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We consider injective �rst-order interpretations that input and output trees of bounded height. The corre-

sponding functions have polynomial output size, since a �rst-order interpretation can use a :-tuple of input

nodes to represent a single output node. We prove that the equivalence problem for such functions is decidable,

i.e. given two such interpretations, one can decide whether, for every input tree, the two output trees are

isomorphic.

We also give a calculus of typed functions and combinators which derives exactly injective �rst-order

interpretations for unordered trees of bounded height. The calculus is based on a type system, where the

type constructors are products, coproducts and a monad of multisets. Thanks to our results about tree-to-tree

interpretations, the equivalence problem is decidable for this calculus.

As an application, we show that the equivalence problem is decidable for �rst-order interpretations between

classes of graphs that have bounded tree-depth. In all cases studied in this paper, �rst-order logic and mso

have the same expressive power, and hence all results apply also to mso interpretations.
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1 INTRODUCTION

This paper is about computational models that transform objects such as strings or trees, are
powerful enough to describe interesting programs, but are weak enough to have a decidable halting
problem. The point of departure is the class of polyregular functions [Bojańczyk 2022]. This is a
class of string-to-string functions that contains functions such as

123 ↦→ 123123123︸                ︷︷                ︸
squaring

123 ↦→ 321︸       ︷︷       ︸
reverse

,

and that can be de�ned by many equivalent models of computation, including: pebble transduc-
ers [Milo et al. 2003, Section 3.1], a certain imperative programming language [Bojańczyk 2022,
Section 1], several functional programming languages with the same expressive power [Bojańczyk
2022, Sections 3 and 4] and [Bojańczyk 2023], and logical interpretations [Bojańczyk et al. 2019,
Theorem 7]. The general idea is that the polyregular functions are those string-to-string functions
which have polynomial output size, and which can be computed by devices similar to automata. Due
to their similarity to �nite automata, certain problems are known to be decidable for polyregular
functions (see e.g. [Bojańczyk 2022, Corollary 1.5]). An outstanding open problem about polyregular
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45:2 Mikołaj Bojańczyk and Bartek Klin

functions is decidability of the equivalence problem, i.e. it is not known if one can decide whether
two devices (transducers, programs, interpretations) compute the same polyregular function. In
this paper we make progress on this question by answering it in a di�erent setup, where instead of
strings the underlying data structure is nested multisets.

Let us begin by explaining the objects studied here. One description (see Section 2) is that these
are data types that are constructed from �nite sets using the multiset constructor

M- = �nite multisets of elements from - .

(We also allow products and coproducts, but it is only the multiset constructor that can create
in�nite sets.) We use the name multiset types for such types1. Another description of multiset types
is that they describe trees, since nested multisets can be represented as trees, as explained in the
following picture:

{ { , , } , { } , { , , } } ● ● ● ●● ●{ { {} } } }{

a multiset of multisets

we use double brackets for multisets

the corresponding tree the same tree, again

Importantly, the trees are unordered (there is no order on siblings, since multisets are unordered),
and their height is bounded (by the nesting depth of the multiset constructor in a multiset type).
This paper is about functions on multiset types or, equivalently, unordered trees of bounded

height. The contributions of this paper are:

(1) In Section 2-4, we introduce a notion of polyregular function for such objects. These are
functions between multiset types (or, equivalently, unordered trees of bounded height),
that have polynomial output size, and that coincide with regular languages in the case
of Boolean outputs. One example of such a polyregular function is the product operation
(MΣ) × (MΓ) → M(Σ × Γ), that inputs two multisets, of cardinalities = and<, respectively,
and outputs a single multiset of cardinality = ·<. This function has quadratic output size.
Another example, which has linear output size, is the multiset union operation of type
MMΣ → MΣ. In our de�nition of polyregular functions, we propose two models, and
prove that they are equivalent. The �rst model is �rst-order interpretations, which are a
classical model of describing functions using logical formulas [Hodges 1993, Chapter 5]. The
second model uses certain prime functions (such as multiset union) and combinators (such
as sequential composition of functions), inspired by a similar system for string-to-string
polyregular functions [Bojańczyk 2022, Section 3]. The proof that these models describe the
same functions on multiset types is inspired by a similar result for strings [Bojańczyk et al.
2019, Theorem 7], except that in the multiset case we can avoid many technicalities that
appear in the string case. One of the useful features of multiset types is that �rst-order (fo)
logic has the same expressive power as monadic second-order (mso) logic.

(2) In Sections 5-6, we prove that the equivalence problem is decidable for the polyregular
functions on multiset types. This means that one can decide if two programs represent the
same function, i.e. for every input (which is taken from some multiset type), the two possible
outputs are equal. For strings, this problem remains open [Bojańczyk 2022, Section 8], and the
decidability result on multisets from this paper is the �rst signi�cant progress on the problem
(Section 6.3, we comment on the connection between the two problems). Our algorithm uses
two main ingredients: a quanti�er-elimination result, and an algorithm for the quanti�er-free
case that uses a data structure that involves trees with edge weights taken from a polynomial
ring Z[- ]. The equivalence algorithm is the main technical contribution of this paper.

1The idea to consider regular functions for multiset types was suggested to us by Marcelo Fiore.
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Polyregular Functions on Unordered Trees of Bounded Height 45:3

(3) Finally, in Section 7 we illustrate the strength of the equivalence result from the previous
item by extending it to graphs of bounded tree-depth.

Context. One could place the present paper within the wider context of Hilbert’s Entschei-
dungsproblem [Börger et al. 2001], which is to decide if a �rst-order formula is true. This problem
can be seen as deciding equality on (the semantics) of formulas, i.e whether a formula i is equal
to another formula, such as “true” or “false”. The problem is famously undecidable, as shown by
Church and Turing. One of the most successful methods of recovering decidability has been to use
automata methods (tree automata, mso logic, tree decompositions, etc). The scope of such methods
is now well understood; they will work if and only if one considers structures that are similar to
trees, see [Seese 1991, Theorem 8] and [Courcelle and Oum 2007, Theorem 5.6] for formalisations
of this statement.
In this paper, we address a functional version of the problem: instead of deciding equality on

logically de�ned languages (functions with Boolean outputs), we want to decide it on logically
de�ned functions (which input and output structures). In the functional version, logical formulas
are replaced by logical interpretations, and one asks if for every input, the outputs produced by the
two interpretations are isomorphic. This makes the problem nontrivial for output structures with
nontrivial isomorphisms, such as graphs, or even unordered trees. This di�culty is not present
in the language version, because isomorphism creates di�culties only for the output structures.
Making progress on this problem seems to be very hard, even for tame structures such as unordered
trees of bounded height or graphs of bounded tree-depth, as considered in this paper.
To our best knowledge, the results of this paper about interpretations on bounded tree-depth

gives are the �rst known decidability results about equivalence for graph-to-graph interpretations.
Previous results about equivalence involved trees, with the state of the art being the results on
tree-to-tree interpretations from [Seidl et al. 2018, Corollary 8.2] and [Boiret et al. 2018, Section 3].
These papers deal with trees of unbounded depth, but the interpretations are restricted to have linear
output size. The techniques are based on Hilbert’s Basis Theorem and seem to fail for interpretations
of non-linear output size, and also have a certain fragility regarding the type of structures that can
be modelled (for example, the results work for linear interpretations on trees with a distinguished
root, but the case of trees without distinguished roots remains open [Bojańczyk and Schmude
2020, p. 7]). The only known decidability results for equivalence of non-linear interpretations is for
functions that output numbers [Douéneau-Tabot 2021, Corollary 19]; the techniques used there are
based on weighted automata and seem to apply only to outputs that are numbers.
Nested multisets have been studied in database theory, in the context of nested relational

algebra [Buneman et al. 1995; Cheney et al. 2014; Ricciotti and Cheney 2019]. Calculi of typed
functionals are used there to de�ne transformations between nested collections, similarly to what
we aim to do here. It appears that our approach is more restricted than most of the calculi considered
there, with the advantage of decidable equivalence. Potential applications of our results in nested
relational calculi remain to be investigated.
Due to lack of space, some of the proofs have been elided. They can be found in appendices to

the full version of this paper [Bojańczyk and Klin 2023].

2 MULTISET TYPES

One way of describing trees of bounded height is to view them as values of certain algebraic
datatypes. The essential ingredient will be the multiset type constructor, since an unordered tree
can be seen as the multiset of its child subtrees. We begin the paper with this approach. Apart from
the multiset constructor, we also allow products and coproducts, which will be useful for typing
various helper functions.
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45:4 Mikołaj Bojańczyk and Bartek Klin

De�nition 2.1 (Multiset types). A multiset type is any type that can be generated using the
following type constructors:

1︸︷︷︸
a set with

one element

Σ + Γ︸︷︷︸
disjoint union
of sets Σ and Γ

Σ × Γ︸︷︷︸
product of
sets Σ and Γ

MΣ︸︷︷︸
multisets
over set Σ

.

