
Towards Nominal Computation

Mikołaj Bojańczyk ∗ Laurent Braud † Bartek Klin Sławomir Lasota ‡

University of Warsaw

{bojan,klin,sl}@mimuw.edu.pl, laurent.braud@labri.fr

Abstract

Nominal sets are a different kind of set theory, with a more relaxed
notion of finiteness. They offer an elegant formalism for describing
λ-terms modulo α-conversion, or automata on data words.

This paper is an attempt at defining computation in nominal
sets. We present a rudimentary programming language, called Nλ.
The key idea is that it includes a native type for finite sets in the
nominal sense. To illustrate the power of our language, we write
short programs that process automata on data words.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features; F.3.2 [Logic and
Meanings of Programs]: Semantics of Programming Languages

General Terms Theory

Keywords λ-calculus, nominal sets, automata on data words

1. Introduction

The theory of nominal sets originates from the work of Fraenkel
in 1922, further developed by Mostowski in the 1930s. At that
time, nominal sets were used to prove independence of the axiom
of choice and other axioms. In Computer Science, they have been
rediscovered by Gabbay and Pitts in [11], as an elegant formalism
for modeling name binding. Since then, nominal sets have become
a lively topic in semantics. They were also independently redis-
covered by the concurrency community, as a basis for syntax-free
models of name-passing process calculi, see [14, 16]; and used in
automata theory as a framework for describing automata on data
words, see [3].

From the point of view of this paper, the most appealing feature
of nominal sets is that their natural notion of finiteness, called orbit-
finiteness, is more relaxed than in classical set theory. For instance,
in one variant of nominal sets (the notion of variant is formalized

∗ Partially supported by ERC Starting Grant Sosna.
† Partially supported by the ESF Games for Design and Verification ex-
change grant nr 3070, and by the FET grant FOX, number FP7-ICT-233599.
‡ Partially supported by the Polish Ministry of Science grant nr N N206
567840.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

POPL’12, January 25–27, 2012, Philadelphia, PA, USA.
Copyright c© 2012 ACM 978-1-4503-1083-3/12/01. . . $10.00

later in the paper as a data symmetry), the set of rational numbers
is orbit-finite.

Using orbit-finiteness, one can define more powerful variants of
automata or other computing devices. As an example, take the stan-
dard definition of a nondeterministic finite automaton: it consists of
finite sets Q and A for the states and alphabet, as well as three rela-
tions δ ⊆ Q×A×Q and I, F ⊆ Q. Suppose that we read this def-
inition using orbit-finite sets instead. As proved in [3], the resulting
objects have the same expressive power as well-known automata
for data words, namely Finite Memory Automata of Francez and
Kaminski [10]. The same idea can be applied to other computation
models such as monoids [2], deterministic automata [3], two-way
automata, pebble automata, or pushdown automata. Each time, the
nominal model corresponds to a natural device for data words.

The examples above concerned restricted machine models, with
the most expressive being pushdown automata. In this paper, we
are interested in general nominal computation, and we attempt to
understand it by defining a basic programming language called Nλ,
designed so that it can directly process orbit-finite nominal sets.
The key idea is that it includes a native type Fnα, which represents
orbit-finite sets of elements of type α.

Structure of the paper. The paper has three parts. In Part I, we
discuss our design objectives and related work, and show some
example problems that our language can help solve. In Part II, we
define the syntax and operational semantics of Nλ. The language is
parametrized by a data symmetry subject to some conditions. We
also show how to represent programs of Nλ so that they can be
interpreted on a normal machine. Finally, in Part III, we present
a substantial case study: the emptiness problem for alternating
automata on data words.

Acknowledgment. We are grateful to Andrew Pitts, Dan Ghica,
Paweł Urzyczyn and the anonymous referees, whose constructive
comments lead to a great improvement of the presentation of this
paper.

Part I: Motivation

2. Design objective for Nλ: avoid coding

Suppose, informally, that we want to design an algorithm that
processes possibly infinite, but orbit-finite data structures. As a
typical example, let I be the set of nondeterministic finite automata
in the nominal sense. In such an automaton all components (states,
alphabet, transitions, initial and final states) are orbit-finite, but
perhaps infinite in the classical sense. Then consider the function
f : I → {⊤,⊥} that checks if an automaton accepts some word.

One way to compute such a function is to encode orbit-finite sets
as finite data structures (and, implicitly, bit strings). In [3, 16], one
can essentially find such representations. Applying such a coding
to the problem domain, one can reduce a nominal computational
problem to a classical one. The resulting notion of computability
depends on the coding scheme, but the schemes implicit in the
literature are essentially the same, and the small differences can
be corrected by Turing machines.

This approach has been implicitly used in the literature when
giving decidability results for decision problems in nominal sets.
One example is an algorithm [7] for deciding bisimulation equiva-
lence of orbit-finite transitions systems. Some algorithms for prob-
lems from automata theory can be found in [3], including the above
example of nondeterministic automata. Another example is the al-
gorithm from [2] for deciding if the language recognized by a given
data monoid is first-order definable.

An advantage of this approach is that it does not introduce
any new concepts; it just treats nominal sets as syntactic sugar for
normal sets. In particular, there is no new “Nominal Church-Turing
Thesis”. The very same thing can be seen as a disadvantage: it is
a clumsy way of doing computation, and it defeats the purpose of
using nominal sets as an attractive syntax.

Nλ is a rudimentary functional programming language that ab-
stracts away from the clumsy details. The design goal for Nλ can
be summed up in two words: avoid coding. The abstract semantics
of the language is defined in terms of nominal sets, and does not re-
fer to any coding scheme. In particular, this means that correctness
proofs for programs in Nλ are simpler and more convincing. The
language comes with a more concrete semantics which implements
a coding, therefore any function expressed in Nλ is effectively com-
putable. However, the coding has to be done only once, as it is done
in this paper. Once it has been implemented and proved correct, the
programmer can simply use the language without thinking about
how nominal objects are represented.

Related work. A closely related language is Fresh O’Caml [17,
18], a functional programming language based on nominal sets,
aimed at defining and manipulating data structures with binding,
such as λ-terms up to α-conversion. It is similar to Nλ in that both
can be seen as typed λ-calculi with some additional type and term
constructors. However, these extensions are substantially different.

A crucial ingredient of Fresh O’Caml is a binary type construc-
tor <<α>>β, whose values, intuitively, are values of type β with
values of type α (typically basic data values, called names in this
context) “abstracted”, or bound. These abstraction types, together
with a few other primitives, allow a particularly elegant treatment of
α-conversion and capture-avoiding substitution in data structures.

Nλ does not have abstraction types; instead, it has a type con-
structor Fn to represent finitary collections. In Section 15, we show
that Nλ also offers a way to treat binding in data structures, al-
beit in a slightly less direct and appealing way than Fresh O’Caml.
However, binding in data structures is just one of the many things
that we can do using our language. Also, our language works not
just in standard nominal sets, but also in the more general setting
of Fraı̈ssé nominal sets [3].

Another difference with Fresh O’Caml is that the latter is a
fully grown programming language, with a working compiler and
extensive documentation. On the other hand, Nλ is a rudimentary
core language, and a work in progress. We have tried to keep the
primitives as simple as possible, while still covering a wide range of
examples. We make no claim on universality of the language, and
it is likely to evolve. However, it seems that our current version of
Nλ is a rather expressive formalism. In Section 4, we survey some
functions that can be expressed in it. First, however, we formally
define nominal sets and related notions.

3. Nominal sets

We now recall the basics of nominal sets as studied by Gabbay and
Pitts [11]. Then, in Section 3.1, we generalize the definitions along
the lines of [3].

Data values. Fix a countably infinite set D of data values. In the
examples below, we assume D = N, and write 1, 2, 3 for elements
of D. However, no structure of the data values is used except for
equality1. A permutation of D is any bijection D → D. The group
of all permutations will be denoted by G.

Nominal sets. A right action of G on a set X is a function
· : X × G → X subject to the following associativity axioms
(we use infix notation, writing x · π instead of ·(x, π)):

x · (πσ) = (x · π) · σ x · 1 = x,

where πσ refers to multiplication in G and 1 is the unit of G, which
is the identity function on D.

