
Structural Operational Semantics
for Weighted Transition Systems

Bartek Klin?

Warsaw University, University of Cambridge

Abstract. Weighted transition systems are defined, parametrized by a
commutative monoid of weights. These systems are further understood as
coalgebras for functors of a specific form. A general rule format for the
SOS specification of weighted systems is obtained via the coalgebraic
approach of Turi and Plotkin. Previously known formats for labelled
transition systems (GSOS) and stochastic systems (SGSOS) appear as
special cases.

1 Introduction

In its simplest and most well-studied form [1], Structural Operational Seman-
tics (SOS) is a framework for inductive definition of transition systems labeled
with some entities that have no internal structure, such as channel names in
the process algebra CCS [2]. A rich theory of such SOS specifications have been
developed including, among many other results, rule formats such as GSOS [3].
These guarantee good properties of bisimilarity, the canonical notion of equiva-
lence on labeled transition systems.

However, already from the original paper that introduced SOS [4, 5] it is ap-
parent that for all but the simplest applications, one needs to consider systems
where transitions carry more information than simple, unstructured labels. To
model various aspects of computation, one endows transitions with information
on fresh and bound names [6], transition probabilities [7] or durations [8], mem-
ory states, environments and so on. Crucially, the additional structure put on
transitions influences the corresponding notion of process equivalence, so the
simple theory of SOS and bisimilarity cannot be directly applied to these ex-
tended specification frameworks.

An important advantage of studying the structure of labels and transitions
is that in a description of a rule format, or in a concrete specification of a sys-
tem, one can specify that structure only partially and leave inessential details for
further stages of specification. This allows for modularity in operational specifi-
cations, where different parts of a language can be specified independently, and
extending an already specified language requires only an instantiation of the par-
tially specified structure of transitions and labels, rather than its redefinition.
This idea was promoted by Peter Mosses in his Modular Structural Operational

? This work was supported by EPSRC grant EP/F042337/1.

Semantics (MSOS, [9, 10]), where transition labels are thought of as arrows in
categories, while the structure of these categories models various relevant aspects
of computation and can be partially abstracted away in concrete specifications.
MSOS achieves excellent modularity of SOS specifications that involve environ-
ments of various sorts, memory stores and communication channels. As a theory
of process equivalence for MSOS specifications is missing, it is less clear how
to meaningfully apply the framework for some aspects of computation such as
probability or time.

A more radical abstraction step is the approach of universal coalgebra [11].
There, the only assumption on the structure of transitions and labels is that
it corresponds to an endofunctor on some category (most often, the category
Set of sets and functions). In particular, the notions of a transition or label are
abstracted away in the coalgebraic framework. This approach provides a useful
theory of process equivalence based on coalgebraic bisimilarity. Moreover, in [12]
a general coalgebra-based theory of SOS specifications was developed. However,
that abstract GSOS theory is rather detached from the usual transition-and-label
presentations of SOS specifications, and it typically takes a considerable effort
to understand its instances for particular classes of systems (see [13–15]). Also,
the theory of modularity for abstract GSOS specification does not exist, apart
from some initial results of [16, 17].

This paper attempts to be a modest step in between the two approaches: the
coalgebraic framework is applied to a class of systems where one can meaningfully
speak of transitions and labels exhibiting a certain structure. More specifically,
we study weighted transition systems, where every labeled transition is associated
with a weight drawn from a commutative monoid W. The monoid structure de-
termines the way in which weights of alternative transitions combine. A uniform
coalgebraic treatment of weighted transition systems is provided, including a
concrete definition of W-weighted bisimulation, and a general well-behaved rule
format called W-GSOS, parametrized by the underlying monoid of weights, is de-
fined. Weighted transition systems generalize both ordinary LTS and stochastic
transition systems of [15], as well as other potentially useful kinds of systems.

After some algebraic preliminaries in Section 2, in Section 3 weighted tran-
sition systems are defined on a concrete level, without any use of coalgebraic
techniques. The abstract coalgebraic approach to processes and SOS is recalled
in Section 4, and weighted transition systems are presented as coalgebras in Sec-
tion 5. Section 6 contains the main technical result of this paper: a definition of
the W-GSOS format. In Section 7, it is shown how W-GSOS instantiates to the
previously known formats GSOS [3] and SGSOS [15], for specific choices of the
monoid W.

In Sections 4–6, the notions of functor and natural transformation are used.
For these and other basic categorical notions, consult the first chapters or any
handbook of category theory; [18] is the classical reference.

2

2 Preliminaries

A commutative monoid W = (W,+, 0) is a set equipped with a binary, as-
sociative, commutative operation called addition with a unit called zero. The
addition operation is extended in an obvious way to summation

∑
on arbitrary

finite (multi)sets of elements of W (in particular, the empty sum is defined to
be 0).

Given a commutative monoid W, a function β : W k →W is multiadditive if
for each i ∈ {1, . . . , k}:

β(w1, . . . , wi−1, 0, wi+1, . . . , wk) = 0,

β
(
w1, . . . , wi−1, wi + w′i, wi+1, . . . , wk

)
= β

(
w1, . . . , wi−1, wi, wi+1, . . . , wk

)
+ β

(
w1, . . . , wi−1, w

′
i, wi+1, . . . , wk

)
.

To save space when the wi are given by similar expressions, we shall often write
β (wi)i=1..k for β(w1, . . . , wk).