Strictly speaking, this de�nition introduces two notions: a syntax of multiset types, and an
obvious semantics of each type as a certain set of values. There is no need to be pedantic about
this distinction for the moment, but in Section 3 we will introduce a more elaborate semantics of
multiset types as sets of relational structures over certain vocabularies.

Example 1. M:1 is the type of unordered trees of height at most : . (The height of a tree is de�ned
to be the maximal number of edges on a root-to-leaf path.) The idea is that a tree is represented
as the multiset of the representations of its child subtrees. For example, consider : = 2 and the
following tree

Assuming that we use double set brackets to represent multisets, the above tree is represented as
the following multiset of multisets:

{{{{∗, ∗}}, ∅, ∅}} ∈ M21,

where ∗ denotes the unique element of the set 1. □

Example 2. We can extend the trees from the previous example by adding labels from some type
Σ. There are two variants of such trees of height at most : :

• Tedge
:

Σ: edge-labeled trees, and

• Tnode
:

Σ: node-labeled tress.

These constructors can be simulated using multiset types, by induction on : :

Tedge
0

Σ = 1 Tnode0 Σ = Σ

Tedge
:+1

Σ = M
(
Σ × Tedge

:
Σ

)
Tnode:+1 Σ = Σ ×

(
MTnode: Σ

)
□

We want to study a class of functions between multiset types which we call the polyregular
functions, meant to be an analogue of the string-to-string polyregular functions from [Bojańczyk
2018]. There will be two equivalent de�nitions of this class, one using fo interpretations (Section 3),
and one using combinators (Section 4).

3 LOGIC

We describe a logical approach to polyregular functions on multiset types. The idea is to view each
multiset type as a class of structures, in the sense of model theory, and to use fo interpretations
to transform the structures. fo interpretations are the usual kind of functions from structures to
structures, where the universe of the output structure is de�ned using tuples of elements in the
input structure, and the relations of the output structure are de�ned using fo formulas. Precise
de�nitions are given below.
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fo interpretations. We assume that the reader is familiar with the basic notions of �rst-order (fo)
logic. We use the following terminology. A vocabulary is a �nite set of relation names, each one
with an associated arity in {0, 1, 2, . . .}. A structure over such a vocabulary consists of a set, called
its universe, and for each relation name in the vocabulary a corresponding relation – of same arity
– over the universe. We assume that the universe in a structure is nonempty.

When we talk about a class of structures, we mean any class that contains structures, over the
same vocabulary, which is closed under isomorphism. To transform structures of one class into
structures of another class, we use fo interpretations as de�ned below. This notion is commonly
used in model theory (see e.g. [Hodges 1993, Chap. 5.3]). For a simple example, see Ex. 4 below.

De�nition 3.1. Let Σ and Γ be classes of structures. A function 5 : Σ → Γ is called an fo

interpretation if it can be described as follows: there is a �nite set � , called the components of the
interpretation, with each component 8 ∈ � associated to a dimension :8 ∈ {0, 1, . . .}, and for every
input structure � ∈ Σ the output structure 5 (�) is de�ned by:

• Universe. For every component 8 there is an fo formula i8 over the vocabulary of Σ with :8
free variables, such that the universe of 5 (�) is∐

8∈�

{0̄ ∈ �:8 | � |= i8 (0̄)}.

Elements of the above disjoint union will be written as pairs (8, 0̄).
• Relations. For every relation name ', say of arity =, in the vocabulary of Γ and every tuple of
components 81, . . . , 8= ∈ � , there is an fo formula i over the vocabulary of Σ with :81 + · · · +:8=
free variables, such that

5 (�) |= '((88 , 0̄1), . . . , (8=, 0̄=)) ⇔ � |= i (0̄1 · · · 0̄=)

for all (81, 0̄1), . . . , (8=, 0̄=) in the universe of 5 (�).

Remark 3.2. This de�nition is what is sometimes called an injective fo interpretation. In model
theory one typically uses a more general notion of interpretation, where the universe of the output
structure is a quotient ∐

8∈�

{0̄ ∈ �:8 | � |= i8 (0̄)}/∼8
,

where each ∼8 is some equivalence relation that is de�ned by a formula with 2:8 free variables. The
formulas de�ning the relations of the output structure are required to be invariant under these
equivalences. This is a more powerful model, which we call non-injective interpretations, and which
will not be discussed in this paper.

Multiset types as classes of structures. A multiset type can be viewed as a class of structures, as
explained in the following inductive de�nition.

De�nition 3.3. The type constructors are extended to classes of structures as follows:

1: This is the class of structures over the empty vocabulary, that contains only one structure: a
universe with one element.

Σ × Γ: If Σ and Γ are classes of structures, then Σ × Γ is the class over vocabulary

E>2 (Σ × Γ) = E>2 (Σ) + E>2 (Γ) + '(G)︸︷︷︸
one extra unary relation name

(here + means disjoint union of vocabularies) that is de�ned as follows. A structure in Σ × Γ

is obtained by taking a structure � ∈ Σ and a structure � ∈ Γ, and returning the following
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45:6 Mikołaj Bojańczyk and Bartek Klin

pair structure (�, �): extend both � and � to the vocabulary voc(Σ) + voc(Γ) by interpreting
new relation names as empty sets, then take their disjoint union, and �nally interpret ' as
the set of elements that come from �.

Σ + Γ: If Σ and Γ are classes of structures, then Σ + Γ is the class over vocabulary

E>2 (Σ + Γ) = E>2 (Σ) + E>2 (Γ) + '︸︷︷︸
one extra 0-ary relation name

which contains structures that are obtained by either:
(1) taking a structure in Σ, extending it to voc(Σ) + voc(Γ) and interpreting ' as true; or
(2) taking a structure in Γ, extending it to voc(Σ) + voc(Γ) and interpreting ' as false.
MΣ: If Σ is a class of structures, then voc(MΣ) arises from voc(Σ) by replacing every 0-ary

relation by a unary relation, and then adding an extra binary relation ∼. A structure inMΣ is
obtained by:

(1) taking the disjoint union of some structures �1, . . . , �= ∈ Σ,
(2) replacing every 0-ary predicate ' from voc(Σ) by a unary relation that holds for all elements

of those �8 for which ' is true,
(3) interpreting ∼ as the equivalence relation whose equivalence classes are the universes of

the structures �1, . . . , �= ,
(4) and adding an extra element (called the root) that does not participate in any relations2.

In this way, every multiset type can be seen as a class of structures. Therefore one can use fo
sentences to de�ne subsets of multisets types, and fo interpretations to de�ne functions between
multiset types.

Remark 3.4. fo interpretations are closed under composition, and the identity is a fo interpreta-
tion. Therefore one can consider the following category: the objects are classes of structures, and
the morphisms are fo interpretations modulo equivalence. (This means that two interpretations
describe the same morphism if they are equivalent in the sense that for every input structure, the
two output structures produced by the two interpretations are isomorphic.) It is not di�cult to
prove that 1, Σ+ Γ and Σ× Γ in De�nition 3.3 de�ne respectively the terminal object, coproduct, and
product in this category, and thatM is a monad. We do not elaborate this categorical perspective in
this paper, but it will inform our choice of prime functions and combinators in De�nition 4.1.

Example 3. An unordered tree of height at most : can be seen as a relational structure over a
vocabulary of : binary relations ∼1, . . . ,∼: , with ∼8 interpreted as relating those nodes that have
a common ancestor at depth at least 8 . It is easy to construct mutually inverse interpretations
between this representation of trees and the more usual one based on a parent-child relation. By
De�nition 3.3, trees represented in this way are exactly structures of typeM:1. □

By Lemma 4.3 below, all multiset types can be viewed as a special case of trees of bounded height.
For such structures �rst-order logic has the same expressive power as monadic second-order logic,
see [Elberfeld et al. 2016, Theorem 1.1]. Therefore, mso and fo logics will de�ne the same kind of
interpretations between multiset types. We will therefore simply speak about interpretations from
now on, without specifying that they are fo interpretations.

Example 4. Assume that we model the natural numbers as multisets

N
def
= M1.