Every subset of data values C ⊆ D defines a subgroup of G,

GC = {π ∈ G : π|C = idC}.

A nominal set is a set X equipped with a right action of G, such
that for every x ∈ X , there is a finite set C ⊆ D such that

x = x · π for every π ∈ GC .

The set C is then called a support of x. In words, every element of
a nominal set has a finite support.

For example, consider the set D
ω of infinite words over the

alphabet of data values. Under the coordinatewise action

(d1, d2, . . .) · π = (π(d1), π(d2), . . .).

every word w is supported by the set C of all letters that appear in
w. The set Dω is not nominal, but the subset of words that contain
only finitely many different data values is. Also the smaller set D∗

of finite words is nominal.

Orbit-finite sets. The orbit of an element x is the set x · G
def
=

{x · π : π ∈ G}. A nominal set is called orbit-finite if it is a finite
union of orbits, i.e. it has a decomposition

X =
⋃n

i=1 xi ·G for some x1, . . . , xn ∈ X.

For example, the set D is orbit-finite (with one orbit). The set D2

has two orbits, namely the diagonal {(d, d) : d ∈ D} and the rest.

Nominal subsets. A subset Y of a nominal set X is called a
nominal subset of X if it has a finite support as an element of the
powerset of X . Formally, a finite set C ⊆ D is a support of Y if

Y = Y · π
def
= {y · π : y ∈ Y } for every π ∈ GC .

For example, nominal subsets of D are its finite or cofinite subsets.

Example 1 For a fixed d ∈ D, the set {(d, e) : e ∈ D} is a nominal
subset of D2.

Finitary subsets. A nominal subset Y of X is called finitary if
it intersects finitely many orbits of X . In particular, if X is orbit-
finite (for instance D or D2) then all its nominal subsets are finitary.
As another example, the set of words of length at most 7 where the
data value 6 appears at least twice is a finitary subset of D∗.

Finitary subsets are the foundation of our programming lan-
guage. We write FnX for the family of finitary subsets of a nominal
set X . In a nutshell, Nλ is simply typed λ-calculus with a type
constructor for finitary subsets.

1 We will add structure to data values in Section 3.1.

3.1 Generalized nominal sets

The centerpiece example of our paper is an algorithm for deciding
emptiness of alternating automata in the nominal world. In its full
generality, this example may exploit some nontrivial structure (e.g.
an order relation) on the set D. This motivates us to work in the
framework of generalized nominal sets, introduced in [3]. The idea
there was to add more structure to the data values D, such as a total
or partial order. For automata, this corresponds to more expressive
tests on input letters.

To define generalized nominal sets, one begins with a data
symmetry (called nominal signature in [3]), i.e., a set D of data
values together with a group G of permutations of D. It is important
that G need not contain all permutations. Some examples of data
symmetries include:

• The classical symmetry, where D is empty, and G contains only
the empty bijection. This symmetry yields classical sets.

• The equality symmetry, where D is a countably infinite set, and
G contains all bijections. This symmetry yields nominal sets as
studied by Gabbay and Pitts.

• The total order symmetry, where D is the set of rational num-
bers, and G contains all order-preserving bijections of rational
numbers.

Later on we will define further data symmetries. Importantly, all
examples in this paper are so-called Fraı̈ssé symmetries; this notion
follows [3] and will be explained in Section 7.

Given a data symmetry (D, G), one defines (D, G)-nominal sets
exactly as in Section 3, except with the group G and the data values
D substituted in place of the equality symmetry. Similarly one
defines the related notions, like nominal and finitary subsets. From
now on, the notion of a nominal set will always be parametrized by
a data symmetry.

3.2 Example: subsets of D2

We now show examples of finitary subsets in the total order symme-
try. All examples given here will be subsets of D2, which is shown
in the following picture, with the first coordinate on the horizontal
axis and the second coordinate on the vertical axis2.

The picture also shows the three orbits of D2 under the action of G:
above the diagonal, the diagonal, and below the diagonal. Because
D

2 is orbit-finite, any nominal subset will be finitary. Consider a
support C = {0.3}. Under the action of GC , the set D2 breaks up
into thirteen orbits. A subset X ⊆ D

2 has support C if and only if
it is a union of some of these orbits. The partition of D2 into orbits
under GC and a subset X are illustrated below.

X =

2 The reader might recognize some similarity to the region construction
from timed automata.

Consider now a bigger support than C, say D = {0.3, 27.6}. The
partition of D2 into orbits under GD is more refined (there are thirty
one orbits), as GD is a subgroup of GC . In particular, there are
more subsets with support D. The partition and an example subset
Y are illustrated below.

Y =

The reader can easily see that as the support grows, so does the
number of subsets with the support. Also observe that it does not
make sense to count the number of “elements” in a finitary set,
because the number of elements depends on the choice of support.
Even if we choose the least support when counting the number of
elements, there is still some room for confusion. Observe that the
example set Y has least support D, but it can be decomposed into
one orbit under GC and one orbit under GD .

4. Nλ as an algorithmic toolkit

Equipped with the basic notions of nominal sets, we discuss some
functions that can be programmed in Nλ. In all examples except
Section 4.3, we work with the equality symmetry only.

4.1 Transitive closure of a binary relation.

Consider the following binary relation on D

R = {(5, 2)} ∪ {(2, d) : d 6= 5} ⊆ D
2.

The set R has support {2, 5}. The set D2 has two orbits, namely
the diagonal and the rest. It follows that R, like any nominal subset
of D

2, is a finitary subset of D
2, and therefore can be input and

processed by programs of Nλ.
A typical thing one might want to do with a binary relation

is compute its transitive closure. In this particular example, the
transitive closure is

R∗ = {(c, d) : c ∈ {2, 5}, d 6= 5}.

Note that R∗ is a finitary subset of D2; one can prove that this holds
whenever R is finitary. Also, we may write a recursive program in
Nλ that inputs a finitary binary relation R over some type α and
outputs its transitive closure. In our example the type α is D, but
the program works also for types that are not orbit-finite, such as
lists of D. The only condition is that α is an equality type, admitting
an equality predicate eqα.

4.2 Data monoids.

A data monoid, as defined in [2], is a monoid where the carrier
is a nominal set, and the monoid operation is equivariant. The
main result of [2] was a theorem that related first-order logic with
aperiodic data monoids. However, nowhere in the paper was it said
how one can represent a data monoid in a computer, or test if it is
aperiodic. Nλ can help with this.

For example, consider the data monoid M where the carrier is
{ǫ} ∪ D

2, the identity is ǫ, and the monoid operation is defined by

ǫ ·m = m · ǫ = m for all m ∈ M and

(d, e) · (d′, e′) = (d, e′) for all d, e, d′, e′ ∈ D

This is the syntactic monoid of the language

{d1 · · · dn ∈ D
+ : d1 = dn}.

The carrier of this monoid can be seen as the finitary subset
of D list that contains lists of sizes zero or two. This set can be
represented in Nλ by a short piece of code. The identity of the
monoid M is the empty list, while the monoid operation can be easily
implemented, using pattern matching, as a function

f : D list× D list → D list.

(As far as the example monoid is concerned, it is not important
what f does for lists of lengths other than zero or two.)

Using Nλ we can test some properties of monoids represented in
this fashion. For instance, we can write a polymorphic function that
inputs a finitary set M of values of type α and a binary operation
f on α, and checks whether f is idempotent when restricted to M
(in our example, α = D list). In the same spirit, we can write
functions that test if a data monoid is aperiodic, commutative, etc.

4.3 Alternating automata with one register

In the literature on data words, there are many automata models,
often of incomparable expressive power. One of the maximally
expressive automaton models that still has decidable emptiness is
an alternating automaton with one register. Roughly speaking, this
is an alternating automaton which can store a single data value in
a register. Emptiness is decidable for this automaton model, with a
proof based on well quasi-orders [6].

