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Abstract

One of the main reasons for the correspondence of regular languages and monadic second-
order logic is that the class of regular languages is closed under images of surjective letter-to-
letter homomorphisms. This closure property holds for structures such as finite words, finite
trees, infinite words, infinite trees, elements of the free group, etc. Such structures can be
modelled using monads. In this paper, we study which structures (understood via monads in
the category of sets) are such that the class of regular languages (i.e. languages recognized by
finite algebras) are closed under direct images of surjective letter-to-letter homomorphisms.
We provide diverse sufficient conditions for a monad to satisfy this property. We also present
numerous examples of monads, including positive examples that do not satisfy our sufficient
conditions, and counterexamples where the closure property fails.

1 Introduction

A seminal result in automata theory is that recognizable languages (i.e. languages recognized
by finite state devices) are exactly those that can be defined in monadic second-order logic
(MSO). This result was originally shown for finite words by (independently) Büchi [1, Corollary
4], Elgot [2, Theorem 5.3] and Trakhtenbrot [3], but it is also true for:

• ω-words, shown by Büchi [4, Theorem 1];

• finite trees, shown by Doner [5, Corollary 3.8] and Thatcher and Wright [6, Theorem 14];

• infinite trees, shown by Rabin [7, Theorem 1.7];

• countable linear orders, shown by Carton, Colcombet and Puppis [8, Theorem 3] building
on Shelah [9, Theorem 6.2];

• graphs of bounded treewidth, which follows from Courcelle’s Theorem [10, Theorem 4.4]
and its converse [11, Theorem 2.10].
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For more about these results, see the survey by Thomas [12].
The large number of examples calls for a more systematic framework, where the notion of

a composable structure (be it a finite word, ω-word, finite tree etc.) would be a parameter, and
a characterization of the expressive power of MSO, a result. In our view, the lack of such a
framework is a manifestation of what Samson Abramsky has recently called

a remarkable divide in the field of logic in Computer Science, between two distinct strands:
one focussing on semantics and compositionality (“Structure”), the other on expressiveness
and complexity (“Power”). It is remarkable because these two fundamental aspects of our
field are studied using almost disjoint technical languages and methods, by almost disjoint
research communities. [13, p. 1].

A generic approach to MSO was proposed in [14], using monads. Monads are a standard
categorical tool to study compositionality, and they are firmly rooted in the “Structure” strand
of Theoretical Computer Science. Applying them to study the expressive power of MSO is a
step towards building a bridge over the divide.

Monads are general enough to capture structures such as words, trees, graphs, etc. but
specific enough to describe concepts such as recognizable languages (as observed by Eilenberg
and Wright in [15, Section 11]), syntactic algebras [14, Section 3] or pseudovarieties [14, Section
4]. Another advantage of monads is that they can model infinite objects (such as infinite words
or trees, which are central topics in automata theory), which is not the case for some alternative
approaches, such as Steinby’s approach via universal algebra [16].

When discussing the relationship of MSO and recognizable languages, there are two impli-
cations to consider.

• Recognizable ⇒ definable in MSO. This implication is easy for structures such as finite
words or trees, where MSO can be used to define some canonical decomposition. In other
cases, the proof can be much harder. Indeed, the proofs are relatively recent in the cases of
countable linear orders [8, Theorem 3], graphs of bounded treewidth [11, Theorem 2.10],
or graphs of bounded linear cliquewidth [17, Theorem 3.5]. The implication is known to
fail for graphs of unbounded treewidth or cliquewidth [18, Proposition 4.36], and it also
fails for infinite trees under a naive definition of finite algebras [19, Section 4]. Sometimes,
e.g. for graphs of bounded cliquewidth, the implication remains an open question [17,
Section 8]. A general understanding of this implication seems to be a hard problem, and
we do not make any attempts in that direction in this paper.

• Definable in MSO ⇒ recognizable. In all known cases, when recognizable languages are
defined in terms of finite algebras, this implication is relatively straightforward.1 Roughly
speaking, languages recognized by finite algebras are automatically closed under Boolean
combinations, and closure under existential quantification is proved using some kind of
powerset construction. This argument is so deceptively simple that [14, Lemma 6.2]

1For this it is important that algebras, and not automata, are used as the notion of recognizability. For
example, the hard part of Rabin’s theorem is showing that languages recognized by nondeterministic automata
are closed under complementation, see [7, Theorem 1.5] or [12, Theorem 6.2]. This difficulty disappears when
considering algebras, where complementation is achieved simply by flipping the accepting set.
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wrongly claimed that it works for every monad. One purpose of our paper is to cor-
rect this mistake, show counterexamples to the claim, and study conditions that make the
implication hold; the resulting landscape of monads turns out to be quite interesting.

Motivating example: finite words To explain how MSO can be defined for an arbitrary
monad, we begin by describing MSO for finite words in a manner which can be translated to a
more generic setting.

A word w over an alphabet Σ can be understood as a relational structure [12, Section 2.1],
denoted by w, where the universe is the positions of the word, there is a binary predicate x < y
for the order on positions, and for every a ∈ Σ there is a unary predicate Qa which selects
positions that have label a. To define properties of a word w, we can use sentences of first-order
logic or monadic second-order logic over the vocabulary of w. For example, if w ∈ {a, b}∗ then
the sentence

∃x
[
Qa(x)︸ ︷︷ ︸

there is
a position

with label a

∧ ∀y (y > x⇒ Qa(x))
]︸ ︷︷ ︸

such that all later positions
also have label a

is true in w if and only if w belongs to the regular language (a+ b)∗a+. This sentence uses only
first-order logic (quantification over positions), but some regular languages need monadic second-
order logic (quantification over sets of positions). A famous example is the regular language of
words of even length, which is defined by the sentence

∃X︸︷︷︸
there is
a set of

positions

∧


∀x ∃y y ≤ x ∧ y ∈ X︸ ︷︷ ︸
the first position is in X

∀x ∃y y ≥ x ∧ y 6∈ X︸ ︷︷ ︸
the last position is not in X

∀x ∀y (x < y ∧ ¬(∃z x < z < y))⇒ (x ∈ X ⇔ y 6∈ X)︸ ︷︷ ︸
for every two consecutive positions, exactly one is in X

.

The theorem of Büchi, Elgot and Trakhtenbrot that we mentioned above says that a language
of finite words is regular if and only if it can be defined by a sentence of MSO. The “regular
⇒ definable in MSO” implication can be proved by using the logic to formalise the semantics
of a nondeterministic finite automaton (or a regular expression). For the converse implication,
one shows that the class of regular languages has all the closure properties that are used in
MSO. This observation is formalised in the following result. (A letter-to-letter homomorphism
is defined to be a function of the form f∗ : Σ∗ → Γ∗ for some f : Σ→ Γ.)

Proposition 1. [cf. [14, Lemma 6.1]] For finite words, the class of MSO definable languages
is the least class of languages over finite alphabets that contains the languages 0∗ ⊆ {0, 1}∗ and
0∗1∗ ⊆ {0, 1}∗ and is closed under union, intersection, complement, inverse images and direct
images along surjective letter-to-letter homomorphisms.

Proof. (Sketch) Following [12, Section 2.3], one can eliminate first-order variables from MSO,
and keep only the monadic second-order variables. Instead of the usual atomic predicates x < y
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and Qa(x), which use first-order variables, one uses atomic predicates

X ⊆ Y︸ ︷︷ ︸
set inclusion

X < Y︸ ︷︷ ︸
every position in X is

before every position in Y

X ⊆ Qa︸ ︷︷ ︸
all positions in X have label a

A formula with free variables φ(X1, . . . , Xn) over an alphabet Σ can be seen as a language over
an extended alphabet Σ × 2n. The idea is to interpret a word over the extended alphabet as
a word together with a valuation of the sets X1, . . . , Xn, as indicated by the n bits stored by
every position. For instance, if φ(X,Y ) = X ⊆ Y and ψ(X,Y ) = Y ⊆ X, then the word

w = (a, 0, 0)(a, 1, 0)(b, 1, 1),

does not satisfy φ, but satisfies ψ.
The set of words that satisfy ∃X φ(X,Y1, . . . , Yn) is exactly the direct image of the set of

words that satisfy φ(X,Y1, . . . , Yn) under the letter-to-letter homomorphism π∗ which is obtained
by lifting to words the projection

π : Σ× 2n+1 → Σ× 2n (a, x, y1, . . . , yn) 7→ (a, y1, . . . , yn)

In this sense, the second-order existential quantifier is abstractly captured by direct images
under (surjective) letter-to-letter homomorphims.