2The root serves two purposes: (a) it guarantees that the universe is nonempty even if = = 0; and (b) it can be uniquely

identi�ed by a �rst-order formula whenever choosing a unique element is needed. This will come useful in Example 6.
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Under this representation, which functions 5 : N → N can be obtained as interpretations? One
example is all polynomials with non-negative coe�cients. For example, the function

5 (=) = 3=4 + =2 + 7

is de�ned by an interpretation with 3 components of dimension 4, 1 component of dimension 2,
and 7 components of dimension 0. In each of these components, the universe formula is “true”.

Another example is the function that counts the number of non-repeating :-tuples in the input,
the output of this function is

= (:) def
= = · (= − 1) · (= − 2) · · · (= − : + 1).

As a polynomial, this function has some negative coe�cients. The corresponding interpretation
has 1 component of dimension : , with a universe formula that selects non-repeating tuples. As it
turns out, non-repeating tuples are essentially the only thing that can be done.

Proposition 3.5. The following are equivalent for every function 5 : N→ N:

(1) 5 is an interpretation, assuming the representation N = M1;

(2) there are non-negative co-e�cients 00, . . . , 0: ∈ {0, 1, . . .} such that

5 (=) = 00 · =
(0) + 01 · =

(1) + · · · + 0: · = (:) ,

holds for all su�ciently large =.

Proof. The implication 2 ⇒ 1 is easy to show. For the converse, it is enough to prove the
claim for interpretations with one component; since having several components corresponds to
taking a sum of functions with non-negative co-e�cients. Suppose then that 5 is de�ned by an
interpretation with one component of dimension : . The corresponding function inputs a number
=, and returns the number of :-tuples that satisfy some �rst-order formula i (G1, . . . , G: ) in the
structure that has = elements and no nontrivial relations. Over such a structure, quanti�ers are not
useful, at least as long as = exceeds some threshold. Counting tuples that satisfy a quanti�er-free
formula gives a function as in item (2). □

As a corollary, e.g. the decrement function 5 (=) = max(= − 1, 0) is not an interpretation. □

4 DERIVABLE FUNCTIONS

In this section, we give an alternative de�nition of polyregular functions on multiset types, which
uses combinators. Then we prove that this de�nition is equivalent to the interpretations from
Section 3.
The idea is to start with certain prime functions, such as multiset union, and close them under

certain combinators, such as composition of functions. A brutal approach would be to start with all
functions that are interpretations; in this case, the combinators would not be needed. However, in
the presence of combinators, only a small set of prime functions is needed. Two of these functions
are explained in the following examples.

Example 5. For a multiset type Σ, consider the de-singleton function of type

MΣ → 1 + Σ

that maps singleton multisets to their unique elements, and otherwise returns the unique element
of 1. (Like almost all prime functions, this is not a single function but a family of functions indexed
by multiset types.) We claim that this is a �rst-order interpretation. This has a component of
dimension zero, used to produce the error value in the case of non-singleton inputs. The universe
formula for this component says that the input multiset is not a singleton, i.e. that it either consist
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45:8 Mikołaj Bojańczyk and Bartek Klin

solely of the root or it contains some non-root elements which are not related by the equivalence
relation ∼ from the de�nition of MΣ:

∀G .¬(G ∼ G) ∨ ∃G~.(G ∼ G ∧ ~ ∼ ~ ∧ ¬(G ∼ ~))

For singleton input multisets, the input structure should simply be copied to the output, removing
the root. This is done by using an additional component of dimension one, whose universe formula
says that the argument is not the root of the multiset. □

Example 6. Let Σ be a multiset type. One of our prime functions, and the only one whose growth
is more than linear, is choices of the type

MΣ → M(Σ ×MΣ).

This function, given a multiset

{{�1, . . . , �=}} where �8 ∈ Σ,

outputs the following multiset with the same number of elements:

{{(�1, �1), . . . , (�=, �=)}} where �8 = {{�1, . . . , �=}} − {{�8 }}.

The idea is that the output contains all possible multisets that can be obtained from the input
multiset by choosing some distinguished element.
Let us prove that this function is a �rst-order interpretation. To represent an element of �8 in

the output structure, we simply use the same element in the input structure. These elements are
represented using a component of dimension one. To represent an element of �8 in the output
structure, we use a pair (0, 1), where 0 is the root of �8 (see below) and 1 is an element of some � 9

in the input structure with 9 ≠ 8 . Formally, the universe formula for the corresponding component
of dimension two is:

A>>CΣ (0) ∧ ¬(0 ∼ 1),

where ∼ is the equivalence relation from the de�nition ofMΣ, and A>>CΣ is a formula that is satis�ed
for a unique element of every structure in Σ. Such a formula is de�ned by induction on Σ, using
the root in the induction step for multisets. □

The above examples explain the only two non-obvious prime functions. The remaining prime
functions and all the combinators are straightforward enough that we simply give their types and
names, and we assume that the reader can guess their de�nitions.

De�nition 4.1. The derivable functions are the least class of functions that:

• Prime functions: contains the following functions for all types Σ, Σ1, Σ2:

union : MMΣ → MΣ (multiset union)

add : Σ ×MΣ → MΣ (add one element)

choices : MΣ → M(Σ ×MΣ) (see Ex. 6)

de-singleton : MΣ → 1 + Σ (see Ex. 5)

empty : 1 → M1 (constant empty multiset)

id : Σ → Σ (identity)

c8 : Σ1 × Σ2 → Σ8 (projection for 8 = 1, 2)

]8 : Σ8 → Σ1 + Σ2 (coprojection for 8 = 1, 2)

dist : Σ × (Σ1 + Σ2) → Σ × Σ1 + Σ × Σ2 (distribute × over +)

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 45. Publication date: January 2024.
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• Combinators: is closed under applying the following combinators:

51 : Σ → Γ1 52 : Σ → Γ2

⟨51, 52⟩ : Σ → Γ1 × Γ2

pairing
51 : Σ1 → Γ 52 : Σ2 → Γ

[51, 52] : Σ1 + Σ2 → Γ
co-pairing

5 : Σ → Γ

M5 : MΣ → MΓ
mapping

5 : Σ1 → Σ2 6 : Σ2 → Σ3

5 ;6 : Σ1 → Σ3

composition

Remark 4.2. It is easy to prove that all prime functions are interpretations (see Theorem 4.4).
In fact, recalling categorical considerations from Remark 3.4, most prime functions are natural
transformations between the corresponding functors on the category of fo interpretations. A
notable exception is choices, whose fo de�nition in Example 6 relies on root formulas that are
de�ned only for multiset types and not for arbitrary structures. The need for roots would disappear
if we considered non-injective fo interpretations as in Remark 3.2; then choices would become a
natural transformation. It therefore seems natural to leave the full categorical framework to future
work, until we extend our results to non-injective interpretations. For the present, we can use the
�exibility a�orded by our elementary framework to derive some other non-natural functions by
induction on the structure of multiset types.

Example 7. Although the list of prime functions has the identity for every multiset type Σ, it is
only really needed in type 1 → 1. For the remaining types, it can be derived using combinators.
Also, for every type Σ we can derive the unique function !Σ of type Σ → 1. The proof is by induction
on Σ, in the induction step for Σ = MΓ one uses the de-singleton operation.

We can also derive functions of type 1 → Σ by induction on Σ. For coproducts, this is done with
coprojections; for products, with pairing; for multiset types, with the mapping combinator and the
constant empty multiset function. □

Example 8. De�ne the Boolean type to be

Bool
def
= 1 + 1.

One can easily derive all Boolean operations, e.g. conjunction Bool
2 → Bool. In fact, for every

�nite types Σ and Γ, i.e. types that are built without the multiset constructor M, one can derive
every function of type Σ → Γ. □

Example 9. The emptiness test

4<?C~ : M1 → Bool,

that returns “true” for the empty multiset and “false” for nonempty ones, is derived as the composi-
tion of the following operations:

M1
⟨!M1,83 ⟩ // 1 ×M1

add // M1
de-singleton

// 1 + 1 = Bool.

