3, and by the occurrence of (_)Eq in Example 3.4. Later, in Example 7.4, we
prove that both of the codensity bisimilarities indeed coincide with the usual bisimi-
larity notion. The proof relies crucially on transfer of codensity liftings via fibered
functors.

Example 3.5 Here we follow [15, Example 3] and show that codensity lifting gener-
alizes a categorical construction introduced in [8], namely, the Kantorovich lifting of
functors.

Take ����1 �→ ��� as the ����⊓-fibration p in Definition 3.1.
As � , we take Ω = [0, 1] with the usual Euclidean metric d[0,1] . There is freedom

in the choice of a modality � ∶ FΩ → Ω—this corresponds to what is called an eval-
uation function in [8]. This way we recover the Kantorovich lifting in [8] as F�,�.

3.2 Codensity Bisimilarity

In [15], codensity bisimulation and bisimilarity are introduced. Recall that a coalge-
bra c ∶ X → FX is a categorical presentation of state-based transition systems, such
as automata, Markov chains, etc.—see, e.g., [23, 24], and also Sect. 8.

Definition 3.6 Assume the setting of Definition 3.1. Let c ∶ X → FX be an
F-coalgebra. An object P ∈ �X is a ((�, �) -) codensity bisimulation over c if
c ∶ (X,P) →̇ (FX,F�,𝜏P) ; that is, c is decent with respect to the designated indistin-
guishability structures on X and FX.

We move on to the characterization of codensity bisimulations as post-fixpoints
of suitable predicate transformers.

Definition 3.7 (Predicate transformer Φ�,�) Assume the setting of Definition 3.6.
We define a predicate transformer Φ�,�

c
∶ �X → �X with respect to c and F�,� by

(∀x ∈ S. ∃y ∈ T . (x, y) ∈ REq) ∧ (∀y ∈ T . ∃x ∈ S. (x, y) ∈ REq),

422 New Generation Computing (2022) 40:403–465

123

Since c∗ is ⊓-preserving, expanding the definition of F�,� yields

Theorem 3.8 Assume the setting of Definition 3.6. For any P ∈ �X , the following are
equivalent.

1. c ∶ (X,P) →̇ (FX,F�,𝜏P) ; that is, P is a codensity bisimulation over c (Defini-
tion 3.6).

2. P ⊑ Φ�,𝜏
c

P.
3. For each k ∈ ℂ(X,Ω) , k ∶ (X,P) →̇ (Ω,�) implies 𝜏◦Fk◦c ∶ (X,P) →̇ (Ω,�) .

 ◻

Proof The equivalence between the conditions (1) and (2) can be seen from the
definitions of Φ�,�

c
 (Definition 3.7) and decency (Definition 2.11). Now we show

(2) ⟺ (3).
Using Definition 3.7, the condition (1) is equivalent to

The definition of meet implies that the above inequality is equivalent to the
following:

For each k ∈ ℂ(X,Ω) , k ∶ (X,P) →̇ (Ω,�) implies P ⊑
(
𝜏◦F(p(k))◦c

)∗
�.

This is, in turn, equivalent to the condition (3.8), as can be seen from the defini-
tion of decency (Definition 2.11). ◻

The predicate transformer Φ�,�
c

 is a monotone map from the complete lattice
�X to itself. Therefore, by the Knaster–Tarski theorem (Theorem 2.1), the greatest
post-fixed point of Φ�,�

c
 exists and it is the greatest fixed point of Φ�,�

c
.

Definition 3.9 (Codensity bisimilarity �Φ�,�
c

) Assume the setting of Definition 3.6.
The greatest codensity bisimulation, whose existence is guaranteed by the above
arguments, is called the codensity bisimilarity. It is denoted by �Φ�,�

c
.

Some bisimilarity notions, including bisimilarity of deterministic automata
(Example 8.11), are accommodated in the generalized framework with multiple
observation domains—see Sect. 6.

Example 3.10 (Bisimulation metric) Consider the ����⊓-fibration
����1 �→ ��� and the subdistribution functor D≤1 ∶ ��� → ��� . Recall that
D≤1(X) = {p ∶ X → [0, 1] ∣

∑
x∈X p(x) ≤ 1}.

(2)Φ�,�
c

P = c∗(F�,�P).

Φ�,𝜏
c

P = ⊓k∈�(P,�)

(
𝜏◦F(p(k))◦c

)∗
�.

P ⊑ ⊓k∈�(P,�)

(
𝜏◦F(p(k))◦c

)∗
�.

423New Generation Computing (2022) 40:403–465

123

As a parameter of codensity lifting, we take (�, �) =
((

[0, 1], d[0,1]
)
, e ∶

D≤1[0, 1] → [0, 1]
)
 , where e is the expectation function e(p) =

∑
r∈[0,1] r ⋅ p(r) and

d[0,1] is the Euclidean metric.
Let c ∶ X → D≤1X be a coalgebra, identified with a Markov chain.
The codensity bisimilarity in this setting coincides with the bisimulation metric

from [5] (see also Sect. 1.1.3). This fact is not hard to check directly; one can also
derive the coincidence via Example 3.5 and the observations in [8].

3.3 Joint Codensity Bisimulation

We introduce the notion of joint codensity bisimulation. This minor variation of
codensity bisimulation becomes useful in the proof of soundness and completeness
of our game notion (Sect. 4).

Definition 3.11 Assume the setting of Definition 3.6. Let V ⊆ |�X| ; joins in �X are
denoted by

⨆
 . We say that V is a joint codensity bisimulation over c if

⨆
P∈V P is a

codensity bisimulation over c.

For instance, the set of all codensity bisimulations is a joint codensity bisimula-
tion, because the join of all codensity bisimulations is the largest codensity bisimu-
lation �Φ�,�

c
 , as discussed just before Definition 3.9.

Lemma 3.12 In the setting of Definition 3.6, the downset ↓(�Φ�,�
c

) is the largest joint
codensity bisimulation (with respect to the inclusion order).

Proof The downset ↓(�Φ�,�) is a joint codensity bisimulation, because the union of
all elements of ↓(�Φ�,�) is equal to a codensity bisimulation �Φ�,�.

Let V be a joint codensity bisimulation. Then for any P ∈ V , we have P ⊑ 𝜈Φ�,𝜏 ,
because P ⊑

⨆
Q∈V Q ⊑ 𝜈Φ�,𝜏 . ◻

4 Untrimmed Games for Codensity Bisimilarity

As the first main technical contribution, we introduce what we call the untrimmed
version of codensity bisimilarity game. It is mathematically simple but its game are-
nas can become much bigger than necessary. The trimmed version of games—with
smaller arenas—will be introduced later in Sect. 5, after developing necessary cat-
egorical infrastructure.

424 New Generation Computing (2022) 40:403–465

123

Definition 4.1 (Untrimmed codensity bisimilarity game) Assume the setting of Defi-
nition 3.6. The untrimmed codensity bisimilarity game is the safety game played by
two players Duplicator and Spoiler, shown in Table 8.

Lemma 4.2 Assume the setting of Definition 3.6. Let V ⊆ |�X| . The following are
equivalent.

1. V is an invariant for Duplicator (Definition 2.5) in the untrimmed codensity
bisimilarity game (Table 8).

2. V is a joint codensity bisimulation over c.

Proof We use the following logical equivalence:

Here, since k ∶ (X,P�) →̇ (Ω,�) means P� ⊑ k∗� , the condition

is equivalent to

Similarly, the condition

is equivalent to

These imply the following logical equivalence:

1) ⟺

�
∀P ∈ V, k ∶ X → Ω.
𝜏 ◦ Fk ◦ c ∶ (X,P) ↛̇ (Ω,�) ⟹ ∃P� ∈ V. k ∶ (X,P�) ↛̇ (Ω,�)

�

⟺

�
∀P ∈ V, k ∶ X → Ω.
(∀P� ∈ V. k ∶ (X,P�) →̇ (Ω,�)) ⟹ 𝜏 ◦ Fk ◦ c ∶ (X,P) →̇ (Ω,�)

�

⟺

⎛⎜⎜⎝

∀k ∶ X → Ω.
(∀P� ∈ V. k ∶ (X,P�) →̇ (Ω,�))
⟹ ∀P ∈ V. 𝜏 ◦ Fk ◦ c ∶ (X,P) →̇ (Ω,�)

⎞⎟⎟⎠
.

∀P� ∈ V. k ∶ (X,P�) →̇ (Ω,�)

k ∶ (X,
⨆

P�∈V P
�) →̇ (Ω,�).

∀P ∈ V. 𝜏 ◦ Fk ◦ c ∶ (X,P) →̇ (Ω,�)

𝜏 ◦ Fk ◦ c ∶ (X,
⨆

P∈V P) →̇ (Ω,�).

Table 8 Untrimmed codensity
bisimilarity game

Position Player Possible moves

P ∈ �X Spoiler k ∈ ℂ(X,Ω) s.t.
𝜏◦Fk◦c ∶ (X,P) ↛̇ (Ω,�)

k ∈ ℂ(X,Ω) Duplicator P� ∈ �X s.t. k ∶ (X,P�) ↛̇ (Ω,�)

425New Generation Computing (2022) 40:403–465

123

By Theorem 3.8, the condition in the right-hand side is equivalent to

 ◻

Theorem 4.3 Assume the setting of Definition 3.6. In the untrimmed codensity bisim-
ilarity game (Table 10), the following coincide.

1. The set of all winning positions for Duplicator.
2. The downset ↓(�Φ�,�

c
) of the codensity bisimilarity.

Proof We use Lemma 4.2 to connect the game and the predicate transformer. By
considering the largest set satisfying the condition in Lemma 4.2, it implies that the
following two coincide if both exist:

1’ the largest invariant for Duplicator in the game in Table 10 and
2’ the largest joint codensity bisimulation over c.

By the general theory of safety games, in particular Proposition 2.6, the set (1’) is
equal to (1). On the other hand, by Lemma 3.12, the set (2’) coincides with (2).
Combining these proves the claim. ◻

We conclude that our game characterizes the codensity bisimilarity �Φ�,�
c

(Definition 3.9).

1) ⟺

⎛
⎜⎜⎝

∀k ∶ X → Ω.�
k ∶

�
X,

⨆
P�∈V P

�
�
→̇ (Ω,�)

�
⟹ 𝜏 ◦ Fk ◦ c ∶ (X,

⨆
P∈V P) →̇ (Ω,�)

⎞
⎟⎟⎠
.

⨆
P∈V

P ⊑ Φ�,𝜏
c

(⨆
P∈V

P

)
.

Table 9 Untrimmed codensity
game for bisimulation metric

Position Player Possible moves

d ∈ (����1)X Spoiler k ∈ ���(X, [0, 1]) s.t.
e ◦ Fk ◦ c ∉ ����1(d, d[0,1])

k ∈ ���(X, [0, 1]) Duplicator d� ∈ (����1)X s.t.
k ∉ ����1(d

�, d[0,1])

Table 10 Trimmed codensity
bisimilarity game

Position Player Possible moves

P ∈ G Spoiler k ∈ ℂ(X,Ω) s.t.
𝜏◦Fk◦c ∶ (X,P) ↛̇ (Ω,�)

k ∈ ℂ(X,Ω) Duplicator P� ∈ G s.t. k ∶ (X,P�) ↛̇ (Ω,�)

426 New Generation Computing (2022) 40:403–465

123

Corollary 4.4 In the untrimmed codensity bisimilarity game (Table 10), P ∈ �X is a
winning position for Duplicator if and only if P ⊑ 𝜈Φ�,𝜏

c
 . ◻

Example 4.5 Recall Example 3.10. Using the untrimmed codensity bisimilarity
game, we can characterize the bisimulation metric from [5]. Our general definition
(Definition 4.1) instantiates to the one in Table 9, which is, however, more com-
plicated than the game we exhibited in the introduction (Table 3). For example, in
Table 9, Duplicator’s move is a pseudometric d ∶ X2 → [0, 1] rather than a triple
(x, y, �).

5 Trimmed Codensity Games for Bisimilarity

Our previous untrimmed game (Table 8) is pleasantly simple from a theoretical
point of view. However, as we saw in Example 4.5, its instances tend to have a much
bigger arena than some known game notions.

Here we push our theory a step further, and present a fibrational construction that
allows us to trim our games. We note that our construction still remains on the fibra-
tional level of abstraction.

5.1 Join‑Dense Subsets of Fibers and Fibered Separators

Our approach to trim down the game arena is to restrict Spoiler’s position to approx-
imants of elements in the fiber complete lattice. In lattice theory, the collection of
such approximants is specified by a join-dense subset [41], which we recall below.

Definition 5.1 (Join-dense subset) A subset G of a complete lattice L is join-dense if
for any P ∈ L , there exists A ⊆ G such that P =

⨆
A.

Example 5.2 Consider the ����⊓-fibration ����� �→ ��� and X ∈ ��� . For
any x, y ∈ X , we define the equivalence relation Ex,y to be the least one equat-
ing x, y, that is, (z,w) ∈ Ex,y if and only if (z = w ∨ {z,w} = {x, y}) . Then the set
G = {Ex,y | x, y ∈ X} of all such equivalence relations is a join-dense subset of the
fiber �����X.

Example 5.3 Recall Example 3.10. For x, y ∈ X (x ≠ y) and r ∈ [0, 1] , the pseudo-
metric dx,y,r over X is defined by

dx,y,r(z,w) =

⎧⎪⎨⎪⎩

0 z = w

r {z,w} = {x, y}
1 otherwise.

427New Generation Computing (2022) 40:403–465

123

Then the set of pseudometrics {dx,y,r | x, y ∈ X, x ≠ y, r ∈ [0, 1]} is a join-dense sub-
set of the fiber (����1)X.

We use the following characterization of a join-dense subset.

Lemma 5.4 For a subset G of a complete lattice L, the following are equivalent.

• G is join-dense.
• For any P,Q ∈ L ,

holds.

Proof Assume that G is join-dense. For any P,Q ∈ L , we show
(∀G ∈ G. G ⊑ P ⟹ G ⊑ Q) ⟹ P ⊑ Q . Since G is join-dense, there exists a
subset A ⊆ G such that P =

⨆
A . If (∀G ∈ G. G ⊑ P ⟹ G ⊑ Q) holds, then, for

each A ∈ A , we have A ⊑ P , and thus A ⊑ Q . This implies P ⊑ Q.
Conversely, assume that, for any P,Q ∈ L ,

(∀G ∈ G. G ⊑ P ⟹ G ⊑ Q) ⟹ P ⊑ Q holds. We show that G is join-dense,
that is, for any P ∈ L , there exists A ⊆ G such that P =

⨆
A . More concretely, we

define

for each P ∈ L and we show P =
⨆

AG(P) . It suffices to show the following for each
Q ∈ L:

By the definition of AG(P) , it is equivalent to the following:

This is nothing but our assumption. ◻

We next consider the problem of equipping each fiber of a ����⊓-fibration
with a join-dense subset. One way to do so is to transfer a join-dense subset of
the fiber over a special object called fibered separator, which we introduce below.

Definition 5.5 (Fibered separator) Let 𝔼
p
�����→ ℂ be a ����⊓-fibration. We say that

S ∈ ℂ is a fibered separator if, for any X ∈ ℂ and P,Q ∈ �X , we have

Fibered separator can equivalently be defined using fiber order ⊑.

Lemma 5.6 In the setting of Definition 5.5, the following are equivalent.

(∀G ∈ G. G ⊑ P ⟹ G ⊑ Q) ⟹ P ⊑ Q

AG(P) = {P� ∈ G | P� ⊑ P}

(∀P� ∈ AG(P). P� ⊑ Q) ⟹ P ⊑ Q.

(∀P� ∈ G. P� ⊑ P ⟹ P� ⊑ Q) ⟹ P ⊑ Q.

(∀f ∈ ℂ(S,X). f ∗P = f ∗Q) ⟹ P = Q.