In Part III of this paper, we encode the emptiness test for alter-
nating automata with one register into Nλ. To do this, we provide an
abstract definition of alternating automata with one register, a defi-
nition that only uses the concepts of nominal sets. Then we write a
program in Nλ which tests a given automaton for emptiness.

An important advantage of our abstract definition of automata
is that it is meaningful for any data symmetry. If the definition
is interpreted in the equality symmetry (the usual symmetry for
nominal sets), the resulting model is equivalent to the automata
from [6, 10]. However, the definition can also be interpreted in
the classical symmetry, in which case we get standard alternating
automata without data values [4, 5]. Finally, the definition can also
be interpreted in the total order symmetry, in which case we get
alternating automata on ordered data values, a model that has been
studied in [8] and closely related to one-clock timed automata [12,
13, 15]. In all these cases (equality, classical, total order), the same
program in Nλ decides emptiness for alternating automata with one
register; the program only needs to be fed into different interpreters
(each symmetry defines a different interpreter).

The proof that the emptiness-testing program terminates de-
pends on the chosen data symmetry. We give an example where
the termination proof fails, and indeed the emptiness problem is
undecidable.

4.4 Terms of λ-calculus modulo α-conversion.

Nominal sets were originally motivated [11] as an elegant alge-
braic approach to name binding in syntax, and in particular as a
way to represent λ-terms up to α-conversion in a way that admits
natural inductive reasoning, using the so-called abstraction types
that have α-equivalence classes of terms as values. This idea has
been implemented in the nominal programming language Fresh
O’Caml [17, 18].

Although Nλ does not have abstraction types, one may repre-
sent in it α-equivalence classes of λ-terms directly, as finitary sets
of terms. Such a representation is less appealing than the one used
in Fresh O’Caml, as it contains many values that do not correspond
to α-equivalence classes. However, it still lets us write functions
that manipulate terms (such as capture-avoiding substitution). We
can also write a Nλ program that tests whether a set of terms is an
α-equivalence class.

We elaborate a little on this example in Section 15.

Part II: Nλ

In this part of the paper we introduce Nλ, a rudimentary language
for programming in nominal sets over an arbitrary data symmetry
of a certain form. The essential idea is to extend simply typed λ-
calculus with a collection type that represents finitary sets of values.

We present Nλ in three stages. First, in Section 5, we present a
version for the classical symmetry, where no data values or group
actions are involved. This is to accustom the reader to our syntax
in a familiar setting. Notably, to store intermediate values during a
computation according to our operational semantics, we introduce
a syntactic construct that collects a finite set of terms. In a practical
implementation, these sets would be represented as lists of terms.

Then, after some semantic considerations in Sections 6-7, we
generalize the language to arbitrary data symmetries in Sections 8-
9. The main conceptual difference, apart from a few new primi-
tives, is that now finitary, but potentially infinite, families of terms
are considered in intermediate values. This may be seen as prob-
lematic, and indeed one may wonder if our semantics is really “op-
erational”, given that it directly manipulates infinite structures.

Therefore, in Section 10, we replace infinite collections of terms
with a finitary syntactic construct, in a step analogous to replacing
finite sets of terms with lists. The result is an entirely finitely pre-
sentable language, with a clearly computable reduction semantics,
amenable to direct implementation.

The semantics of Sections 8 and 10 are equivalent (formally,
bisimilar). The latter may be seen as a reference definition for
implementation purposes. The former is more abstract, better suited
for reasoning, and more closely related to the simple language of
Section 5.

5. A simply typed calculus with finite subsets

In this section, we show how Nλ works in the classical symmetry,
where nominal sets are simply sets, and where orbit-finite sets are
simply finite sets. The core language is presented in Fig. 1.

The types are as in a simply typed λ-calculus (where b comes
from some set of base types), extended with a type constructor
F to represent finite collections. The idea is that 1 represents a
singleton set, and Fα represents finite sets of elements from α. In
terms, c comes from some set of term constants with fixed types. In
particular, we assume (polymorphic families of) special constants;
note that F1 takes the role of a boolean type. The typing rules of
basic terms are standard and omitted from Fig. 1.

To simplify the operational semantics, we extend the language
with an additional construct set(X) of a more semantic flavor,
with an intuitive typing rule. With these as intermediate values,
the reduction relation →β on closed terms is defined as expected.
We do not commit to any particular evaluation strategy, admitting
reduction of arbitrary subterms.

We refrain from showing a formal denotational semantics for
the language, but our intention should be clear: types are interpreted
as sets, with 1 as a singleton type, → as function space, and F as the
finite powerset monad, with the obvious interpretation of constants
from Fig 1.

We may now define other typical constants (operations), such as
the Haskell bind (written infix as usual):

>>= : Fα → (α → Fβ) → Fβ a >>= f = sum(map f a),

singleton and set union:

just : α → Fα just a = add ∅ a

union : Fα → Fα → Fα union a b = a >>= (add b).

Types:

α ::= b | 1 | α → α | Fα

Basic terms:

M ::= c | x | λx.M | MM

Intermediate terms: (X ranges over finite sets of terms)

M ::= · · · | set(X)
Γ ⊢ M : α for all M ∈ X

Γ ⊢ set(X) : Fα

Special constants:

∗ : 1 ∅ : Fα add : Fα → α → Fα

map : (α → β) → Fα → Fβ sum : FFα → Fα

if : F1 → α → α → α

Redexes:

(λx.M)N →β M [N/x] ∅ →β set(∅)

add set(X) M →β set(X ∪ {M})

mapM set(X) →β set({MN | N ∈ X})

sum set({set(Xi) | i ∈ I}) →β set(
⋃

i∈I
Xi)

if set(X) M N →β M if X 6= ∅

if set(∅) M N →β N

Set reduction:

M ∈ X M →β N

set(X) →β set(X \ {M} ∪ {N})

Figure 1. Nλ without data

Writing bool instead of F1 we define boolean constants and oper-
ations:

true : bool true = just ∗

false : bool false = ∅

or : bool → bool → bool or = union

not : bool → bool not a = if a false true,

quantifiers and predicate filtering:

exists, forall : Fα → (α → bool) → bool

filter : Fα → (α → bool) → Fα

exists = >>=

forall X f = not(exists X λx.not(f x))

filter X f = X >>= λx.if (f x)(just x)∅.

If a type α comes equipped with an equality predicate:

eqα : α → α → bool

we may lift it to an equality predicate for Fα by defining member-
ship and subset predicates:

member : Fα → α → bool

subset : Fα → Fα → bool

member X x = exists X (eq
α
x)

subset X Y = forall X (member Y)

Finally, equality eq
Fα is defined as subset in both directions.

This core language can be routinely extended with further stan-
dard features, e.g. product types:

α ::= · · · | α× α M ::= · · · | (M,M) | π1M | π2M

π1(M,N) →β M π2(M,N) →β N

Then one can write programs such as binary relation composition
comp, using an auxiliary function comp0:

comp0 : (α× β) → (β × γ) → F(α× γ)

comp : F(α× β) → F(β × γ) → F(α× γ)

comp0 p q = if (eq
β
(π2p)(π1q)) just(π1p,π2q) ∅

comp R S = R >>= λp.(S >>= comp0 p)

where β is assumed to be an equality type. Similarly we could add
recursive types such as lists (that we used in Section 4.2), etc.

Note that in a typical programming language finite collections
are modeled by lists. In presence of recursive types, one could view
the constants ∅ and add as constructors and define other operations
by pattern matching and recursion; with this in mind, our set()
construct might look like an unnecessary complication. However,
in the world of nominal sets the simple list representation fails, and
finding a good representation of finitary subsets of nominal sets is
one of the technical challenges we shall face. Our “semantic” term
construct set() is introduced in anticipation of a world where it is
easier to say what a finitary collection is than how to write it down.

6. Nominal types: semantic considerations

We now wish to extend the calculus of Section 5 to deal with
nominal sets for a data symmetry (D, G). The general idea is clear:
given (D, G), we interpret types as nominal sets.