A good source of multiadditive functions are semirings (without 1), i.e. struc-
tures (W,+, 0, ·) such that:

– (W,+, 0) is a commutative monoid,
– (W, ·) is a semigroup (i.e., · is associative but not necessarily commutative),
– · distributes over +:
• w · (u + v) = (w · u) + (w · v)
• (u + v) · w = (u · w) + (v · w),

– 0 annihilates ·:
• 0 · w = w · 0 = 0.

Indeed in a semiring, for any v ∈W , the function βv : W k →W defined by:

βv (wi)i=1..k = v ·
k∏

i=1

wi

is multiadditive, where
∏

is the obvious extension of · to finite sequences of
elements of W .

For any set X, a function f : X → W is finitely supported if f(x) 6= 0 for
only finitely many x ∈ X. Such functions can be extended to arbitrary subsets:
for any C ⊆ X, define

f(C) =
∑
x∈C

f(x).

The sum is well defined if f is finitely supported. This notation extends to multi-
argument functions in an obvious way, i.e., g(x,C) =

∑
y∈C g(x, y) etc.

We shall use standard terminology and notation related to algebraic signa-
tures, terms and substitutions. A signature Σ is a set of operation symbols (also
denoted Σ) with an arity function ar : Σ → N. The set of Σ-terms with variables
from a set X is denoted TΣX; in particular, TΣ∅ denotes the set of closed terms.
For a function σ : X → Y , σ[−] : TΣX → TΣX denotes its extension to terms,
defined by variable substitution.

3

3 Weighted transition systems

Consider any commutative monoid W = (W, 0,+). Elements of W will be called
weights and denoted v, w,

Definition 1. A W-weighted labelled transition system (W-LTS in short) is a
triple (X, A, ρ) where

– X is a set of states (or processes),
– A is a set of labels,
– ρ : X ×A×X →W is called the weight function.

To support intuitions based on classical labelled transition systems (LTSs), we
shall write ρ(x a−→ y) for ρ(x, a, y), and to say that ρ(x a−→ y) = w we shall
write x

a,w−→ y.
The latter notational convention suggests that weights can be understood as

parts of labels. Indeed, W-LTSs labelled with A can be seen as ordinary LTSs
labelled with A×W , subject to a weight determinacy condition: for each x, y ∈ X

and a ∈ A, there is exactly one w ∈W for which x
a,w−→ y.

Definition 2. A W-LTSs (X, A, ρ) is image finite if for each x ∈ X and a ∈ A,
the set of y ∈ X such that ρ(x a−→ y) 6= 0 is finite.

In the following, we will restrict attention to image finite W-LTSs only.
In the definition of a W-LTSs, the monoid structure of W was not used in

any way. It is, however, crucial in the definition of weighted bisimulation:

Definition 3. Given a W-LTS (X, A, ρ), a W-bisimulation is an equivalence
relation R on X such that for each x, x′ ∈ X, xRx′ implies that for each a ∈ A
and each equivalence class C of R:∑

y∈C

ρ(x, a, y) =
∑
y∈C

ρ(x′, a, y).

Processes x, x′ ∈ X are W-bisimilar if they are related by some W-bisimulation.

Note how the commutative monoid structure of W, together with the image
finiteness assumption, ensures that the weights above are well-defined.

It is straightforward to see that W-weighted bisimulations are closed under
(transitive closures of) arbitrary unions, hence W-bisimilarity on any LTS is the
largest W-bisimulation on it.

Example 1. Consider the monoid of logical values 2 = {ff, tt}, with logical dis-
junction as + and ff as the zero element. 2-LTSs are exactly ordinary (image-
finite) LTSs, and 2-bisimulations are classical bisimulations (more precisely,
bisimulation equivalences).

4

Example 2. For R+
0 the monoid of nonnegative real numbers under addition,

R+
0 -LTSs are exactly rated transition systems used in [15] to model stochastic

systems, and R+
0 -bisimilarity is stochastic bisimilarity [15], called strong equiv-

alence in [19].

Example 3. The set R+∞ of positive real numbers augmented with positive infin-
ity∞, forms a commutative monoid with the minimum operation as addition and
∞ as the zero element. R+∞-LTSs themselves are almost the same as R+

0 -LTSs
of Example 2, with the only difference in the capability of making transitions
with weight 0 or ∞. However, the different monoid structures lead to differ-
ent notions of weighted bisimilarity and, as a result, to very different intuitions
about the roles of weights in these systems. Indeed, while in Example 2 rates
model the capability of a process to make a transition, with the idea that two
similar capabilities add up to a stronger one, here weights might correspond to
the cost of transitions, with the intuition that out of several similar possibilities,
a process will always choose that of the lowest cost.

4 Abstract GSOS

In [12] (see [20] for a more elementary introduction), Turi and Plotkin proposed
an abstract way of understanding well-behaved structural operational semantics
for systems of various kinds. There, behaviour of transition systems is modeled by
coalgebras, and their syntax by algebras. For example, image-finite LTSs labelled
with elements of A can be understood as functions h : X → (PωX)A, where Pω

is the finite powerset construction. More generally, for any covariant functor B
on the category Set of sets and functions, a B-coalgebra is a set X endowed
with a function h : X → BX. A B-coalgebra morphism from a h : X → BX
to g : Y → BY is a function f : X → Y such that g ◦ f = Bf ◦ h. The kernel
relations of coalgebra morphisms are called cocongruences on their domains.
Processes x, y ∈ X are observationally equivalent with respect to h : X → BX
if they are related by a cocongruence on h. For more information about the
coalgebraic approach to process theory, see [11].