The idea is that the empty multiset is the only one to which we can add and element to obtain a
singleton. □

Example 10.We now derive the function

∨ : M(Bool) → Bool

that implements disjunction of unbounded arity: the function checks if the input multiset contains
at least one “true” value. This function is derived as follows. To the input, which is a multiset of
Booleans, we apply M5 , where 5 : Bool → M1 is the function that maps “false” to the empty
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multiset and “true” to the singleton multiset. After applying multiset union to the result, we test
the resulting value for emptiness.
Using the same idea, for any multiset types Σ and Γ we can derive a function

drop : M(Σ + Γ) → MΣ

that erases all elements of Γ from the given multiset. □

Example 11. For multiset types Σ and Γ, consider the function strength of type

MΣ × Γ → M(Σ × Γ)

which, given an argument � ∈ Γ and a multiset

{{�1, . . . , �=}} where �8 ∈ Σ,

returns the multiset of pairs:

{{(�1, �), . . . , (�=, �)}}

with the same number of elements.
Let us prove that strength is derivable. Given a structure inMΣ × Γ, perform the following steps:

(1) use suitable coprojections to get to M(Σ + Γ) × (Σ + Γ);
(2) use add to get to M(Σ + Γ);
(3) use choices to get to M((Σ + Γ) ×M(Σ + Γ));
(4) use dist to get to M(Σ ×M(Σ + Γ) + Γ ×M(Σ + Γ));
(5) use drop from Example 10 twice, to get to M(Σ ×MΓ);
(6) de-singleton MΓ, distribute and use drop again to get to M(Σ × Γ).

□

Trees of bounded height. In Examples 1 and 3 we showed how unlabelled trees of height at most :
can be modeled as structures of type M:1. The following lemma shows that such types are general,
i.e. all multiset types can be encoded in them. We use the following notion of encoding: we say
that a type Σ encodes in a type Γ if there are derivable functions

Σ

encode
**
Γ

decode

jj

such that encode;decode is the identity on Σ.

Lemma 4.3. Every multiset type encodes into M:1 for some : ∈ {0, 1, . . .}.

Proof. Induction on the structure of the type. For the type 1, there is nothing to do. For a type
MΣ, we simply apply the mapping combinator to the encoding for Σ. We are left with products
and coproducts. We only describe the construction for products Σ × Γ; coproducts can be treated
in a similar way. By induction assumption, each of the types Σ and Γ encodes into trees of some
height. We can assume that the heights are the same, becauseM:1 encodes intoM:+11. We pair
the encodings as follows: a pair in Σ × Γ is sent to the following tree

encoding of 
the Σ part

encoding of 
the Γ part

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 45. Publication date: January 2024.



Polyregular Functions on Unordered Trees of Bounded Height 45:11

This tree lives in M:+31, where : is the height of trees needed to encode Σ and Γ. It remains to
describe the decoding. We explain how to extract the Σ component. In the argument below, a
singleton tree is a tree where the root has a single child. The projection to the Σ coordinate is
performed in �ve stages, summarised in the following picture:

remove child 
subtrees that are 
singleton trees

de-singleton 
the tree

de-singleton 
the tree

de-singleton 
the tree

remove child 
subtrees that 
have exactly 

one node

We omit the straightforward details of the construction. A similar construction is used for extracting
the Γ component. □

4.1 Completeness of the derivable functions

Let us prove that on multiset types, �rst-order interpretations coincide with derivable functions.

Theorem4.4. Let 5 : Σ → Γ be a function betweenmultiset types. Then 5 is a �rst-order interpretation

if and only if it is derivable.

The easier direction is soundness: every derivable function is also an interpretation. This is proved
by a straightforward induction on the derivation: all prime functions are easily seen to be �rst-order
interpretations (see Examples 5-6), and �rst-order interpretations are easily seen to be closed under
applying the combinators.
We now move to the harder part of the theorem, which we call completeness: every �rst-order

interpretation can be derived. This is proved �rst for Boolean outputs, and then for general outputs.

4.1.1 Boolean outputs. We begin by deriving interpretations with Boolean outputs, which is the
same as �rst-order sentences. (Indeed, all structures of type Bool have a one-element universe with
a single nullary relation, so the only ingredient of the interpretation is the sentence which is the
interpretation of that relation.) This is done by inlining the semantics of fo logic into our type
system, with the choices function used to simulate a single quanti�er.
In the proof it will be convenient to think of structures with distinguished elements as being a

multiset type. This is done using the following type constructor, where : ∈ {0, 1, . . .}:

V:Σ
def
= {(�, 0̄) | � ∈ Σ and 0̄ is a tuple of : distinguished elements}.

We do not assume that the distinguished elements are pairwise distinct. This type constructor can
be encoded using the existing type constructors:

V0Σ ≡ Σ V11 ≡ 1 V1 (Σ × Γ) ≡ V1Σ × Γ + Σ × V1Γ

V:+1Σ ≡ +1 (+:Σ) V1 (Σ + Γ) ≡ V1Σ + V1Γ V1MΣ ≡ (1 + V1Σ) ×MΣ

(the 1+ in the multiset case is due to the fact that the root element might be distinguished). As a
result, for any multiset type Σ, we can view V:Σ as a multiset type. The semantics of a �rst-order
formula i over the vocabulary of Σ that has : free variables is an interpretation of type

[[i]] : V:Σ → Bool.

The following lemma shows that such functions are derivable.
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Lemma 4.5. Let Σ be a multiset type. For every �rst-order formula i over the vocabulary of Σ with :

free variables, the function [[i]] is derivable.

Proof. Induction on the size of i . The induction base, when i is an atomic formula, is by
straightforward induction on Σ. For example, the equality predicate G = ~ is modeled as a function

4@Σ : V2Σ → Bool,

easily derived by induction on Σ.
For the induction step of negation ¬i , we simply compose the function of i with the negation

operation of type Bool → Bool. The same works for disjunction and conjunction, except that we
use pairing.

The last remaining induction step is that of a quanti�ed formula of the form ∃Gi or ∀Gi , where
i is a formula with : + 1 free variables. Consider the extension function of type:

extΣ : V:Σ → MV:+1Σ

that extends the input valuation in all possible ways by adding one element to the tuple. Since by
de�nition +:+1Σ = +1 (+:Σ), it is enough to derive this function for : = 0. This is done by induction
on the type Σ; for extMΣ we use choices and strength from Example 11, and for extΣ×Γ we use
strength again.
The functions [[∃Gi]] and [[∀Gi]] are derived by �rst applying the extension function, then

applying [[i]] to each element of the resulting multiset, and then applying disjunction/conjunction
from Example 10 to the resulting multiset of Booleans. □

4.1.2 General outputs. We now show how to derive �rst-order interpretations that have outputs
which can be any multiset type, not just the Booleans. Thanks to Lemma 4.3, which says that every
multiset type encodes into trees, the problem will reduce to functions with tree outputs.

Valuation trees. To deal with tree outputs, we introduce a data structure called valuation trees.
For a structure � and a number : ∈ {0, 1, . . . , }, the valuation tree of height : for � is de�ned as
follows. Nodes of the tree are pairs (�, 0̄) where 0̄ is a list of at most : distinguished elements in �;
in particular, the structure � is copied in each node in the tree. The ancestor relation is the pre�x
relation on the tuples of distinguished elements; in particular, the root of the tree uses the empty
tuple of distinguished elements. The height of this tree is : , and the leaves are labelled by tuples of
: distinguished elements.

For a multiset type Σ, the valuation trees of height : for structures from Σ can be seen as a type:

Tnode: (V≤:Σ), where V≤:Σ is de�ned as V0Σ + · · · + V:Σ

and Tnode
:

is the constructor of node-labelled trees from Example 2. Not all elements of this type are
valuation trees, since a valuation tree requires that the label of a parent node is obtained from the
label of any child node by removing the last distinguished element. For every : and multiset type
Σ, there is a derivable function:

valtree:
Σ
: Σ → Tnode: (V≤:Σ)

that maps a structure to its valuation tree. This is by induction on : , with valtree:+1
Σ

derived by:

Σ
⟨83,extΣ ⟩// Σ ×MV1Σ

83×M(valtree:V1Σ
)
// Σ ×MTnode

:
V≤:V1Σ

// Tnode
:+1

V≤:+1Σ

with the function on the right derived from obvious coprojections of Σ = V0Σ and V≤:V1Σ into
V≤:+1Σ. The extension function ext was derived in the proof of Lemma 4.5.
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Completeness proof. Using valuation trees, we �nish the completeness proof for Theorem 4.4.
Suppose that we want to derive a �rst-order interpretation 5 : Σ → Γ. Apply Lemma 4.3 to the
output type, yielding derivable functions

Γ

encode
,,
M=1.

decode

kk

Since the decoding function is derivable, it is enough to show that the composition

Σ
5 ;encode

// M=1 = Tnode= 1

is derivable. This function has tree outputs of bounded height, and it is a �rst-order interpretation.
For every such interpretation, there is an equivalent interpretation such that:

(a) for every dimension 8 there is at most one component of this dimension; and
(b) the ancestor ordering on nodes of the output tree is the pre�x relation on tuples.