Given the above observations, one can show the theorem by induction of the structure of
MSO formulas. The language 0∗ ⊆ {0, 1}∗ corresponds to the predicates X ⊆ Y and X ⊆ Qa
by means of an inverse image (the idea is that the letter 0 represents the positions which satisfy
X ⊆ Y and 1 represents the other positions, likewise for X ⊆ Qa). The language 0∗1∗ ⊆ {0, 1}∗
corresponds to the predicate X < Y , again by an inverse image. Direct images of surjective
letter-to-letter homomorphisms correspond to the quantifier ∃. Closure under union, intersection
and complement come from the logical connectives ∨, ∧ and ¬, respectively.

Motivated by Proposition 1, one can define an abstract version of MSO in any monad,
at least over the category of sets, as the least class of languages with the closure properties
stated in the proposition. This definition was proposed in [14, Section 6.1], and is described in
more detail in Section 3. A parameter of the definition is a choice of atomic languages (such
as 0∗ and 0∗1∗ in Proposition 1). If the atomic languages are recognizable, and the class of
recognizable languages has the required closure properties, then all MSO definable languages
are going to be recognizable. As mentioned previously, most closure properties for recognizable
languages are straightforward: Boolean combinations and inverse images under surjective letter-
to-letter homomorphisms (or, indeed, under arbitrary homomorphisms). There is one exception:
direct images under surjective letter-to-letter homomorphisms. The main topic of this paper is
understanding this last closure property.

As we will see, there are examples of monads for which the closure property fails. Also, when
the property holds, it can hold for various reasons. We identify three rather diverse sufficient
conditions:

1. Some monads admit a powerset construction for algebras, which entails closure under direct
images. In Section 5, we identify a sufficient condition on the monad (we call such monads
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weakly epi-cartesian) which guarantees that a powerset construction works. Many monads
are weakly epi-cartesian, including monads for all structures that have been traditionally
considered in automata theory (words, trees, etc.).

As a by-product, we prove that weakly cartesian monads admit distributive laws over
the powerset monad (Theorem 22). This result is of independent interest: it extends
previous results by Jacobs [20], and it contrasts with recent negative results of Klin and
Salamanca [21] and Zwart and Marsden [22].

2. Another sufficient condition is having a Mal’cev term (see Section 4.2). For example, the
free group monad has a Mal’cev term, but it does not admit a powerset construction.

3. Yet another reason is that the monad preserves finiteness, which implies that all languages
over finite alphabets are trivially recognizable. Although seemingly trivial, this condi-
tion can cover interesting examples, such as the monad of idempotent monoids, where
preservation of finiteness is true but not obvious.

We will also show several examples of monads where the closure property holds, but which do
not fall into any of the three classes described above. The project of understanding MSO for
monads – even in the restricted setting of the category of sets – is still far from complete. We
hope, however, that the reader will be intrigued by the rich variety of examples – we show 27 of
them altogether.

Structure of the paper. In Section 2 we recall basic notions and results about monads,
followed by an abstract monadic definition of MSO in Section 3. In Sections 4 and 5 we present
three sufficient conditions which guarantee that recognizable languages are closed under direct
images of surjective letter-to-letter homomorphisms. We show numerous examples there. Other
positive examples, which do not satisfy any of the three conditions, are shown in Section 6.
Section 7 lists a few counterexamples where the closure property fails. In Section 8 we illustrate
what would happen if somewhat stronger closure properties were required of a monad. We
conclude in Section 9 by sketching main directions of future work.

2 Monads

We now introduce some basic concepts and intuitions related to monads. Everything in this
section is completely standard (see e.g. [23, 24]).

One of the several possible intuitive understandings of monads is that they formalize “ways
to collect things”. Given a set Σ (understood as an alphabet), a monad returns a set TΣ of
collections, or structures, built out of letters from Σ. The kind and shape of these structures
depends on the monad: for example, the finite list monad sets TΣ to be the set of all finite
sequences of elements of Σ, and the powerset monad returns the set of all subsets of Σ. A
monad must provide further structure:

• A way to apply functions to structures element-wise; formally, a function f : Σ→ Γ should
yield a function Tf : TΣ → TΓ so that identity functions and function composition are
preserved (formally, this makes T a functor);
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• A way to build “singleton” structures, formalized as a function ηΣ : Σ → TΣ, called the
unit, for each alphabet Σ;

• A way to “flatten” structures of structures to single-layer structures, formalized as a func-
tion µΣ : T (TΣ)→ TΣ, called the multiplication, for each alphabet Σ.

These ingredients are subject to a few axioms. First, both the unit and the multiplication must
be natural, i.e., they must be invariant under arbitrary renamings of elements. Formally, the
“naturality squares”

Σ
ηΣ //

f
��

TΣ

Tf
��

Γ ηΓ

// TΓ

TTΣ
µΣ //

TTf
��

TΣ

Tf
��

TTΓ µΓ

// TΓ

(1)

must commute for every function f : Σ → Γ. Furthermore, the multiplication operation must
be associative and the unit must be the actual two-sided unit for it, in the sense made formal
in the following definition:

Definition 2. A monad (T, η, µ) (on the category Set of sets and functions) is a functor T :
Set → Set together with natural transformations η : Id ⇒ T and µ : TT ⇒ T , subject to
axioms:

TΣ
ηTΣ // TTΣ

µΣ

��

TΣ
TηΣoo

TΣ

TTTΣ
TµΣ //

µTΣ

��

TTΣ

µΣ

��
TTΣ µΣ

// TΣ

(2)

for all sets Σ.

We will usually denote a monad (T, η, µ) simply by T . If a risk of confusion arises (i.e. in
the presence of more than one monad), its unit and multiplication will then be called ηT and
µT .

Here are a few standard examples of monads.

Monad 1. The list monad, also known as the free monoid monad, is defined by TΣ = Σ∗, the set
of finite words over Σ, with Tf(x1 · · ·xn) = f(x1) · · · f(xn) for f : Σ→ Γ. The unit is defined by
singleton words: ηΣ(x) = x, and multiplication by words concatenation: µΣ((w1)(w2) · · · (wn)) =
w1w2 · · ·wn.

Monad 2. The same definitions restricted to non-empty lists form the non-empty list monad
TΣ = Σ+, also called the free semigroup monad.

Monad 3. The powerset monad is defined by TΣ = PΣ, the set of all subsets of Σ, with the

action on functions defined by direct image: Pf(∆) =
−→
f (∆) for f : Σ → Γ and ∆ ⊆ Σ. The

unit is defined by singletons: ηΣ(x) = {x}, and multiplication by set union: µΣ(Φ) =
⋃

Φ for
Φ ⊆ PΣ.

Monad 4. The nonempty powerset monad P+ is defined exactly the same but with TΣ restricted
to nonempty subsets of Σ.
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Monad 5. The finite powerset monad is also defined the same but with TΣ restricted to finite
subsets of Σ. This is also called the free semilattice monad.

Monad 6. The bag monad B, also known as the multiset monad or the free commutative monoid
monad, is defined so that BΣ is the set of functions from Σ to N that are zero almost everywhere,
and the action on functions is defined by

Bf(β)(y) =
∑

x∈f−1(y)

β(x);

the sum is well-defined since β returns zero almost everywhere. The unit of B maps an element
x ∈ Σ to the function [x 7→ 1] that maps x to 1 and is zero everywhere else. Multiplication is
defined by:

µΣ(β)(x) =
∑
φ∈BΣ

β(φ)× φ(x).

We shall be looking at numerous examples of monads in the following. Many of them are
best presented in terms of operations and equations. A useful recipe for defining a (finitary)
monad on Set begins by considering an algebraic signature, i.e., a set of operation symbols, each
with an associated finite arity. With a signature fixed, the notion of a term over a set X of
variables is defined as usual: a variable x ∈ X is a term, and σ(t1, . . . , tn) is a term whenever σ
is a symbol of arity n and t1, . . . , tn are terms. An equation is a pair of terms (over the same set
of variables). A set of equations defines, for any alphabet Σ, a congruence relation on the set
of terms over Σ in the expected way: it is the least equivalence relation that is compatible with
the operations and satisfies all the equations. One then defines TΣ to be the set of equivalence
classes of terms over Σ, under that congruence relation. For the unit, ηΣ(x) is (the equivalence
class of) the variable x, and multiplication is defined by term substitution. It is standard to
check that these ingredients form a monad on Set, and the original set of equations is then
called an equational presentation of that monad.