428 New Generation Computing (2022) 40:403–465

123

• S ∈ ℂ is a fibered separator.
• For any X ∈ ℂ and P,Q ∈ �X ,

holds.

Proof Assume that S ∈ ℂ is a fibered separator. For each X ∈ ℂ and P,Q ∈ �X , we
show (∀f ∈ ℂ(S,X). f ∗P ⊑ f ∗Q) ⟹ P ⊑ Q . Assume (∀f ∈ ℂ(S,X). f ∗P ⊑ f ∗Q) .
Then for each f ∶ S → X we have f ∗P = f ∗P ⊓ f ∗Q = f ∗(P ⊓ Q) and
since S is a fibered separator, P = P ⊓ Q , that is, P ⊑ Q . Thus we have
(∀f ∈ ℂ(S,X). f ∗P ⊑ f ∗Q) ⟹ P ⊑ Q.

Conversely, assume that (∀f ∈ ℂ(S,X). f ∗P ⊑ f ∗Q) ⟹ P ⊑ Q holds for
any X ∈ ℂ and P,Q ∈ �X . We show that S ∈ ℂ is a fibered separator, that
is, (∀f ∈ ℂ(S,X). f ∗P = f ∗Q) ⟹ P = Q for each X ∈ ℂ and P,Q ∈ �X .
Assume (∀f ∈ ℂ(S,X). f ∗P = f ∗Q) . Then both (∀f ∈ ℂ(S,X). f ∗P ⊑ f ∗Q) and
(∀f ∈ ℂ(S,X). f ∗P ⊒ f ∗Q) hold. By the assumption, we have both P ⊑ Q and P ⊒ Q .
Thus P = Q . ◻

A join-dense subset of the fiber over a fibered separator induces one over any
other fiber by the following theorem.

Theorem 5.7 Let S ∈ ℂ be a fibered separator of a ����⊓-fibration 𝔼
p
�����→ ℂ , and G be

a join-dense subset of �S . For any X ∈ ℂ , the following is a join-dense subset of �X
(below f∗ denotes the pushforward along f; see Sect. 2.2):

Proof Let P,Q ∈ �X . By Lemma 5.4, it suffices to show

Since f∗ is the left adjoint of f ∗ (Proposition 2.9), it is equivalent to

Assume (∀G ∈ G, f ∈ ℂ(S,X). G ⊑ f ∗P ⟹ G ⊑ f ∗Q) . Since G is join-dense
in �S , Lemma 5.4 implies (∀f ∈ ℂ(S,X). f ∗P ⊑ f ∗Q) . It in turn implies P ⊑ Q by
Lemma 5.6. ◻

In fact, it is Theorem 5.7 that is behind Examples 5.2 and 5.3: in both cases,
2 ∈ ��� turns out to be a fibered separator for the fibrations in question (����� �→ ���
and ����1 �→ ���), and the presented generating sets are obtained via pushforward.

We next relate fibered separators and separators in a category ℂ . Recall that an
object S in a category ℂ is a separator [39, Section V.7] if for any parallel pair of
morphisms f , g ∶ X → Y , if f◦x = g◦x holds for any x ∶ S → X , then f = g.

(∀f ∈ ℂ(S,X). f ∗P ⊑ f ∗Q) ⟹ P ⊑ Q

{f∗G | G ∈ G, f ∈ ℂ(S,X)}.

(∀G ∈ G, f ∈ ℂ(S,X). f∗G ⊑ P ⟹ f∗G ⊑ Q) ⟹ P ⊑ Q.

(∀G ∈ G, f ∈ ℂ(S,X). G ⊑ f ∗P ⟹ G ⊑ f ∗Q) ⟹ P ⊑ Q.

429New Generation Computing (2022) 40:403–465

123

Proposition 5.8 (Fibered separator and separator) Let 𝔼
p
�����→ ℂ be a ����⊓-fibration.

Let V ∈ ℂ be an object such that there is a family of injections �X ∶ |𝔼X| ↣ ℂ(X,V)
natural in X ∈ ℂ . If S ∈ ℂ is a separator of ℂ , then it is also a fibered separator of
p.

Note that here we regard |�(_)| as a contravariant functor ℂop → ��� by the pull-
back operation.

Proof Assume that S ∈ ℂ is a separator of ℂ . Expanding the definition for V ∈ ℂ
yields the following:

Now, let X ∈ ℂ and P,Q ∈ �X . We show the implication in Definition 5.5, as
follows.

Thus S ∈ ℂ is fibered separator. ◻

Any example of this is “unary,” as can be seen in the following one.

Example 5.9 (fibered separator of ���� → ���) We define the category ���� as
follows:

• An object is a triple (X,R ⊆ X) of a set and a predicate on it.
• An arrow from (X, R) to (Y, S) is a function f ∶ X → Y such that x ∈ R implies

f (x) ∈ S.

The forgetful functor ���� → ��� is then a ����⊓-fibration.
There exists a natural family of injections �X ∶ |����X| ↣ ���(X, 2) , which sends

R ⊆ X to �X(R) ∶ X → 2 defined as follows:

Since 1 is a separator of ��� , we can conclude that it is also a fibered separator of
���� → ��� by Proposition 5.8.

The following result is useful in finding fibered separators—see Sect. 8.5.

(3)∀X ∈ ℂ, p, q ∈ ℂ(X,V).
(
(∀f ∈ ℂ(S,X). p ◦ f = q ◦ f) ⟹ p = q

)
.

(∀f ∈ ℂ(S,X). f ∗P = f ∗Q)

⟹ (∀f ∈ ℂ(S,X). �S(f
∗P) = �S(f

∗Q))

⟹ (∀f ∈ ℂ(S,X). �S(P) ◦ f = �S(Q) ◦ f) (by naturality)

⟹ �S(P) = �S(Q) (by(3))

⟹ P = Q. (since �X is injective)

𝜄X(R)(x) =

{
⊤ if x ∈ R

⊥ otherwise

430 New Generation Computing (2022) 40:403–465

123

Proposition 5.10 (Change-of-base and fibered separators) Let 𝔼
p
�����→ ℂ be a ����⊓

-fibration, R ∶ 𝔻 → ℂ be a functor with a left adjoint L ∶ ℂ → 𝔻 , and S ∈ ℂ be a
fibered separator for p. Then LS ∈ � is a fibered separator for the change-of-base
fibration R∗p:

Proof For any X ∈ � , the mapping f ↦ Rf◦�S is a bijection of type
𝔻(LS,X) → ℂ(S,RX) . Thus, naturally identifying (R∗

�)X and �RX , we have the fol-
lowing for any P,Q ∈ (R∗

�)X.

 ◻

5.2 G‑Joint Codensity Bisimulation

We use join-dense subsets to restrict moves in codensity games.

Definition 5.11 In the setting of Definition 3.6, let G be a join-dense subset of �X . A
G-joint codensity bisimulation over c ∶ X → FX is a joint codensity bisimulation V
over c such that V ⊆ G.

Lemma 5.12 Assume the setting of Definition 3.6, and let G be a join-dense subset
of �X . The intersection

(
↓(�Φ�,�

c
)
)
∩ G of the downset ↓(�Φ�,�

c
) and the join-dense

subset G is the largest G-joint codensity bisimulation.

Proof Since G is join-dense, the union of all elements of ↓(�Φ�,�
c

) ∩ G is equal to
�Φ�,�

c
 . Thus, ↓(�Φ�,�

c
) ∩ G is a G-joint codensity bisimulation.

For any G-joint codensity bisimulation V , it is a joint codensity bisimulation, and
we have already shown V ⊆ ↓(𝜈Φ�,𝜏

c
) in the proof of Lemma 3.12. We also have

V ⊆ G by definition. These imply V ⊆ ↓(𝜈Φ�,𝜏
c

) ∩ G . ◻

5.3 Trimmed Codensity Bisimilarity Games

The above structural results lead to our second game notion.

∀f ∈ 𝔻(LS,X). f ∗P = f ∗Q ⟹ ∀f ∈ 𝔻(LS,X). (Rf)∗P = (Rf)∗Q

⟹ ∀f ∈ 𝔻(LS,X). (Rf ◦ �S)
∗P = (Rf ◦ �S)

∗Q

⟺ ∀g ∈ ℂ(S,RX). g∗P = g∗Q

⟺ P = Q

431New Generation Computing (2022) 40:403–465

123

Definition 5.13 Assume the setting of Definition 3.6, and that G ⊆ �X is a join-dense
subset. The (trimmed) codensity bisimilarity game is the safety game played by two
players Duplicator and Spoiler, shown in Table 10.

Lemma 5.14 Assume the setting of Definition 5.13. Let V ⊆ |�X| . The following are
equivalent.

1. V is an invariant for Duplicator (Definition 2.5) in the trimmed codensity bisimi-
larity game (Table 10).

2. V is a G-joint codensity bisimulation over c.

Proof For a subset V ⊆ |�X| , the condition (1) is equivalent to the condition that the
following both holds:

(a) For any P ∈ V and k ∶ X → Ω satisfying 𝜏◦Fk◦c ∶ (X,P) ↛̇ (Ω,�) , there exists
P� ∈ V such that k ∶ (X,P�) ↛̇ (Ω,�) holds.

(b) V ⊆ G.

The above condition (a) is equivalent to “ V is an invariant for Duplicator in the
(untrimmed) codensity bisimilarity game (Table 8).” By Lemma 4.2, it is equivalent to
“ V is a joint codensity bisimulation over c.”

Thus, the condition (1) is equivalent to “ V is a joint codensity bisimulation c and
it is a subset of G .” This is, by definition, equivalent to the condition (2). ◻

Theorem 5.15 Assume the setting of Definition 5.13. The following sets coincide.

1. The set of winning positions for Duplicator in the trimmed codensity bisimilarity
game (Table 10).

2. The intersection
(
↓(�Φ�,�

c
)
)
∩ G of the downset of the codensity bisimilarity over

c and the join-dense subset G.

Proof By Proposition 2.6, (1) is the largest invariant for Duplicator in the trimmed
codensity bisimilarity game (Table 10). In turn, by Lemma 5.14, it is the largest G
-joint codensity bisimulation over c. By Lemma 5.12, it coincides with (2). ◻

We conclude that our second game characterizes the codensity bisimilarity �Φ�,�
c

(Definition 3.9) too.

Corollary 5.16 In Definition 5.13, P ∈ G is a winning position for Duplicator if and
only if P ⊑ 𝜈Φ�,𝜏

c
.

 ◻

432 New Generation Computing (2022) 40:403–465

123

6 Multiple Observation Domains

We extend the theory so far and accommodate multiple observation domains and
modalities. This extension is needed for some examples, such as those marked
with † in Table 7.

We consider the class ����(F, p) of liftings of an endofunctor F ∶ ℂ → ℂ along
a ����⊓-fibration 𝔼

p
�����→ ℂ . It comes with a natural pointwise partial order:

and the partially ordered class ����(F, p) admits meets of arbitrary size. As done in
the original codensity lifting of endofunctors in [15] (and that of monads in [14]),
we extend the codensity lifting so that it takes a family of parameters {(�A, �A)}A∈� ,
and returns the intersection of the codensity liftings of F with these parameters.

Definition 6.1 [Codensity lifting of a functor with multiple parameters [15]]
Let F ∶ ℂ → ℂ be a functor, 𝔼

p
�����→ ℂ be a ����⊓-fibration, � be a class, and

{(�A, �A)}A∈� be an �-indexed family of parameters (of the codensity lifting of F
along p), which is denoted simply by (�, �) . The (multiple-parameter) codensity lift-
ing of F with (�, �) is the endofunctor F�,� ∶ � → � defined by the intersection of
the codensity liftings:

The rest of the theoretical development is completely parallel to the one in
Sects. 3, 4 and 5. The difference is that we have to replace a single-parameter
codensity lifting (Definition 3.1) by a multi-parameter one (Definition 6.1).

Definition 6.2 (Codensity bisimulation and codensity bisimilarity) Assume the set-
ting of Definition 6.1. Let c ∶ X → FX be an F-coalgebra. An object P ∈ �X is a
codensity bisimulation over c if c ∶ (X,P) →̇ (FX,F�,𝜏P) ; that is, c ∶ X → FX is
decent with respect to the designated indistinguishability structures.

The largest codensity bisimulation is called the codensity bisimilarity and denoted
by �Φ�,�

c
.

Definition 6.3 (Predicate transformer Φ�,�) Assume the setting of Definition 6.2.
We define a predicate transformer Φ�,�

c
∶ �X → �X with respect to c and F�,� by

Since c∗ is ⊓-preserving, expanding the definition of F�,� yields

Theorem 6.4 Assume the setting of Definition 6.2. For any P ∈ �X , the following are
equivalent.

(4)G ⊑ H ⟺ ∀X ∈ �. GX ⊑ HX (G,H ∈ ����(F, p)),

F�,𝜏P = ⊓A∈�F
�A,𝜏AP, that is, ⊓A∈�,k∈�(P,�A)

(
𝜏A◦F(p(k))

)∗
(�A).

Φ�,�
c

P = c∗(F�,�P).

Φ�,𝜏
c

P = ⊓A∈�,k∈�(P,�A)

(
𝜏A◦F(p(k))◦c

)∗
�A.

433New Generation Computing (2022) 40:403–465

123

1. c ∶ (X,P) →̇ (FX,F�,𝜏P) ; that is, P is a codensity bisimulation over c (Defini-
tion 6.2).

2. P ⊑ Φ�,𝜏
c

P.
3. Fo r e a c h A ∈ � a n d k ∈ ℂ(X,ΩA) , k ∶ (X,P) →̇ (ΩA,�A) i m p l i e s

𝜏A◦Fk◦c ∶ (X,P) →̇ (ΩA,�A).

Proof The same as Theorem 3.8, except that we have multiple parameters here. ◻

Definition 6.5 Assume the setting of Definition 6.2. We say that V ⊆ |�X| is a joint
codensity bisimulation over c if

⨆
P∈V P is a codensity bisimulation over c.

Definition 6.6 In the setting of Definition 6.2, let G be a join-dense subset of �X . A
G-joint codensity bisimulation over c ∶ X → FX is a joint codensity bisimulation V
over c such that V ⊆ G.

Lemma 6.7 Assume the setting of Definition 6.6. The intersection ↓(�Φ�,�
c

) ∩ G of
the join-dense subset G and the downset ↓(�Φ�,�

c
) is the largest G-joint codensity

bisimulation.

Proof The same as Lemma 5.12, except that we have multiple parameters here. ◻

Definition 6.8 (Codensity bisimilarity game) In the setting of Definition 6.2, let G
be a join-dense subset of �X . The (trimmed) codensity bisimilarity game (with mul-
tiple observations) is the safety game, played by two players D and S, shown in
Table 11.

Lemma 6.9 Assume the setting of Definition 6.6. Let V ⊆ |�X| be a set of objects.
The following are equivalent.

1. V is an invariant for Duplicator in the trimmed codensity bisimilarity game with
multiple observations (Table 11).

2. V is a G-joint codensity bisimulation over c.

Proof We use the following logical equivalence:

Table 11 Trimmed codensity
bisimilarity game with multiple
observations

Position Player Possible moves

P ∈ G Spoiler A ∈ � and k ∈ ℂ(X,ΩA) s.t.
𝜏A◦Fk◦c ∶ (X,P) ↛̇ (ΩA,�A)

A ∈ � and
k ∈ ℂ(X,ΩA)

Duplicator P� ∈ G s.t. k ∶ (X,P�) ↛̇ (ΩA,�A)

434 New Generation Computing (2022) 40:403–465

123

Here, since k ∶ (X,P�) →̇ (ΩA,�A) means P� ⊑ k∗�A , the condition

is equivalent to

Similarly, the condition

is equivalent to

These imply the following logical equivalence:

By Theorem 6.4, the condition in the right-hand side is equivalent to the conjunction
of V ⊆ G and

 ◻

Theorem 6.10 Assume the setting of Definition 6.6. Let G ⊆ |�X| be a join-dense
subset. The following sets coincide.