More traditionally, process syntax is modeled via algebras for endofunctors.
Every algebraic signature Σ corresponds to a functor ΣX =

∐
f∈Σ Xar(f) on

Set, in the sense that a model for the signature is exactly an algebra for the
functor, i.e., a set X and a function g : ΣX → X. The set of Σ-terms with
variables from a set X is denoted TΣX. In particular, TΣ∅ is the set of closed
terms over Σ; it admits an obvious algebra structure a : ΣTΣ∅ → TΣ∅ for
the functor corresponding to the signature. This is the initial Σ-algebra. The
construction TΣ is also a functor, called the free monad over Σ.

In [12], Turi and Plotkin observed (a full proof was provided later by Bar-
tels [13]), that operational LTS specifications in the well-known image finite
GSOS format [3] are in an essentially one-to-one correspondence with distribu-
tive laws, i.e., natural transformations of the type

λ : Σ(Id×B) =⇒ BTΣ (1)

5

where B = (Pω−)A is the behaviour functor used for modeling LTSs, Σ is the
functor corresponding to the given signature, and TΣ is the free monad over
Σ. Moreover, any λ as above gives rise to a B-coalgebra structure hλ on TΣ0,
defined by a “structural recursion theorem” (see [12] for details) as the only
function hλ : TΣ0→ BTΣ0 such that:

hλ ◦ a = Ba] ◦ λX ◦Σ〈id, hλ〉, (2)

where a] : TΣTΣ∅ → TΣ∅ is the inductive extension of a.
The fact that bisimilarity on LTSs induced from GSOS specifications is guar-

anteed to be a congruence, can be proved at the level of coalgebras and distribu-
tive laws:

Theorem 1 ([12], Cor. 7.5). Assume B has a final coalgebra. For any λ as
in (1), observational equivalence on hλ : TΣ∅ → BTΣ∅ is a congruence on TΣ∅.

Based on this result, the search for congruence formats for weighted transition
systems should begin from understanding them as coalgebras.

5 Weighted transition systems as coalgebras

As before, we start with a commutative monoid W = (W, 0,+). For any set X,
a function φ : X → W is finitely supported if φ(x) 6= 0 for only finitely many
x ∈ X. Let FWX denote the set of all finitely supported functions from X to W .
This extends to an endofunctor FW on the category Set of sets and functions,
with the action on functions defined by:

FWf(φ)(y) =
∑

x∈
←−
f (y)

φ(x)

for any f : X → Y , φ ∈ FWX and y ∈ Y (here and in the following,
←−
f (y) =

{x ∈ X | f(x) = y}). It is easy to see that FWf(φ) is finitely supported if φ is
so, and that FW preserves identities and function composition.

Proposition 1. For any W, and any set A, coalgebras for the functor (FW−)A

are in one-to-one correspondence with W-LTSs labelled with A.

Proof. Any W-LTS (X, A, ρ) determines a coalgebra h : X → (FWX)A by
h(x)(a)(y) = ρ(x a−→ y). Image-finiteness of (X, A, ρ) means exactly that h(x)(a)
is finitely supported. This correspondence is bijective. ut

This coalgebraic understanding is justified by the corresponding treatment
of weighted bisimilarity:

Proposition 2. For any W-LTS (X, A, ρ), an equivalence relation on X is a W-
bisimulation if and only if it is the kernel relation of a coalgebra morphism from
the corresponding FW-coalgebra. As a corollary, two processes are W-bisimilar
if and only if they are observationally equivalent.

6

Proof. See Appendix A. ut

Remark 1. See Appendix B for an explanation as to why observational equiva-
lence is used here instead of the approach of coalgebraic bisimilarity, based on
spans of coalgebra morphisms.

To apply the general machinery of bialgebraic operational semantics, the
following technical result is needed:

Proposition 3. The functor (FW−)A admits a final coalgebra.

Proof. As proved in [21], it is enough to show that FW is finitary, i.e. that for
any set X and any x ∈ FWX there is a finite subset Y ⊆ X such that x arises
as an element of FWY . But this easily follows from the assumption that FWX
only contains finitely supported functions. ut

6 Weighted GSOS

From Section 4 it follows that as well-behaved compositional specifications of
W-LTSs, one may take some syntactic entities (for example, sets of rules) that
define natural transformations:

λ : Σ(Id× (FW−)A) =⇒ (FWTΣ−)A (3)

where Σ is the process syntax signature endofunctor and TΣ is the free monad
over Σ. Moreover, for any such syntactic entity, weighted bisimilarity is a con-
gruence for the WTS obtained by from the corresponding λ by the inductive
definition (2).

For W = 2 (see Example 1), image-finite GSOS specifications [3] define (3),
as noticed in [12] and proved in [13]. Moreover, every natural transformation of
type (3) arises from a GSOS specification. A similar full characterisation result,
based on earlier developments of [13], was proved in [15] for W = R+

0 , where
a format called SGSOS (Stochastic GSOS) was proposed as a way to specify
rated transition systems (see Example 2) well-behaved with respect to stochastic
bisimilarity.

We shall now show a rule format, which we call W-GSOS, parametrized by a
commutative monoid W, and see how specifications that conform to the format
give rise to natural transformations of type (3). Both GSOS and SGSOS shall
appear as special cases of this general format, as will be seen in Section 7.

Note, however, that we do not claim that every natural transformation of
type (3) can be presented by a W-GSOS specification for every monoid W. In
this sense, our results are weaker than those of [13] and [15], where full charac-
terisation results for specific monoids were proved; nevertheless, we still provide
a general congruence format for transition systems weighted by an arbitrary
monoid.