Example 3. Let the signature contain a binary symbol • and a constant (i.e., a symbol of arity
zero) e. The unit and associativity equations:

e • x = x • e = x (x • y) • z = x • (y • z)

form a presentation of the free monoid monad (Monad 1). Adding a further equation for com-
mutativity:

x • y = y • x

one obtains the free commutative monoid monad (Monad 6). Adding yet another equation:

x • x = x

yields a presentation of the finite powerset monad (Monad 5).
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Definition 4. Given a monad T , an (Eilenberg-Moore) algebra for T (shortly, a T -algebra) is a
set A together with a function α : TA→ A subject to two axioms:

A
ηA // TA

α
��
A

TTA
µA //

Tα
��

TA

α
��

TA α
// A.

A T -algebra homomorphism from A = (A,α) to B = (B, β) is a function h : A → B such that
the diagram

TA
Th //

α
��

TB

β
��

A
h
// B

commutes. T -algebras and their homomorphisms form a category, denoted Alg(T ).

It is easy to check that for any set Σ, the set TΣ with µΣ : TTΣ→ TΣ is a T -algebra. This is
the free T -algebra over Σ; its fundamental property is that for any T -algebra A, homomorphisms
from TΣ to A are in bijective correspondence with functions from Σ to A.

Example 5. For T the list monad (Monad 1), a T -algebra on A is a function that interprets
arbitrary finite sequences over A as elements of A. The two axioms of T -algebras mean that the
function is associative in the obvious sense; indeed, it easy to check that T -algebras correspond
to monoids. Moreover, T -algebra homomorphisms are monoid homomorphisms. TΣ = Σ∗ is the
free monoid over Σ.

The same schema applies to any equationally definable class of algebras. We can therefore
consider “free X monad” where X can stand for semigroup, commutative semigroup, group,
abelian group, lattice, distributive lattice, Boolean algebra and so on, with algebras for the “free
X monad” being exactly X’s.

3 Monadic Monadic Second Order Logic

We now define our abstract monadic MSO, inspired by Proposition 1. First we define a general
notion of a recognizable language [15].

Definition 6 (Recognizable T -languages). Let T be a monad on Set and Σ a finite set of
symbols, called the alphabet in this context. A T -language over Σ is a subset of TΣ. A T -
algebra A = (A,α) recognizes a T -language L over Σ iff there is a homomorphism h : TΣ→ A,
and a subset S ⊆ A, such that L is the inverse image of S along h. A T -language is recognizable
if it is recognized by some finite T -algebra.

For a fixed T , let RecT denote the class of all recognizable T -languages.

Example 7. For T the free monoid monad (Monad 1), RecT is the class of regular languages
(or, equivalently, MSO-definable languages).
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Recognizable languages are closed under Boolean operations.

Proposition 8. For any monad T , the class RecT is closed under binary unions, binary inter-
sections and complement, for a fixed alphabet.

Proof. Let Li be a language that is recognized by a finite T -algebra Ai with Si ⊆ Ai through
homomorphisms hi : TΣ→ Ai, i = 1, 2. Then:

• L1 ∩ L2 is recognized by A1 ×A2 through the homomorphism 〈h1, h2〉 and the subset

{(a1, a2) | a1 ∈ S1 and a2 ∈ S2};

• L1 ∪ L2 is recognized by A1 ×A2 through the homomorphism 〈h1, h2〉 and the subset

{(a1, a2) | a1 ∈ S1 or a2 ∈ S2};

• TΣ \ L1 is recognized by A1 through h1 and A1 \ S1.

Let h : TΣ → TΓ be a T -algebra homomorphism. If a language L ⊆ TΓ is recognizable

then the inverse image
←−
h (L) ⊆ TΣ is recognizable as well: it is recognized by the same T -

algebra and subset as L. So recognizable languages are closed under inverse images of T -algebra
homomorphisms. One may ask the same question about direct images: if L ⊆ TΣ is recognizable,

is
−→
h (L) ⊆ TΓ recognizable as well? This question will be the our main technical focus in the

following.
We call an algebra homomorphism h : TΣ→ TΓ a letter-to-letter homomorphism if h = Tf

for some function f : Σ → Γ. We call it surjective if f is surjective2. Proposition 1 motivates
the following definition [14, Sec. 6].

Definition 9. Let T be a monad on Set. Let L be a family of T -languages over finite alphabets.
We define MSO(L) as the least class of T -languages over finite alphabets that contains L and
is closed under Boolean operations, inverse images of homomorphisms, and direct images of
surjective letter-to-letter homomorphisms.

Example 10. Proposition 1 means that:

MSO({0∗, 0∗10∗}) = Rec(−)∗

where both 0∗ and 0∗1∗ are considered as (−)∗-languages over {0, 1}.
2All functors on Set preserve surjective functions since every surjective function f has a right inverse g in

the sense that f ◦ g = id, then we apply T to the last equation to obtain that Tf is also surjective. Conversely,
under the assumption that each component of η is injective, we have that T is faithful and faithful functors reflect
epimorphisms (=surjections in the category Set). To show that T is faithful assume Tf = Tg for f, g : X → Y
then

ηY ◦ g = Tg ◦ ηX = Tf ◦ ηX = ηY ◦ f
which implies g = f since ηY is injective. There will be no confusion between Tf being surjective and f being
surjective since all the monads we consider are such that ηΣ is injective for each Σ.
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Now we are ready to state the main technical question of this paper, which is a necessary
step towards a result similar to Proposition 1 for other monads, namely:

• When does L ⊆ RecT imply MSO(L) ⊆ RecT ?

By Proposition 8, RecT is closed under Boolean operations. Trivially, inverse images of
recognizable languages are also recognizable. Thus the question is reduced to:

• When is RecT closed under direct images of surjective letter-to-letter homomor-
phisms?

Asking this specific question is, to some extent, a design decision. In the classical setting of finite
words, recognizable languages are closed under direct images along arbitrary homomorphisms,
so one may reasonably ask for a stronger closure property: under arbitrary homomorphisms, or
perhaps under arbitrary (i.e. possible non-surjective) letter-to-letter homomorphisms. We will
look at these variants of the question in Section 8.

In any case, one may wonder whether perhaps the question (say, in the weak version as
stated above) has an affirmative answer for every monad. Indeed, this was mistakenly claimed
as a fact in [14, Lemma 6.2]. However, as the following counterexample shows, the situation is
not so simple.

Monad 7. Let T be the free monoid monad quotiented by the additional equation

x • x • x = x • x. (3)

The congruence (which we denote ∼) induced on Σ∗ by (3) has been the subject of some research:
Brzozowski in [25] asked whether all equivalence classes of this congruence are regular languages,
and the question has remained open ever since (see [26]). We do not need to answer that question
for our purposes.

Elements of TΣ are ∼-equivalence classes of finite Σ-words, and so a T -language over Σ
can be identified with a ∼-closed language of Σ-words. It is easy to see that a T -language is
recognizable if and only if its associated language of Σ-words is regular.

Let Γ = {a, b, c} and Σ = Γ ∪ {0, 1}. Consider the language of finite Σ-words:

L = Γ∗0Γ∗1.

It is obviously regular. It is also ∼-closed. Indeed, assume that

u0v1 = w

for some u, v ∈ Γ∗ and w ∈ Σ∗. This means that there is a finite sequence of applications of (3)
that transforms u0v1 into w. If this sequence is nonempty then its first step must detect a
square, that is, a word of the form xx, in u0v1. (The other option is that a cube xxx must be
present, which implies a square anyway). Since 0 and 1 occur in that word only once each, it
is clear that the square subword must occur entirely within u or within v. This means that the
result of applying (3) to u0v1 still belongs to L. By induction, also w must belong to L.

We have thus proved that L, considered as a subset of TΣ, is T -recognizable.
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Now consider Σ′ = Γ ∪ {0} and let h : Σ → Σ′ map 1 to 0 and act identically on all
other letters. The direct image of L along h, construed (as it should be) as a subset of TΣ′,
corresponds to a language K of Σ′-words which arises as a ∼-closure of the language Γ∗0Γ∗0.
(Note that the language itself is not ∼-closed, as e.g. a0a0 ∼ a0a0a0.)

We shall show that K is not regular, which will imply that the direct image of L under h
is not recognizable.

First, it is a well-known fact that since Γ has 3 elements, the language Γ∗ contains infinitely
many square-free words. Moreover, two distinct square-free words cannot be ∼-equivalent, since
the equation (3) cannot be applied to a square-free word.

Were the language K regular, its Myhill-Nerode congruence would have a finite index, and
so there would be two distinct square-free words v, w ∈ Γ∗ which are Myhill-Nerode equivalent
with respect to K.

Thanks to (3) we have v0v0v0 ∈ K so, since v and w are Myhill-Nerode equivalent, also

v0w0v0 ∈ K.

But it is easy to check that if v and w are square-free and v 6= w then v0w0v0 is also square-free,
and so it is not ∼-equivalent to any word other than itself. We arrive at a contradiction, and so
K cannot be regular.