Function type. Categories of nominal sets are Cartesian closed,
and it is natural to interpret function types as nominal function
spaces. There, for nominal sets X and Y , the action of G on a
function f : X → Y is defined by

(f · π)(x) = (f(x · π−1)) · π.

The nominal function space X →fs Y is the set of functions
from X to Y , equipped with the action above, restricted to those
functions that have finite support; we call such functions nominal.
Note that not all nominal functions are equivariant [11]; in fact, a
function is equivariant if and only if it has empty support. Write
f : X →fs Y to say that f : X → Y is nominal.

Example 2 Consider the equality symmetry. A function f : D →
D is nominal if and only if there is a cofinite set Z ⊆ D such that
f |Z is either the identity or a constant function.

Collection type. It remains to interpret the collection type con-
structor in the nominal world. This will be of use already in the
definition of syntax: we intend to view finitary nominal collections
of terms as terms, so we need to define what they are.

The powerset of a nominal set X is easy to define:

P(X) = X →fs 2

where 2 is a two-element set with a trivial G-action. Equivalently,
P(X) is the set of subsets Y ⊆ X with an action defined by

Y · π = {y · π | y ∈ Y }

restricted to those subsets that have finite support; these are the
nominal subsets as defined in Section 3.

Example 3 The powerset of an orbit-finite set need not be orbit-
finite. For instance, for every data symmetry (D, G), the powerset
of D contains all finite subsets of D, because every finite subset has

a finite support (itself). Two finite subsets of D cannot be in the
same orbit if they have different cardinalities. Therefore, there are
infinitely many orbits in P(D) if D is infinite.

Observe that a nominal subset Y of a nominal set X is not a
(D, G)-nominal set in general, as Y need not be preserved by all
permutations from G. However, if C ⊆ D supports Y then Y is a
(D, GC)-nominal set.

We now introduce our intended nominal interpretation of the
collection type: the finitary powerset. Recall from Section 3 that a
nominal subset Y ∈ P(X) is called finitary if Y intersects finitely
many orbits of X . If C supports Y then Y is finitary if and only if
Y is orbit-finite as a (D, GC)-nominal set. By FnX we denote the
set of all finitary subsets of X . If X is orbit-finite then all nominal
subsets are finitary, i.e. P(X) = FnX . It follows that FnX need not
be orbit-finite even if X is. Actually, the only case when FnX is
orbit-finite is when X is finite.

Note that our FnX is not the free semi-lattice over X; the latter
contains only finite subsets of X . Although we do not yet have a
clear categorical understanding of FnX , we choose it for pragmatic
reasons: it is a rich collection of subsets of X that we are able to
represent in a finite way (see Section 10).

7. Fraı̈ssé symmetries

From now on we restrict attention to a special case of data symme-
tries, called Fraı̈ssé symmetries, defined in [3] (and called Fraı̈ssé
signature there). A Fraı̈ssé symmetry is induced by a class K of
finite relational structures, which needs to be closed under isomor-
phism, substructures and amalgamation. Given such a class, the
construction from [3] uses the Fraı̈ssé limit [9] to produce a data
symmetry (D, G), which is well behaved. All three examples listed
in Section 3.1 are Fraı̈ssé symmetries:

• The classical symmetry arises from the empty class K.

• The equality symmetry arises from the class K of finite sets, i.e.
finite structures over the empty vocabulary.

• The total order symmetry arises from the class K of all finite
total orders, over a vocabulary with a binary relation.

Other examples include the class K of finite partial orders or
finite graphs. We will see other Fraı̈ssé symmetries in Section 14.

From now on we consider a fixed data symmetry (D, G) and
assume that it satisfies the following conditions:

• Fraı̈ssé symmetry: the symmetry is induced by a class K.

• Least supports: any element x of a nominal set has the least sup-
port with respect to inclusion, which we will denote supp(x).

Under these assumptions, the following basic results hold that
will be extensively used in the following:

Lemma 1 D is orbit-finite under the action of G.

Lemma 2 Orbit-finite sets are closed under Cartesian products.

Lemma 3 (orbit refinement) Let x ∈ X for some nominal set X .
For any finite sets C ⊆ D of data values, there exists a finite subset
{z1, . . . , zn} ⊆ X such that

x ·GC =
⋃n

i=1 zi ·GD.

8. A calculus with finitary nominal subsets

An extension of the language of Section 5 to nominal sets over
a Fraı̈ssé symmetry (D, G), is summarized in Fig. 2. We write
supp(X) for the least support of X .

Types:

α ::= b | 1 | α → α | D | Fα | Fnα

Basic terms: as in Fig. 1,
Intermediate terms: as in Fig. 1, but X ranges over finitary sets in

set(X) : Fnα

Special constants: to Fig. 1, add:

d : D (for each d ∈ D)

eq
D
: D → D → bool hull : FD → Fnα → Fnα

Redexes: to Fig. 1, add:

eq
D
d d →β set({∗})

eq
D
d e →β set(∅) (if d 6= e)

hull set(C) set(X) →β set(
⋃

x∈X
x ·GC) (C ⊆fin D)

Set reduction:

M ∈ X M →β N supp(X) = C

set(X) →β set(X \ (M ·GC) ∪ (N ·GC))

Figure 2. Nλ with data: abstract terms

First, a new type D of data values is introduced, together with a
constant for each data value and an equality predicate on D.

Second, instead of one type constructor F we now have two,
written F and Fn. The type Fα represents all finite subsets of α,
as in Section 5, while Fnα represents all finitary nominal subsets
of α. Both type constructors are equipped with constants listed
in Fig. 1, and further operations for Fn (such as forall, eq

Fnα

etc.) are defined as in Section 5 for F. The name clash between
constants should not lead to confusion and will always be resolved
by context. In particular, the are two constructs set(X) : Fα and
set(X) : Fnα, where in the latter case X ranges over finitary and
not finite sets of terms (we explain below how to regard the set of
all terms as a nominal set). To avoid confusion, the latter set()
construct we call nominal.

Finally, the new constant hull can be used to construct finitary
nominal sets, just as add could be used to construct finite sets in
Section 5. It inputs a finite set C of data values and a finitary set X ,
and closes X under the action of GC . For instance in the equality
symmetry, the following piece of code

hull ∅ {2}

represents the whole set D, and the following two calls:

hull ∅ {(2,2)} hull ∅ {(2,3)}

create the two orbits of D2. The relation R from Section 4.1 can be
generated by

R = hull {2,5} {(5,2), (2,2), (2,3)}.

(We use some syntactic sugar here; for example, {2,5} would have
to be written as ’add 2 (add 5 ∅)’ in our core language.)

Terms of Nλ remain as in Fig. 1, but in the nominal set(X)
construct, X ranges over finitary, rather than finite sets of terms.
Here we must proceed with care to avoid a circular definition where
the existence of a term set(X) depends on all terms understood as
a nominal set. Formally, this can be done by introducing an explicit
rank to terms, where the rank of a term is the maximal degree of
nesting of set() in it. Then the group action of G on terms of rank
n is defined by induction, and every term of rank n has a finite
support. In other words, the set of terms of each rank n is a nominal
set and we may meaningfully speak of its finitary subsets used in
the set() construct.

Example 4 In the total order symmetry, we have a term that repre-
sents the set of all data values bigger than 7:

set({d | d > 7}).

This term has rank 1 and type FnD. We also have a term that
represents a set of constant functions:

set({λx.d | d > 7}).

We could also write a term for the union of the two sets above, but
this would not have a type.We cannot, however, write a term for all
data values that are integers, as Z is not a nominal subset of D:

set({i : i ∈ Z}) is not a valid term.

The β-reduction relation →β is defined as in Section 5, with
new redexes for eq

D
and hull. Note that for the reduction of hull

to happen, C must be fully evaluated to a finite set of data value
constants.

Finally, the set reduction rule given in Fig. 1 is unsatisfactory
for the nominal set(X) construct, as X may have infinitely many
elements, causing potentially infinite reductions. We fix this prob-
lem by insisting that all elements of X that are in the same orbit of
GC (where C is the least support of X) reduce in parallel and in a
uniform way. In other words, the last rule in Fig. 1 is replaced with
the last rule of Fig. 2.