1) ⟺

⎛
⎜⎜⎜⎝

V ⊆ G and
∀P ∈ V,A ∈ �, k ∶ X → ΩA.

𝜏A ◦ Fk ◦ c ∶ (X,P) ↛̇ (ΩA,�A)
⟹ ∃P� ∈ V. k ∶ (X,P�) ↛̇ (ΩA,�A)

⎞
⎟⎟⎟⎠

⟺

⎛
⎜⎜⎜⎝

V ⊆ G and
∀P ∈ V,A ∈ �, k ∶ X → ΩA.

(∀P� ∈ V. k ∶ (X,P�) →̇ (ΩA,�A))
⟹ 𝜏A ◦ Fk ◦ c ∶ (X,P) →̇ (ΩA,�A)

⎞
⎟⎟⎟⎠

⟺

⎛
⎜⎜⎜⎝

V ⊆ G and
∀A ∈ �, k ∶ X → ΩA.

(∀P� ∈ V. k ∶ (X,P�) →̇ (ΩA,�A))
⟹ ∀P ∈ V. 𝜏A ◦ Fk ◦ c ∶ (X,P) →̇ (ΩA,�A)

⎞⎟⎟⎟⎠
.

∀P� ∈ V. k ∶ (X,P�) →̇ (ΩA,�A)

k ∶ (X,
⨆

P�∈V P
�) →̇ (ΩA,�A).

∀P ∈ V. 𝜏A ◦ Fk ◦ c ∶ (X,P) →̇ (ΩA,�A)

𝜏A ◦ Fk ◦ c ∶ (X,
⨆

P∈V P) →̇ (ΩA,�A).

1) ⟺

⎛⎜⎜⎜⎝

V ⊆ G and
∀A ∈ �, k ∶ X → ΩA.�
k ∶

�
X,

⨆
P�∈V P

�
�
→̇ (ΩA,�A)

�
⟹ 𝜏A ◦ Fk ◦ c ∶ (X,

⨆
P∈V P) →̇ (ΩA,�A)

⎞⎟⎟⎟⎠
.

⨆
P∈V

P ⊑ Φ�,𝜏
c

(⨆
P∈V

P

)
.

435New Generation Computing (2022) 40:403–465

123

1. The set of winning positions for Duplicator in the game in Table 11.
2. The intersection (↓(�Φ�,�

c
)) ∩ G of the downset ↓(�Φ�,�

c
) of the codensity bisimilar-

ity over c and the join-dense subset G.

Proof By Proposition 2.6, (1) is the largest invariant for Duplicator in the game in
Table 10. In turn, by Lemma 6.9, it is the largest G-joint codensity bisimulation over
c. By Lemma 6.7, it coincides with (2). ◻

Corollary 6.11 (Soundness and completeness of codensity games) Assume the setting
of Definition 6.8. In particular, let G be a join-dense subset of �X . P ∈ �X is a win-
ning position for Duplicator if and only if P ⊑ 𝜈Φ�,𝜏

c
.

 ◻

Example 6.12 (Bisimulation topology for deterministic automata) Here we describe
the topological example in Table 6. Consider the ����⊓-fibration ��� �→ ��� and the
functor AΣ = 2 × (_)Σ ∶ ��� → ��� , where Σ is a fixed alphabet. Coalgebras for this
functor are deterministic automata over Σ ; see, e.g., [23, 24].

We take the following data as a parameter of codensity lifting (cf. Definition 6.1):
� = {�} ∪ Σ , �� is the Sierpinski space for each � ∈ � , and the modalities

��, �A ∶ AΣ2 → 2 (where a ∈ Σ) are defined by

Recall that the Sierpinski space is the set 2 = {⊥,⊤} with the topology {�, {⊤}, 2} .
Based on the slogan “Open sets are semi-decidable properties,” which is explained
in, e.g., [42], this observation domain models the situation, where acceptance of a
word is only semi-decidable, not decidable, in the sense of computability theory.

Let c ∶ X → AΣX be a deterministic automata. The above choice of parameters
leads to the following codensity bisimilarity:

the state space X is equipped with the topology generated by the following family
of open sets:

One can extract various information from this bisimulation topology via standard
topological constructs. For example, the specialization order (see, e.g., [42, Chap-
ter 7]) of this topology coincides with the language inclusion order.

For illustration by comparison, consider changing the observation domain
from the Sierpinski space to the discrete 2-point set.
The bisimulation topology over X is now generated by

We can now observe rejection of a word, too, because {⊥} ⊆ 2 is open. The spe-
cialization order of this topology is the language equivalence, and it satisfies the R0
separation axiom (while the last Sierpinski example does not).

��(t, �) = t and �A(t, �) = �(a).

{x ∈ X ∣ w is accepted from x} ⊆ X, for each w ∈ Σ∗

{x ∈ X ∣ w is accepted from x} and
{x ∈ X ∣ w is not accepted from x}, for each w ∈ Σ∗.

436 New Generation Computing (2022) 40:403–465

123

We take these examples of bisimulation topology as a process-semantical incar-
nation of the “observability via topology, computability via continuity” paradigm
from domain theory. The definition of codensity bisimulation (cf. Definition 3.1) fits
well with this intuition, too: a continuous map k ∶ (X,P) →̇ � in Definition 3.1 is a
“computable observation”; accordingly, an open set of the bisimulation topology is a
property that is decided by finitely many of those computable observations.

7 Transfer of Codensity Bisimilarities

In our formulation, for the same endofunctor F ∶ ℂ → ℂ , we can use various ����⊓
-fibrations p and parameters (�, �) to equip F-coalgebras with different bisimilarity-
like notions. Some relations among those codensity bisimilarity notions can be cat-
egorically captured by general results. In this section we show two such results.

Definition 7.1 In this section, we consider the following situation:

Here, p ∶ 𝔼 → ℂ and q ∶ 𝔽 → ℂ are ����⊓-fibrations. We assume that q ◦ T = p
holds on the nose, and that T is “fibered”: for f ∶ X → Y in ℂ and E ∈ �Y ,
f ∗(TE) = T(f ∗E) holds.

7.1 Transfer Result for One Shared Family of Parameters

First, we consider the case, where the families of parameters are “shared” among
two fibrations.

We use the following lemma.

Lemma 7.2 ([15, Lemma 20]) In the setting of Definition 7.1, assume also that T
preserves fiberwise meets. Let Ḟ ∶ � → � and F̈ ∶ � → � be liftings of F along p
and q, respectively. Let c ∶ X → FX be an F-coalgebra. If TḞP = F̈TP holds for
each P ∈ � , then T𝜈(c∗ ◦ Ḟ) = 𝜈(c∗ ◦ F̈) holds.

Proof For each ordinal � , we define 𝜈𝛼(c∗ ◦ Ḟ) by

using induction on � . We define 𝜈𝛼(c∗ ◦ F̈) in the same way. By Theorem 2.2,
these converge to 𝜈(c∗ ◦ Ḟ) and 𝜈(c∗ ◦ F̈) , respectively. It suffices to show
T𝜈𝛼(c

∗
◦ Ḟ) = 𝜈𝛼(c

∗
◦ F̈) by induction on �.

𝜈𝛼(c
∗
◦ Ḟ) = ⊓𝛽<𝛼c

∗Ḟ(𝜈𝛽(c
∗
◦ Ḟ))

437New Generation Computing (2022) 40:403–465

123

Assume that the above inequality holds for all ordinals smaller than � . Then we
have

 ◻

The following is the main result of Sect. 7.1. Note that the parameters
{(T�A, �A)}A∈� for q ∶ 𝔽 → ℂ are “induced” from {(�A, �A)}A∈� for p ∶ 𝔼 → ℂ.

Theorem 7.3 (Transfer of codensity bisimilarity) In the setting of Definition 7.1, let
c ∶ X → FX be an F-coalgebra and {(�A, �A)}A∈� be an �-indexed family of param-
eters for codensity lifting of F along p (Definition 6.1). Assume that T ∶ � → � is
full and faithful, and that it preserves fiberwise meets. In this setting, {(T�A, �A)}A∈�
is an �-indexed family of parameters for codensity lifting of F along q, and we have
�ΦT�,�

c
= T(�Φ�,�

c
).

Proof For any P ∈ �X , we have TF�,�P = FT�,�TP , because the following hold:

Considering this and the fact that T preserves meets, Lemma 7.2 implies
T(�Φ�,�) = �ΦT�,� . ◻

Example 7.4 We show that the codensity bisimilarities in Examples 3.3 and 3.4 are
indeed the usual bisimilarity notions for Kripke frames. Recall that they are built on
the two ����⊓-fibrations ����� �→ ��� and ���� �→ ���.

We first note that the inclusion functor i ∶ ����� → ���� is a reflection, having
the equivalence closure (_)Eq ∶ ���� → ����� as the left adjoint. It follows that i is
meet-preserving. Moreover, i is fibered.

T𝜈𝛼(c
∗
◦ Ḟ) = T ⊓𝛽<𝛼 c

∗Ḟ(𝜈𝛽(c
∗
◦ Ḟ))

= ⊓𝛽<𝛼Tc
∗Ḟ(𝜈𝛽(c

∗
◦ Ḟ)) (sinceT preserves meets)

= ⊓𝛽<𝛼c
∗TḞ(𝜈𝛽(c

∗
◦ Ḟ)) (since T is fibered)

= ⊓𝛽<𝛼c
∗F̈T(𝜈𝛽(c

∗
◦ Ḟ)) (by the assumption TḞ = F̈T)

= ⊓𝛽<𝛼c
∗F̈(𝜈𝛽(c

∗
◦ F̈)) (by induction hypothesis)

= 𝜈𝛼(c
∗
◦ F̈).

TF�,𝜏P

= T
(
⊓A∈� ⊓k∈�(P,�A)

(𝜏A◦F(pk))
∗�A

)

= ⊓A∈� ⊓k∈�(P,�A)
T(𝜏A◦F(pk))

∗�A (since T preserves meets)

= ⊓A∈� ⊓k∈�(P,�A)
(𝜏A◦F(pk))

∗T�A (since T is fibered)

= ⊓A∈� ⊓k∈�(P,�A)
(𝜏A◦F(q(Tk)))

∗T�A (since q ◦ T = p)

= ⊓A∈� ⊓l∈� (TP,T�A)
(𝜏A◦F(ql))

∗T�A (sinceT is full)

= FT�,𝜏TP

438 New Generation Computing (2022) 40:403–465

123

We introduce shorthands Ṗ2, Ṗ3 for the liftings in Examples 3.3 and 3.4:

Now, for the sake of our proof, let us introduce a relational lifting Ṗ1 ∶ ���� → ����
of P along ���� �→ ��� , for which it is obvious that the corresponding bisimilar-
ity notion is the usual bisimilarity for Kripke frames. We do so in concrete terms,
instead of as a codensity lifting:

We note that Ṗ2 is the restriction of Ṗ1 from ���� to ����� along i. This means
i◦Ṗ2 = Ṗ1◦i . Note also that Ṗ3 = Ṗ1◦i◦(_)

Eq.
Let c ∶ X → PX be a Kripke frame and Φi = c∗◦Ṗi (i = 1, 2, 3) be the predicate

transformer corresponding to each lifting. Proposition 7.3 yields that �Φ3 = i(�Φ2).
Furthermore, by Ṗ1 ⊑ Ṗ3 (where ⊑ is the order in (4)), we have 𝜈Φ1 ⊑ 𝜈Φ3 . From

i◦Ṗ2 = Ṗ1◦i and fiberedness of c, we can see that i(�Φ2) is a fixed point of Φ1:

By this fact and the definition of �Φ1 , i(𝜈Φ2) ⊑ 𝜈Φ1 holds. The three (in)equalities
so far allow us to conclude �Φ3 = i(�Φ2) = �Φ1 , stating that the conventional bisim-
ilarity �Φ1 is equal to the codensity bisimilarities in Examples 3.3 and 3.4. As a con-
sequence, the conventional bisimilarity �Φ1 is necessarily an equivalence relation.

7.2 Transfer Result for Two Different Families of Parameters

Consider the following situation again (Definition 7.1):

Now consider two families of parameters, (�, �) = {(�A, �A)}A∈Å for lifting F along
p and (�, �) = {(�B, �B)}B∈� for lifting F along q. Let c ∶ X → FX be an F-coalge-
bra. In Sect. 7.2 we compare T�Φ�,�

c
 and �Φ�,�

c
 (both in �X).

First, we show an “order-version” of Lemma 7.2. It reduces the comparison of
T�Φ�,�

c
 and �Φ�,�

c
 to that of TF�,� and F�,�T:

Ṗ2 = PEq2,♢ ∶ ����� → ����� (Example 3.3),
Ṗ3 = P

Eq2,♢ ∶ ���� → ���� (Example 3.4).

(S, T) ∈ Ṗ1(R) ⟺ (∀x ∈ S. ∃y ∈ T . (x, y) ∈ R) ∧ (∀y ∈ T . ∃x ∈ S. (x, y) ∈ R).

Φ1(i(𝜈Φ2)) = c∗(Ṗ1(i(𝜈Φ2))) = c∗(i(Ṗ2(𝜈Φ2)))

= i(c∗(Ṗ2(𝜈Φ2))) = i(Φ2(𝜈Φ2)) = i(𝜈Φ2).

439New Generation Computing (2022) 40:403–465

123

Proposition 7.5 In the setting of Definition 7.1, assume also that T preserves fiber-
wise meets. Let Ḟ ∶ � → � and F̈ ∶ � → � be liftings of F along p and q, respec-
tively. Let c ∶ X → FX be an F-coalgebra. If TḞP ⊒ F̈TP holds for each P ∈ � , then
T𝜈(c∗ ◦ Ḟ) ⊒ 𝜈(c∗ ◦ F̈) holds.

Proof For each ordinal � , we define 𝜈𝛼(c∗ ◦ Ḟ) by

using induction on � . We define 𝜈𝛼(c∗ ◦ F̈) in the same way. By Theorem 2.2,
these converge to 𝜈(c∗ ◦ Ḟ) and 𝜈(c∗ ◦ F̈) , respectively. It suffices to show
T𝜈𝛼(c

∗
◦ Ḟ) ⊒ 𝜈𝛼(c

∗
◦ F̈) by induction on �.

Assume that the above inequality holds for all ordinals smaller than � . Then we
have

 ◻

The following is the main result of Sect. 7.2. It says that, if we have a certain
data connecting two families of parameters {(�A, �A)}A∈Å and {(�B, �B)}B∈� , then
the inequality TF�,𝜏 ⊒ F�,𝜌T holds:

Proposition 7.6 In the setting of Definition 7.1, assume also that T preserves fiberwise
meets. Let (IA,B)A∈Å,B∈� be some family of sets and (tA,B,i ∶ T�A → �B)A∈Å,B∈�,i∈IA,B
be a family of �-arrows such that

holds for each A ∈ Å . Then TF�,𝜏P ⊒ F�,𝜌TP holds for each P ∈ �.

Proof Let X = pP . Since

and

𝜈𝛼(c
∗
◦ Ḟ) = ⊓𝛽<𝛼c

∗Ḟ(𝜈𝛽(c
∗
◦ Ḟ))

T𝜈𝛼(c
∗
◦ Ḟ) = T ⊓𝛽<𝛼 c

∗Ḟ(𝜈𝛽(c
∗
◦ Ḟ))

= ⊓𝛽<𝛼Tc
∗Ḟ(𝜈𝛽(c

∗
◦ Ḟ)) (sinceT preserves meets)

= ⊓𝛽<𝛼c
∗TḞ(𝜈𝛽(c

∗
◦ Ḟ)) (since T is fibered)

⊒ ⊓𝛽<𝛼c
∗F̈T(𝜈𝛽(c

∗
◦ Ḟ)) (by the assumptionTḞ ⊒ F̈T)

⊒ ⊓𝛽<𝛼c
∗F̈(𝜈𝛽(c

∗
◦ F̈)) (by induction hypothesis)

= 𝜈𝛼(c
∗
◦ F̈).