In the following, fix an arbitrary commutative monoid W = (W, 0,+).

7

Definition 4 (W-GSOS rule). A W-GSOS rule for a signature Σ and a set
A of labels is an expression of the form:{

xi
a / wa,i

}
a∈Di,1≤i≤n

〈
xij

bj ,uj . yj

〉
1≤j≤k

f(x1, . . . , xn) c,β(u1,...,uk)
. t

(4)

where
– f ∈ Σ and ar(f) = n, with n, k ∈ N, and {i1, . . . , ik} ⊆ {1, . . . , n};
– xi and yj are all distinct variables taken from a fixed countably infinite set

Ξ, and no other variables appear in t ∈ TΣΞ;
moreover, all variables yj appear in t;

– Di ⊆ A;
– wa,i ∈W ;
– b1, b2, . . . , bk, c ∈ A;
– u1, . . . , uk are pairwise distinct weight variables taken from a fixed countably

infinite set Υ ;
– β : W k →W is a multiadditive function on W.

The set of variables from Ξ present in a rule R is denoted ΞR.

We now provide some terminology, notation and intuitions to aid the under-
standing of W-GSOS rules. The expression under the horizontal line in a rule
is called the conclusion. The left side of the conclusion is called the source of a
rule, and the right side is the target. Expressions above the horizontal line are
premises. Each rule has premises of two kinds: total weight premises, depicted
with / arrows, and transition premises, where . arrows are used.

Total weight premises form a set, i.e., their order in a rule is irrelevant. The set
of total weight premises in a rule defines a partial function from {1, . . . , n}×A to
W , and the sets Di describe its domain of definition for each i = 1..n. Intuitively,
a total weight premise x a / w is satisfied for a process x in a W-LTS, if the
sum of weights of all a-labelled transitions from x equals w.

Transition premises in a rule form a sequence, i.e., their order is relevant.
Note that the uj in transition premises are not fixed weights (elements of W),
but variables. The meaning of a premise x

b,u
. y applied to a source process x

and a target process y in a W-LTS is to assign the transition weight ρ(x b−→ y)
to the variable u, used then as an argument in the function β mentioned in the
rule conclusion. This process is formally described in Definition 6 below.

Weight variables in transition premises are somewhat redundant in a W-
GSOS rule. Indeed, since each transition premise must come with a fresh weight
variable, and the variables are then used only as arguments of β in an order
prescribed by the order of premises, there is essentially only one way (up to
renaming of weight variables) of putting them in any given rule. For brevity
of notation, one can therefore omit weight variables altogether and write down
W-GSOS rules as:{

xi
a / wa,i

}
a∈Di,1≤i≤n

〈
xij

bj . yj

〉
1≤j≤k

f(x1, . . . , xn) c,β
. t

8

The former, full notation is useful as an intuitive reminder of where arguments of
β come from; once one gets more familiar with the process of inducing W-LTSs
from rules, the latter notation offers some welcome brevity.

We will be interested in collections of W-GSOS rules subject to a finiteness
condition:

Definition 5 (W-GSOS specification). Given a signature Σ and a set A
of labels, a W-GSOS specification Λ is a set of W-GSOS rules such that only
finitely many rules share the same operator in the source (f), the same label
in the conclusion (c), and the same partial function from {1, . . . , n} × A to W
arising from their sets of total weight premises.

To complete the definition of W-GSOS, we must show how W-GSOS speci-
fications induce W-LTSs.

Definition 6 (induced W-LTS). The W-LTS induced by a W-GSOS speci-
fication Λ over a signature Σ and a set of labels A, has the set TΣ∅ of closed
Σ-terms as states and A as the set of labels. The weight function ρ : TΣ∅×A×
TΣ∅ →W is defined by structural induction on the first argument. To this end,
consider a process s = f(s1, . . . , sn) ∈ TΣ∅ and assume that all ρ(si

a−→ t) have
been determined for all a ∈ A and t ∈ TΣ∅. For a fixed label c ∈ C and a process
t ∈ TΣ∅, define ρ(s c−→ t) as follows.

We shall say that a rule R as in (4) fits s
c−→ t if all of the following hold:

(i) the operator in the source of R is f,
(ii) the label in the conclusion of R is c,
(iii) for each total weight premise xi

a / w in R, there is ρ(si, a, TΣ∅) = w (i.e.
total weight premises are satisfied),

(iv) there exists a substitution σ : ΞR → TΣ∅ such that:
• σxi = si for i = 1, . . . , n, and
• σ[t] = t.

It is important to note that if R fits s
c−→ t, then the fitting substitution

σ is unique. Indeed, the action of σ on the xi is explicitly defined by σxi = si,
and the action on the yj is determined by the condition σ[t] = t. This is easily
proved by structural induction on t, using the assumption that all variables yj

are present in t.
If a rule R fits s

c−→ t, its contribution to the weight of s
c−→ t is a value in

W calculated by:
γ(R) = β〈ρ(sij

, bj , σyj)〉j=1..k.

We then define ρ(s c−→ t) as the sum, taken in W, of contributions of all rules in Λ

that fit s
c−→ t. The sum exists thanks to the finiteness condition in Definition 5.

Theorem 2. Every W-GSOS specification Λ gives rise to a natural transfor-
mation λ as in (3). Moreover, the coalgebra induced from λ according to (2),
coincides with the W-LTS induced from Λ according to Definition 6.

9

Proof. See Appendix C.