To ensure (b) only, build an interpretation where nodes of the output structure are sequences (paths
in the tree) of output nodes in the original interpretation, with new components arising from
sequences (of length up to =) of the original components. The original parent-child relation now
becomes part of the universe condition, and the new ancestor relation is just the pre�x order. To
furthermore ensure (a) in this construction, extend the dimension of every component (arising
from a sequence of the original components) by adding a certain number of dummy coordinates at
the end (and also, necessarily, in the middle, to ensure that the parent-child relation is still a pre�x
relation).
Assuming that 5 ; 4=2>34 has properties (a) and (b), and the maximal dimension used in the

interpretation is : (typically : will be larger than =), one can decompose 5 ; 4=2>34 into four steps:

(1) Compute the valuation tree of height : , yielding a result in type Tnode
:

V≤:Σ.
(2) Consider the universe formula of the �rst order-interpretation de�ning 5 ; 4=2>34 , viewed as

a function of type V≤:Σ → Bool. Apply this function to the label of each node in the result
of the previous step, yielding a result in type Tnode

:
Bool.

(3) In the tree computed so far, keep only nodes with label “true”, while preserving the ancestor
relation, yielding a tree in Tnode

:
1.

(4) By the semantic properties of the �rst-order interpretation, we know that the output from
the previous step will have height =. However, we need to explicitly cast it into the output
type Tnode= 1. We therefore apply a derivable function that keeps only nodes at distance at
most = from the root, yielding a tree in the correct output type Tnode= 1.

All these four steps are derivable. Indeed, as we have already remarked, the valuation tree can be
computed using a derivable function. The second step is derivable by Lemma 4.5. Deriving the last
two steps is straightforward.

5 DECIDING EQUIVALENCE FOR QUANTIFIER-FREE INTERPRETATIONS ON TREES

OF BOUNDED HEIGHT

In the previous section we presented a list of prime functions and combinators that together
generate all interpretations that input and output trees of bounded height. It is clear that these
functions and combinators satisfy various equalities: pairing of the two projections from a product
type is equal to the identity, the mapping combinator preserves function composition, and so on.
One wonders whether there is an equational axiomatisation of the equivalence of interpretations
presented in this way. Ideally, that equational theory would be decidable. We do not attempt to
provide such a theory in this paper. However, we will prove that equivalence of interpretations is
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indeed decidable. We shall work directly with the logical presentation of interpretations, without a
direct reference to the prime functions and combinators.
The problem is to decide, given two fo interpretations on multiset types, if they produce iso-

morphic outputs for every input. We �rst solve a special case of this problem, where the input
and output types represent trees of bounded height, and – more importantly – the functions are
quanti�er-free interpretations. In Section 6 we will reduce the general problem to this special case.

We begin by specifying the exact variant of trees that is used, and their representations as logical
structures. We need to be quite speci�c here, since for quanti�er-free interpretations the exact
choice of vocabulary plays a role. In Section 6 these details will become unimportant, as quanti�ed
formulas allow easy translations between various representations of trees.
For the output trees, we consider unlabelled trees with a height bound =, where a tree is repre-

sented as a set of nodes with the parent-child relation. We will denote the class of such trees by
M=1. This is a slight abuse of notation: in Section 3 this indeed denotes the same class of trees, but
under a di�erent relational representation.
For the input, we use trees with edge labels from a �nite set Σ and with a height bound : . This

corresponds to the type Tedge
:

Σ described in Example 2, but again, abusing the notation, we use a
representation di�erent from the one arising from De�nition 3.3. In this edge represenation:

• the universe of the tree is the set of its edges;
• for every label 0, there is a unary relation that selects edges with label 0;
• there is a parent function, which maps an edge to its parent edge. For edges without parents,
i.e. edges that originate in the root of the tree, the parent function loops.

A useful property of this representation is that induced substructures have an intuitive meaning:
they correspond to “pruned” trees that arise by removing some subtrees. The empty structure also
has a meaning: it represents a root-only tree. This will be convenient when we apply generic results
from Section 5.1 to labelled trees.
We will consider functions of type

Tedge
:

Σ → M=1,

for a �nite set Σ of edge labels. The functions will be quanti�er-free interpretations, assuming tree
representations as above. This is the special case of interpretations as in De�nition 3.1, in which all
formulas are quanti�er-free. (Note that De�nition 3.1 makes sense in the presence of functions in
the input vocabulary.)
This section is devoted to proving the following theorem.

Theorem 5.1. The following problem is decidable:

Instance. Two quanti�er-free interpretations 5 , 6 : Tedge
:

Σ → M=1.

Question. Are the functions equivalent in the following sense: for every input, the two outputs

are isomorphic as trees?

We will even show that the problem is in polynomial time, assuming a suitable representation of
quanti�er-free interpretations, which we shall call patterns.

5.1 Pa�erns

In our solution to the equivalence problem, we use amore combinatorial representation of quanti�er-
free interpretations, which is de�ned by counting embeddings.

Recall that an embedding between structures over the same vocabulary is an injective map from
the universe of the source structure into the universe of the target structure, that preserves and
re�ects all relations. We will use embeddings mainly for trees modelled using the functional edge
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representation as described above. Under that representation, an embedding of one tree into another
is an injective map from edges in the source tree to edges in the target tree, that preserves the
labels and the parent function. Since the parent function loops for edges without parents, such
edges must be mapped to edges without parents. In other words, the root node must be mapped to
the root node. Here is a picture:

source tree target tree

embedding

The following de�nition is the key notion of this section. We will apply it to labeled trees under
the edge representation, but the de�nition makes sense for any class of structures that is closed
under induced substructures. Here an induced substructure is obtained by restricting the universe
to some (possibly empty) subset that is closed under the functions in the structure.

De�nition 5.2 (Pattern). Let C be a class of structures that is closed under induced substructures.
A pattern for C is a �nite tree Φ where every node G is labelled by a structure Φ(G) in C , such that:

• the root node is labelled by the empty structure, and
• if a node G is the parent of a node ~, then Φ(G) is an induced substructure of Φ(~).

Example 12. Here is a picture of a pattern, where the class C is trees of height at most one with
edges labelled red or blue:

The dotted lines in the picture represent the inclusions of induced substructures between a node of
the pattern and its children. □

Two patterns are isomorphic if there is: (i) a bijection between the underlying trees of the two
patterns, that preserves the tree structure; and (ii) a family of isomorphisms, one for each node G
in the �rst pattern, that isomorphically maps the structure labelling G in the �rst pattern to the
structure labelling the corresponding node in the second pattern. The family of isomorphisms in
(ii) must be consistent with the inclusion of labels, i.e. the isomorphism for a node G must extend
the isomorphism for its parent.
Every pattern Φ determines a function which inputs structures from C and outputs unlabelled

trees, and is de�ned as follows. For an input structure � ∈ C , the nodes of the output tree are pairs
(G, U) where G is a node of the pattern and

U : Φ(G) ↩→ �

is an embedding from the structure that labels node G in the pattern to the input structure �. The
children of a node (G, U) are nodes (~, V) such that ~ is a child of G and the embedding V extends U .
By de�nition, the height of the output tree is bounded by the height of the pattern. Moreover,

the function de�ned by a pattern Φ is easily seen to be a quanti�er-free interpretation. Indeed, one
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can take a component for each node G in Φ, with dimension equal to the size of the structure Φ(G),
and the universe formula determined by the structure Φ(G) itself. The parent-child relation is then
de�ned by a suitable sub-tuple formula. All these formulas are quanti�er-free.
The following lemma shows that every function of this kind arises from a pattern.

Lemma 5.3. Let C be a class of structures that is closed under induced substructures. Then a function

from C to (unlabelled) trees is de�ned by a pattern if and only if it is a quanti�er-free interpretation

that produces outputs of bounded height.

Proof. Consider a quanti�er-free interpretation 5 that, given an input structure in C , produces
a tree of height at most =. As we observed in the completeness proof in Section 4.1.2, there exists an

equivalent interpretation 5̂ whose components are sequences of components of 5 of length up to =;
the dimension of each such component is the sum of dimensions of the original components in
the sequence. The universe formula for such a component combines the universe formulas for the
original components with the parent relation formula of the output tree of 5 ; this is quanti�er-free
if all the constituent formulas are quanti�er-free. Finally, the parent relation is simply the pre�x
relation of a suitable length; again, this is described by a quanti�er-free formula.