Our semantics satisfies the basic properties expected from a
typed λ-calculus:

Proposition 4 The β-reduction is well-defined, i.e., if M →β N
then N is a valid term. In addition, types are preserved and so are
supports: if C supports M then it also supports N .

Proof
For the first part, we must check that the reduct N only contains
finitary sets of terms under the set() construct. The proof goes by
induction on the structure of terms. In some cases we make use
of the fact that in Fraı̈ssé symmetries, Cartesian products of orbit-
finite sets are orbit-finite. �

Proofs of other desirable properties are routine using standard
methods:

Proposition 5 The reduction relation →β has the Church-Rosser
property and is weakly normalising.

9. Recursion and examples

The treatment of recursion is standard: we extend the language with
a new constant fix for any type α, with the type

fix : (α → α) → α

and the reduction rule

fixM →β M (fixM).

Using this we may define recursive functions, via the following
syntactic sugar:

F x = M
def
= fix λF.(λx.M)

where F may appear in M .
As usual with recursion, one can write nonterminating pro-

grams, so weak normalisation fails. However, the Church-Rosser
property holds, and types and supports are still preserved by →β .

We now show some simple examples of recursive programs.

Example 5 Recall Section 4.1 and the problem of computing the
transitive closure of a finitary relation. W may write a function

trans : Fn(α× α) → Fn(α× α)

that inputs a finitary binary relation over some equality type α and
outputs its transitive closure:

step : Fn(α× α) → Fn(α× α)

step R = union R (comp R R)

trans R = if (eq
Fn(α×α)(step R) R) R (trans(step R))

where union and comp calculate the union and composition of
given relations, as defined in Section 5.

Example 6 Recall Section 4.2 and the problem of checking prop-
erties of monoids. Carriers of data monoids can be represented in
Nλ as finitary subsets of some equality type α, with the monoid
structure given by an element of α (the unit) and a function of the
type α× α → α (the multiplication).

Assuming the presence of list types, the carrier of the monoid of
Section 4.2 can be represented by taking α = D list and (again,
with some syntactic sugar):

M = hull ∅ {[],[1,1],[1,2]},

and the monoid operation

f : D list× D list → D list.

is easily defined by pattern matching.
Suppose that we want to know if a monoid is idempotent. This

can be accomplished by a polymorphic function

idempotent : Fnα → (α× α → α) → bool

which inputs a set of arguments and a binary operation on any
equality type α. The code of the function is:

idempotent M f = forall M (λx.eqα (f x x) x).

If we execute the idempotent function on our example monoid,
the expression:

idempotent M f

will evaluate to true in finite time.

The above two examples do not involve data values directly,
and the polymorphic programs trans and idempotent could be
just as well interpreted in the simple language of Section 5. The
next example uses data explicitly.

Example 7 One could wonder why there is no primitive in the
language that returns a support of a given argument. Somewhat
surprisingly, with primitives listed so far we can define a function
that computes the least support for equality types. The function will
simply exhaustively enumerate all candidates (infinitely many of
them!). We stress, however, that this search can be implemented by
a finite computation, as we explain in Section 10.

We start by writing a function

supports : α → FD → bool

that checks if an element x of an equality type α is supported by
a finite set of data values C. It returns true if the orbit of x with
respect to GC is a singleton:

supports x C = singleton (hull C (just x))
singleton X = exists X λx.(forall X (eqα x))

Having the function supports we define

supp : α → FnFD

search : α → FnFD → FnFD.

The result type of supp is FnFD and not just FD, but the function
will always return just a single support. It is implemented by an
exhaustive search:

supp x = search x (just ∅)
search x X = if (exists X (supports x))

(filter X (supports x))
(search x (enlarge X))

The search starts with the family X containing just one set of
data values: the empty one. If this set is not a support, in the first
recursive call the family X contains all singletons. In general, at
recursive depth n, X contains all nonempty subsets of data of
cardinality at most n. An auxiliary function enlarge : FnFD →
FnFD increases this cardinality bound by one:

enlarge X = X >>= λx.(D >>= λd.just(add x d))

Observe that the search surely terminates, as every element of type
α has a finite support, and always computes the least support with
respect to inclusion. Finally note that we allow ourselves to use the
set of data values D as an object of type FnD, since D can be easily
represented as discussed in Section 8.

10. Term representation

The language defined so far is a bit abstract in that is uses a
“semantic” construct set() in its terms. For practical use, we need
to represent the terms in a finite way, so that they can be input by
users and manipulated by algorithms, for example by an interpreter
that chooses a specific evaluation strategy. Such a representation is
possible under the assumption that we work in a Fraı̈ssé symmetry.

The cornerstone of our approach is Lemma 3 from Section 7,
which provides a finite representation of finitary subsets:

Lemma 6 For every finitary subset Y of X there are elements
y1, . . . , yk and a finite set D ⊆ D such that

Y =
⋃k

i=1 yi ·GD.

Proof
Take as D any support of Y , and as x1, . . . xk any representatives
of those G-orbits of X that are intersected by Y . Apply Lemma 3
to each xi with C = ∅; take the union of the results and choose as
yi those z’s that are elements of Y . �

Note that the representation is not unique. Consider, for in-
stance, the total order symmetry, where D is the rational numbers.
Let Y be the finitary subset of D that contains data values in the
open interval (1; 7). Here are some representations of Y :

2·G{1,7}; 6·G{1,7}; 2·G{1,3,7} ∪ 3·G{1,3,7} ∪ 6·G{1,3,7}.

As the last one suggests, one can make the set D of data values
grow, which entails a growing set of representatives {y1, . . . , yk}.

Thanks to Lemma 6, for a finitely presented language we may
replace the nominal set() construct from Fig. 2 with a construct

〈M1, . . . ,Mk〉
{d1...dn}

of finite arity (cf. Fig. 3). Intuitively, its purpose is to mimic

hull {d1 . . . dn} {M1, . . . ,Mk};

we prefer however a separate construct for technical convenience.
We shall call terms built with the new construct concrete, as op-
posed to abstract terms built using the nominal set() construct.

To define a reduction relation on concrete terms, a few notions
and results are needed. First, there is an obvious function M 7→
[M] from concrete to abstract terms, defined by induction with the
only nontrivial case:

[〈M1, . . . ,Mk〉
C] = set(

⋃k

i=1[Mi] ·GC).

Types: as in Fig. 2.
Basic terms: as in Fig. 1-2.
Intermediate terms: (C ranges over finite subsets of D)

M ::= · · · | 〈M1, . . . ,Mk〉
C Γ ⊢ Mi : α for i = 1..k

Γ ⊢ 〈M1, . . . ,Mk〉C : Fnα

Special constants: as in Fig. 2.
Redexes:

(λx.M)N →β̂ M [N/x] ∅ →β̂ 〈〉∅ fixM →β̂ M (fixM)

D = supp([M]) 〈K1, . . . ,Kn〉 = refC∪D(〈M1, . . . ,Mk〉
C)

add 〈M1, . . . ,Mk〉C M →β̂ 〈M,K1, . . . ,Kn〉C∪D

D = supp([M]) 〈K1, . . . ,Kn〉 = refC∪D(〈M1, . . . ,Mk〉
C)

mapM 〈M1, . . . ,Mk〉C →β̂ 〈MK1, . . . ,MKn〉C∪D

Mi = 〈Mi1, . . . ,Mini
〉Ci for i = 1 . . . k

E = C1 ∪ · · · ∪ Ck

〈Ki1, . . . ,Kili〉 = refE(〈Mi1, . . . ,Mini
〉Ci) for i = 1 . . . k

sum〈M1, . . . ,Mk〉C →β̂ 〈K11, . . . ,K1l1 , . . . ,Kk1, . . . ,Kklk 〉
E

if 〈M1, . . . ,Mk〉
C M N →β̂ M if 〈〉C M N →β̂ N

〈K1, . . . ,Kn〉 = refC∪D(〈M1, . . . ,Mk〉
C)

hull set(D) 〈M1, . . . ,Mk〉C →β̂ 〈K1, . . . ,Kn〉C∪D

Set reduction:

〈N1, . . . , Nn〉
D

is a short form of 〈M1, . . . ,Mk〉
C

Ni →β̂ K

〈M1, . . . ,Mk〉C →β̂ 〈N1, . . . , Ni−1,K,Ni+1, . . . , Nn〉D,

Figure 3. Nλ with data: concrete terms

Lemma 6 implies that the mapping M 7→ [M] is surjective (al-
though, as we explained above, not injective). It also obviously pre-
serves types.