Corollary 1. For any W-GSOS specification Λ, W-bisimilarity is a congruence
on the W-LTS induced by Λ.

Proof. Use Theorems 1 and 2 with Propositions 2 and 3.

7 Examples

7.1 GSOS as 2-GSOS

To relate W-GSOS to a more familiar format, we shall now see what W-GSOS
specifications look like for W = 2 (see Example 1).

First, there are only two kinds of total weight premises to consider: ones of
the form x a / tt that require some a-transitions from a process corresponding
to x to exist, and ones of the form x a / ff, that forbid such transitions. One
can rewrite the former as x a ., and the latter as x a/..

Next, it is easy to see that for any k ∈ N, there are only two multiadditive
functions β : {tt, ff}k → {tt, ff} on the monoid 2. Indeed, by multiadditiv-
ity axioms, β is fully determined by its value on the all-tt vector. Assigning
β(tt, . . . , tt) = tt or β(tt, . . . , tt) = ff one obtains respectively the k-ary
conjunction or the constantly ff function as β. It is easy to check that both
are multiadditive. However, a rule with the constantly ff function as β cannot
make a nonzero contribution to any transition in the induced 2-LTS, therefore
any 2-GSOS specification does not change its meaning if all such rules are re-
moved from it. One can therefore safely restrict attention to rules with logical
conjunction as β; this means that β can be left implicit in the description of
each rule. Moreover, since conjunction is commutative, the order of transition
premises in 2-GSOS rules is irrelevant.

The above observations let one write 2-GSOS rules in the form:{
xi

a .
}

a∈Ei,1≤i≤n

{
xi

a/.
}

a∈Bi,1≤i≤n

{
xi

bij . yij

}
1≤i≤n,1≤j≤ki

f(x1, . . . , xn) c . t
(5)

where

– f ∈ Σ and ar(f) = n, with n, ki ∈ N;
– xi and yij are all distinct variables and no other variables appear in t ∈ TΣΞ;

moreover, all variables yij appear in t;
– Ei, Bi ⊆ A and bij

, c ∈ A.

The induction process described in Definition 6 specializes to the following
procedure. For a process s = f(s1, . . . , sn) ∈ TΣ , assume that all outgoing tran-
sitions from the si have been determined. For a fixed label c ∈ C and a process
t ∈ TΣ∅, determine whether the transition s

c−→ t is present, as follows.
A rule R as in (5) fits s

c−→ t if all of the following hold:

10

– the operator in the source of R is f,
– the label in the conclusion of R is c,
– for each premise xi

a . in R, there is si
a−→ u for some u, and for each

premise xi
a/. there is no transition si

a−→ u for any process u,
– there exists a substitution σ : ΞR → TΣ∅ such that:
• σxi = si for i = 1, . . . , n, and
• σ[t] = t.

If a rule R fits s
c−→ t, it contributes the transition s

c−→ t to the induced

system if and only if for each premise xi
bij . yij in R, the transition si

bij−→ σyij

is present. (The universal quantification in the previous sentence corresponds to
the use of conjunction as β.) Then the transition s

c−→ t is present in the induced
system if any rule contributes it. (The existential quantification here corresponds
to disjunction being the operator in the underlying monoid.)

It is clear that both the format (5) and the associated induction procedure
are almost exactly those for the well-known GSOS format [3, 1]; the only differ-
ence in rule presentation is than in GSOS, premises x a . are equipped with
dummy target variables, and consequently the condition that all target variables
of transition premises are present in t, is dropped. It is not difficult to see that
this makes no semantic difference in this case.

7.2 SGSOS rules as R+
0 -GSOS rules

It is even easier to see that SGSOS specifications, defined in [15] as a way to
specify Markovian transition systems, conform to the R+

0 -GSOS format, for R+
0

the monoid of nonnegative real numbers under addition (see Example 2). An
SGSOS rule is an expression of the form:{

xi
a@wai .

}
a∈Di,1≤i≤n

{
xij

bj . yj

}
1≤j≤k

f(x1, . . . , xn) c,w
. t

, (6)

subject to conditions similar to that of W-GSOS (4); the only differences are the
following:

(i) total weight premises are denoted x a@w . in SGSOS rather than x a / w
in R+

0 -GSOS,
(ii) transition premises in SGSOS form a set rather than a sequence, i.e., their

order is disregarded,
(iii) in the SGSOS rule conclusion, a non-zero weight w ∈ R+ is used rather than

a multiadditive function β,
(iv) in SGSOS it is required that bij

∈ Dij
for each j = 1, . . . , k; in other words,

each transition premise has a corresponding total weight premise, and more-
over the corresponding total weight wbj ,ij is required to be non-zero.

11

The induction procedure of a stochastic transition system from an SGSOS
specification is similar to that given in Definition 6. The notion of a fitting rule
is exactly the same, but the contribution of a rule is defined a bit differently:

γ(R) = w ·
k∏

j=1

ρ(sij

bj−→ σyj)
wbj ,ij

.

Any SGSOS rule, written down as in (6), can be encoded as a R+
0 -GSOS

rule: {
xi

a / wa,i

}
a∈Di,1≤i≤n

〈
xij

bj . yj

〉
1≤j≤k

f(x1, . . . , xn) c,β
. t

(7)

with transition premises arranged in an arbitrary order, and with β : (R+
0)k →

R+
0 defined by:

β(w1, . . . , wk) =
w∏k

j=1 wbj ,ij

·
k∏

j=1

wj .