More counterexamples of this kind are presented in Section 7. But first, now knowing that
our main technical question is non-trivial, let us study some conditions on the monad T that
guarantee an affirmative answer to it.

4 Simple sufficient conditions

In this section, we present two conditions on a monad T that guarantee that the class RecT is
closed under direct images of surjective letter-to-letter homomorphisms. Another, more elabo-
rate sufficient condition will be presented in Section 5.

4.1 Monads that preserve finiteness

One straightforward case where direct images of recognizable languages are also recognizable, is
the case where the functor part of the monad preserves finiteness, i.e., maps finite sets to finite
sets. Trivially, then, any language over Σ is recognized by the identity homomorphisms into the
finite algebra TΣ, so in particular any direct image is recognizable.

Examples of monads with this property include: the powerset monad and its variants,
the double contravariant powerset monad 22Σ

, monads for idempotent semigroups, idempotent
monoids, distributive lattices, Boolean algebras, semimodules over a finite semiring, and, in
general, any locally finite variety. A variety is locally finite if every finitely generated algebra is
finite.

For a given equational theory, checking if a finitely generated algebra is finite could be a
challenging problem. For instance, the fact that a finitely generated idempotent semigroup is
finite is a nontrivial fact, with multiple proofs published in different papers, (see e.g. [27, 28]).
Another interesting case are distributive lattices, where the exact size of the free algebra on n
generators is still unknown for values of n > 8.
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4.2 Monads with a Mal’cev term

Equational theories over finite signatures that have a Mal’cev term induce monads for which
direct images of recognizable languages along surjective letter-to-letter homomorphisms are also
recognizable. A Mal’cev term is defined as follows [29, II.12].

Definition 11. A ternary term p(x, y, z) on an equational class V is called a Mal’cev term if
the following identities hold in V :

p(x, x, y) = y = p(y, x, x). (4)

Equational classes with a Mal’cev term are congruence-permutable [29, Theorem II.12.2],
i.e., any two congruences commute in them. Examples of such classes include:

Monad 8. The free group monad, presented by a binary operation •, a unary operation (−)−1

and a constant operation 1, subject to the usual group axioms. A Mal’cev term p is given by
p(x, y, z) = x • y−1 • z.

Similarly, Mal’cev terms can be found for any equational class that has a group reduct,
including abelian groups, rings, vector spaces over a field and algebras over a field. In this case,
if the group reduct is given in additive notation, then the term p is given by p(x, y, z) = x−y+z.

Monad 9. The free quasigroup monad, presented by three binary operations /, • and \ subject
to equations:

x\(x • y) = x (x • y)/y = x x • (x\y) = y (x/y) • y = x.

A Mal’cev term is p(x, y, z) = (x/(y\y)) · (y\z).

Monad 10. The free Boolean algebra monad, presented by binary operations ∨ and ∧, a unary
operation ¬ and constants 0 and 1, subject to familiar equations. A Mal’cev term is

p(x, y, z) = (x ∧ z) ∨ (x ∧ ¬y ∧ ¬z) ∨ (¬x ∧ ¬y ∧ z).

Monad 11. The free Heyting algebra monad, presented by binary operations ∨, ∧ and →, and
constants 0 and 1, subject to the standard equations of Heyting algebras. A Mal’cev term is

p(x, y, z) = ((x→ y)→ z) ∧ ((z → y)→ z) ∧ (x ∨ z).

Note that, apart from the case of Boolean algebras, in all the above examples finitely
generated free algebras are infinite.

Proposition 12. For a monad T presented by a set of equations that admits a Mal’cev term,
the class RecT is closed under direct images of surjective letter-to-letter homomorphisms.

Before proceeding with the proof, we recall the standard notion of a congruence. Let
F = {fi}i∈I be a type of algebras, where each operation symbol fi has arity ni, and let A be an
F–algebra. A binary relation θ on A is a congruence on A if it is an equivalence relation and
has the compatibility property in the following sense:
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• For every i ∈ I, (a1, b1), . . . , (ani , bni) ∈ θ implies (fi(a1, . . . , ani), fi(b1, . . . , bni)) ∈ θ.

Given such a congruence, the quotient A/θ has an F-algebra structure (see e.g. [29, II.5] for
more properties of congruences and quotient algebras).

Proof. Let L ⊆ TΣ be recognized by a homomorphism h : TΣ→ A through a subset S ⊆ A as

L =
←−
h (S), where A is a finite T -algebra. Without loss of generality, we may assume that h is a

surjective homomorphism. Let g : Σ→ Γ be a surjective function. Define the relation ≈ on TΓ
as

≈ = {(Tg(u), T g(v)) | u, v ∈ TΣ, h(u) = h(v)}.

Then ≈ is a congruence on TΓ, which implies that TΓ/≈ is a T -algebra. Indeed, the relation
≈ is clearly reflexive, symmetric and has the compatibility property (the latter because h is a
homomorphism). To prove transitivity, let p(x, y, z) be a Mal’cev term and assume a ≈ b and
b ≈ c, then

a = p(a, b, b) ≈ p(b, b, c) = c

since ≈ is reflexive and has the compatibility property.
Let τ : TΓ→ TΓ/≈ be the canonical quotient map. Define a function e : A→ TΓ/≈ by:

e(h(u)) = τ(Tg(u)) for u ∈ TΣ;

this is well defined since h is surjective and by the definition of ≈ and τ . Moreover, e is surjective
because both Tg and τ are; as a result, the T -algebra TΓ/≈ is finite.

We show that the direct image of L along Tg is recognized by the homomorphism τ to
TΓ/≈ through the subset −→e (S) ⊆ TΓ/≈. In other words, we will show that

−→
Tg
(←−
h (S)

)
=←−τ (−→e (S)) .

To this end, for any w ∈ TΓ calculate:

w ∈
−→
Tg
(←−
h (S)

)
⇐⇒ ∃v ∈ TΣ. T g(v) = w, h(v) ∈ S

⇐⇒ ∃u ∈ TΣ. T g(u) ≈ w, h(u) ∈ S
⇐⇒ ∃u ∈ TΣ. τ(Tg(u)) = τ(w), h(u) ∈ S
⇐⇒ ∃u ∈ TΣ. e(h(u)) = τ(w), h(u) ∈ S
⇐⇒ ∃a ∈ S. e(a) = τ(w) ⇐⇒ w ∈ ←−τ (−→e (S))

which finishes the proof.

Remark. The key step in the above proof is the general observation that in a congruence-
permutable variety, every reflexive and symmetric relation with the compatibility property is a
congruence [30, Proposition 3.8.]. Reflexive, symmetric relations with the compatibility property
are called tolerances.

In Section 7.3 we shall see that relaxing the Mal’cev condition even slightly does not guar-
antee recognizable languages to be preserved under direct images along surjective letter-to-letter
homomorphisms.
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5 Weakly epi-cartesian monads

In this section, we present a class of monads – called weakly epi-cartesian monads – where a
powerset construction can be used to prove that recognizable languages are closed under direct
images of letter-to-letter homomorphisms. This class includes the classical case of finite words
(Monad 1).

We begin with an intuitive description of the powerset construction. Consider a monad T
and a language L ⊆ TΣ which is recognized by a homomorphism h : TΣ→ A for some T -algebra
A = (A,α). For a surjective function on the alphabet f : Σ → Γ, we want to show that the
direct image of L under the letter-to-letter homomorphism Tf : TΣ→ TΓ is also recognizable.

A natural idea is to consider a powerset algebra, where the universe is the family of
nonempty subsets of A, and the product operation is defined using:

t ∈ TP+A 7→ {α(s) : s ∈ TA can be obtained from t by choosing an element from each set︸ ︷︷ ︸
can be made precise, see (8) in Definition 19

}.

There are two issues that need to be addressed here. First, one must check that the powerset
algebra is indeed a T -algebra, i.e., that it satisfies the axioms of Definition 4. The second issue is
finding a homomorphism into the powerset algebra that recognizes the direct image of L under
Tf . The natural idea is to consider the function

t ∈ TΓ 7→ {h(s) : s ∈ TΣ satisfies Tf(s) = t};

however, it is not immediately clear that this function is a homomorphism. In fact this does
not happen in every monad, contrary to what was claimed in [14, Lemma 6.2]. For example,
in the monad of groups (Monad 8) the powerset algebra does not satisfy, in general, the axiom
x · x−1 = e.

The goal of this section is to establish a condition on the monad T which ensures that the
above powerset construction works as expected.