𝜏∗
A
T�A ⊒ ⊓B∈�,i∈IA,B

(F(q(tA,B,i)))
∗𝜌∗

B
�B

TF�,𝜏P = T
(
⊓A∈Å,f∶P→�A

(F(pf))∗𝜏∗
A
�A

)

= ⊓A∈Å,f∶P→�A
(F(pf))∗𝜏∗

A
T�A

F�,𝜌TP = ⊓B∈�,g∶TP→�B
(F(qg))∗𝜌∗

B
�B,

440 New Generation Computing (2022) 40:403–465

123

it suffices to show that, for each f ∶ P → � and A ∈ Å,

holds.
Let A ∈ Å and f ∶ P → �A . For each B ∈ � and i ∈ IA,B , consider

g = TP
Tf
���������→ T�A

tA,B,i
���������������→ �B . Then F(qg) = FX

F(pf)
������������������→ FΩA

FqtA,B,i
�����������������������→ FqΨB . Thus

(F(qg))∗�∗
B
�B = (F(pf))∗(F(q(tA,B,i)))

∗�∗
B
�B holds. Restricting the range of g to the

class considered above, it suffices to show

This is nothing but our assumption. ◻

Remark 7.7 As a special case, if each IA,B is the singleton {∙} and the diagram:

commutes, then the condition in Proposition 7.6 holds. However, it seems that such
cases are rather special. The condition in Proposition 7.6 can be regarded as a weak-
ening of it: we use multiple tA,B,i to obtain as much information as given by one
arrow making the above diagram commute.

Example 7.8 Consider the following situation:

Here, T is defined by T(X, d) = (X,Rd) and

This is a fibered lifting of Id
ℂ
 and preserves fibered meets.

We describe the parameter for � = ����1 : Å = {∙} and �∙ = ([0, 1], de) , where
de is the Euclidean metric. The modality �∙ ∶ D≤1[0, 1] → [0, 1] is given by the
expected value function. In this setting, for each coalgebra c ∶ X → D≤1X , the
codensity bisimilarity �Φ�,�

c
 coincides with the bisimulation metric (Examples 3.10,

4.5 and 5.3).
We move on to the parameter for � = ����� : � = [0, 1] and �r = (2,Eq2) for all

r ∈ [0, 1] . The modality �r ∶ D≤12 → 2 is the threshold modality defined by

(F(pf))∗𝜏∗
A
T�A ⊒ ⊓B∈�,g∶TP→�B

(F(qg))∗𝜌∗
B
�B

𝜏∗
A
T�A ⊒ ⊓B∈�,i∈IA,B

(F(q(tA,B,i)))
∗𝜌∗

B
�B.

(x, y) ∈ Rd ⟺ d(x, y) = 0.

𝜌r(p) = ⊤ ⟺ p(⊤) ≥ r.

441New Generation Computing (2022) 40:403–465

123

For each coalgebra c ∶ X → D≤1X , the codensity bisimilarity �Φ�,� coincides with
the probabilistic bisimilarity (Example 8.15).

For each r ∈ [0, 1] , let I∙,r = [0, 1] . For each r, s ∈ [0, 1] , we define an �����-
arrow t∙,r,s ∶ T([0, 1], de) → (2,Eq2) by

In this setting the condition in Proposition 7.6 is satisfied. Let �, � ∈ D≤1[0, 1] ; if
�({x | x ≥ s}) ≥ r ⟺ �({x | x ≥ s}) ≥ r holds for all r, s ∈ [0, 1] , then their
expected values coincide.

Using Propositions 7.5 and 7.6, we can conclude that, for any D≤1-coalgebra
c ∶ X → D≤1X , T(𝜈Φ�,𝜏) ⊒ 𝜈Φ�,𝜌 holds. This means that, if two states are bisimilar,
then the bisimulation metric between them is 0.

On the other hand, the converse inequality T(𝜈Φ�,𝜏) ⊑ 𝜈Φ�,𝜌 cannot be derived
from the above general theory. It is known to hold [5, Theorem 5.2], but the proof
involves a real-valued modal logic. Purely fibrational proof of this fact is a future
work.

Note that this example does not make the diagram in Remark 7.7 commute.

8 Examples

In this section, we list examples of our framework. We group them by the fibrations
they rely upon: ����� → ��� in Sect. 8.1, ���� → ���2 in Sect. 8.2, ��� → ��� in
Sect. 8.3, ����1 → ��� in Sect. 8.4, and �����

ℝ
→ ����

ℝ
 in Sect. 8.6. In Sect. 8.5,

we use a fibration U∗(����1) → ���� that is newly defined there.

8.1 ���‑Coalgebras and Behavioral Equivalence

Behavioral equivalence is an equivalence notion for coalgebras. While (relational)
bisimilarity is based on spans of coalgebra morphisms, behavioral equivalence is
defined by cospans of coalgebra morphisms. For their detailed comparison, see [18]
(where behavioral equivalence is often referred to as kernel-bisimulation).

In Sect. 8.1, we show that behavioral equivalence for coalgebras in ��� can also
be defined in terms of fibrations (Proposition 8.4), and that they can be characterized
by codensity games (Theorem 8.8) in the cases, where the functor admits a separat-
ing family (Definition 8.6).

We start with the standard definition of behavioral equivalence. The intuition here
is that a coalgebra morphism is “behavior preserving.” See [24].

Definition 8.1 (Behavioral equivalence [43, Definition 1]) Let F ∶ ��� → ��� be a
functor and c ∶ X → FX be an F-coalgebra. The states x, x� ∈ X are behaviorally
equivalent if there is another F-coalgebra d ∶ Y → FY and a coalgebra morphism
f ∶ X → Y such that f (x) = f (x�).

t∙,r,s(u) = ⊤ ⟺ u ≥ s.

442 New Generation Computing (2022) 40:403–465

123

This can be modeled fibrationally by the fibration ����� → ��� . We use a func-
tor lifting, which is essentially the same as the one defined in [44, Section 4].

Definition 8.2 (The lifting FBE ∶ ����� → �����) Let F ∶ ��� → ��� be a functor.
We define a lifting FBE ∶ ����� → ����� by the following: for (X,R) ∈ ����� , let
q ∶ X ↠ X∕R be the canonical surjection. Then FBE(X,R) is defined as the kernel of
Fq ∶ FX → F(X∕R) , that is,

Proposition 8.3 The assignment FBE above indeed specifies a functor, i.e., for any
decent morphism f ∶ (X,R) → (Y , S) , Ff is decent from FBE(X,R) to FBE(Y , S).

Proof Let q ∶ X ↠ X∕R and r ∶ Y ↠ Y∕S be the canonical surjections.
Let us fix z, z� ∈ FX and assume (Fq)(z) = (Fq)(z�) . It suffices to show
(Fr)((Ff)(z)) = (Fr)((Ff)(z�)).

Since f ∶ (X,R) → (Y , S) is decent, R ⊑ f ∗S holds. Therefore, there exists a map
g ∶ X∕R → Y∕S which makes the diagram:

commute. Using this we see

For the same reason (Fr)((Ff)(z�)) = (Fg)((Fq)(z�)) holds, and the assumption
(Fq)(z) = (Fq)(z�) now implies (Fr)((Ff)(z)) = (Fr)((Ff)(z�)) . ◻

The lifting FBE indeed captures behavioral equivalence, provided that F preserves
monos.

Proposition 8.4 Let F ∶ ��� → ��� be a functor and c ∶ X → FX be an F-coalgebra.
Assume that F preserves monos. The states x, x� ∈ X are behaviorally equivalent if
and only if there is an equivalence relation R on X such that (X,R) ⊑ c∗FBE(X,R).

Proof Let q ∶ X ↠ X∕R be the canonical surjection. Then c∗FBE(X,R) can be con-
cretely presented by

Let x, x� ∈ X . First, we show that if x and x′ are behaviorally equivalent, there exists
some R such that (x, x�) ∈ R and (X,R) ⊑ c∗FBE(X,R) hold. Assume x and x′ are
behaviorally equivalent. There is another F-coalgebra d ∶ Y → FY and a coalgebra
morphism f ∶ X → Y such that f (x) = f (x�) . Let R ⊆ X × X be

FBE(X,R) = (FX, {(z, z�) ∈ (FX)2 | (Fq)(z) = (Fq)(z�)}).

(Fr)((Ff)(z)) = (F(r ◦ f))(z) = (F(g ◦ q))(z) = (Fg)((Fq)(z)).

c∗FBE(X,R) = (X, {(x, x�) ∈ X2 | (Fq)(c(x)) = (Fq)(c(x�))}).

443New Generation Computing (2022) 40:403–465

123

Then (X,R) ∈ ����� and, by the definition, (x, x�) ∈ R . Let q ∶ X ↠ X∕R be
the canonical surjection. By the definition of R, there exists a monomorphism
m ∶ X∕R ↣ Y such that f = m ◦ q . Since f is a coalgebra morphism, the outer
square of the following diagram commutes:

In this diagram, q is epic and, since m is monic, Fm is also monic. There-
fore, there exists a unique e ∶ X∕R → F(X∕R) making the two squares in the
above diagram commute (the diagonalization property of a factorization sys-
tem—see [35]). Now we prove (X,R) ⊑ c∗FBE(X,R) . Assume (x1, x2) ∈ R . Since
(Fq)(c(x1)) = e(q(x1)) = e(q(x2)) = (Fq)(c(x2)) , (x1, x2) ∈ c∗FBE(X,R) holds.

Second, for R satisfying (X,R) ⊑ c∗FBE(X,R) , we show that any pair (x, x�) ∈ R
is behaviorally equivalent. Assume that there exists R such that (x, x�) ∈ R and
(X,R) ⊑ c∗FBE(X,R) hold. The second condition means that, for each (x1, x2) ∈ R ,
(Fq ◦ c)(x1) = (Fq ◦ c)(x2) holds. Thus there is a (unique) d ∶ X∕R → F(X∕R) mak-
ing the following diagram commute:

Now q is a coalgebra morphism from c ∶ X → FX to d ∶ X∕R → F(X∕R) . Since
q(x) = q(x�) , x and x′ are behaviorally equivalent. ◻

Remark 8.5 (On preservation of monomorphisms) In Proposition 8.4, F is assumed
to preserve monos. However, this is not very restricting: If X ∈ ��� is nonempty,
then any monomorphism f ∶ X ↣ Y splits, and Ff is also a split mono. Therefore,
we only have to check that, for f ∶ 0 → Y , Ff is injective. See [45] for details.

Now we move on to representing FBE as a codensity lifting. The key notion
here is separation. It is mainly used in coalgebraic modal logic literature like [43,
46]. While it is standard to define it for predicate liftings like in [43, Definition
7], we adapt it for F-algebras.

Definition 8.6 (Separating family of F-algebras) Let X ∈ ��� and F ∶ ��� → ��� .
An Å-indexed family (�A ∶ F2 → 2)A∈Å of F-algebras is separating for X if
each z ∈ FX is uniquely determined by the values of �A((Ff)(z)) for A ∈ Å and

R = {(x1, x2) ∈ X2 | f (x1) = f (x2)}.

444 New Generation Computing (2022) 40:403–465

123

f ∶ X → 2 , that is, for each pair z, z� ∈ FX , if �A((Ff)(z)) = �A((Ff)(z
�)) holds for all

A ∈ Å and f ∶ X → 2 , then z = z�.

For an Å-indexed family (�A ∶ F2 → 2)A∈Å of F-algebras, note that
{(Eq2, �A)}A∈Å is an �-indexed family of lifting parameters and we can define
the codensity lifting FEq2,� . This turns out to coincide with FBE if the family is
separating.

Proposition 8.7 Let (X, R) be an object in ����� , F ∶ ��� → ��� be a functor, and
(�A ∶ F2 → 2)A∈Å be an Å-indexed family of F-algebras. If (�A ∶ F2 → 2)A∈Å is sep-
arating for X/R, then

holds.

Proof First, we show FEq2,𝜏(X,R) ⊒ FBE(X,R) . Let (z, z�) ∈ (FX)2 ,
f ∶ (X,R) → (2,Eq2) and A ∈ Å . Let q ∶ X ↠ X∕R be the canonical surjection and
assume that (Fq)(z) = (Fq)(z�) . It suffices to show �A((Ff)(z)) = �A((Ff)(z

�)) . Since
f ∶ (X,R) → (2,Eq2) is decent, there is a (unique) map g ∶ X∕R → 2 making the
left one of the following diagrams commute:

By the functoriality of F, the right one also commutes. Thus, we have
(Ff)(z) = (Fg)((Fq)(z)) = (Fg)((Fq)(z�)) = (Ff)(z�) . This implies
�A((Ff)(z)) = �A((Ff)(z

�)).
Second, we show FEq2,𝜏(X,R) ⊑ FBE(X,R) . Let (z, z�) ∈ (FX)2 and assume that,

for each A ∈ Å and f ∶ (X,R) → (2,Eq2) , �A((Ff)(z)) = �A((Ff)(z
�)) holds. Let

q ∶ X ↠ X∕R be the canonical surjection. It suffices to show (Fq)(z) = (Fq)(z�) .
Let g ∶ X∕R → 2 be any arrow. Then g ◦ q is decent from (X, R) to (2,Eq2) . By
the assumption, �A((Fg)((Fq)(z))) = �A((Ff)(z)) = �A((Ff)(z

�)) = �A((Fg)((Fq)(z
�)))

holds for each A ∈ Å . Since g is arbitrary and (�A ∶ F2 → 2)A∈Å is separating for
X/R, (Fq)(z) = (Fq)(z�) holds. ◻

In such case the codensity bisimilarity (Definition 6.2) coincides with the
behavioral equivalence (Definition 8.1).

Theorem 8.8 Let F ∶ ��� → ��� be a functor, (�A ∶ F2 → 2)A∈Å be an Å-indexed
family of F-algebras, and c ∶ X → FX be an F-coalgebra. Assume that F preserves
monos. If (�A ∶ F2 → 2)A∈Å is separating for every set Y, then the behavioral equiv-
alence of c coincides with the codensity bisimilarity �ΦEq2,�

c .

FEq2,�(X,R) = FBE(X,R)

445New Generation Computing (2022) 40:403–465

123

Proof By Proposition 8.4, the behavioral equivalence is the greatest fixed point of
c∗ ◦ FBE . Moreover, this coincides with �ΦEq2,�

c by Proposition 8.7. ◻

Theorem 8.8 characterizes the behavioral equivalence of F-coalgebras by
codensity games, when F preserves monos and has separating family of F-alge-
bras. In the following, we use the join-dense subset described in Example 5.2 to
trim games.

Example 8.9 (Kripke frames) Consider the powerset functor P ∶ ��� → ��� . Since
P0 ≃ 1 , for any f ∶ 0 → Y in ��� , Pf ∶ P0 → PY is monic. Thus it preserves monos
by Remark 8.5. A P-coalgebra c ∶ X → PX is nothing but a Kripke frame.

The one-member family (♢ ∶ P2 → 2) (used in Example 3.3) is separating for
any set X. Indeed, if we define fx ∶ X → 2 by fx(x�) = ⊤ ⟺ x = x� , then for
S ∈ PX , x ∈ S if and only if ♢((Pfx)(S)) = ⊤.

By Theorem 8.8, the behavioral equivalence (Definition 8.1) for a Kripke
frame c ∶ X → PX coincides with the codensity bisimilarity �ΦEq2,♢

c . Thus, by
Corollary 5.16, it is characterized by the codensity game (Table 10) specialized
to this situation. The game in this case is shown in Table 12. It is trimmed by the
join-dense subset in Example 5.2.