Now, 5̂ is an interpretation of the same type as 5 , but with the parent relation in the output
tree de�ned as a pre�x formula. Every quanti�er-free interpretation with this property arises
from a pattern. Indeed, the universe formula for each component is (equivalent to) a disjunction
of conjunctive formulas that fully describe relations between a �nite set of variables. Such a
conjunctive formula is essentially a structure from C together with a valuation of the variables that

generates the entire structure. A pattern whose nodes are the conjunctive formulas present in 5̂ ,

with the parent relation inherited from 5̂ , de�nes the interpretation 5̂ , which is equivalent to 5 . □

Importantly, the above proof is constructive: a pattern that de�nes a quanti�er-free interpretation
to unlabelled trees can be e�ectively reconstructed from (the number = and) a logical description
of the interpretation.

Example 13. Let C be the class of trees of height at most two with edges labelled red or blue, and
let 5 be the function that simply returns the input tree, forgetting the colors. This is a quanti�er-free
interpretation, de�ned by a single component of dimension one, with the universe formula “true”
and an evident parent relation. It is de�ned by the pattern:

In particular, the root node of this pattern has exactly one embedding into any input tree, and that
embedding is the root of the output tree. □

5.2 Pa�erns with tree inputs

Although patterns make sense for general classes of input structures, we focus on patterns where
the input class is trees of bounded height labelled by some �nite alphabet, as in Theorem 5.1. By
Lemma 5.3, all functions from the decision problem in Theorem 5.1 can be described using patterns,
and these patterns can be computed from the original representation in terms of quanti�er-free
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formulas. Therefore, Theorem 5.1 boils down to deciding equivalence for tree-to-tree functions
de�ned by patterns. We will show that the latter problem is decidable, even in polynomial time, for
a very simple reason: di�erent patterns de�ne di�erent tree-to-tree functions.

Theorem 5.4. Consider two patterns Φ1 and Φ2 that de�ne tree-to-tree functions. If the patterns are

non-isomorphic, then the corresponding tree-to-tree functions are non-equivalent, i.e. for some input

tree, the two output trees are non-isomorphic.

From this we can immediately conclude Theorem 5.1. Indeed, consider two tree-to-tree functions
51 and 52, as in Theorem 5.1. By Lemma 5.3, these functions are de�ned by patterns, say Φ1 and Φ2.
By Theorem 5.4, the functions are equivalent if and only if the patterns are isomorphic. Isomorphism
of patterns can be decided in polynomial time using a straightforward dynamic programming
algorithm. Note, however, that there is an exponential overhead in translating a quanti�er-free
interpretation 58 to a pattern Φ8 , hence the entire algorithm is not polynomial time.
The rest of Section 5 is devoted to proving Theorem 5.4. The general idea is that any two non-

isomorphic patterns are distinguished by an input tree where every node, apart from leaves, has a
large number of children of every color. To generate a distinguishing input, �rst a �nite labeled
tree C of the appropriate depth will be chosen, for example:

Then every edge in C will be cloned into several copies:

3 copies

6 copies 4 copies

(1)

Finally, the resulting graph will be unfolded into a tree, with the result being:

(2)

We will show that, for an appropriate C , cloning every edge into su�ciently many copies will be
enough to distinguish any two given patterns. Actually C will not be particularly complicated, it
will simply be a large complete tree of the appropriate depth.

To make these ideas precise, we shall consider trees edge-labeled with algebraic expressions that
will denote the varying number of copies for every edge.

5.3 Symbolic trees

Our proof will rely on a representation of sets of input trees, which is called symbolic trees. Intuitively
speaking, a symbolic tree is a tree, where each edge is labelled by a pair consisting of a colour from
a �nite set and a multivariate polynomial with integer coe�cients. In the following picture the
colours are red and blue, and the polynomials use variables G and ~:
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3x2 + 2xy – 3 x5 + 2

x2y4 – 2xyxy

3x

The formal de�nition of symbolic trees, given below, de�nes them as the least set closed under
taking linear combinations of pairs (colour, smaller symbolic tree). One should think of such a
linear combination as representing a tree where the elements of the linear combination are child
subtrees, and the coe�cients describe the polynomials; in particular, the zero linear combination
represents a symbolic tree with a root node and no children.

De�nition 5.5. For �nite sets Σ and - , the set of symbolic trees with edge colours in Σ and variables

- is the least solution ) to the inequality

) ⊇ �nite formal linear combinations of Σ ×) with coe�cients in Z[- ] .

As mentioned before, a symbolic tree can be represented by a tree with edges labelled by pairs
(colour, polynomial). This representation is not unique. For example, here are two representations
of the same symbolic tree:

2xy – 3 2xy 
-3

x5 + 2 x5
2

xy xy 2xy -xy

The representation does become unique if we require that one cannot have two edges that
have the same source, same colour (but possibly di�erent polynomials), and isomorphic subtrees.
Symbolic trees are similar to trees modulo bisimulation; the latter would correspond to De�nition 5.5
if we used the Boolean semiring instead of the ring of polynomials Z[- ].

A weighted tree is the special case of a symbolic tree where the set of variables - is empty. This is
a tree with possibly negative integer weights on edges. A weighted tree is called positive if all of its
weights are positive. Such a tree is the same as an isomorphism class of usual, non-weighted, trees.

The purpose of symbolic trees is to generate weighted trees. This is done by substituting integer
values for the variables. If C is a symbolic tree and 0̄ ∈ Z- is a choice of integer parameters for its
variables such that the value of every polynomial in C is positive, then we write C (0̄) for the tree
that arises by substituting the parameters in each polynomial, and then unfolding the resulting
weighted tree as illustrated in (2).

For our proof, we only care about positive weighted trees. One way to generate such trees is to
use positive parameters and symbolic trees where all polynomials use only positive coe�cients.
However, this restriction would be too strong. For example, a typical polynomial that will arise
in our proof will be G (:) (see Example 4), which counts non-repeating :-tuples. Although this
polynomial has negative coe�cients, it is ultimately positive: there is some # such that if all
parameters are larger than # then the value of the polynomial is positive. This is the same as
saying that all monomials of maximal degree have positive coe�cients. In the proof below, we
will only work with symbolic trees that are ultimately positive, i.e. all polynomials used in them
are ultimately positive. For such symbolic trees, all su�ciently large parameters generate positive
weighted trees.

Our �rst observation is that di�erent symbolic trees will generate non-isomorphic trees for many
choices of parameters.
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Lemma 5.6. If two symbolic trees B and C over the same variables are not equal, then for every integer

# there is a combination 0̄ of parameters larger than # such that B (0̄) ≠ C (0̄).

Proof. Let ?1, . . . , ?= be all the polynomials present in B and C , listed without repetition. For any
# there is a combination 0̄ of parameters larger than # such that all values ?8 (0̄) are pairwise
di�erent. Then B can be reconstructed from B (0̄) by looking at degrees of all nodes, starting from
the leaves, and similarly for C and C (0̄). □

From the well-known Schwartz-Zippel lemma a stronger statement follows: if the parameters
0̄ are randomly chosen from {1, . . . , "}- then the probability that B (0̄) ≠ C (0̄) approaches 1 with
" → ∞. However, in the following we will only need the crude Lemma 5.6.

5.4 Applying pa�erns to symbolic trees

Consider a symbolic tree C , and a pattern Φ. If we choose some parameters 0̄ su�ciently large for all
polynomials in C being positive, and apply Φ to C (0̄), then we get some output tree. The following
lemma shows that the dependence of the output tree on the parameter 0̄ can be described using a
symbolic tree. In other words, the lemma gives a way to apply patterns to symbolic trees.

Lemma 5.7. Let Φ be a pattern and let C be a symbolic tree with variables - . There exists a symbolic

tree B with the same variables - , such that

Φ(C (0̄)) = B (0̄)

for all su�ciently large parameters 0̄.

Proof. See Appendix A of [Bojańczyk and Klin 2023]. Note that thanks to Lemma 5.6, the
symbolic tree B is unique. □

Example 14. Consider a simple scenario where the input trees and the patterns are of height one,
and there is only one input label (i.e., input trees are e�ectively unlabelled). For the very simple
symbolic input tree C and the pattern Φ as seen below, the symbolic tree that arises from Lemma 5.7:

x p(x)

symbolic input tree t pattern Φ Φ applied to t

has only one edge labelled with the polynomial

? (G) = G4 − 6G3 + 13G2 − 7G = G (G − 1) (G − 2) (G − 3) + G (G − 1) + G (G − 1) + G .