5.1 Definitions

First, a few standard categorical definitions. A commuting diagram of sets and functions:

P
h //

k
��

X

f
��

Y g
// Z

(5)

is called a weak pullback if, for each x ∈ X and y ∈ Y such that f(x) = g(y), there is some
p ∈ P such that h(p) = x and k(p) = y. If p is unique for each such x and y then the square is a
pullback. For every two functions f and g as above a canonical pullback exists and is defined by

P = {(x, y) | f(x) = g(y)}, (6)

with h = π1 and k = π2, projections from P into X and Y .
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A functor T preserves weak pullbacks iff applying T to everything in a weak pullback as
in (5) results in a weak pullback again. A routine categorical argument shows that one may
equivalently require only that (canonical) pullbacks are mapped to weak pullbacks; preservation
of all other weak pullbacks follows. So, T preserving weak pullbacks means that for all functions
f : X → Z and g : Y → Z, and for any t ∈ TX and r ∈ TY such that Tf(t) = Tg(r), there
exists some p ∈ TP (for P as in (6)) such that Tπ1 = t and Tπ2 = r.

Intuitively, this means that whenever two terms t and r are sufficiently similar to be equated
by equating some variables, then there is some term p, built of compatible pairs of variables,
that projects to t and r. Many monads, such as the free monoid monad and the powerset monad
and its variants, have this property. The following examples show how the property may fail.

Example 13. The free group monad (Monad 8) does not preserve weak pullbacks: the square

∅ h //

k
��

∅

f
��

{a, b} g
// {c}

(with f, g, h, k the unique functions of their type) is a pullback, and terms t = 1 ∈ T∅ and
r = a • b−1 ∈ T{a, b} are equated by Tf and Tg, but there is no term p ∈ T∅ that would be
mapped to r by Tk.

Example 14. Monad 7, i.e., the free monoid monad subject to the additional axiom x•x•x = x•x,
does not preserve weak pullbacks. Indeed, the square

{a, b} × {c, d} π1 //

π2

��

{a, b}

f

��
{c, d} g

// {e}

(with f, g the unique functions of their type) is a pullback, and the terms t = a • b ∈ T{a, b} and
r = c • d • c ∈ T{c, d} are equated by Tf and Tg, but there is no term p ∈ T ({a, b}× {c, d}) that
would project to t and r.

Given Set-functors F and G, a natural transformation α : F ⇒ G is weakly cartesian if for
every function f : X → Y the naturality square

FX
αX //

Ff
��

GX

Gf
��

FY αY

// GY

is a weak pullback. A weaker property is being weakly epi-cartesian, where only naturality
squares for surjective f are required to be weak pullbacks.

We can now formulate our main property of interest:
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Definition 15. A monad (T, η, µ) is weakly cartesian if T preserves weak pullbacks and η and
µ are weakly cartesian. It is weakly epi-cartesian if T preserves weak pullbacks and η and µ are
weakly epi-cartesian.

Weakly cartesian monads have been studied in the literature [31, 32, 33]. The notion of a
weakly epi-cartesian monad seems to be new.

The requirement that the naturality square

X
ηX //

f
��

TX

Tf
��

Y ηY
// TY

is a weak pullback amounts to saying that whenever a unit term ηY (y) is obtained as a value
of Tf applied to some t ∈ TX, then TX must itself be a unit term ηX(x) for some x such
that f(x) = y. So weak (epi-)cartesianness of η intuitively means that one cannot obtain a
unit term by equating variables in a non-unit term. This holds for many monads, including
the free monoid monad. Notably, the property fails for the powerset monad, where the non-
unit term {a, b} ∈ P{a, b} is mapped to the unit {c} ∈ P{c} by Pf , for the unique function
f : {a, b} → {c}.

Let us now look at the multiplication µ being weakly (epi)-cartesian. To say that the
naturality square

TTX
µX //

TTf
��

TX

Tf
��

TTY µY
// TY

is a weak pullback means that, for any term t ∈ TX, if a term Tf(t) can be decomposed as “term
of terms” θ ∈ TTY (so that Tf(t) is the flattening of θ), then the term t itself has a similar
decomposition. So, intuitively, weak (epi)-cartesianness of µ means that equating variables in a
term does not introduce essentially new ways of decomposing the term.

Theorem 16. If T is a weakly epi-cartesian monad, then RecT is closed under direct images
along surjective letter-to-letter homomorphisms.

Proof. See Section 5.3.

5.2 Examples

The three conditions of weak (epi-)cartesianness may fail in various configurations. For example,
the powerset monad and its variants (Monads 3, 4 and 5) preserve weak pullbacks and have
weakly cartesian multiplication, but their unit is not weakly epi-cartesian. On the other hand,
Monad 7 does not preserve weak pullbacks, its unit is weakly cartesian and its multiplication is
not weakly epi-cartesian. Further examples include:
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Monad 12. Consider the monad (T, η, µ) associated to the equational theory of a single ternary
function symbol p and a single unary symbol s, with axioms p(x, x, y) = s(y) = p(y, x, x). Then
T does not preserve weak pullbacks, η is weakly cartesian, and µ is weakly cartesian.

We shall study this monad in more detail in Section 7.3.

Monad 13. Consider the monad (T, η, µ) associated to the equational theory on the signature
{f, e}, where f is a unary function symbol and e is a constant, with the only axiom f(f(x)) = e.
Then T preserves weak pullbacks, η is weakly cartesian, µ is weakly epi-cartesian, but µ is not
weakly cartesian, cf. [32, Example 3.4].

This example distinguishes between the notions of weakly cartesian and weakly epi-cartesian
monads.

However, many monads are weakly epi-cartesian, as the following examples show.

A rich source of weakly cartesian monads (and therefore of weakly epi-cartesian monads)
are equational theories whose axioms are given by regular linear equations. A term is called
linear if no variable appears in it more than once. An equation is called regular if each variable
appears on the left-hand side if and only if it appears on the right-hand side. An equation
is regular linear if it is regular and both sides of it are linear. For instance, the equations
x • (y • z) = (x • y) • z, x • e = x, and e • x = x, which axiomatize the variety of monoids, are
regular linear. The commutativity axiom x • y = y • x is also regular linear. On the other hand,
the group axiom x • x−1 = e and the idempotence axiom x • x = x are not regular linear.

It is not difficult to check that a monad presented by a set of regular linear equations is
weakly cartesian. In fact, every such monad is analytic: in addition to being weakly cartesian,
its functor weakly preserves wide pullbacks. This is a part of a more general framework, see [34].

In particular, the monads of semigroups, commutative semigroups, monoids, commutative
monoids and the variety of all algebras for any given signature, are all weakly cartesian, hence
also weakly epi-cartesian.

Example 17. RecT is closed under direct images of surjective letter-to-letter homomorphisms
for the monads of semigroups, commutative semigroups, monoids, commutative monoids and
the variety of all algebras for any given signature.

The next four example monads are not finitary, so they do not have finitary equational
presentations. Nevertheless, they are all weakly cartesian.

Monad 14 (A monad for ω-words). Consider the following extension of the list monad to infinite
words. The monad maps an alphabet Σ to the set Σ+∪Σω of nonempty words of length at most
ω. The unit is the same as in the list monad, while the multiplication operation is defined by

µX(w1w2 · · · ) =

{
w1w2 · · · if all words w1, w2, . . . are finite

w1w2 · · ·wk if wk is the first infinite word among w1, w2, . . .

Algebras for this monad are essentially the same as ω-semigroups [35, Section II.4], which are
known to recognize the same languages as Büchi automata on ω-words. This monad is weakly
epi-cartesian, so by Theorem 16 the recognizable languages are closed under direct images along
surjective letter-to-letter homomorphisms, thus showing that all MSO definable languages are
recognized by ω-semigroups.
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Monad 15 (Countable linear orders). Monad 14 can be generalised from ω-words to other
labelled linear orders, where the order type of the positions is not necessarily ω. Consider the
monad where TΣ is the set of countable linear orders labelled by Σ, up to isomorphism. The
unit and multiplication are defined in the natural way (contrary to Monad 14, there is no need to
truncate). For example, T{a, b} contains the following element: the linear order of the rational
numbers, labelled so that the positions with label a are dense and the same is true for the
positions with label b. Using a back-and-forth argument, one can show that element described
above is unique up to isomorphism. Shelah showed that satisfiability is decidable for MSO
over this monad [9, Theorem 6.2], while Carton, Colcombet and Puppis [8, Proposition 3 and
Theorem 3] showed that the recognizable languages are exactly the ones that are definable in
MSO. This monad is weakly epi-cartesian, and therefore Theorem 16 implies that recognizable
languages are closed under direct images of surjective letter-to-letter homomorphisms, which in
turn implies that MSO definable languages are recognizable [8, Proposition 3].

In fact, as far as closure under direct images is concerned, there is nothing special about
countable linear orders, as shown by the following monad.