Theorem 8.10 Let c ∶ X → PX be a Kripke frame. The position (x, y) ∈ X × X in the
game in Table 12 is winning for Duplicator if and only if (x, y) ∈ �ΦEq2,♢

c , if and only
if x and y are behaviorally equivalent. ◻

As shown in Example 7.4, the codensity bisimilarity �ΦEq2,♢
c (which is �Φ2

in Example 7.4) also coincides with the conventional bisimilarity on the Kripke
frame c. Therefore, we also see that the conventional bisimilarity and the behav-
ioral equivalence are equal for Kripke frames.

Example 8.11 (Deterministic automata) Consider the functor AΣ ∶ ��� → ��� from
Example 6.12, for which a coalgebra is a deterministic automaton. Since AΣ0 ≃ 0 ,
for any f ∶ 0 → Y in ��� , AΣf ∶ AΣ0 → AΣY is monic. Thus it preserves monos by
Remark 8.5.

The family {��} ∪ {�A | a ∈ Σ} introduced in Example 6.12 is separating for
every set X. Indeed, if we define fx ∶ X → 2 by fx(x�) = ⊤ ⟺ x = x� , then for

Table 12 Codensity bisimilarity
game for conventional
bisimilarity

Position Player Possible moves

(x, y) ∈ X × X Spoiler k ∈ ���(X, 2) such that exactly one of
∃x� ∈ c(x). k(x�) = ⊤ and
∃y� ∈ c(y). k(y�) = ⊤ holds

k ∈ ���(X, 2) Duplicator (x��, y��) s.t. k(x��) ≠ k(y��)

446 New Generation Computing (2022) 40:403–465

123

y = (t, �) ∈ AΣX (where t ∈ 2 and � ∶ Σ → X), t = ⊤ if and only if 𝜏𝜀((AΣfx)(y)) = ⊤ ,
and �(a) = x if and only if 𝜏A((AΣfx)(y)) = ⊤.

By Theorem 8.8, the behavioral equivalence (Definition 8.1) for a deterministic
automaton c ∶ X → AΣX coincides with the codensity bisimilarity �ΦEq2,�

c . Thus, by
Corollary 6.11, it is characterized by the codensity game (Table 11) specialized to
this situation. The game in this case is shown in Table 13. It is trimmed by the join-
dense subset in Example 5.2. It is also simplified in the case, where the position
(x, y) ∈ X × X satisfies c1(x) ≠ c1(y) : strictly in such case, Spoiler can play any con-
stant map from X to 2 and any a ∈ Σ , and then Duplicator cannot play any longer.

Theorem 8.12 Let c ∶ X → AΣX be a deterministic automaton. The position
(x, y) ∈ X × X in the game in Table 13 is winning for Duplicator if and only if
(x, y) ∈ �ΦEq2,�

c , if and only if x and y are behaviorally equivalent. ◻

Since we are considering deterministic automata here, the language equivalence
coincides with the behavioral equivalence. Thus the game in Table 13 also charac-
terizes the language equivalence.

Example 8.13 (Nondeterministic automata) Let us now turn to nondeterministic
automata, that is, NΣ-coalgebras for the functor NΣ = 2 × (P_)Σ . Since NΣ = AΣ ◦ P
and both AΣ and P preserve monos (Examples 8.9, 8.11), NΣ preserves monos.

Consider the family {��} ∪ {�A | a ∈ Σ} of maps from NΣ2 to 2 defined as
follows:

This family is separating for every set X. Indeed, if we define fx ∶ X → 2 by
fx(x

�) = ⊤ ⟺ x = x� , then for y = (t, �) ∈ NΣX (where t ∈ 2 and � ∶ Σ → PX),
t = ⊤ if and only if 𝜏𝜀((NΣfx)(y)) = ⊤ , and x ∈ �(a) if and only if 𝜏A((NΣfx)(y)) = ⊤.

By Theorem 8.8, the behavioral equivalence (Definition 8.1) for a nondeterminis-
tic automaton c ∶ X → NΣX coincides with the codensity bisimilarity �ΦEq2,�

c . Thus,
by Corollary 6.11, it is characterized by the codensity game (Table 11) specialized

��(t, �) = t, �A(t, �) = ♢(�(a)).

Table 13 Codensity bisimilarity game for deterministic automata and their language equivalence

The arrows c1 ∶ X → 2 and c2 ∶ X → XΣ are the first and second projections of c ∶ X → AΣX = 2 × XΣ ,
respectively

Position Player Possible moves

(x, y) ∈ X × X Spoiler If c1(x) ≠ c1(y) then Spoiler wins
If c1(x) = c1(y) then

 a ∈ Σ and k ∈ ���(X, 2)

 such that
k(c2(x)(a)) ≠ k(c2(y)(a))

a ∈ Σ and k ∈ ���(X, 2) Duplicator (x��, y��) ∈ X × X s.t. k(x��) ≠ k(y��)

447New Generation Computing (2022) 40:403–465

123

to this situation. The game in this case is shown in Table 14. It is trimmed by the
join-dense subset in Example 5.2. It is also simplified in the case, where the position
(x, y) ∈ X × X satisfies c1(x) ≠ c1(y) : strictly in such case, Spoiler can play any con-
stant map from X to 2 and any a ∈ Σ , and then Duplicator cannot play any longer.

Theorem 8.14 Let c ∶ X → NΣX be a nondeterministic automaton. The posi-
tion (x, y) ∈ X × X in the game in Table 14 is winning for Duplicator if and only if
(x, y) ∈ �ΦEq2,�

c , if and only if x and y are behaviorally equivalent. ◻

Example 8.15 (Markov chains) Consider the functor D≤1 ∶ ��� → ��� (introduced
in Sect. 1.1.2), for which a coalgebra is a Markov chain. Since D≤10 ≃ 1 , for any
f ∶ 0 → Y in ��� , D≤1f ∶ D≤10 → D≤1Y is monic. Thus it preserves monos by
Remark 8.5.

For each real number r ∈ [0, 1] , define a threshold modality �r ∶ D≤12 → 2 by
𝜏r(p) = ⊤ if and only if p(⊤) ≥ r . Then the family {�r | r ∈ [0, 1]} is separating for
every set X. Indeed, if we define fx ∶ X → 2 by fx(x�) = ⊤ ⟺ x = x� , then for
d ∈ D≤1X , holds.

By Theorem 8.8, the behavioral equivalence (Definition 8.1) for a Markov chain
c ∶ X → NΣX coincides with the codensity bisimilarity �ΦEq2,�

c . Thus, by Corol-
lary 6.11, it is characterized by the codensity game (Table 11) specialized to this sit-
uation. The game in this case is shown in Table 15. It is trimmed by the join-dense

Table 14 Codensity bisimilarity
game for nondeterministic
automata and their behavioral
equivalence

The arrows c1 ∶ X → 2 and c2 ∶ X → (PX)Σ are the first and second
projections of c ∶ X → NΣX = 2 × (PX)Σ , respectively

Position Player Possible moves

(x, y) ∈ X × X Spoiler If c1(x) ≠ c1(y) then Spoiler wins
If c1(x) = c1(y) then

 a ∈ Σ and k ∈ ���(X, 2)

 such that
∃x� ∈ c2(x)(a). k(x

�) = ⊤

 ⇎ ∃y� ∈ c2(y)(a). k(y
�) = ⊤

a ∈ Σ and Duplicator (x��, y��) ∈ X × X s.t. k(x��) ≠ k(y��)

k ∈ ���(X, 2)

Table 15 Codensity bisimilarity
game for probabilistic
bisimilarity

Position Player Possible moves

(x, y) ∈ X × X Spoiler r ∈ [0, 1] and k ∈ ���(X, 2) s.t.
c(x)(k−1(⊤)) ≥ r > c(y)(k−1(⊤)) , or
c(y)(k−1(⊤)) ≥ r > c(x)(k−1(⊤))

r ∈ [0, 1] and
k ∈ ���(X, 2)

Duplicator (x��, y��) s.t. k(x��) ≠ k(y��)

448 New Generation Computing (2022) 40:403–465

123

subset in Example 5.2. It is essentially the same as Table 2 (arising from [13]). The
difference is that r is additionally present in Table 15; it is easy to realize that r plays
no role in the game.

Theorem 8.16 Let c ∶ X → D≤1X be a Markov chain. The position (x, y) ∈ X × X in
the game in Table 15 is winning for Duplicator if and only if (x, y) ∈ �ΦEq2,�

c , if and
only if x and y are behaviorally equivalent. ◻

Concretely, for any R ∈ �����X , the relation part of the codensity lifting
D

�,�

≤1 (X,R) relates p, q ∈ D≤1(X) if and only if the following holds:

From this, it is not hard to see that the resulting codensity bisimilarity also coincides
with probabilistic bisimilarity in [4]. Note, for example, that a relation-preserving
map k ∶ (X,R) →̇ (2,Eq2) coincides with an R-closed subset of X.

8.2 ���‑Coalgebras and 3‑Bisimulation

In [19], a bisimulation notion called Λ-bisimulation is introduced. Their intention
is to start from a behavior functor and a modal logic, and construct a correspond-
ing notion of bisimulation. The special cases include precocongruence for neigh-
borhood frames, rel-Δ-bisimulation for Kripke frames, and nbh-Δ-bisimulation for
neighborhood frames [19, Examples 14–16], and the latter two examples are related
to contingency logic.

In Sect. 8.2 we see how their definition and our codensity bisimilarity overlap.
Specifically, when all of the given modalities are unary, the induced Λ-bisimula-
tion turns out to be a special case of codensity bisimulation (Proposition 8.21).
Using this overlap, we also derive a game characterization of such Λ-bisimulations
(Corollary 8.24).

Definition 8.17 (From [19, Section 2]) A similarity type is a set of modal opera-
tors with finite arities. For a similarity type Λ , a Λ-structure (F, ([[♡]])♡∈Λ)
is a pair of a functor F ∶ ��� → ��� and a family of predicate liftings
[[♡]] ∶ ���(_, 2)n ⇒ ���(F_, 2) , where n is the arity of the modal operator ♡ ∈ Λ.

Note that, by the Yoneda lemma, a predicate lifting [[♡]] ∶ ���(_, 2)n ⇒ ���(F_, 2)
can be equivalently represented by an arrow �♡ ∶ F(2n) → 2 . Concretely, from
[[♡]] , we can obtain �♡ by [[♡]]2n(�1,… ,�n) ; and from �♡ , we can recover [[♡]] by
[[♡]]X(f1,… , fn) = �

♡
◦ F(⟨f1,… , fn⟩).

Since Λ-bisimulations include not only endorelations but also binary rela-
tions between two different sets, we use the ����⊓-fibration ���� → ���2 (Defini-
tion 2.13) here. One key notion in [19] is R-coherence.

∀r ∈ [0, 1]. ∀k ∶ X → 2.
�
(∀(x, y) ∈ R. k(x) = k(y))

⟹
�∑

x∈k−1(⊤) p(x) ≥ r ⇔
∑

x∈k−1(⊤) q(x) ≥ r
��
.

449New Generation Computing (2022) 40:403–465

123

Definition 8.18 (R-coherent pairs [19, Definition 8, Lemma 9 (b)]) Let
(X, Y ,R) ∈ ���� , U ⊆ X , and V ⊆ Y . The pair (U, V) is R-coherent if both of the
following hold:

• (x, y) ∈ R ∧ x ∈ U ⟹ y ∈ V .
• (x, y) ∈ R ∧ y ∈ V ⟹ x ∈ U.

Equivalently, the pair (U, V) is R-coherent if and only if, for each (x, y) ∈ R ,
x ∈ U ⟺ y ∈ V holds.

The notion of R-coherence turns out to be expressible in terms of the fibration
���� → ���2.

Proposition 8.19 (Coherence as decency) Let (X, Y ,R) ∈ ���� , f ∶ X → 2 , and
g ∶ Y → 2 . Let Eq2 ⊆ 2 × 2 be the diagonal relation (Definition 2.12). Then the
pair (f −1(⊤), g−1(⊤)) is R-coherent if and only if the arrow (f, g) in ���2 is decent
from (X, Y, R) to (2, 2,Eq2).

Proof By Definition 8.18, the pair (f −1(⊤), g−1(⊤)) is R-coherent if and only
if, for each (x, y) ∈ R , f (x) = ⊤ ⟺ g(y) = ⊤ holds. Here, the condition
f (x) = ⊤ ⟺ g(y) = ⊤ is equivalent to (f (x), g(y)) ∈ Eq2 . The claim follows from
Definition 2.13. ◻

From now on, we consider a similarity type Λ with only unary modal operators.
It turns out that, in such cases, a Λ-bisimulation is the same thing as a codensity
bisimulation with an appropriate family of lifting parameters.

Let us fix a Λ-structure (F, ([[♡]])♡∈Λ) . For each ♡ ∈ Λ , let �♡ ∶ F2 → 2 be the
arrow corresponding to [[♡]] ∶ ���(_, 2) ⇒ ���(F_, 2).

Definition 8.20 (Λ-bisimulation [19, Definition 11]) Let c ∶ X → FX and
d ∶ Y → FY be F-coalgebras. A relation Z ⊆ X × Y is a Λ-bisimulation if, for every
pair (x, y) ∈ Z , modal operator ♡ ∈ Λ , and Z-coherent pair (U, V),

holds.

This definition can be characterized using codensity lifting. We use the lifting of
F2 ∶ ���2 → ���2 by the family of parameters {((2, 2,Eq2), �♡)♡∈Λ}.

Proposition 8.21 Let c ∶ X → FX and d ∶ Y → FY be F-coalgebras. A Λ-bisimu-
lation is nothing but a codensity bisimulation for the family of lifting parameters
((2, 2,Eq2), �) = {((2, 2,Eq2), �♡)♡∈Λ} , that is, Z ⊆ X × Y is a Λ-bisimulation if
and only if (X, Y , Z) ⊑ (c, d)∗(F2)(2,2,Eq2),𝜏(X, Y , Z) holds.

Proof Assume (X, Y , Z) ⊑ (c, d)∗(F2)(2,2,Eq2),𝜏(X, Y , Z) . Expanding the definitions,
the following holds:

c(x) ∈ [[♡]]X(U) ⟺ d(y) ∈ [[♡]]X(V)

450 New Generation Computing (2022) 40:403–465

123

If (x, y) ∈ Z , for each (f , g) ∶ (X, Y , Z) → (2, 2,Eq2) and each ♡ ∈ Λ ,
�
♡
((Ff)(c(x))) = �

♡
((Fg)(d(y))) holds.

Let (U, V) be any Z-coherent pair. We define f ∶ X → 2 and g ∶ Y → 2
by f (x) = ⊤ ⟺ x ∈ U and g(y) = ⊤ ⟺ y ∈ V . By Proposi-
tion 8.19, (f , g) ∶ (X, Y , Z) → (2, 2,Eq2) is decent. Thus, for each ♡ ∈ Λ ,
�
♡
((Ff)(c(x))) = �

♡
((Fg)(d(y))) holds. By the definition of �♡ , this means

Since (U, V) is arbitrary, Z is a Λ-bisimulation.
Conversely, assume Z ⊆ X × Y is a Λ-bisimulation. For every pair (x, y) ∈ Z ,

modal operator ♡ ∈ Λ , and Z-coherent pair (U, V):

holds. Now, for each decent arrow (f , g) ∶ (X, Y , Z) → (2, 2,Eq2) , (f −1(⊤), g−1(⊤))
is Z-coherent by Proposition 8.19. Thus for every pair (x, y) ∈ Z and modal operator
♡ ∈ Λ,

holds. By the definition of �♡ , this is equivalent to �♡((Ff)(c(x))) = �
♡
((Ff)(c(y))) .