Lemma 7 The following operations can be computed:

1. Given concrete terms M,N , decide if [M] = [N];
2. Given a concrete term M , find supp([M]);
3. Given concrete terms M,N , and a finite set C of data values,

decide if [M] ·GC = [N] ·GC .

Proof
By simultaneous induction on the size of terms. �

The following is a computational version of the orbit refinement
lemma (Lemma 3):

Lemma 8 Given concrete terms M1, . . . ,Mk and C ⊆ E, one can
compute concrete terms K1, . . . ,Kn such that

[〈M1, . . . ,Mk〉
C] = [〈K1, . . . ,Kn〉

E].

We then denote

refE(〈M1, . . . ,Mk〉
C) = 〈K1, . . . ,Kn〉.

We may now formulate reduction rules for basic redexes of the
language as in Fig. 3. For instance, to reduce a concrete term

add 〈M1, . . . ,Mk〉
C M,

one first computes the least support of M using Lemma 7(2), then
uses Lemma 8 to refine 〈M1, . . . ,Mk〉

C , and finally adds M to the
resulting list of terms. Other redexes are similar.

For the set reduction rule, it is tempting to write simply:

Mi →β̂ N

〈M1, . . . ,Mn〉C →β̂ 〈M1, . . . ,Mi−1, N,Mi+1, . . . ,Mn〉C
.

However, this leads into problems: note that if [M1] · GC =
[M2] · GC then [〈M1,M2〉

C] = [〈M1〉
C], but the above rule may

let 〈M1,M2〉
C and 〈M1〉

C reduce differently. To avoid this, we
convert concrete terms to a canonical form before they can reduce.

Specifically, we say that a concrete term M = 〈M1, . . . ,Mk〉
C

is in short form if:

• C = supp([M]), and

• [Mi] ·GC 6= [Mj] ·GC for i 6= j.

An arbitrary concrete term is in short form if all its subterms
〈M1, . . . ,Mk〉

C are in short form.

Lemma 9 For each concrete term M , a concrete term N in short
form such that [M] = [N] exists and can be computed. (N is then
called a short form of M).

Proof
By induction on M , using Lemma 7. �

Using short forms, the set reduction rule is defined as in Fig. 3.
All these complications are rewarded by a close correspondence

of reduction semantics of concrete and abstract terms:

Proposition 10 The reduction →β̂ is bisimilar to →β , i.e.:

• if M →β̂ N then [M] →β [N], and

• if [M] →β K then there exists a concrete term N such that
M →β̂ N and K = [N].

Proof
By structural induction on concrete terms. �

Part III: Case studies
In this part, we demonstrate the potential of Nλ as a basis of an

expressive programming language.
So far we have ignored many useful features typically found

in functional languages, such as recursive datatypes (e.g. lists) and
pattern matching, the let construct etc. We believe that adding this
kind of features to Nλ is an issue orthogonal to our concerns and
may be done along standard lines. In the examples to follow we feel
free to use recursive types and let as if they were in the language.

11. Alternating automata

As a non-trivial example of nominal programming, in the remain-
ing sections we consider the emptiness problem for alternating au-
tomata. We deliberately choose a borderline problem: it is decid-
able only under some restrictions on the state space of the automa-
ton, and only for certain data symmetries. Moreover, even in known
decidable cases the problem is extremely complex (non-primitive
recursive, except for the classical symmetry, where it is PSPACE-
complete).

Definition of alternating automaton Given a data symmetry
(D, G), an alternating automaton is given by:

1. An input alphabet A, an orbit-finite nominal set.

2. A set of states Q, an orbit-finite nominal set.

3. A partition of states Q = Q∃ ∪Q∀ into two nominal subsets.

4. A transition function, that is a nominal function

δ : Q×A →fs FQ.

5. An initial state qI ∈ Q.

6. The final states F , a nominal subset of Q.

An alternating automaton is used to accept or reject a word
w ∈ A∗. The semantics is defined as follows. A configuration
of the automaton is a finite set of states. We write X,Y, Z for
configurations. The initial configuration is {qI}. A configuration
is called final if it is a subset of F .

We now define a one step transition relation which says how
to go from one configuration to another by reading an input letter.
Suppose that X,Y are configurations and a ∈ A is an input letter.

Then we write X
a
 Y if the following hold for every q ∈ X:

• If q ∈ Q∃, then Y contains some state from δ(q, a).

• If q ∈ Q∀, then Y contains all states from δ(q, a).

We say the automaton accepts an input word a1 · · · an ∈ A∗ if
there are configurations X0, . . . , Xn such that X0 is the initial
configuration, Xn is final, and

X0
a1

 X1
a2

 X2
a3

 · · ·
an
 Xn. (1)

We say X can reach Y in one step if X
a
 Y holds for some

a ∈ A, and we write this X Y . We denote the reflexive
transitive closure of by ∗. When X ∗ Y holds, we say
that X can reach Y . The automaton accepts some word if and only
if the initial configuration can reach some final configuration.

From now on, we are interested in the emptiness problem: given
an alternating automaton, decide if it accepts some word.

Example 8 Consider the equality symmetry. We construct an au-
tomaton that recognizes the language

{d1 · · · dn : n ∈ N and di 6= dj for all i 6= j}.

The state space is Q = D ∪ {⊤,⊥}, where the states ⊤ and ⊥ are
in their own orbits. The initial state is ⊤, and all states except ⊥ are
final. All states belong to Q∀ and Q∃ is empty.

The automaton scans the word in state ⊤, and every time it sees
a data value d, it spawns a new thread with state d. This corresponds
to the transition

δ(⊤, d) = {⊤, d} for d ∈ D.

When a thread with state d sees a letter e, then it ignores it and
keeps on scanning the word if e 6= d, otherwise it enters the error
state, because d has appeared twice:

δ(d, e) =

{

{d} if d 6= e

{⊥} otherwise
for d, e ∈ D

Finally, it is impossible to recover from the error:

δ(⊥, d) = {⊥} for d ∈ D.

One-dimensional alternating automata Let k ∈ N. A nominal
set is called k-dimensional if every element is supported by a set
C ⊆ D of cardinality k. Clearly, an orbit-finite set is k-dimensional
iff each of its orbits is so.

Example 9 Up to isomorphism, there is only one zero-dimensional
one-orbit set. Examples of one-dimensional sets are D and the set
{d} × D for any d ∈ D (with the action of G not changing the
first coordinate). Examples of two-dimensional sets are D

2 or the

set of all two-element subsets of D. Every k-dimensional set is also
l-dimensional for l > k.

In most data symmetries, with the exception of the classical
symmetry, the set D2 is not one-dimensional.

An alternating automaton is k-dimensional if its state space is (the
alphabet is not taken into account). For instance, the automaton in
Example 8 is one-dimensional. From now on we consider only one-
dimensional automata.

Fact 11 A single-orbit set is k-dimensional if and only if it is an
image, under some equivariant function, of an orbit of the set Dk.

Our definition of alternating automaton can be instantiated to
various data symmetries.

• In the classical symmetry, the notion of dimension is irrelevant,
since every nominal set is already zero-dimensional. When in-
stantiated to the classical symmetry, our definition is equivalent
to ordinary alternating automata.

• When instantiated to the equality symmetry, our k-dimensional
alternating automata are equivalent to alternating k-register au-
tomata of Demri and Lazić [6]. Emptiness is known to be unde-
cidable for k ≥ 2, and decidable for k = 1. In the latter case,
the complexity of the problem is very high: it is not bounded by
any primitive recursive function [1, 12].