Monad 16. One can also consider a variant of the previous monad, but for labelled linear order-
ings of cardinality at most continuum. This monad is also weakly epi-cartesian, and therefore
MSO definable languages are recognizable. There is, however, a price to pay for considering
uncountable orders: the satisfiability problem for MSO is undecidable for this monad, as proved
by Shelah [9, Theorem 7].

There are also interesting monads that lie between ω-word and all countable linear orders.

Monad 17. Consider the countable linear orders which are scattered, i.e. do not contain any
rational sub-ordering. This monad was studied implicitly by Carton and Rispal, where the
Eilenberg-Moore algebras for the monad were called �-algebras in [36, Definition 6]. This monad
is weakly epi-cartesian, and therefore Theorem 16 implies that MSO definable languages are
necessarily recognizable (this was already known in [36]).

Some monads do not admit any presentation by regular linear equations, yet they still are
weakly (epi-)cartesian. For example:

Monad 18 (A left-idempotent operation). For a more unusual example of a weakly cartesian
monad, consider a monad T presented by an equational theory with a single binary symbol •

and with a single (non-linear) equation:

•

x •

x y

=
•

x y
. (7)

To prove that T preserves weak pullbacks, consider any pullback diagram

P
π1 //

π2

��

X

f
��

Y g
// Z,
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where P = {(x, y) | f(x) = g(y)} and π1 and π2 are the projections from P . Then, for any
r ∈ TX, s ∈ TY and t ∈ TZ such that

Tf(r) = t = Tg(s),

we need to find p ∈ TP such that Tπ1(p) = r and Tπ2(p) = s.
Formally, elements of TZ are equivalence classes of binary trees with elements of Z in

leaves; each equivalence class can be represented by its unique smallest element: one where the
pattern on the left-hand side of (7) does not appear. We therefore only consider r, s and t of
this form, and we proceed by induction on the size of t.

For the base case, if t is a single letter (i.e. t ∈ Z) then obviously r ∈ X and s ∈ Y ,
therefore we can put p = (r, s).

For the inductive step, let

t =
•

t′ z

for some t′, z ∈ TZ. Since Tf(r) = t, it follows that

r =

•

r1 •

r2 •

rn x

for some r1, . . . , rn, x ∈ TX such that Tf(ri) = t′ and Tf(x) = z. Similarly,

s =

•

s1 •

s2 •

sm y

for some s1, . . . , sm, y ∈ TY such that Tg(si) = t′ and Tg(y) = z. Assume, without loss of
generality, that n ≤ m.

By the inductive assumption, for each 1 ≤ i ≤ n and 1 ≤ j ≤ m there is a pi,j ∈ TP such
that Tπ1(pi,j) = ri and Tπ2(pi,j) = sj . Also by the inductive assumption, there is some q ∈ TP
such that Tπ1(q) = x and Tπ2(q) = y.

Now consider p ∈ TP defined by:

p =

•

p1,1 •

p2,2 •

pn,n •

pn,n+1 •

pn,m q.
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It is easy to check that Tπ1(p) = r and Tπ2(p) = s as required. This completes the proof that
T preserves weak pullbacks.

It is easy to see that the unit of T is cartesian, i.e., that the square

X
ηX //

f
��

TX

Tf
��

Y ηY
// TY

is a pullback for every f : X → Y . Indeed, if Tf(t) = ηY (y) for t ∈ TX and y ∈ Y then there
must be t = ηX(x) for some (necessarily, unique) x ∈ X such that f(x) = y.

It remains to be proved that the multiplication of T is weakly cartesian, i.e., that

TTX
µX //

TTf
��

TX

Tf
��

TTY µY
// TY

is a weak pullback for every f : X → Y . The proof is similar to the proof of the fact that T
preserves weak pullbacks. For any r ∈ TTY , s ∈ TX and t ∈ TY such that

µX(r) = t = Tf(s),

we need to find p ∈ TTX such that TT (p) = r and µX(p) = s, and the construction proceeds
by induction on the size of t.

Monad 19 (A guarded-idempotent operation). Consider the monad T defined by the signature
{•, o}, where • is a binary operation symbol and o is a unary operation symbol, and equations
x • (y • z) = (x • y) • z and o(x • x) = o(x).

To prove that T preserves weak pullbacks, consider any pullback diagram

P
π1 //

π2

��

X

f
��

Y g
// Z,

where P = {(x, y) | f(x) = g(y)} and π1 and π2 are the projections from P . Let r ∈ TX,
s ∈ TY and t ∈ TZ such that Tf(r) = t = Tg(s), we need to find p ∈ TP such that Tπ1(p) = r
and Tπ2(p) = s.

Elements of TZ are equivalence classes of terms on Z; each equivalence class can be repre-
sented by its unique smallest element, up to associativity: one where the pattern o(x · x) does
not appear. We therefore assume r, s and t of this form, and we proceed by induction on the
size of t.

For the base case, if t is a single letter (i.e. t ∈ Z) then obviously r ∈ X and s ∈ Y ,
therefore we can put p = (r, s).

For the inductive case, let t ∈ TZ. We have the following cases:
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i) t does not contain the function symbol o. In this case, r and s do not contain o either.
Therefore, t is of the form t = z1 · · · · · zn which implies that r and s are of the form
r = x1 · · · · · xn and s = y1 · · · · · yn. Hence, we can take p = (x1, y1) · · · · · (xn, yn).

ii) t contains the function symbol o. Let t = t1 ·o(t2)·t3 where ti ∈ TX. Then, r and s are of the
form r = r1 · o(r2) · r3 and s = s1 · o(s2) · s3, ri ∈ TX and si ∈ TY , with Tf(r1) = Tg(s1),
Tf(o(r2)) = Tg(o(s2)) and Tf(r3) = Tg(s3). By the induction hypothesis, there exists
p1, p3 ∈ TP such that:

Tπ1(p1) = r1, Tπ2(p1) = s1, Tπ1(p3) = r3, and Tπ2(p3) = s3,

Now, since Tf(o(r2)) = Tg(o(s2)) we have the following cases:

a) Tf(r2) = Tg(s2). Then, by the induction hypothesis, there exists p2 ∈ TP such that
Tπ1(p2) = r2 and Tπ2(p2) = s2.

b) Tf(r2) = Tg((s2)2n) for some n ≥ 0. Then, by the induction hypothesis, there exists
p2 ∈ TP such that Tπ1(p2) = r2 and Tπ2(p2) = (s2)2n .

c) Tf((r2)2n) = Tg(s2) for some n ≥ 0. Then, by the induction hypothesis, there exists
p2 ∈ TP such that Tπ1(p2) = (r2)2n and Tπ2(p2) = s2.

In each case, put p = p1 · o(p2) · p3.

It is easy to check that, in each case, Tπ1(p) = r and Tπ2(p) = s as required. This completes
the proof that T preserves weak pullbacks.

To see that the unit of T is cartesian, consider a function f : X → Y , t ∈ TX and y ∈ Y
such that Tf(t) = ηY (y). Then there must be t = ηX(x) for some (necessarily, unique) x ∈ X
such that f(x) = y.

Finally, the proof that the multiplication µ is weakly cartesian is done by using a similar
argument as the one that T preserves weak pullbacks.

Monad 20 (Weakly epi–cartesian monad that is not weakly cartesian). Consider the monad T
presented by an equational theory with two unary operation symbols f and g, and a constant
symbol e subject to the equations:

f(f(x)) = g(g(y)) = e

Note that TX is infinite for every non-empty X ({fg(x), fgfg(x), fgfgfg(x), . . .} ⊆ TX for
x ∈ X). Also, the multiplication µ is not weakly cartesian since for the inclusion ι : {x} → {x, y}
we have that Tι(e) = µ{x,y}

(
f
(
f(y)

))
but f

(
f(y)

)
is not in the image of TTι. Nevertheless, T

is a weakly epi-cartesian monad, so RecT is closed under direct images along surjective letter-
to-letter homomorphisms.

5.3 Proof of Theorem 16

We start by recalling the standard concept of a distributive law between monads [37]. Distribu-
tive laws are a standard tool for composing monads; we will use them to lift the powerset functor
to the category of algebras for a monad.
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Definition 18. Let (T, ηT , µT ) and (S, ηS , µS) be monads. A distributive law of (T, ηT , µT ) over
(S, ηS , µS) is a natural transformation λ : TS ⇒ ST that satisfies the following axioms:

T
TηS //

ηST --

(a)

TS

λ
��

S
ηTSoo

SηTqq

(b)

ST

TTS
µTS //

Tλ
��

(d)

TS

λ
��

TSS
TµSoo

λS
��

(c)

TST
λT
// STT

SµT
// ST SST

µST
oo STS

Sλ
oo

Sometimes one is interested in laws that satisfy only some of these axioms. In particular, a
distributive law of the functor T over the monad (S, ηS , µS) only satisfies the axioms (a) and
(c). We will be interested in distributive laws of monads over the powerset or the nonempty
powerset, i.e., S = P or S = P+.