The numbers wbj ,ij
are fixed, and the division is well-defined, by the above

requirement (iv) on SGSOS rules. Since β is commutative, the order of transition
premises can be chosen arbitrarily.

7.3 R+∞-GSOS

The appearance of W-GSOS rules does not depend on the monoid structure of W
apart from the choice of functions β, so R+∞-GSOS and R+

0 -GSOS specifications
look almost the same. Note that for the monoid R+∞ (see Example 3), where
the minimum operation is taken as addition, a function β is multiadditive if and
only if it is monotonic and preserves ∞, i.e. β(w1, . . . , wn) =∞ whenever some
wi =∞. As a result, R+∞-GSOS rules look as in (4), with the requirement that
all wa,i ∈ R+∞ and β is a monotonic, ∞-preserving function.

This rule format allows for SOS definition of several interesting operators
aimed at compositional specification of cost-oriented transition systems. For ex-
ample, a unary prefixing operator and a binary nondeterministic choice operator,
with syntax given by:

P ::= nil | (a,w).P | P + P (a ∈ A,w ∈ R+)

can be defined by rules:

(a,w).x a,w
. x

x
a,u

. x′

x + y
a,u

. x′
y

a,u
. y′

x + y
a,u

. y′

where in the first rule w represents the function constant at w, and in the
other two rules the identity function is taken for β. By Definition 6 applied to
W = R+∞, contributions of different rules to single transitions are combined

12

using the minimum operation. As a result, for example, the process (a.2).nil+
(a, 3).nil is R+∞-bisimilar to (a.2).nil, which corresponds to the intuition that
nondeterministic processes always choose the lowest possible cost of transition.

Other versions of nondeterministic composition, where the process of resolv-
ing a nondeterministic choice is associated with its own internal cost, can also
be modeled. For example, a binary operator 3+5 is defined by rules:

x
a,u

. x′

x 3+5 y
a,u+3

. x′

y
a,u

. y′

x 3+5 y
a,u+5

. y′

Here, choosing the left summand of nondeterministic choice incurs a lower cost.
Various ways of synchronization are also possible. For example, one can add

cost information to the well-known CCS communication rule for a binary parallel
composition operator ||, as in:

x
a,u

. x′ y
a,v

. y′

x||y τ,u+v
. x′||y′

which can model a situation where two processes use a common resource during
synchronization, so that their costs of single transitions are added together.
Another option is:

x
a,u

. x′ y
a,v

. y′

x||y τ,max(u,v)
. x′||y′

where, intuitively, the two processes do not compete for a shared resource. Any
operation can be used for weight combination here, as long as it is monotonic
and preserves ∞.

Additional flexibility is provided by total weight premises of W-GSOS, which
can be used here to check the minimal weight among all transition originating
in a given process. For example, for a weighted version of a priority operator,
one might define a unary operator ∂ab by taking rules:

x a / w x b / v x
a,u

. x′

∂ab(x)
a,u

. ∂ab(x′)
x a / v x b / w x

b,u
. x′

∂ab(x)
b,u

. ∂ab(x′)

for each w ≤ v ∈ R+∞. The resulting set of rules is uncountable, but it satisfies
the finiteness condition of Definition 5. The operator defined by these rules
preserves all a-labeled transitions if the minimal weight of an a-labeled outgoing
transition is not bigger than the minimal weight of a b-labeled one, and vice
versa.

All these operators conform to the R+∞-GSOS format, so compositionality
of R+∞-weighted bisimilarity is immediately guaranteed for them.

8 Conclusions and future work

Several research directions are left open here. First of all, some interesting kinds
of transition systems do not exactly fit in our framework, although they seem

13

quite close to it. For example, reactive probabilistic transition systems [7, 22]
are almost like R+

0 -LTSs of Example 2, except for the requirement that for each
process P and label a, weights of all a-labelled transitions from P add up to 1.

This motivates the study of constrained weighted transition systems, i.e.,
coalgebras for functors FV

W (where V ⊆W is the constraint), defined on sets by:

FV
WX =

{
φ ∈ FWX |

∑
x∈X

φ(x) ∈ V
}

and as FW on functions. For example, the probability distribution functor used in
coalgebraic modeling of probabilistic systems is naturally isomorphic to F{0,1}

R+
0

,

and the subprobability distribution functor to F [0,1]

R+
0

. Also various versions of
deterministic systems can be modeled as coalgebras for suitable constrained
weighted functors. However, a characterization of abstract GSOS natural trans-
formations in terms of rule formats remains to be provided for bounded func-
tors. We conjecture that the formats can be obtained by subjecting their un-
constrained counterparts to additional constraint conditions on (collections of)
multiadditive functions β used in rule conclusions.

Furthermore, contrary to previous developments on GSOS [13] and SG-
SOS [15] formats, we do not claim that W-GSOS fully characterizes abstract
GSOS for W-LTSs, i.e. that every natural transformation as in (3) arises from
a W-GSOS specification. We conjecture that this is not the case in general, and
a characterization of those monoids W for which the full characterization does
hold is currently missing.

Another promising topic of future work is the incorporation of commutative
monoid morphisms as a means of inducing morphisms between weighted GSOS
specifications. The general goal here is a modular framework for the specification
of weighted systems, inspired by MSOS [9, 10].

Last but not least, modal logics for reasoning about weighted systems should
be developed along the lines of coalgebraic modal logic.