• When instantiated to the total order symmetry, k-dimensional
alternating automata are equivalent to the model of k-register
automata studied by Figueira, Hofman and Lasota in [8]. These
automata are very closely related (some details have to be
adjusted) to alternating k-clock timed automata. Emptiness of
those is known to be undecidable for k ≥ 2, and decidable for
k = 1 (with a similar lower complexity bound as above). The
decidability result was obtained independently by Lasota and
Walukiewicz [12, 13], as well as Ouaknine and Worrell [15].

In the remaining sections we will prove the following result:

Theorem 12 There exists a single program in Nλ, which decides
emptiness of alternating one-dimensional automata for:

• the classical symmetry,

• the equality symmetry, and

• the total order symmetry.

12. Well-quasi order

Well-quasi orders (WQOs) are the key technical tool in the algo-
rithm and its proof of correctness. According to a classical defini-
tion, a quasi order (X,≤) is a WQO, if for every infinite sequence

x1, x2, . . . ∈ X

there exist indexes i < j such that xi ≤ xj . It is well known that
≤ is a WQO iff it is well-founded and every antichain is finite.

We extend this definition to the nominal setting. A nominal
quasi order is a nominal set X together with a quasi order ≤ which
is a nominal subset of X ×X . Let C be the least support of ≤. A
nominal quasi order is called a nominal WQO if for every infinite
sequence

x1, x2, . . . ∈ X

there exist indexes i < j and a permutation π ∈ GC such that
xi · π ≤ xj . (As C supports the order ≤ relation, one could
equivalently require xi ≤ xj · π for some π ∈ GC .) The following
lemma gives an equivalent and maybe cleaner definition.

Lemma 13 A nominal quasi order X is a nominal WQO iff it is
well founded and every antichain is a finitary subset of X .

For example, any orbit-finite set X , with the discrete partial
order (all different elements are incomparable) is a nominal WQO.

Theorem 14 For all data symmetries mentioned in Theorem 12, if
Q is an orbit-finite one-dimensional nominal set then FQ, ordered
by inclusion, is a nominal WQO.

Proof
The proof depends heavily on the data symmetry involved and
used deep combinatoric results such as Dickson’s Lemma (for
the equality symmetry) or Higman’s Lemma (for the total order
symmetry). �

Example 10 The assumption on Q being one-dimensional is im-
portant. As an illustrating example consider the equality symmetry
and the two-dimensional set Q = D

2. The family of finite sets, for
all n ∈ N, of the following form

Xn = {〈d1, d2〉, 〈d2, d3〉, . . . , 〈dn, d1〉},

where d1, . . . , dn are distinct data values, forms an orbit-infinite
antichain in FQ. Indeed, if n 6= m then there is no bijection π such
that Xn · π ⊆ Xm. Thus Q is not a nominal WQO.

13. Decision procedure for emptiness

We now use the results of the previous section to give an emptiness
algorithm for one-dimensional alternating automata. The algorithm
works in the total order symmetry and in the equality symmetry,
thus reproving the results of [6, 8]. The algorithm also works in
the classical symmetry, but in this case it has suboptimal complex-
ity. One of our contributions is that we make the similarities be-
tween [6, 8] explicit: we produce one piece of code in Nλ, which
solves the emptiness problem for one-dimensional alternating au-
tomata for all these data symmetries3. Also, because the code is
generic, it only focusses on the essence of the problem, and needs
not to talk about technical details.

In addition, the same code solves the emptiness problem for any
data symmetry which satisfies the condition of Theorem 14:

If Q is an orbit-finite one-dimensional nominal set then
FQ, ordered by inclusion, is a nominal WQO.

(2)

As an illustrating example, in Section 14 we describe a new data
symmetry, called the forest symmetry, that has property (2). We
also show that the partial order symmetry does not have prop-
erty (2), so the code does not work (i.e. may not terminate) for
that symmetry. In fact, the emptiness of one-dimensional alternat-
ing automata is undecidable there.

In short, although our program works in many Fraı̈ssé symme-
tries, the decidability (and also complexity) landscape depends on
the choice of symmetry.

13.1 High-level overview of the algorithm

The algorithm for checking emptiness of alternating automata runs
two semidecision procedures in parallel. The first procedure termi-
nates if and only if the automaton is nonempty, the second proce-
dure terminates if and only if the automaton is empty4.

3 Our code makes syntactic sense for two- and higher dimensional automata
as well. When executed for such inputs, the program may not terminate.
4 Formally speaking, our language does not allow running two procedures
in parallel. However, it is not difficult to combine the two procedures into a
single one.

The nonemptiness semidecision procedure. This procedure sim-
ply does a breadth-first search through all reachable configurations.
Define Xn to be the set of configurations that can be reached from
the initial configuration in n steps,

X0
def
= {{qI}} Xn+1

def
= {X ′ : X X ′

for some X ∈ Xn}.

The algorithm calculates the sets X0,X1,X2, . . . and searches each
one for a final configuration. The procedure terminates if and only
if the automaton is non-empty. The only question is: how can we
represent Xn? The following fact implies that each Xn can be
stored by a program of Nλ.

Fact 15 If Xn is finitary, then so is Xn+1.

The nonemptiness semidecision procedure is very straightforward,
and it requires almost no assumptions to work. In particular, it
works for all Fraı̈ssé symmetries, not just those satisfying (2), and
it works also for automata of arbitrary dimension, not just one.

The emptiness semidecision procedure. The whole weight of
the algorithm is in the emptiness semidecision procedure, which
searches for a finitary witness of emptiness. Unlike the nonempti-
ness semidecision procedure, its proof of termination requires the
automaton to be one-dimensional and the data symmetry to sat-
isfy (2).

For a set X of configurations, define

X↑ = {X ′ : X ′
is a configuration that includes some X ∈ X}.

Proposition 16 The automaton is empty if and only if there is a
finitary subset X of configurations such that:

• X↑ contains the initial configuration.
• X↑ contains no final configurations.
• Whenever X ∈ X and X X ′ then X ′ ∈ X↑.

The emptiness semidecision procedure searches through all finitary
subsets of configurations, and terminates if it finds one that satisfies
the conditions in Proposition 16.

13.2 Implementing the algorithm in Nλ

We begin by typing the program. The input to the program is an
alternating automaton. Its alphabet is thus a parameter of type Fnα
for some type α. Similarly, the set of states of the automaton is of
type Fnβ, for some type β. We assume that α and β are equality
types. An automaton is thus given by a tuple of type:

Fnα× Fnβ × Fnβ × (β × α → Fβ)× β × Fnβ,

where the six coordinates correspond to A, Q∃, Q∀, δ, qI and
F , respectively. Call the type above aut(α, β). Therefore, our
emptiness algorithm will have the following type

aut(α, β) → bool. (3)

We now code the algorithm described in Section 13.1. The
program consists of two semidecision procedures, nonempty and
empty, both of type (3). The simpler nonemptiness procedure is
described below; the more complex emptiness procedure is omitted
due to lack of space.

We start with a wrong solution to nonempty, to motivate the
correct one. At first sight, the problem could be solved by comput-
ing the transitive closure of the relation, for instance using the
program trans defined in Example 5. However, we cannot apply
trans to , as is not finitary!

Instead, we systematically compute configurations reachable
from {qI} in k steps, for k = 0, 1, We focus only on the
nominal aspects of the program and skip those fragments that

do not process infinite nominal sets. For instance, we assume for
simplicity that we have a function

conf-input-succ : Fβ → α → Fn(Fβ)

that computes, for a given configuration X and an input letter a, the
finite set of all successor configurations of X via a. This function
uses functions add and δ. Then we may easily define conf-succ :
Fβ → Fn(Fβ) that computes, for a given configuration X , the
finitary set {X ′ : X X ′}:

conf-succ x = A >>= (conf-input-succ x)

Similarly, conf-succ may be lifted to finitary sets of configura-
tions:

X >>= conf-succ

The above term inputs a finitary set X of configurations, and outputs
the set of its successors. Therefore, this term realizes the mapping
Xn 7→ Xn+1 discussed in Section 13.1. The last two auxiliary
functions needed to define nonempty are:

final : Fβ → bool

final-reach : Fn(Fβ) → bool

final x = forall x (member F)
final-reach X = if (exists X final) true

(final-reach (X >>= conf-succ))

For a set X of configurations, the function final-reach checks if
a configuration containing only final states is reachable from any
configuration in X, by recursively computing successors. Finally:

nonempty A Q∃ Q∀ δ qI F = final-reach (just [qI])

Note that all auxiliary functions above must be defined in an en-
vironment that contains all ingredients of an automaton, that is A,
Q∃, Q∀, δ, qI and F .