Definition 19 (The Jacobs Law). Let T be a functor. For every set X define a function
λX : TPX → PTX by:

λX(t) = {s ∈ TX | ∃r ∈ T (∈X) s.t. Tπ1(r) = s, Tπ2(r) = t}, (8)

where ∈X is the membership relation on X:

∈X = {(x, S) | x ∈ S ⊆ X}

and π1 : ∈X → X and π2 : ∈X → P+X are the canonical projections.

It is easy to see that if t ∈ TP+X then λX(t) is not empty. Indeed, pick any function
k : P+X → X such that k(S) ∈ S for all S ∈ P+X. Then

〈k, id〉 : P+X → ∈X

and the element r = T 〈k, id〉(t) ∈ T (∈X) witnesses the fact that λX(t) is not empty. As a result,
λX restricts to a function λX : TP+X → P+TX.

The following result is due to Bart Jacobs [20, Section 4].

Proposition 20. If a functor T preserves weak pullbacks, then λ as in Def. 19 is a natural
transformation and it is a distributive law of the functor T over the powerset monad P (and
over the non-empty powerset monad P+).

For any sets X and Y , there is a canonical partial order on the set of functions from X to
PY : we say that f ≤ g : X → PY iff f(x) ⊆ g(x) for all x ∈ X.

The following property of λ will be useful later:

Proposition 21. If T preserves weak pullbacks then λ as in Def. 19 is monotone: whenever
f ≤ g : X → PY then

λX ◦ Tf ≤ λX ◦ Tg : TX → PTY.
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Proof. Assume f ≤ g, and pick some t ∈ TX and s ∈ λY (Tf(t)). This means that there is some
r ∈ T∈Y such that

Tπ1(r) = s and Tπ2(r) = Tf(t).

Consider the pullback

Q
π2 //

id×f
��

X

f
��

∈Y π2

// PY

where
Q = {(y, x) | x ∈ X, y ∈ f(x)}.

Since T preserves weak pullbacks, the square

TQ
Tπ2 //

T (id×f)
��

TX

Tf
��

T∈Y
Tπ2

// TPY

is a weak pullback. By the properties of r, and by the definition of a weak pullback, there is
some q ∈ TQ such that

T (id× f)(q) = r (hence Tπ1(q) = Tπ1(r)) and Tπ2(q) = t.

Since f ≤ g, the function id × g : Q → ∈Y is well defined. Put u = T (id × g)(q) ∈ T∈Y and
calculate:

Tπ1(u) = Tπ1(q) = Tπ1(r) = s

and
Tπ2(u) = Tg(Tπ2(q)) = Tg(t),

hence u is a witness to the fact that s ∈ λY (Tg(t)) as required.

We now extend Jacobs’s Proposition 20 from functors to monads (cf. Definition 15).

Theorem 22. If a monad (T, η, µ) is weakly cartesian, then λ as in Def. 19 is a distributive law
of the monad over the powerset monad P. If it is weakly epi-cartesian, then λ is a distributive
law of the monad over the non-empty powerset monad P+.

Proof. The proofs of both statements are almost identical, so we shall present only the proof of
the first statement (the one for P), and mark with (?) the two places where replacing P with
P+ makes a difference.

Since weakly (epi)-cartesian monads preserve weak pullbacks by definition, the naturality
of λ and axioms (a) and (c) in Definition 18 follow from Proposition 20. What remains to be
proved is that λ satisfies axioms (b) and (d) in Definition 18.

For the axiom (b), we need to prove that

λX(ηPX(Z)) = PηX(Z) for Z ⊆ X. (9)
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For the left-hand side, unfold from (8):

s ∈ λX(ηPX(Z)) ⇐⇒ ∃r ∈ T (∈X) s.t. Tπ1(r) = s, Tπ2(r) = ηPX(Z). (10)

For the right-hand side:

s ∈ PηX(Z) ⇐⇒ ∃z ∈ Z s.t. s = ηX(z). (11)

For the right-to-left inclusion of (9), given z as in (11), it is enough to put r = η∈X (z, Z) and
use naturality of η.

For the left-to-right inclusion of (9), assume r as in (10). Since T is weakly cartesian, the
square

∈X
π2 //

η∈X
��

PX
ηPX

��
T∈X

Tπ2

// TPX

is a weak pullback. (?) If P is replaced by P+, it is enough to assume that T is weakly epi-
cartesian. Indeed, the function π2 : ∈X → P+X is surjective, so weak-epi-cartesianness is
enough to conclude that the square is a weak pullback.

By the properties of r stated in (10), and by the definition of weak pullback, there is some
z ∈ Z such that η∈X (z, Z) = r. By naturality of η on π1 : ∈X → X, we obtain

ηX(z) = ηX(π1(z, Z)) = Tπ1(η∈X (z, Z)) = Tπ1(r) = s

as required. This completes the proof of (9).
For the axiom (d), we need to prove that

λX(µPX(t)) = PµX(λTX(TλX(t))) for t ∈ TTPX. (12)

For the left-hand side, unfold from (8):

s ∈ λX(µPX(t)) ⇐⇒ ∃r ∈ T (∈X) s.t. Tπ1(r) = s, Tπ2(r) = µPX(t). (13)

For the right-hand side:

s ∈ PµX(λTX(TλX(t))) ⇐⇒ ∃u ∈ λTX(TλX(t)) s.t. µX(u) = s

⇐⇒ ∃v ∈ T (∈TX) s.t. µX(Tπ1(v)) = s, Tπ2(v) = TλX(t). (14)

For the left-to-right inclusion of (12), assume r as in (13). Since T is weakly cartesian, the
square

TT∈X
TTπ2 //

µ∈X
��

TTPX
µPX

��
T∈X

Tπ2

// TPX
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is a weak pullback. (?) As before, if P is replaced by P+, it is enough to assume that T is
weakly epi-cartesian since the function π2 : ∈X → P+X is surjective.

By the properties of r stated in (13), and by the definition of weak pullback, there is some
w ∈ TT∈X such that

µ∈X (w) = r and TTπ2(w) = t.

Consider a function κ : T∈X → ∈TX defined by:

κ(u) = (Tπ1(u), λX(Tπ2(u))).

This is well defined: indeed, u ∈ T∈X itself witnesses that Tπ1(u) ∈ λX(Tπ2(u)).
Put v = Tκ(w) ∈ T (∈TX). Then, using naturality of µ, calculate:

µX(Tπ1(v)) = µX(Tπ1(Tκ(w))) = µX(TTπ1(w)) = Tπ1(µ∈X (w)) = Tπ1(r) = s

and
Tπ2(v) = Tπ2(Tκ(w)) = TλX(TTπ2(w)) = TλX(t)

as required in (14).
For the right-to-left inclusion of (12), assume v as in (14). Consider the pullback

Q
π2 //

id×λX
��

TPX

λX
��

∈TX π2

// PTX

where
Q = {(p, z) | p ∈ TX, z ∈ TPX, p ∈ λX(z)}. (15)

Unfolding the definition of λX in this, we obtain:

Q = {(p, z) | p ∈ TX, z ∈ TPX, ∃m ∈ T∈X s.t. Tπ1(m) = p, Tπ2(m) = z}.

This means that we can select a function, call it ρ : Q→ T∈X , such that

Tπ1(ρ(p, z)) = p and Tπ2(ρ(p, z)) = z for (p, z) ∈ Q.

Since T preserves weak pullbacks, the square

TQ
Tπ2 //

T (id×λX)
��

TTPX

TλX
��

T∈TX
Tπ2

// TPTX

is a weak pullback. By the properties of v stated in (14), and by the definition of weak pullback,
there is some q ∈ TQ such that

T (id× λX)(q) = v (hence Tπ1(q) = Tπ1(v)) and Tπ2(q) = t.
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Put r = µ∈X (Tρ(q)) ∈ T∈X . Then, using naturality of µ, calculate:

Tπ1(r) = Tπ1(µ∈X (Tρ(q))) = µX(TTπ1(Tρ(q))) = µX(Tπ1(q)) = µX(Tπ1(v)) = s

and
Tπ2(r) = Tπ2(µ∈X (Tρ(q))) = µPX(TTπ2(Tρ(q))) = µPX(Tπ2(q)) = µPX(t)

as required in (13). This completes the proof (12) and the entire theorem.