Since this holds for any decent (f , g) ∶ (X, Y , Z) → (2, 2,Eq2) ,
(X, Y , Z) ⊑ (c, d)∗(F2)(2,2,Eq2),𝜏(X, Y , Z) holds. ◻

Corollary 8.22 Let c ∶ X → FX and d ∶ Y → FY be F-coalgebras. The codensity
bisimilarity �Φ(2,2,Eq2),� is the largest Λ-bisimulation. ◻

In the case where the modal operators are all unary, we can derive a game
characterization of Λ-bisimulation from our general framework. Let us first note
the following fact:

Proposition 8.23 The object (1, 1) ∈ ���2 is a fibered separator (Definition 5.5) of
���� → ���2.

Proof Let (X, Y) ∈ ���2 and B1,B2 ∈ ����(X,Y) . Assume B1 ≠ B2 . There exists a pair
(x, y) ∈ X × Y such that exactly one of (x, y) ∈ B1 and (x, y) ∈ B2 holds. Consider
the arrow (x, y) ∶ (1, 1) → (X, Y) in ���2 . Then (x, y)∗B1 ≠ (x, y)∗B2 holds. This con-
cludes the proof. ◻

By Corollary 6.11 and suppressing ♡ (which does not affect Duplicator’s
moves), we obtain the following game characterization.

Corollary 8.24 Let c ∶ X → FX and d ∶ Y → FY be F-coalgebras. For a pair of
states (x, y) ∈ X × Y , there exists a Λ-bisimulation containing (x, y) if and only if the
position (x, y) ∈ X × Y in the game in Table 16 is winning for Duplicator. ◻

c(x) ∈ [[♡]]X(U) ⟺ d(y) ∈ [[♡]]X(V).

c(x) ∈ [[♡]]X(U) ⟺ d(y) ∈ [[♡]]X(V)

c(x) ∈ [[♡]]X(f
−1(⊤)) ⟺ d(y) ∈ [[♡]]X(g

−1(⊤))

451New Generation Computing (2022) 40:403–465

123

This in turn yields game characterizations of many bisimulation notions, e.g.,
those listed in [19, Example 13–16].

8.3 Deterministic Automata and the Language Topology

We introduced two versions of bisimulation topology for deterministic automata in
Example 6.12. They are in close correspondences with accepted languages; there-
fore, we call them language topologies.

For the first topology in Example 6.12 (where � is the Sierpinski space, mod-
eling the situation where acceptance is only semi-decidable), the corresponding
(untrimmed) codensity game is shown in Table 17. It follows from our general
results that the game notion is sound and complete.

We have not yet found a good way (e.g., join-dense subsets) of trimming the
game arena. This is left as future work.

8.4 Markov Chains and Bisimulation Metric

Recall Examples 3.10, 4.5 and 5.3. Markov chains are D≤1-coalgebras. We use
the ����⊓-fibration ����1 �→ ��� (Sect. 2.2.3), taking pseudometrics as a notion
of indistinguishability. With the lifting parameter we described in Example 3.10,
we get the bisimulation metric as the codensity bisimilarity. We can use the join-
dense subset described in Example 5.3 to obtain a trimmed codensity game; the

Table 16 Codensity bisimilarity game for Λ-bisimulation

Position Player Possible moves

(x, y) ∈ X × Y Spoiler f and g such that, for some ♡ ∈ Λ,
exactly one of 𝜏♡((Ff)(c(x))) = ⊤

and 𝜏♡((Fg)(d(x))) = ⊤ holds
f ∶ X → 2 and g ∶ Y → 2 Duplicator (x�, y�) such that

exactly one of f (x�) = ⊤ and g(y�) = ⊤ holds

Table 17 Codensity bisimilarity game for deterministic automata and the bisimulation topology

Position Player Possible moves

O ∈ ���X Spoiler a ∈ {�} ∪ Σ and k ∈ ���(X, 2)

such that �A◦(AΣk)◦c ∶ X → 2

is not continuous from (X,O) to (2,�A)

a ∈ {�} ∪ Σ Duplicator O
� ∈ ���X

and k ∈ ���(X, 2) such that k ∶ X → 2

is not continuous from (X,O�) to (2,�A)

452 New Generation Computing (2022) 40:403–465

123

resulting game coincides with the one in Table 3 in the introduction. Therefore, Cor-
ollary 5.16 gives an abstract proof for the correctness of the game.

8.5 Continuous State Markov Chains and Bisimulation Metric

To accommodate continuous state Markov chains (for which measurable structures
are essential), we consider an example that involves ���� . Continuing Sect. 8.4,
by the change-of-base along the forgetful functor U ∶ ���� → ��� , we get another
����⊓-fibration U∗(����1) �→ ���� . A continuous state Markov chain is a coalge-
bra X → G≤1X of the so-called sub-Giry functor G≤1 ∶ ���� → ����—see, e.g.,
[37].

As a parameter of codensity lifting, we take roughly the same thing as used in
Example 3.10. The major difference is that we have to equip [0, 1] with some �
-algebra. We use the �-algebra of Borel sets B([0, 1]) . Let us abuse the notation
[0, 1] to mean the object ([0, 1],B([0, 1])) ∈ ���� . Then the parameter of codensity
lifting we use is

where e is the expectation function e(�) = ∫ rd�(r) , and d[0,1] is the Euclidean
metric.

Let us expand the definition of the codensity lifting
G
�,�

≤1 ∶ U∗(����1) → U∗(����1) . For X ∈ ���� and (X, d) ∈ U∗(����1) ,
G
�,�

≤1 (X, d) = (G≤1X,K(d)) holds. Here, K(d) is a variation of Kantorovich metric.
For �, � ∈ G≤1X,

where f ranges over all non-expansive and measurable functions from (X, d) to
([0, 1], d[0,1]) . Note the similarity with the Eq. (1). The corresponding codensity
bisimilarity �Φ�,�

c
∈ U∗(����1) (Definition 3.9) is a variation of the bisimulation

metric from [5] for continuous state Markov chains.
Since the forgetful functor ���� → ��� has a left adjoint, Proposition 5.10 gives

us a fibered separator for U∗(����1) → ���� : concretely, the two-point set with the
powerset �-algebra (2,P2) ∈ ���� is a fibered separator for U∗(����1) → ����.

By Corollary 5.16, the codensity bisimilarity �Φ�,�
c

∈ U∗(����1) is character-
ized by the codensity game (Table 10) specialized in this situation. The game in this
case is shown in Table 18.

8.6 Real‑Weighted Automata and Bisimulation Seminorm

In Sect. 8.6 we consider weighted automata. Here we focus on those with real
weights, which are the central subject of works, such as [20, 47]. We identify the
bisimulation seminorm introduced in [20] as a codensity bisimilarity and derive a

(�, �) =
((

[0, 1], d[0,1]
)
, e ∶ G≤1[0, 1] → [0, 1]

)
,

K(d)(�, �) = sup
f

||e((G≤1f)(�)) − e((G≤1f)(�))||,

453New Generation Computing (2022) 40:403–465

123

game characterization of it. Note that seminorms are considered a linear-algebraic
analogue of pseudometrics here.

We recall the definition of real-weighted automaton. We fix a finite alphabet Σ .
The category ����

ℝ
 is the category of real vector spaces (see Definition 2.14).

Definition 8.25 (Real-weighted automaton as a coalgebra in ����
ℝ
) We define a

functor WΣ ∶ ����
ℝ
→ ����

ℝ
 by WΣ(V) =

�⨁
a∈Σ V

�
⊕ℝ , where ⊕ stands for

direct sum of vector spaces. For a vector w ∈ WΣ(V) , let w� ∈ ℝ be the component
corresponding to the right summand ℝ of WΣ(V) =

�⨁
a∈Σ V

�
⊕ℝ . For a ∈ Σ , let

wA ∈ V be the component corresponding to the a-part of the left summand
⨁

a∈Σ V .
A (real-)weighted automaton is a pair (c, �) of a WΣ-coalgebra c ∶ V → WΣV and

a vector � ∈ V .

In the above definition, � models the initial state and c models both the transitions
and the acceptance vector. Note that, since c is an arrow in ����

ℝ
 , it is a linear map.

The definition coincides with the usual one found in, e.g., [20, Section 2.1]. Since
we are interested in the bisimulation metric, we often ignore the initial vector � and
focus on WΣ-coalgebras.

Let us then define a family of parameters to represent the bisimulation met-
ric in [20] as codensity bisimilarity. Now we fix an arbitrary positive real param-
eter 𝛾 > 0 , called the discount factor. The index set � is set to the direct product
Σ × {1,−1} . For each a ∈ Σ and r ∈ {+1,−1} , let �(a,r) = (ℝ, | ⋅ |) , where | ⋅ | is the
absolute value function regarded as a (semi-)norm. The modalities should be arrows
�(a,r) ∶ WΣℝ → ℝ in ����

ℝ
 for each a ∈ Σ and r = ±1 . We define these by

Using this family, we have the following result. Recall the fibration
�����

ℝ
→ ����

ℝ
 defined in Definition 2.14.

Proposition 8.26 Consider the codensity lifting W (ℝ,|⋅|),�
Σ defined by the above param-

eters. Let (V , s) ∈ �����
ℝ
 , where V is a (plain) vector space and s is a seminorm.

Let (WΣ(V), s
�) = W

(ℝ,|⋅|),�
Σ (V , s) . Then the seminorm s′ on WΣ(V) satisfies

for each w ∈ WΣ(V).

�(a,r)(w) = w� + r�wA.

s�(w) = |w�| + � max
a∈Σ

s(wA)

Table 18 Codensity bisimilarity
game for (probabilistic)
bisimulation metric for a
continuous state Markov chain

Position Player Possible moves

(x, y, �) Spoiler measurable f ∶ X → [0, 1] such that
∈ X2 × [0, 1] ||e((G≤1f)(c(x))) − e((G≤1f)(c(y)))|| > 𝜀

measurable
f ∶ X → [0, 1]

Duplicator (x�, y�, ��) ∈ X2 × [0, 1]

such that || f (x�) − f (y�) || > 𝜀�

454 New Generation Computing (2022) 40:403–465

123

Proof Since the fiberwise meet in �����
ℝ
→ ����

ℝ
 is pointwise sup, unwinding

the definition (Definition 3.1) yields

where k ∶ V → ℝ ranges over the linear nonexpansive maps (V , s) → (ℝ, | ⋅ |) . For
each such k, case analysis on the sign of w� ∈ ℝ implies

thus we have

Now, it suffices to show supk |k(wA)| = s(wA) to conclude the proof. Let w ∈ V be an
arbitrary vector. We show supk |k(w)| = s(w).

We use the Hahn–Banach theorem ([48, Section III.6]):

Let V be a real vector space, U ⊆ V be a subspace, f ∶ U → ℝ be a linear
function, and p ∶ V → ℝ be a non-negative function. Assume that p is sub-
linear, that is, that the following hold:

• For each r ≤ 0 and v ∈ V , p(rx) = rp(x).
• For each v, v� ∈ V , p(v + v�) ≤ p(v) + p(v�).

Assume also that, for each u ∈ U , |f (u)| ≤ p(u) holds.
Then there exists a linear function k ∶ V → ℝ satisfying the following:

• For each u ∈ U , k(u) = f (u).
• For each v ∈ V , |k(v)| ≤ p(v).

Here, let U be the subspace of V generated by w and let p be the seminorm s.
We define f ∶ U → ℝ by f (rw) = r for each r ∈ ℝ . Then all the assump-
tions are satisfied and there is a linear function k ∶ V → ℝ such that, for each
v ∈ V , |k(v)| ≤ s(v) . This k is a linear nonexpansive map (V , s) → (ℝ, | ⋅ |) and
|k(w)| = s(w) holds. Thus supk |k(w)| = s(w) holds. ◻

In particular, for each WΣ-coalgebra c ∶ V → WΣV , the predicate transformer
Φ(ℝ,|⋅|),�

c (Definition 3.7) satisfies

for each seminorm s, which coincides with the predicate transformer FA,� defined in
[20, Section 3].

s�(w) = sup
k

max
r=±1,a∈Σ

|w� + r�k(wA)|,

max
r=±1,a∈Σ

|w� + r�k(wA)| = |w�| + � max
a∈Σ

|k(wA)|,

s�(w) = |w�| + � max
a∈Σ

sup
k

|k(wA)|.

Φ(ℝ,|⋅|),�
c

(s)(v) = |(c(v))�| + � max
a∈Σ

|s((c(v))A)|

455New Generation Computing (2022) 40:403–465

123

Definition 8.27 (�-bisimulation seminorm) For each WΣ-coalgebra c ∶ V → WΣV ,
the greatest fixed point �Φ(ℝ,|⋅|),�

c of the above predicate transformer is called the �
-bisimulation seminorm of c.

Note that, in the above definition, the greatest fixed point is taken w.r.t. the indis-
tinguishability order (Notation 2.10). This means that, numerically, it is the least
fixed point. If �Φ(ℝ,|⋅|),�

c assigns a finite seminorm value to each vector, it coincides
with the �-bisimulation seminorm defined in [20, Section 3]. If some vector has the
extended seminorm value ∞ , then the �-bisimulation seminorm in the original sense
is not defined.

Using this fact, we can derive a game characterization of �-bisimulation semi-
norm from our framework. First, let us mention the following:

Proposition 8.28 The object ℝ ∈ ����
ℝ
 is a fibered separator (Definition 5.5) of

�����
ℝ
→ ����

ℝ
.

Proof Let V ∈ ����
ℝ
 and (V , s1), (V , s2) ∈ �����

ℝ
 . Assume that (V , s1) ≠ (V , s2) .

There exists a vector v ∈ V such that s1(v) ≠ s2(v) . Consider the linear map
f ∶ ℝ → V defined by f (r) = rv . Let (ℝ, t1) = f ∗(V , s1) and (ℝ, t2) = f ∗(V , s2) . Then
t1(1) = s1(v) ≠ s2(v) = t2(1) . Therefore, (ℝ, t1) ≠ (ℝ, t2) . This concludes the proof.
 ◻

Note also that the set of linear maps ℝ → V is naturally isomorphic to the under-
lying set of V, and that a seminorm on ℝ is uniquely specified by its value on 1 ∈ ℝ ,
which must be non-negative.

Using Corollary 6.11 and the above two identifications, we obtain the following
game characterization.

Theorem 8.29 Let c ∶ V → WΣV be a WΣ-coalgebra and let s ∶ V → ℝ ∪ {∞}
be the �-bisimulation seminorm (Definition 8.27) of c. Then, for v ∈ V and t ≥ 0 ,
s(v) ≤ t if and only if the position (v, t) ∈ V × [0,∞] in the game in Table 19 is win-
ning for Duplicator.

Proof Using Corollary 6.11 and Proposition 8.28, we have the game in Table 20.

Table 19 Codensity bisimilarity game for �-bisimulation seminorm

Position Player Possible moves

v ∈ V and t ∈ [0,∞] Spoiler f such that,
for some a ∈ Σ and some r ∈ {+1,−1},
|(c(v))𝜀 + r𝛾f ((c(v))A)| > t holds

f ∶ V → ℝ Duplicator v′ and t′ such that f (v�) > t�

456 New Generation Computing (2022) 40:403–465

123

Here, we use the following fact.

For seminorms s and s′ on ℝ , s(x) ≤ s�(x) holds for all x ∈ ℝ if and only if
s(1) ≤ s�(1).

Using this, we replace the seminorms in Table 20 and obtain the game in Table 21.
The set of linear maps ℝ → V is naturally isomorphic to the underlying set of V

by the map

Using this, we replace g ∶ ℝ → V in Table 21 and obtain Table 19. ◻

9 Conclusions and Future Work

Motivated by some recent works [8, 10, 11, 13], and especially by the similarity
of the two games in Tables 2 and 3, we introduced a fibrational framework that
uniformly describes the correspondence between various bisimilarity notions and
games. The fibrational abstraction allows us to accommodate new games for several
known examples (such as Λ-bisimulation in Sect. 8.2 and �-bisimulation seminorm
in Sect. 8.6) and a new example (bisimulation topology in Sect. 8.3). Moreover, the
structural theory developed in Sects. 6 and 7 provides new insights to the nature of
bisimilarity, identifying the crucial role of observation maps (k ∶ X → Ω in Defini-
tion 3.1) in bisimulation notions.