14. Decidability border

In this section we discuss what happens to our program for data
symmetries other than those mentioned in Theorem 12. We provide
a negative example and a positive one. This demonstrates that
decidability of the emptiness problem in dimension 1 is a delicate
issue and it strongly depends on a data symmetry.

Positive example: forest orders. Consider a forest symmetry,
which corresponds to the Fraı̈ssé class of forests. A partial order
is called a forest if for every element x, the elements smaller than
x are linearly ordered. The class of finite forests has amalgama-
tion, so there is a universal structure, and we can study Nλ in the
resulting data symmetry.

One can show that the forest symmetry satisfies condition (2)
from Section 13. The proof is the same as in Theorem 14, ex-
cept that we use Kruskal’s Tree Theorem instead of Dickson’s or
Higman’s Lemma. Because condition (2) is satisfied, our empti-
ness algorithm works, and therefore emptiness is decidable for one-
dimensional alternating automata for the forest symmetry. This is a
new decidability result, unknown in the automata literature.

Negative example: partial orders. Consider the partial order
symmetry, arising from the Fraı̈ssé class of finite partial orders.

Fact 17 Condition (2) fails in the partial order symmetry.

In fact, emptiness is undecidable for one-dimensional alternating
automata in the partial order symmetry.

15. Name binding

As another case study, we use Nλ to capture name binding on
the example of untyped lambda calculus, up to α-conversion. Our
objective is to define a datatype to implement lambda terms, such
that two α-equivalent terms are represented by the same object of
that datatype. In this section we work with the equality symmetry.

Our basic idea is that a term, in particular a lambda abstraction
modulo α-conversion, is represented as a finitary set of terms. For
instance, the following two terms:

m1 = λd.d d m2 = λd.λe.d,

will be represented, intuitively, by the following two sets:

{λd.d d}d∈D {λd.{λe.d}e∈D\{d}}d∈D.

The lambda terms that we want to implement are built out of
variables using application and lambda abstraction. To store them,
we use a recursive datatype term:

term = VAR(D) | APP(term× term) | ABS(Fn(D× term))

In particular, we use data values to stand for variables. We will
explain the idea using m1 and m2. The term m1 is represented by

t1 = ABS(hull ∅ (just (d, APP(VAR(d), VAR(d)))))

Thus binding of a variable, say d above, in a term t, is obtained
by considering the orbit of (d, t). The term m′

2 = λe.d will be
represented by

t2’ = ABS(hull (just d) (just (e, VAR(d))))

that is by the orbit of (e, VAR(d)) with respect to G{d}. Intu-
itively, a difference between free and bound variables is that a free
variable of a term is an element of its least support while the bound
variable is not. Finally m2 is represented by:

t2 = ABS(hull ∅ (just (d, t2’)))

The set of free variables of a term can be computed as the least
support of that term, cf. Section 9.

We have decided to model lambda abstraction as a suitable one-
orbit set of type Fn(D×term). Note that this type contains elements
that do not correspond to well-formed terms. However, one can
define a function abstr : D × term → term, that constructs a
well-formed lambda abstraction up to α-conversion:

abstr d t = ABS((supp t) >>= λ fvars.
let C = minus fvars (just d)
in hull C (just (d, t)))

where supp : term → Fn(FD) is defined as in Section 9. For
instance, the terms t1 and t2 could be defined as:

t1 = abstr d APP(VAR(d), VAR(d))
t2 = abstr d (abstr e VAR(d))

for arbitrary d 6= e. For simplicity we assume from now on that
all terms are well-formed, i.e., defined using only VAR(), APP()
and abstr as exemplified above (in fact, a well-formedness check
may be easily programmed).

Now we will write a capture-avoiding substitution function:

subst : term → D → term → term

with the meaning that subst t d u substitutes the term t for
every free occurrence of d in term u. It can be defined recursively:

subst t d VAR(e) = if (eqD e d) t VAR(e)

subst t d APP(t1, t2) =
APP((subst t d t1), (subst t d t2))

subst t d ABS(X) =
let C = fvars t in
let X’ = filter (λ(e, u).not(member C e)) X in
ABS(map (λ(e, u).(e, subst t d u)) X’)

Before term t is substituted inside a lambda abstraction ABS(X),
we filter out from X all pairs (e, u) such that e occurs free in t.
Thus the free variables of t are not captured and remain free.

We should note that the code of the basic programs above is
rather unpleasant, especially when compared to the neat treatment
of α-conversion in Fresh O’Caml [17, 18]. Also the fact that the
property of being a well-formed lambda term is not captured by
the type system of Nλ, is a deficiency. We see this case study as
evidence of the limitations of Nλ, just as the automata-theoretic
examples of the preceding sections are evidence of its strength. A
detailed study of relations between Nλ and Fresh O’Caml, as well
as an attempt to combine their strong points, is left for future work.

References

[1] P. Aziz Abdulla, J. Deneux, J. Ouaknine, and J. Worrell. Decidability
and complexity results for timed automata via channel machines. In
ICALP, pages 1089–1101, 2005.

[2] M. Bojańczyk. Data monoids. In STACS, 2011.

[3] M. Bojańczyk, B. Klin, and S. Lasota. Languages with group actions.
In LICS, 2011.

[4] J. A. Brzozowski and E. L. Leiss. On equations for regular languages,
finite automata, and sequential networks. Theor. Comput. Sci., 10:19–
35, 1980.

[5] A. K. Chandra, D. Kozen, and L. J. Stockmeyer. Alternation. J. ACM,
28(1):114–133, 1981.

[6] S. Demri and R. Lazic. LTL with the freeze quantifier and register
automata. ACM Trans. Comput. Log., 10(3), 2009.

[7] G. L. Ferrari, U. Montanari, and M. Pistore. Minimizing transition
systems for name passing calculi: A co-algebraic formulation. In
FoSSaCS, volume 2303 of LNCS, pages 129–158, 2002.

[8] D. Figueira, P. Hofman, and S. Lasota. Relating timed and register
automata. In Proc. EXPRESS’10, volume 41 of EPTCS, pages 61–75,
2010.

[9] R. Fraı̈ssé. Theory of relations. North-Holland, 1953.

[10] N. Francez and M. Kaminski. Finite-memory automata. Theor.

Comput. Sci., 134(2):329–363, 1994.

[11] M. Gabbay and A. M. Pitts. A new approach to abstract syntax with
variable binding. Formal Asp. Comput., 13(3-5):341–363, 2002.

[12] S. Lasota and I. Walukiewicz. Alternating timed automata. In FoS-

SaCS, pages 250–265, 2005.

[13] S. Lasota and I. Walukiewicz. Alternating timed automata. ACM

Trans. Comput. Log., 9(2), 2008.

[14] U. Montanari and M. Pistore. History-dependent automata: An intro-
duction. In SFM, pages 1–28, 2005.

[15] J. Ouaknine and J. Worrell. On the decidability of metric temporal
logic. In LICS, pages 188–197, 2005.

[16] M. Pistore. History Dependent Automata. PhD thesis, University of
Pisa, 1999.

[17] M. R. Shinwell. The Fresh Approach: functional programming with
names and binders. Technical Report UCAM-CL-TR-618, University
of Cambridge, Computer Laboratory, February 2005.

[18] M. R. Shinwell and A. M. Pitts. Fresh Objective Caml user manual.
Technical Report UCAM-CL-TR-621, University of Cambridge Com-
puter Laboratory, February 2005.