Indeed, for G > 3, this polynomial counts embeddings of the trees that label the nodes of Φ into the
tree of height one with G children of the root. Note that the polynomial retains full information
about the pattern, assuming that both the pattern and all labels of its nodes are of height one. In
other words, the single-edge input symbolic tree distinguishes all patterns of this shape. Lemma 5.9
below says that this is a general phenomenon, although more complex input trees will be needed
to distinguish more complex patterns. □

Example 15. Remaining in the unlabelled setting, consider the following symbolic input tree C and
patterns Φ1 and Φ2 which are identical except for the embedding between the two bottom nodes:
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The symbolic output trees that arise from Lemma 5.7 are the same for both patterns. In other words,
the symbolic input C does not distinguish the patterns. The slightly larger tree C ′ below does:

symbolic input tree t’ Φ1 applied to t’ Φ2 applied to t’

x1 x1 x1x3 x3 x3

x2 (x3+x1-1)x2 x1x2(x1-1)x2

□

Example 16. Consider a setting with two labels for edges of input trees. For the symbolic input
tree C and the pattern Φ as seen below, the tree that arises from Lemma 5.7 is shown on the right:

x3 x5x4

x1 x2

x3+(x4-1)(x4-2) (x5-1)(x5-2)

x1x4
x2x5

symbolic input tree t Φ applied to tpattern Φ 

Indeed, substituting any positive numbers for the G8 ’s (with G4, G5 > 2), the output tree instance is
the result of applying Φ to the input tree instance. □

We will only apply the Lemma 5.7 to symbolic trees which are free, meaning that all polynomials
in them are pairwise distinct variables, as in Examples 14-16. We will also require the symbolic
trees to be su�ciently large for Φ, in the following sense:

De�nition 5.8. A tree C is large for a class of trees ( if for every tree B ∈ ( and its substructure B ′

(that is, a “pruned” tree that arises from B by removing some subtrees), every embedding of B ′ into
C extends to an embedding of B into C .
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Every �nite set of trees admits some large tree; it is enough to take a complete tree of large
height and large degree.
We now state the main technical result in this section, which is that if we apply a pattern to

a symbolic input tree that is free and large, then the output symbolic tree uniquely identi�es
the pattern. Using the notation from the statement of Lemma 5.7, this lemma says that Φ can be
reconstructed from B .

Lemma 5.9. Let Φ1 and Φ2 be patterns, and let C be a tree that is large for the set of trees that are

present as node labels in either of the two patterns. View C as a free symbolic tree, with the variables

being the edges of C , and consider the two output symbolic trees that arise by applying Φ1 and Φ2 to it.

If these output symbolic trees are equal, then the patterns Φ1 and Φ2 are isomorphic.

Proof. See Appendix B of [Bojańczyk and Klin 2023]. □

To complete the proof of Theorem 5.4, suppose that Φ1 and Φ2 are non-isomorphic patterns.
Choose some large �nite tree C and apply Lemma 5.9. Since the symbolic trees Φ1 (C) and Φ2 (C) are
not equal, by Lemma 5.6, there must be some choice of parameters 0̄ such that applying Φ1 and Φ2

to the input tree C (0̄) yields non-isomorphic outputs, thus proving Theorem 5.4.

6 DECIDING EQUIVALENCE FOR POLYREGULAR FUNCTIONS ON MULTISET TYPES

So far we have solved the equivalence problem for quanti�er-free tree-to-tree interpretations on
trees of bounded height. We shall now generalize that to polyregular functions on arbitrary multiset
types. The more important part of the generalization is the ability of polyregular functions to use
quanti�ers; in this sense, the proof of the theorem below will amount to a quanti�er elimination
procedure that will reduce the problem to the quanti�er-free case from Section 5.

Theorem 6.1. The following problem is decidable:

Instance. Two polyregular functions between multiset types 5 , 6 : Σ → Γ given as �rst-order

interpretations, or as derivations.

Question. Are the functions equivalent in the following sense: for every input, the two outputs

are isomorphic?

Since the proof of Theorem 4.4 is e�ective, i.e. for every �rst-order interpretation we can compute
a corresponding derivation and vice versa, the representation of the input is not important as long
as decidability is concerned.

We will prove Theorem 6.1 by reducing it to the equivalence problem for quanti�er-free tree-to-
tree interpretations that was shown decidable in Theorem 5.1. The reduction is non-elementary,
i.e. both its running time and the size of the output instance are towers of exponentials whose
height is polynomial in the input size.

6.1 �antifier elimination

The most important part of the reduction is a quanti�er-elimination result, given in Lemma 6.2
below. The idea is that every structure of a multiset type can be labelled with extra information so
that �rst-order formulas can be replaced by quanti�er-free formulas.

To formalise the notion of labelling, we use non-copying interpretations. These are interpretations
in which there is only one component, and it has dimension one. For such an interpretation, the
universe of the output structure can be regarded as a subset of the universe of the input structure.
Recall that the quanti�er rank of a �rst-order formula is the maximal nesting depth of its

quanti�ers. For a rank A ∈ {0, 1, . . .}, the A -theory of a structure � with distinguished elements
0̄ ∈ �= is the set of all �rst-order rank-A formulas with = free variables that are satis�ed in it. (This
is often called the A -type, but we should not overload the word “type”.)
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Lemma 6.2. For every multiset type Σ and numbers A, = ≥ 0, there is a multiset type Γ and a

surjective3 non-copying interpretation 5 : Γ → Σ, such that for every rank-A formula i (G1, . . . , G=)

over the vocabulary of Σ there is a quanti�er-free formulak (G1, . . . , G=) over the vocabulary of Γ such

that for every structure � ∈ Γ and every tuple 0̄ ∈ �= :

�, 0̄ |= k i� all elements of 0̄ are in the universe of 5 (�) and 5 (�), 0̄ |= i.

Proof. See Appendix ?? in [Bojańczyk and Klin 2023]. □

6.2 Reduction to Theorem 5.1

We now use quanti�er elimination from Lemma 6.2 to reduce the problem in Theorem 6.1, about
equivalence for polyregular functions on multiset types, to the already solved problem from
Theorem 5.1, about equivalence for quanti�er-free interpretations on tree types.

Consider an instance of the equivalence problem in Theorem 6.1. Apply Lemma 4.3 to the output
type Γ, yielding some encoding:

Σ

51
((

52

66 Γ
�

�

encode
// M:1

The encoding is injective, since it admits an inverse decoding. As a result, appending it to both
functions does not change the answer to the equivalence problem.

Let A be the maximal quanti�er rank among all of the �rst-order formulas used by the above two
interpretations. Apply Lemma 6.2 yielding some surjective function 6 as in the following diagram:

Γ
′

6
// // Σ

51
((

52

66 Γ
�

�

encode
// M:1

Because 6 is surjective, prepending it to the diagram does not change the answer to the equivalence
problem. By the quanti�er-elimination properties in Lemma 6.2, the two functions of type Γ′ → M:1

in the above diagram are quanti�er-free interpretations.
So far, we have managed to reduce the equivalence problem to the special case of quanti�er-free

interpretations that output unlabelled trees. The last remaining step in the reduction to Theorem 5.1
is turning the input type into trees. This works thanks to the following fact:

Lemma 6.3. For every multiset type Γ there is a �nite multiset type Δ, numbers :, = ∈ {0, 1, . . .} and

a surjective quanti�er-free interpretation

Tedge
:

Δ + · · · + Tedge
:

Δ︸                    ︷︷                    ︸
= times, with trees using edge representation

→ Γ.

Proof. Induction on Γ. For types of the form MΣ, use the fact that if an interpretation 5 is
surjective and quanti�er-free then so is M5 . □

6.3 Connections with the string-to-string case

In Theorem 6.1, we proved decidability of equivalence for tree-to-tree interpretations, with the trees
being unordered and of bounded height. Decidability of the equivalence problem for string-to-string
interpretations remains open. We �nish this section with some comments about the connection
between these two problems. As we explain below, these two problems are incomparable, because (1)
as inputs, strings are more general than trees of bounded height; and (2) as outputs, trees of bounded

3Meaning that every structure in Σ arises as 5 (�) for some � ∈ Γ, up to isomorphism.
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height (in fact, height two) are more general than strings. In particular, a common generalisation
of both problems would be interpretations that input strings and output trees of bounded height.
Below, we give informal explanations for (1) and (2) above. Consider two interpretations:

an injective interpretation from 
strings to trees of height at most two

a subtree with n 
leaves represents the 

n-th input position

a tree is viewed as a 
list of subtrees

an surjective interpretation from 
strings to trees of height at most k

↦ ↦ (()( ( ) )()( ))(()() () ) ()

The injective interpretation shows that trees of height two are harder than strings as outputs. The
surjective one shows that strings are harder than trees of bounded height as inputs; the height
bound on trees is needed there so that the interpretation can match brackets.

We believe that the ideas developed in this paper, together with above representation of output
strings as trees, might be useful in the solution of the string-to-string problem.