����
ℝ
(ℝ,V) ∋ g ↦ g(1) ∈ V .

Table 21 Codensity bisimilarity game for �-bisimulation seminorm, after eliminating seminorms on ℝ

Position Player Possible moves

g ∶ ℝ → V and Spoiler f such that,
t ∈ [0,∞] for some a ∈ Σ and some r ∈ {+1,−1},

|(c(g(1)))𝜀 + r𝛾f ((c(g(1)))A)| > t

f ∶ V → ℝ Duplicator g′ and t′ such that |f (g�(1))| > t�

Table 20 Codensity bisimilarity game for �-bisimulation seminorm, obtained by expanding the defini-
tions

Position Player Possible moves

g ∶ ℝ → V and Spoiler f such that,
a seminorm s on ℝ for some a ∈ Σ and some r ∈ {+1,−1},

|(c(g(x)))𝜀 + r𝛾f ((c(g(x)))A)| ≰ s(x)

holds for some x ∈ ℝ

f ∶ V → ℝ Duplicator g′ and s′ such that |f (g�(x))| ≰ s�(x)

for some x ∈ ℝ

457New Generation Computing (2022) 40:403–465

123

As future work, we are interested in using games with more complex winning condi-
tions (e.g., parity); they have been used for (bi)simulation notions for Büchi and parity
automata [49]. In addition, we will pursue the algorithmic use of the current results.

Appendix 1: Direct Proof of Equivalence of the Two Game Notions
Characterizing Probabilistic Bisimilarity (Tables 2 and 4)

Table 4 ⇝ Table 2

Assume that Duplicator wins Table 4 from (x, y), and let Spoiler play some Z in
Table 2. There are two cases to consider which are essentially identical, but we write
them down separately for reference.

• If 𝜏(x, Z) > 𝜏(y,Z) then we make Spoiler select s = x and play Z in Table 4. To
this Duplicator responds with some Z′ ⊇ Z such that �(x, Z) ≤ �(y,Z�) , which
implies that Z′ ≠ Z . Pick any y� ∈ Z� ⧵ Z and play it as Spoiler in Table 4; when
Duplicator responds with some x� ∈ Z , play the pair x′ and y′ as Duplicator in
Table 2.

• If 𝜏(x, Z) < 𝜏(y,Z) then we make Spoiler select s = y and play Z in Table 4. To
this Duplicator responds with some Z′ ⊇ Z such that �(y,Z) ≤ �(x, Z�) , which
implies that Z′ ≠ Z . Pick any y� ∈ Z� ⧵ Z and play it as Spoiler in Table 4; when
Duplicator responds with some x� ∈ Z , play the pair x′ and y′ as Duplicator in
Table 2.

Table 2⇝ Table 4

This is a less straightforward implication. A winning strategy for Duplicator in
Table 4 is built not from a single strategy in Table 2, but rather from an entire col-
lection of winning positions.

Formally, assume that Duplicator wins Table 2 from (x, y), and let Spoiler choose
s ∈ {x, y} and play some Z in Table 4. We define

One basic observation is that Z ⊆ Z̄ , since Duplicator wins from all positions of the
form (w, w). As a result, we have

Another observation is that Spoiler wins Table 2 from the position Z̄ . To see this,
consider any Duplicator’s response x� ∈ Z̄ , y� ∉ Z̄ . Then there is some v ∈ Z such
that Duplicator wins Table 2 from (v, x�) . If Duplicator could win Table 2 from
(x�, y�) then she could win from (v, y�) as well, which contradicts the assumption that
y� ∉ Z̄.

Since we assume that Duplicator wins Table 2 from (x, y), Z̄ cannot be a legal
move for Spoiler from (x, y), hence

Z̄ = {w ∈ X ∣ ∃v ∈ Z such that Duplicator wins Table 2 from (v,w)}.

(A1)𝜏(x, Z) ≤ 𝜏(x, Z̄) and 𝜏(y,Z) ≤ 𝜏(y, Z̄).

458 New Generation Computing (2022) 40:403–465

123

Together with (A1) this implies that

so Z� = Z̄ is a legal move for Duplicator in the stage (ii) of Table 4, no matter if
Spoiler chose s = x or s = y in the stage (i). To this, in the stage (iii) Spoiler replies
with some y� ∈ Z̄ ⧵ Z . By the definition of Z̄ , there is some v ∈ Z such that Duplica-
tor wins Table 2 from (v, y�) , so Duplicator can respond with x� = v.

Appendix 2: Introduction to ����⊓‑Fibration

We present an introduction to (����⊓-)fibrations, starting from a functor
F
𝔼
∶ ℂ

op → ����⊓ . The relevance of the latter is explained in Sect. 2.2. For details,
readers are referred to [33].

The Grothendieck Construction

In general, the equivalence between index categories ℂop → ��� and fibrations is
well-known. Here we sketch the Grothendieck construction from the former to the
latter, focusing the special case of ℂop → ����⊓ and ����⊓-fibrations. Its idea is to
“patch up” the family

(
F
𝔼
X
)
X∈ℂ

 of complete lattices, and form a big category � , as
shown in Fig. 2.

On the right-hand side in Fig. 2, we add some arrows (denoted by ⤏) so that
we have an arrow (F

�
f)(Q) → Q in � for each Q ∈ F

�
Y . (On the left-hand side, the

correspondence depicts the action of the map F
�
f .) The diagram in � in Fig. 2

should be understood as a Hasse diagram: those arrows which arise from composi-
tion are not depicted.

Definition B.1 (The Grothendieck construction) Given a functor F
𝔼
∶ ℂ

op → ����⊓ ,
we define the category � as follows.

• An object is a pair (X, P) of an object X ∈ ℂ and an element P ∈ F
�
X ; and

• An arrow f ∶ (X,P) → (Y ,Q) is an arrow f ∶ X → Y in ℂ such that

𝜏(x, Z̄) = 𝜏(y, Z̄).

𝜏(x, Z) ≤ 𝜏(y, Z̄) and 𝜏(y,Z) ≤ 𝜏(x, Z̄),

Fig. 2 Grothendieck construction

459New Generation Computing (2022) 40:403–465

123

 Here ⊑ refers to the order of the complete lattice F
�
X.

Thus arises a category � that incorporates the following.

• the order structure of each of the posets (F
𝔼
X)X∈ℂ , and

• the pullback structure by (F
𝔼
f)f∶ℂ−arrow.

For fixed X ∈ ℂ , the objects of the form (X, P) and the arrows idX between them
form a subcategory of � . This is denoted by �X and called the fiber over X. It is
obvious that �X is a poset that is isomorphic to F

�
X.

Moreover, there is a canonical projection functor p ∶ 𝔼 → ℂ that carries (X, P)
to X.

Formal Definition of ����⊓‑Fibration

We axiomatize those structures which arise in the way described above.

Definition 9.1 (����⊓-fibration) A ����⊓-fibration 𝔼
p
�����→ ℂ consists of two catego-

ries 𝔼,ℂ and a functor p ∶ 𝔼 → ℂ , that satisfy the following properties.

• Each fiber �X is a complete lattice. Here the fiber �X for X ∈ ℂ is the subcat-
egory of � consisting of the following data: objects P ∈ � such that pP = X ;
and arrows f ∶ P → Q such that pf = idX (such arrows are said to be vertical).

• Given f ∶ X → Y in ℂ and Q ∈ �Y , there is an object f ∗Q ∈ �X and an �-
arrow fQ ∶ f ∗Q → Q with the following universal property. For any P ∈ �X
and g ∶ P → Q in � , if pg = f then g factors through f (Q) uniquely via a verti-
cal arrow. That is, there exists unique g′ such that g = f (Q) ◦ g� and pg� = idX :

• The correspondences (_)∗ and (_) are functorial:

 The last equality can be depicted as follows:

P ⊑ (F
�
f)(Q).

id∗
Y
Q = Q, (g ◦ f)∗(Q) = f ∗(g∗Q),

idY (Q) = idQ, g ◦ f (Q) = gQ ◦ f (g∗Q).

460 New Generation Computing (2022) 40:403–465

123

The category � is called the total category of the fibration; ℂ is the base category.
The arrow fQ ∶ f ∗Q → Q is called the Cartesian lifting of f and Q. An arrow in � is
Cartesian if it coincides with fQ for some f and Q.

In the case where 𝔼
p
�����→ ℂ is induced by an indexed category F

𝔼
∶ ℂ

op → ����⊓
via Definition B.1, a Cartesian lifting is given by f ∗(Q) = (F

�
f)(Q).

In the current paper we focus on ����⊓-fibrations. In a (general) fibration, a fiber
�X is not just a preorder but a category, and this elicits a lot of technical subtleties.
Nevertheless, it should not be hard to generalize the current paper’s observations to
general, not necessarily ����⊓ -, fibrations (especially to the split ones). We shall
often denote a vertical arrow in � (i.e., an arrow inside a fiber) by ⊑.

Appendix 3: Codensity Characterization of Hausdorff pseudometric

Proposition C.1 Let (X, d) be a pseudometric space. For any S, T ⊆ X , we define two
functions

and

The values of two functions coincide.

Proof First, we show dc(S, T) ≥ dH(S, T) by contradiction.
Suppose it does not hold. Then, by definition, at least one of

and

is greater than dc(S, T) . We can assume the former is greater than dc(S, T) w.l.o.g.
Therefore, for some x0 ∈ S,

dH(S, T) = max

(
sup
x∈S

inf
y∈T

d(x, y), sup
y∈T

inf
x∈S

d(x, y)

)

dc(S, T) = sup
k∈����1((X,d),([0,1],dℝ))

d
ℝ

(
inf
x∈S

k(x), inf
y∈T

k(y)

)
.

sup
x∈S

inf
y∈T

d(x, y)

sup
y∈T

inf
x∈S

d(x, y)

dc(S, T) < inf
y∈T

d(x0, y)

461New Generation Computing (2022) 40:403–465

123

holds.
Now, since d(x0, _) is a non-expansive function by the triangle inequality, we have

However, since infx∈S d(x0, x) = 0 , we have dc(S, T) ≥ infy∈T d(x0, y) , which is a
contradiction.

Next, we show dc(S, T) ≤ dH(S, T) by contradiction.
Suppose dc(S, T) > dH(S, T) + 𝜀 for some 𝜀 > 0 . Then, for some non-expansive

k ∶ X → [0, 1],

holds.
W.l.o.g. we can assume infx∈S k(x) ≤ infy∈T k(y).
Thus, for some x0 ∈ S and y0 ∈ T satisfying k(x0) ≤ infx∈S k(x) + �∕5 and

k(y0) ≤ infy∈T k(y) + �∕5,

holds. Since

there exists some y1 ∈ T satisfying

However, we have k(x0) ≤ k(y0) + �∕5 ≤ k(y1) + 2�∕5 , so

and

holds.
Then,

holds, which is a contradiction. ◻

dc(S, T) ≥ d
ℝ

(
inf
x∈S

d(x0, x), inf
y∈T

d(x0, y)

)
.

d
ℝ

(
inf
x∈S

k(x), inf
y∈T

k(y)

)
> dH(S, T) + 𝜀

d
ℝ
(k(x0), k(y0)) > dH(S, T) + 3𝜀∕5

dH(S, T) ≥ sup
x∈S

inf
y∈T

d(x, y),

dH(S, T) ≥ d(x0, y1) ≥ d
ℝ
(k(x0), k(y1)).

d
ℝ
(k(x0), k(y1) + �∕5) ≥ d

ℝ
(k(x0), k(y0) + 2�∕5)

d
ℝ
(k(x0), k(y1)) + 3�∕5 ≥ d

ℝ
(k(x0), k(y0))

d
ℝ
(k(x0), k(y0))

≤ d
ℝ
(k(x0), k(y1)) + 3𝜀∕5

≤ dH(S, T) + 3𝜀∕5

< d
ℝ
(k(x0), k(y0))

462 New Generation Computing (2022) 40:403–465

123

Acknowledgements Y.K., S.K., C.E., and I.H. are supported by ERATO HASUO Metamathematics for
Systems Design Project (No. JPMJER1603), JST. Y.K. is supported by JSPS KAKENHI Grant Number
JP21J13334. S.K. and I.H. are supported by the JSPS-Inria Bilateral Joint Research Project CRECOGI,
and JST Moonshot R &D No. JPMJMS2033. I.H. is supported by Grants-in-Aid No. 15KT0012 and
15K11984, JSPS. B.K. is supported by the ERC under the European Union’s Horizon 2020 research and
innovation programme (ERC consolidator grant LIPA, agreement no. 683080). Part of the work was done
during N.H.’s internship, S.H.’s internship, and B.K.’s visit, at National Institute of Informatics, Tokyo,
Japan.

Funding Y.K., S.K., C.E., and I.H. are supported by ERATO HASUO Metamathematics for Sys-
tems Design Project (no. JPMJER1603), JST. Y.K. is supported by JSPS KAKENHI Grant Number
JP21J13334. S.K. and I.H. are supported by the JSPS-Inria Bilateral Joint Research Project CRECOGI,
and JST Moonshot R &D no. JPMJMS2033. I.H. is supported by Grants-in-Aid No. 15KT0012 and
15K11984, JSPS. B.K. is supported by the ERC under the European Union’s Horizon 2020 research and
innovation programme (ERC consolidator grant LIPA, agreement no. 683080).

Availability of data and materials Not applicable.

Code availability Not applicable.

Declarations

 Conflict of interest Not applicable.

References

 1. Park, D.: Concurrency and automata on infinite sequences. In: Proceedings of the 5th GI-Confer-
ence on Theoretical Computer Science, pp. 167–183. Springer, London (1981). http:// dl. acm. org/
citat ion. cfm? id= 647210. 720030

 2. Milner, R.: Communication and Concurrency. Prentice-Hall, Hoboken (1989)
 3. Sangiorgi, D., Rutten, J. (eds.): Advanced Topics in Bisimulation and Coinduction. Cambridge

Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge (2011). https://
doi. org/ 10. 1017/ CBO97 80511 792588

 4. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Inf. Comput. 94(1), 1–28 (1991)
 5. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labelled Markov processes.

Theor. Comput. Sci. 318(3), 323–354 (2004). https:// doi. org/ 10. 1016/j. tcs. 2003. 09. 013
 6. Hermida, C., Jacobs, B.: Structural induction and coinduction in a fibrational setting. Inf. Comput.

145(2), 107–152 (1998). https:// doi. org/ 10. 1006/ inco. 1998. 2725
 7. Hasuo, I., Kataoka, T., Cho, K.: Coinductive predicates and final sequences in a fibration. Math.