References

1. Aceto, L., Fokkink, W.J., Verhoef, C.: Structural operational semantics. In
Bergstra, J.A., Ponse, A., Smolka, S., eds.: Handbook of Process Algebra. Elsevier
(2002) 197–292

2. Milner, R.: Communication and Concurrency. Prentice Hall (1988)

3. Bloom, B., Istrail, S., Meyer, A.: Bisimulation can’t be traced. Journal of the
ACM 42 (1995) 232–268

4. Plotkin, G.D.: A structural approach to operational semantics. DAIMI Report
FN-19, Computer Science Department, Aarhus University (1981)

5. Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic
and Algebraic Programming 60-61 (2004) 17–139

6. Sangiorgi, D., Walker, D.: The π-Calculus: a Theory of Mobile Processes. Cam-
bridge University Press (2003)

14

7. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. Information
and Computation 94 (1991) 1–28

8. Moller, F., Tofts, C.: A temporal calculus of communicating systems. In: Proc.
CONCUR’90. Volume 458 of LNCS. (1990) 401–415

9. Mosses, P.D.: Foundations of Modular SOS. In: Proc. MFCS’99. Volume 1672 of
LNCS. (1999) 70–80

10. Mosses, P.D.: Modular structural operational semantics. Journal of Logic and
Algebraic Programming 60-61 (2004) 195–228

11. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theoretical Computer
Science 249 (2000) 3–80

12. Turi, D., Plotkin, G.D.: Towards a mathematical operational semantics. In: Proc.
LICS’97. IEEE Computer Society Press (1997) 280–291

13. Bartels, F.: On Generalised Coinduction and Probabilistic Specification Formats.
PhD dissertation, CWI, Amsterdam (2004)

14. Kick, M.: Rule formats for timed processes. In: Proc. CMCIM’02. Volume 68 of
ENTCS., Elsevier (2002) 12–31

15. Klin, B., Sassone, V.: Structural operational semantic for stochastic systems. In:
Proc. FOSSACS’08. Volume 4962 of LNCS. (2008) 428–442

16. Kick, M., Power, J., Simpson, A.: Coalgebraic semantics for timed processes.
Information and Computation 204 (2006) 588–609

17. Lenisa, M., Power, J., Watanabe, H.: Category theory for operational semantics.
Theoretical Computer Science 327(1-2) (2004) 135–154

18. Mac Lane, S.: Categories for the Working Mathematician. Second edn. Springer
(1998)

19. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge
University Press (1996)

20. Klin, B.: Bialgebraic methods and modal logic in structural operational semantics.
Information and Computation 207 (2009) 237–257

21. Barr, M.: Terminal coalgebras in well-founded set theory. Theoretical Computer
Science 114 (1993) 299–315

22. de Vink, E.P., Rutten, J.J.M.M.: Bisimulation for probabilistic transition systems:
A coalgebraic approach. Theoretical Computer Science 221(1-2) (1999) 271–293

23. Moss, L.: Coalgebraic logic. Annals of Pure and Applied Logic 96 (1999) 177–317

A Proof of Proposition 2.

For W-LTSs (X, A, ρ) and (Y, A, θ), it is easy to check that a function f : X → Y
is a morphism between the corresponding coalgebras if and only if, for each
x ∈ X, a ∈ A and y ∈ Y ,

θ(f(x), a, y) = ρ(x, a,
←−
f (y)).

We show that a relation R is a W-bisimulation if and only if it is a kernel relation
of such a morphism.

In the “if” direction, assume x, x′ ∈ X such that f(x) = f(x′) for a coal-
gebra morphism f . Note that equivalence classes of the kernel relation ker(f)
correspond bijectively to elements of Y in the image of f : for each equivalence
class C there is a y ∈ Y such that C =

←−
f (y). This implies that

ρ(x, a, C) = θ(f(x), a, y) = θ(f(x′), a, y) = ρ(x′, a, C)

15

hence ker(f) is a W-bisimulation.
In the ”only if” direction, given a W-bisimulation R on (X, A, ρ), define a

W-LTS on the set of R-equivalence classes (X/R,A, θ) by:

θ(C, a,C ′) = ρ(x, a, C ′);

this is well-defined since, by Definition 3, ρ(x, a, C ′) = ρ(y, a, C ′) for any x, y ∈
C. Furthermore, the quotient map [−]R : X → X/R is a coalgebra morphism,
since

←−−
[−]R(C) = C. ut

B FW and weak pullback preservation

When coalgebras for a functor B are considered, it is often assumed that B
preserves weak pullbacks (see [11] for more details). Several useful results fol-
low from this assumption. In particular, the notion of observational equivalence
adopted in this paper coincides with another canonical notion, that of coalge-
braic bisimulation, defined abstractly by means of spans of coalgebra morphisms.
Also, the abstract GSOS machinery works for coalgebraic bisimulation only if
the behaviour functor involved preserves weak pullbacks.

It turns out that our behaviour functors do not preserve weak pullbacks in
general, therefore we choose to adopt the notion of observational equivalence,
encouraged by Proposition 2.

We shall now see a characterization of those functors FW that do preserve
weak pullbacks, in terms of the underlying monoids.

Inspired by Theorem 3.6 in [23], we say that a commutative monoid W has
the row-column property if for every two vectors (wi)i=1..n, (vj)j=1..m of ele-
ments of W such that

∑n
i=1 wi =

∑m
j=1 vj , there exists a rectangular matrix

(uij)i=1..n,j=1..m of elements of W such that
∑m

j=1 uij = wi for each i = 1..n

and
∑n

i=1 uij = vj for each j = 1..m, as illustrated below:

u11 u12 · · · u1m w1

u21 u22 · · · u2m w2

...
...

. . .
...