7 APPLICATIONS TO GRAPHS OF BOUNDED TREE DEPTH

In this section, we apply the results on tree-to-tree transducers to graph-to-graph transducers.
The graphs in this section are undirected and without parallel edges. We use a straightforward
representation of a graph as a structure: the universe is the vertices, and there is one binary relation
describing the edges. Choosing another representation, such as having edges in the universe, would
give the same results. We use fo interpretations to transform graphs into other graphs.

Wewould like to decide equivalence for fo interpretations that describe graph-to-graph functions.
The problem is undecidable in general, even for interpretationswith Boolean outputs. This is because
the following satis�ability problem is undecidable: given a �rst-order sentence, decide if it is true in
some �nite graph [Courcelle and Engelfriet 2012, Theorem 5.5]. A classical approach to working
around this limitation is to consider graphs that are similar to trees. Several graph parameters can
be used to formalize similarity to trees, with three important parameters being: tree-depth [Nešetřil
and de Mendez 2012, Section 6.2], tree-width [Courcelle and Engelfriet 2012, Section 4.1] and
clique-width [Courcelle and Engelfriet 2012, Section 4.3]. The parameters are related as follows:
every class of graphs satis�es the following implications

bounded tree-depth ⇒ bounded tree-width ⇒ bounded clique-width.

For graphs of bounded clique-width (and therefore also for graphs of bounded tree-depth or tree-
width), satis�ability is decidable, even if fo logic is extended to mso logic [Courcelle and Engelfriet
2012, Theorem 5.80]. It is not known if one can decide equivalence for fo interpretations between
graphs of bounded clique-width. In fact, the problem is open already for tree-width, even for
tree-width 1 and dimension 1, see [Bojańczyk and Schmude 2020, p.7]. We present the �rst progress
on this problem: we show that the equivalence problem is decidable for bounded tree-depth, for
interpretations of arbitrary dimension. We begin by de�ning tree-depth.

De�nition 7.1. A graph has tree-depth : = 1 if it has no edges. A graph has tree-depth at most
: > 1 if there is a vertex, such that after removing that vertex, all connected components have tree
depth at most : − 1.
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Theorem 7.2. The following problem is decidable:

Instance. Two fo interpretations, which input graphs of tree-depth at most : and output graphs

of tree-depth at most ℓ .

Question. Are the interpretations equivalent in the following sense: for every input, the two output

graphs are isomorphic?

Before proving the theorem, let us make two remarks. First, the above problem would remain
decidable if mso logic was used instead of fo logic. This is because, as we have mentioned before,
fo and mso have the same expressive power on graphs of bounded tree-depth [Elberfeld et al.
2016, Theorem 1.1]. The second remark is about how the instances of the decision problem are
represented. We use the following representation: we are given the bounds : and ℓ on the tree-depth,
as well as a �rst-order interpretation that uses the vocabulary of graphs. The interpretation should
have the property that if the input graph has tree-depth at most : , then the output graph has
tree-depth at most ℓ . This property is decidable, since fo logic is decidable on graphs of tree-depth
at most : , and there is a fo formula that checks if a graph has tree-depth at most ℓ .

We now proceed to prove Theorem 7.2. The di�culty in the theorem is that there is an implicit
isomorphism check, i.e. the two interpretations might produce isomorphic graphs in di�erent ways.
This di�culty was already present in Theorems 5.1 and 6.1, because bounded-height trees also have
non-trivial isomorphisms. As it turns out, that di�culty has already been addressed: Theorem 7.2
is proved by a relatively straightforward reduction to the case of multiset types from Theorem 6.1.
The key step is to represent graphs of bounded tree-depth using multiset types:

Lemma 7.3. For every : ∈ {1, 2, . . .} there are:

(1) a surjective interpretation from some multiset type to graphs of tree-depth at most : ;

(2) an injective interpretation from graph of tree-depth at most : to some multiset type.

Before proving the lemma, we use it to complete the proof of Theorem 7.2. Consider an instance
of the problem in the theorem. Apply Lemma 7.3, yielding a surjective interpretation onto the input
graphs, and an injective interpretation from the output graphs, as shown in the following diagram:

Σ G: Gℓ Γ

51

52

where G: (and Gℓ ) denote the class of graphs of tree-depth at most : (and ℓ). The equivalence of
51 and 52 is the same as the equivalence of the two paths in the diagram that go from Σ to Γ, and
these paths represent interpretations between multiset types. For such interpretations, equivalence
is decidable by Theorem 6.1. It remains to prove the lemma.

Proof of Lemma 7.3. In the proof, it will be convenient to work with vertex-labelled graphs. For
a �nite set Σ, let us write G:Σ for the class of graphs that have tree-depth at most : , with vertices
labelled by elements of Σ. Such graphs are viewed as structures in the same way as unlabelled
graphs, with an additional unary predicate 0(G) for each possible label 0 ∈ Σ. Ultimately we care
about unlabelled graphs, i.e. the case of Σ = 1, but the induction proofs will use other choices of Σ.

Surjective. We begin describing a surjective interpretation from some multiset type to G:Σ, for
every �nite set Σ. The interpretation is de�ned by induction on : . For : = 1, there is nothing to do,
since a graph of tree-depth 1 is nothing but a multiset of vertices, and therefore G1Σ = MΣ.

Consider now the induction step, where we already have a surjective interpretation for tree-depth
: , and we now want to de�ne it for : + 1. By de�nition, a graph of tree-depth at most : + 1 has
some distinguished vertex E , such that after removing this vertex, every connected component has
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strictly smaller tree-depth. Therefore, in order to represent such a graph, it is enough to give: (a)
the label of the removed vertex; (b) the multiset of graphs that represent the connected components
after removing the vertex; and (c) for each vertex that is not removed, one bit of information that
says if it was connected to the removed vertex by an edge. This is formalized in the following claim:

Claim 7.4. For every �nite set Σ of labels, there is a surjective interpretation

Σ × M(G: (Σ × Bool)) G:+1Σ.

Proof. The interpretation maps an element of the input type to a graph in the natural way: it
takes the disjoint union of the graphs in the multiset from the second coordinate, adds a new vertex
with the label from the �rst coordinate, connects this new vertex to the vertices in the disjoint
union that have a 1 value on the extra bit, and removes this extra bit. This function is surjective by
de�nition of tree-depth, and it is easily seen to be a �rst-order interpretation. □

Combining the above claim with an inductively de�ned interpretation from some multiset type
to G: (Σ × {0, 1}), we get the desired surjective interpretation from a multiset type to G:+1Σ.

Injective. We now present an injective interpretation from graphs of tree-depth at most : to a
multiset type. The rough idea is to use the inverse of the surjective interpretation described above.
However, the rough idea needs some work, since there can be several choices for the removed
vertex, and there might be no way of choosing a unique removed vertex. The solution is to output
all possible choices, aggregated using a multiset. This is expressed in the following claim.

Claim 7.5. For every �nite set Σ of labels, there is an injective interpretation

G:+1Σ M(Σ ×M(G: (Σ × Bool)))

Proof. This interpretation is de�ned as follows. Consider a vertex E of an input graph � , and
let � be a connected component of the graph obtained by deleting E in � . Similarly to Claim 7.4,
de�ne � E to be the graph with labels from Σ × Bool that is obtained from � by adding to the label
of each vertex one bit of information that says if that vertex is connected to the deleted vertex E by
an edge. The interpretation in the claim maps a graph � to




©«
label of E,





� E

������
� is a connected
component of � with
vertex E removed





ª®¬
������
E is a vertex of � such that after
removing it, every connected
component has tree-depth at most :






This interpretation is injective, because it inverses the function from Claim 7.4 in the following
sense: if we apply the function from this claim to a graph inG:+1Σ, and then apply the interpretation
from Claim 7.4 to each element of the resulting multiset, then we get a multiset that contains
several copies of the original input graph.
It remains to prove that the function described above is indeed a fo interpretation. The main

observation is that the criterion for E in the outermost multiset is de�nable in fo logic assuming
that the input graph has bounded tree-depth. The reason is that, although fo logic cannot de�ne
graph connectivity in general, it can do so for graphs of bounded tree-depth, because in graphs of
tree-depth : , paths have length at most 2: . Therefore, the operation described in this claim can be
de�ned using a fo interpretation. This interpretation has dimension two, because elements of the
output multiset of multisets are represented using pairs (E,F) such that E is a deleted vertex andF
is one of the remaining vertices. □

Similarly to the surjective case, the injective case is proved by induction on : using the above
claim in the induction step. This completes the proof of Lemma 7.3. □
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