Struct. Comput. Sci. 28(4), 562–611 (2018). https:// doi. org/ 10. 1017/ S0960 12951 70000 56
 8. Baldan, P., Bonchi, F., Kerstan, H., König, B.: Coalgebraic behavioral metrics. Log. Methods Com-

put. Sci. (2018). https:// doi. org/ 10. 23638/ LMCS- 14(3: 20) 2018
 9. Bonchi, F., Petrisan, D., Pous, D., Rot, J.: Coinduction up-to in a fibrational setting. In: Henzinger,

T.A., Miller, D. (eds.) Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer
Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014, pp. 20–1209. ACM (2014).
https:// doi. org/ 10. 1145/ 26030 88. 26031 49

 10. König, B., Mika-Michalski, C.: (Metric) bisimulation games and real-valued modal logics for coal-
gebras. In: 29th International Conference on Concurrency Theory, CONCUR 2018, September 4-7,
2018, pp. 37–13717. Beijing, China (2018)

 11. Bonchi, F., König, B., Petrisan, D.: Up-to techniques for behavioural metrics via fibrations. In:
Schewe, S., Zhang, L. (eds.) 29th International Conference on Concurrency Theory, CONCUR
2018, September 4-7, 2018, Beijing, China. LIPIcs, vol. 118, pp. 17–11717. Schloss Dagstuhl-Leib-
niz-Zentrum fuer Informatik (2018). https:// doi. org/ 10. 4230/ LIPIcs. CONCUR. 2018. 17

http://dl.acm.org/citation.cfm?id=647210.720030
http://dl.acm.org/citation.cfm?id=647210.720030
https://doi.org/10.1017/CBO9780511792588
https://doi.org/10.1017/CBO9780511792588
https://doi.org/10.1016/j.tcs.2003.09.013
https://doi.org/10.1006/inco.1998.2725
https://doi.org/10.1017/S0960129517000056
https://doi.org/10.23638/LMCS-14(3:20)2018
https://doi.org/10.1145/2603088.2603149
https://doi.org/10.4230/LIPIcs.CONCUR.2018.17

463New Generation Computing (2022) 40:403–465

123

 12. Wißmann, T., Dubut, J., Katsumata, S., Hasuo, I.: Path category for free—open morphisms from
coalgebras with non-deterministic branching. CoRR (2018). arXiv: 1811. 12294 (To appear in Proc.
FoSSaCS 2019)

 13. Fijalkow, N., Klin, B., Panangaden, P.: Expressiveness of probabilistic modal logics, Revisited. In:
Procs. ICALP 2017. Leibniz International Proceedings in Informatics (LIPIcs), vol. 80, pp. 105–
110512 (2017)

 14. Katsumata, S., Sato, T., Uustalu, T.: Codensity lifting of monads and its dual. Log. Methods Com-
put. Sci. (2018). https:// doi. org/ 10. 23638/ LMCS- 14(4:6) 2018

 15. Sprunger, D., Katsumata, S., Dubut, J., Hasuo, I.: Fibrational bisimulations and quantitative reason-
ing. In: Cîrstea, C. (ed.) Coalgebraic Methods in Computer Science: 14th IFIP WG 1.3 International
Workshop, CMCS 2018, Colocated with ETAPS 2018, Thessaloniki, Greece, April 14-15, 2018,
Revised Selected Papers. Lecture Notes in Computer Science, vol. 11202, pp. 190–213. Springer
(2018). https:// doi. org/ 10. 1007/ 978-3- 030- 00389-0_ 11

 16. Desharnais, J., Laviolette, F., Tracol, M.: Approximate analysis of probabilistic processes: Logic,
simulation and games. In: 2008 Fifth International Conference on Quantitative Evaluation of Sys-
tems, pp. 264–273 (2008). https:// doi. org/ 10. 1109/ QEST. 2008. 42

 17. Komorida, Y., Katsumata, S., Hu, N., Klin, B., Hasuo, I.: Codensity games for bisimilarity. In: 34th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, Vancouver, BC, Can-
ada, June 24-27, 2019, pp. 1–13. IEEE (2019). https:// doi. org/ 10. 1109/ LICS. 2019. 87856 91

 18. Staton, S.: Relating coalgebraic notions of bisimulation. Log. Methods Comput. Sci. (2011). https://
doi. org/ 10. 2168/ LMCS- 7(1: 13) 2011

 19. Bakhtiari, Z., Hansen, H.H.: Bisimulation for weakly expressive coalgebraic modal logics. In: Bon-
chi, F., König, B. (eds.) 7th Conference on Algebra and Coalgebra in Computer Science (CALCO
2017). Leibniz International Proceedings in Informatics (LIPIcs), vol. 72, pp. 4–1416. Schloss Dag-
stuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2017). https:// doi. org/ 10. 4230/ LIPIcs.
CALCO. 2017.4. http:// drops. dagst uhl. de/ opus/ vollt exte/ 2017/ 8050

 20. Balle, B., Gourdeau, P., Panangaden, P.: Bisimulation Metrics for Weighted Automata. In: Chatzi-
giannakis, I., Indyk, P., Kuhn, F., Muscholl, A. (eds.) 44th International Colloquium on Automata,
Languages, and Programming (ICALP 2017). Leibniz International Proceedings in Informatics
(LIPIcs), vol. 80, pp. 103–110314. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany (2017). https:// doi. org/ 10. 4230/ LIPIcs. ICALP. 2017. 103. http:// drops. dagst uhl. de/ opus/
vollt exte/ 2017/ 7395

 21. Komorida, Y., Katsumata, S.-y., Kupke, C., Rot, J., Hasuo, I.: Expressivity of quantitative modal
logics : Categorical foundations via codensity and approximation. In: 2021 36th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), pp. 1–14 (2021). https:// doi. org/ 10. 1109/ LICS5
2264. 2021. 94706 56

 22. Joyal, A., Nielsen, M., Winskel, G.: Bisimulation from open maps. Inf. Comput. 127(2), 164–185
(1996)

 23. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theor. Comput. Sci. 249, 3–80 (2000)
 24. Jacobs, B.: Introduction to Coalgebra: Towards Mathematics of States and Observation. Cambridge

Tracts in Theoretical Computer Science, vol. 59. Cambridge University Press, Cambridge (2016).
https:// doi. org/ 10. 1017/ CBO97 81316 823187

 25. van Breugel, F., Mislove, M.W., Ouaknine, J., Worrell, J.: An intrinsic characterization of approxi-
mate probabilistic bisimilarity. In: Gordon, A.D. (ed.) Foundations of Software Science and Com-
putational Structures, 6th International Conference, FOSSACS 2003 Held as Part of the Joint Euro-
pean Conference on Theory and Practice of Software, ETAPS 2003, Warsaw, Poland, April 7-11,
2003, Proceedings. Lecture Notes in Computer Science, vol. 2620, pp. 200–215. Springer (2003).
https:// doi. org/ 10. 1007/3- 540- 36576-1_ 13

 26. Cuijpers, P.J.L., Reniers, M.A.: Topological (bi-)simulation. Electr. Notes Theor. Comput. Sci. 100,
49–64 (2004). https:// doi. org/ 10. 1016/j. entcs. 2004. 08. 017

 27. Baldan, P., König, B., Mika-Michalski, C., Padoan, T.: Fixpoint games on continuous lattices. Proc.
ACM Program. Lang. (2019). https:// doi. org/ 10. 1145/ 32903 39

 28. Tarski, A.: A lattice-theoretical fixpoint theorem and its applications. Pac. J. Math. 5(2), 285–309
(1955)

 29. Cousot, P., Cousot, R.: Constructive versions of Tarski’s fixed point theorems. Pac. J. Math. 82(1),
43–57 (1979)

 30. Wilke, T.: Alternating tree automata, parity games, and modal �-calculus. Bull. Belg. Math. Soc.
Simon Stevin 8(2), 359–391 (2001)

http://arxiv.org/abs/1811.12294
https://doi.org/10.23638/LMCS-14(4:6)2018
https://doi.org/10.1007/978-3-030-00389-0_11
https://doi.org/10.1109/QEST.2008.42
https://doi.org/10.1109/LICS.2019.8785691
https://doi.org/10.2168/LMCS-7(1:13)2011
https://doi.org/10.2168/LMCS-7(1:13)2011
https://doi.org/10.4230/LIPIcs.CALCO.2017.4
https://doi.org/10.4230/LIPIcs.CALCO.2017.4
http://drops.dagstuhl.de/opus/volltexte/2017/8050
https://doi.org/10.4230/LIPIcs.ICALP.2017.103
http://drops.dagstuhl.de/opus/volltexte/2017/7395
http://drops.dagstuhl.de/opus/volltexte/2017/7395
https://doi.org/10.1109/LICS52264.2021.9470656
https://doi.org/10.1109/LICS52264.2021.9470656
https://doi.org/10.1017/CBO9781316823187
https://doi.org/10.1007/3-540-36576-1_13
https://doi.org/10.1016/j.entcs.2004.08.017
https://doi.org/10.1145/3290339

464 New Generation Computing (2022) 40:403–465

123

 31. Ehlers, R., Moldovan, D.: Sparse positional strategies for safety games. In: Peled, D.A., Schewe, S.
(eds.) Proceedings First Workshop on Synthesis, SYNT 2012, Berkeley, California, USA, 7th and
8th July 2012. EPTCS, vol. 84, pp. 1–16 (2012). https:// doi. org/ 10. 4204/ EPTCS. 84.1

 32. Beyene, T.A., Chaudhuri, S., Popeea, C., Rybalchenko, A.: A constraint-based approach to solving
games on infinite graphs. In: Jagannathan, S., Sewell, P. (eds.) The 41st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’14, San Diego, CA, USA,
January 20-21, 2014, pp. 221–234. ACM (2014). https:// doi. org/ 10. 1145/ 25358 38. 25358 60

 33. Jacobs, B.: Categorical Logic and Type Theory. North Holland, Amsterdam (1999)
 34. Herrlich, H.: Topological functors. Gen. Topol. Appl. 4(2), 125–142 (1974). https:// doi. org/ 10.

1016/ 0016- 660X(74) 90016-6
 35. Adámek, J., Herrlich, H., Strecker, G.: Abstract and Concrete Categories. Wiley-Interscience, New

York (1990)
 36. Tix, R., Keimel, K., Plotkin, G.: Semantic domains for combining probability and non-determinism.

Electron. Notes Theor. Comput. Sci. 222, 3–99 (2009). https:// doi. org/ 10. 1016/j. entcs. 2009. 01. 002
 37. Hasuo, I.: Generic weakest precondition semantics from monads enriched with order. Theor. Com-

put. Sci. 604, 2–29 (2015). https:// doi. org/ 10. 1016/j. tcs. 2015. 03. 047
 38. Hino, W., Kobayashi, H., Hasuo, I., Jacobs, B.: Healthiness from duality. In: Grohe, M., Koskinen,

E., Shankar, N. (eds.) Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Com-
puter Science, LICS ’16, New York, NY, USA, July 5-8, 2016, pp. 682–691. ACM (2016)

 39. MacLane, S.: Categories for the Working Mathematician. Graduate Texts in Mathematics, vol. 5,
2nd edn. Springer, Berlin (1998)

 40. Blackburn, P., Rijke, M.D., Venema, Y.: Modal Logic. Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, Cambridge (2001). https:// doi. org/ 10. 1017/ CBO97 81107
050884

 41. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge University
Press, Cambridge (2002). https:// doi. org/ 10. 1017/ CBO97 80511 809088

 42. Vickers, S.: Topology Via Logic Tracts in Theoretical Computer Science, vol. 5. Cambridge Univer-
sity Press, Cambridge (1989)

 43. Schröder, L.: Expressivity of coalgebraic modal logic: the limits and beyond. Theor. Comput. Sci.
390(2–3), 230–247 (2008). https:// doi. org/ 10. 1016/j. tcs. 2007. 09. 023

 44. Klin, B.: The least fibred lifting and the expressivity of coalgebraic modal logic. In: Fiadeiro, J.L.,
Harman, N., Roggenbach, M., Rutten, J.J.M.M. (eds.) Algebra and Coalgebra in Computer Science:
First International Conference, CALCO 2005, Swansea, UK, September 3-6, 2005, Proceedings.
Lecture Notes in Computer Science, vol. 3629, pp. 247–262. Springer (2005). https:// doi. org/ 10.
1007/ 11548 133_ 16

 45. Adámek, J., Gumm, H.P., Trnková, V.: Presentation of set functors: a coalgebraic perspective. J.
Log. Comput. 20(5), 991–1015 (2010). https:// doi. org/ 10. 1093/ logcom/ exn090

 46. Pattinson, D.: Expressive logics for coalgebras via terminal sequence induction. Notre Dame J. For-
mal Log. 45(1), 19–33 (2004). https:// doi. org/ 10. 1305/ ndjfl/ 10941 55277

 47. Boreale, M.: Weighted bisimulation in linear algebraic form. In: Bravetti, M., Zavattaro, G. (eds.)
CONCUR 2009-Concurrency Theory, pp. 163–177. Springer, Berlin (2009)

 48. Conway, J.B.: A Course in Functional Analysis. Graduate Texts in Mathematics, vol. 96, 2nd edn.
Springer, Berlin (2007)

 49. Etessami, K., Wilke, T., Schuller, R.A.: Fair simulation relations, parity games, and state space
reduction for Büchi automata. SIAM J. Comput. 34(5), 1159–1175 (2005)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article
is solely governed by the terms of such publishing agreement and applicable law.

https://doi.org/10.4204/EPTCS.84.1
https://doi.org/10.1145/2535838.2535860
https://doi.org/10.1016/0016-660X(74)90016-6
https://doi.org/10.1016/0016-660X(74)90016-6
https://doi.org/10.1016/j.entcs.2009.01.002
https://doi.org/10.1016/j.tcs.2015.03.047
https://doi.org/10.1017/CBO9781107050884
https://doi.org/10.1017/CBO9781107050884
https://doi.org/10.1017/CBO9780511809088
https://doi.org/10.1016/j.tcs.2007.09.023
https://doi.org/10.1007/11548133_16
https://doi.org/10.1007/11548133_16
https://doi.org/10.1093/logcom/exn090
https://doi.org/10.1305/ndjfl/1094155277

465New Generation Computing (2022) 40:403–465

123

Authors and Affiliations

Yuichi Komorida1,2 · Shin‑ya Katsumata1 · Nick Hu3 · Bartek Klin3 ·
Samuel Humeau5 · Clovis Eberhart1,6 · Ichiro Hasuo1,2

 Nick Hu
 nick.hu@cs.ox.ac.uk

 Bartek Klin
 bartek.klin@cs.ox.ac.uk

 Samuel Humeau
 samuel.humeau@ens-lyon.fr

 Clovis Eberhart
 eberhart@nii.ac.jp

1 National Institute of Informatics, Tokyo, Japan
2 The Graduate University for Advanced Studies, SOKENDAI, Hayama, Kanagawa, Japan
3 University of Oxford, Oxford, UK
5 École Normale Supérieure de Lyon, Lyon, France
6 Japanese-French Laboratory for Informatics, Tokyo, Japan

http://orcid.org/0000-0002-3371-5243

	Codensity Games for Bisimilarity
	Abstract
	1 Introduction
	1.1 Bisimilarity Notions and Games
	1.1.1 Bisimilarity Games
	1.1.2 Games for Probabilistic Bisimilarity
	1.1.3 Games for Probabilistic Bisimulation Metric
	1.1.4 Towards a Unifying Framework

	1.2 A Codensity-Based Framework for Bisimilarity and Games
	1.3 Contributions
	1.4 Related Work
	1.5 Organization

	2 Preliminaries
	2.1 Safety Games
	2.2 -Fibrations
	2.2.1 Definition and Properties
	2.2.2 Notation, Terminology and Intuitions
	2.2.3 Examples

	3 Codensity Bisimilarity
	3.1 Codensity Lifting
	3.2 Codensity Bisimilarity
	3.3 Joint Codensity Bisimulation

	4 Untrimmed Games for Codensity Bisimilarity
	5 Trimmed Codensity Games for Bisimilarity
	5.1 Join-Dense Subsets of Fibers and Fibered Separators
	5.2 -Joint Codensity Bisimulation
	5.3 Trimmed Codensity Bisimilarity Games

	6 Multiple Observation Domains
	7 Transfer of Codensity Bisimilarities
	7.1 Transfer Result for One Shared Family of Parameters
	7.2 Transfer Result for Two Different Families of Parameters

	8 Examples
	8.1 -Coalgebras and Behavioral Equivalence
	8.2 -Coalgebras and -Bisimulation
	8.3 Deterministic Automata and the Language Topology
	8.4 Markov Chains and Bisimulation Metric
	8.5 Continuous State Markov Chains and Bisimulation Metric
	8.6 Real-Weighted Automata and Bisimulation Seminorm

	9 Conclusions and Future Work
	Acknowledgements
	References