...
un1 un2 · · · unm wn

v1 v2 · · · vm

∑
.

Proposition 4. FW preserves weak pullbacks if and only if W has the row-
column property.

Proof. The reasoning in Example 3.5 in [23] works here without any essential
change. ut

All monoids used in examples throughout this paper have the row-column
property. For a simple example of one that does not have it, consider the four-
element monoid {0, a, b, 1}, with 0 as the zero element and with addition defined

16

by:
+ 0 a b 1
0 0 a b 1
a a 1 1 1
b b 1 1 1
1 1 1 1 1

and check that the property fails for n = m = 2 and w1 = w2 = a, v1 = v2 = b.

C Proof of Theorem 2

First we shall see how a single W-GSOS rule defines a natural transformation
λ as in (3). For a W-GSOS rule R, and for any set X, consider an arbitrary
s = f(x1, δ1, . . . , xn, δn) ∈ Σ(X × (FWX)A). To define λX(s) ∈ (FWTΣX)A,
pick an arbitrary c ∈ A and t ∈ TΣX and define λX(s)(c)(t) ∈W as follows.

Say that R fits s, c, t if:

(i) the operator in the source of R is f,
(ii) the label in the conclusion of R is c,
(iii) for each total weight premise xi

a / w in R, there is
∑

y∈X δi(a)(y) = w,
(iv) there exists a substitution σ : ΞR → X such that:

• σxi = xi for i = 1, . . . , n, and
• σ[t] = t.

Then define:

λX(s)(c)(t) =
{

β〈δij (bj)(σyj)〉j=1..k if R fits s, c, t with σ,
0 otherwise.

We shall now prove that λ is natural in X. To this end, for any function g : X →
Z, any s = f(x1, δ1, . . . , xn, δn) ∈ Σ(X × (FWX)A)), c ∈ A and t ∈ TΣZ, one
must check that:

(FWTΣg)A(λX(s))(c)(t) = λY (Σ(g × (FWg)A)(s))(c)(t).

The left side of this equation is:

(∗) =
∑

r∈TΣX
s.t.g[r]=t

λX(s)(c)(r)

and the right side:

(∗∗) =
{

β〈(FWg)A(δij
)(bj)(θyj)〉j=1..k if R fits g[s], c, t with θ : ΞR → Z,
0 otherwise.

17

The expression in the first clause of (**) can be further rewritten as:

β
〈
(FWg)A(δij

)(bj)(θyj)
〉

j=1..k
= β

〈 ∑
y∈
←−
f (θyj)

δij
(bj)(y)

〉
j=1..k

=

=
∑

y1,...,yk∈X
s.t.gyj=θyj

β〈δij (bj)(yj)〉j=1..k;

the second equality makes use of the multiadditivity of β.
Note now that if any of the conditions (i)-(iii) above fails, then R does not

fit g[s], c, t, and it does not fit s, c, r for any r such that g[r] = t. If this is the
case, both (*) and (**) equal 0 and the naturality equation holds, therefore it
can be safely assumed that conditions (i)-(iii) hold. With this assumption, (**)
can be rewritten as:

(∗∗) =

{∑
y1,...,yk∈X
s.t.gyj=θyj

β〈δij (bj)(yj)〉j=1..k if ∃θ : ΞR → Z. θxi = gxi, θ[t] = t

0 otherwise.

Recall that θ above, if it exists, is unique. Now if θ exists, then tuples y1, . . . , yk ∈
X such that gyj = θyj are in bijective correspondence with substitutions σ :
ΞR → X such that σxi = xi and g[σ[t]] = t. Moreover, the existence of such σ
implies that an appropriate θ exists (take θ = g ◦σ). As a result, we can rewrite:

(∗∗) =
∑

σ:ΞR→X
s.t.σxi=xi,
g[σ[t]]=t

β〈δij (bj)(σyj)〉j=1..k

Obviously, a substitution σ as above yields a term r ∈ TΣX such that g[r] = t
(take r = σ[t]). Moreover, for every r ∈ TΣX such that R fits s, c, r with a
substitution σ, the substitution satisfies the condition in the sum above. As
a result, now dropping the assumption that conditions (i)-(iii) hold, we may
rewrite:

(∗∗) =
∑

r∈TΣX
s.t.g[r]=t,
R fits s,c,r

β〈δij
(bj)(σyj)〉j=1..k =

=
∑

r∈TΣX
s.t.g[r]=t

{
β〈δij

(bj)(σyj)〉j=1..k if R fits s, c, r with σ
0 otherwise =

=
∑

r∈TΣX
s.t.g[r]=t

λX(s)(c)(r) = (∗).

This shows that a single W-GSOS rule defines an appropriate natural transfor-
mation. For an arbitrary W-GSOS specification λ, define

λX(s)(c)(t) =
∑
R∈Λ

λR
X(s)(c)(t)

18

where λR arises from every single rule R as described above. Thanks to the
finiteness condition in Definition 5, for each s and c the sum contains only
finitely many non-zero summands, therefore the sum is well-defined and λX(s)(c)
is finitely supported. Naturality of λ follows easily.

It remains to be seen that the W-LTS induced from a W-GSOS specification
coincides with the (FW−)A-coalgebra arising from the corresponding λ according
to (2). To this end, it is enough to show that the induced LTS, seen as a coalgebra,
makes (2) commute. A straightforward way to prove this is to notice that the
induction step in Definition 6 corresponds exactly to the definition of λ, along
the correspondence between W-LTSs and (FW)A-coalgebras. ut

19