Armed with λ, we are ready to prove Theorem 16. Let L ⊆ TX be a language recognized

by a finite T -algebra A = (A,α) as L =
←−
h (C), where h : TX → A is a homomorphism and and

C ⊆ A.
Seeing λ as a distributive law of the monad T over the functor P+, we can lift the functor

P+ : Set→ Set to P̂+ : Alg(T )→ Alg(T ), see [37]. In particular, as is easy to check using the
axioms from Definition 18,

P̂+A = (P+A,P+α ◦ λA)

is a legal T -algebra.
For a surjective function f : X → Y , define f : Y → P+X as the inverse image function on

Y :
f(y) = {x ∈ X | f(x) = y}.

Let g : X → Y be a surjective function. Since all functors on Set preserve surjectivity,
Tg : TX → TY is also surjective. We will show that the direct image of L along Tg is

recognized by the algebra P̂+A. To this end, consider the function k : TY → P+A defined by
the composition:

k = TY
Tg−→ P+TX

P+h−→ P+A

and the subset Ĉ ⊆ P+A defined by

Ĉ = {D ⊆ A | D ∩ C 6= ∅}.

A straightforward calculation shows that the direct image of L along Tg coincides with the

inverse image
←−
k (Ĉ).

To finish the proof it is enough to show that k is a T -algebra morphism. That is, we need
to show that the outer shape of the following diagram commutes:

TTY
TTg//

µY

��

TTg %%

(1)

TP+TX

λTX
��

TP+h //

(3)

TP+A

λA
��

P+TTX

P+µX
��

P+Th //

(4)

P+TA

P+α
��

TY
Tg

//

(2)

P+TX
P+h

// P+A

Part (3) commutes by naturality of λ and part (4) commutes since h is a T -algebra homomor-
phism. We now show the commutativity of (1) and (2).
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For (2), given s ∈ TTY , we have:

P+µX(TTg(s)) = {µX(r) | r ∈ TTX and TTg(r) = s},
T g(µY (s)) = {t ∈ TX | µY (s) = Tg(t)}.

To prove P+µX(TTg(s)) = Tg(µY (s)) we consider both inclusions.
For the left-to-right inclusion, put t := µX(r) and use naturality of µ. For the right-to-left

inclusion, use the fact that, since T is weakly epi-cartesian,

TTX
TTg //

µX
��

TTY

µY
��

TX
Tg

// TY

is a weak pullback.
To prove that (1) commutes, we will use the following simple fact:

Lemma 23. Let f : X → Y be a surjective function. Then:

i) ηPX ⊆ f̄ ◦ f and f̄ is the minimum function from Y to P+X with this property,

ii) P+f ◦ f̄ ⊆ ηPY and f̄ is the maximum function from Y to P+X with this property.

Using this together with Proposition 21 and the axiom (a) from Definition 18 for λ, we
obtain:

ηPTX ⊆ Tg ◦ Tg ⇒ ηPTTX = λTX ◦ TηPTX ⊆ λTX ◦ TTg ◦ TTg
⇒ TTg ⊆ λTX ◦ TTg

Similarly, we obtain that:

P+Tg ◦ Tg ⊆ ηPTY ⇒ λTY ◦ TP+Tg ◦ TTg ⊆ λTY ◦ TηPTY = ηPTTY

⇒ P+TTg ◦ λTX ◦ TTg ⊆ ηPTTY
⇒ λTX ◦ TTg ⊆ TTg

which completes the proof that (1) commutes, and the proof of the entire theorem.

6 Other examples

In this section, we show a few more cases where RecT is closed under direct images along surjec-
tive letter-to-letter homomorphisms. These cases do not satisfy any of the sufficient conditions
presented so far. They are also quite varied, with no clear pattern emerging:

• the reader monad in Section 6.1 is infinitary, but its finite algebras are rather restricted,
and preservation under direct images is proved by a compactness argument,
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• for the free lattice monad (Section 6.2), preservation follows from a convexity-based argu-
ment,

• the monad in Section 6.3 is rather peculiar in that almost no language is recognizable for
it, so preservation of recognizable languages under direct images holds for trivial reasons,

• for the monad in Section 6.4, a construction similar to that described in Section 5 works,
but with the powerset replaced by a more complex powerset-squared construction.

6.1 The reader monad

Monad 21. Let Σω denote the set of ω-sequences of letters from Σ. The functor T = (−)ω acts
on functions in the expected way:

f+(a0a1a2 · · · ) = (f(a0))(f(a1))(f(a2)) · · · .

This is an infinitary monad, with the unit mapping a letter a ∈ Σ to the constant sequence
aaa · · · , and the multiplication defined by the diagonal function:

µΣ(w0w1w2 · · · ) = w0,0w1,1w2,2 · · ·

This is a particular instance of the Haskell “reader” monad.

We will prove that recognizable T -languages are closed under taking direct images along
surjective letter-to-letter homomorphisms. To fix the notation, we choose an arbitrary surjective
function f : Σ → Γ for Σ,Γ finite, and any language L ⊆ TΣ recognizable by a homorphism
h : TΣ→ A to a finite T -algebra A = (A,α). This means that for some subset S ⊆ A:

t ∈ L ⇐⇒ h(t) ∈ S.

Assuming all this, we shall prove that the direct image of L along Tf is recognizable by a
homomorphism from TΓ to a finite T -algebra.

Without loss of generality we may assume that L is recognizable by a point in A, i.e.
that S = {a} for some a ∈ A. This is because both taking inverse images and taking direct
images commutes with unions, and recognizable languages are closed under finite unions. Such
languages have a rather rigid “rectangular” structure:

Lemma 24. If L ⊆ TΣ is recognizable by a point then

L = Z1 × Z2 × Z3 × · · · (16)

for some sequence of subsets Z1, Z2, . . . ⊆ Σ.

Proof. Given a language L recognizable by a ∈ A for an algebra α : TA→ A, define

Zn = {x ∈ Σ | ∃v ∈ L.vn = x}.

for each n ∈ N. Then the left-to-right inclusion in (16) is obvious. For the right-to-left inclusion,
consider a word w ∈ Z1×Z2× · · · ; this means that for every n ∈ N there is a word vn ∈ L such
that vn,n = wn. Then w = µΣ(v1v2 · · · ), so:

h(w) = h(µΣ(v1v2 · · · )) = α(Th(v1v2 · · · )) = α(aaa · · · ) = a

so w ∈ L.
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For any Σ, the set TΣ is equipped with the product topology, whose basis is the family of
all open balls defined by

BI(w) = {v ∈ TΣ | ∀n ∈ I. vn = wn}

for w ∈ TΣ and finite I ⊆ N. With respect to this topology:

Lemma 25. Every L recognizable by a point is closed.

Proof. From Lemma 24 it easily follows that TΣ \ L is open. Indeed, for L as in (16), take any
w 6∈ L. Then there is an n ∈ N such that wn 6∈ Zn, and then B{n}(w) is disjoint from L.

Lemma 26. Every L recognizable by a point in a finite algebra A is open.

Proof. Let L =
←−
f {a} for some a ∈ A. Then

TΣ \ L =
⋃

b∈A\{a}

←−
f {b},

each
←−
f {b} is closed by Lemma 25, and their union is closed since a finite union of closed sets is

closed.

We can now prove a stronger version of Lemma 24. Call a language L ∈ TΣ finitely
rectangular if

L = Z1 × Z2 × Z3 × · · · (17)

for some sequence of subsets Z1, Z2, . . . ⊆ X such that Zn = Σ for all except finitely many n.

Lemma 27. Every nonempty L recognizable by a point in a finite algebra is finitely rectangular.

Proof. By Lemma 24, L is of the form

L = Z1 × Z2 × Z3 × · · · ;

we need to prove that Zn = Σ for almost all n.
Since Σ is a finite set, the space TΣ is compact. Its subspace L is closed by Lemma 25, so

it is also compact. Consider the family of all those open balls BI(w) that are contained in L.
Since L is open by Lemma 26, for each w ∈ L there is some I such that BI(w) belongs to this
family, so the family is an open cover of L. By compactness, it contains a finite subcover

BI1(w1), . . . ,BIk(wk). (18)

Let I = I1 ∪ · · · ∪ Ik. Fix any w ∈ L and take any v ∈ TΣ such that wn = vn for all n ∈ I.
Since L is covered by (18) we have w ∈ BIi(wi) for some i. Since Ii ⊆ I also v ∈ BIi(wi), so
v ∈ L. Since we did not constrain v on the coordinates outside of I, we have that Zn = Σ for
n 6∈ I.

Finitely rectangular languages are closed under direct images of surjective homomorphisms:

Lemma 28. For a surjective function f : Σ → Γ, if L ⊆ TΣ is finitely rectangular then so is

the direct image
−→
Tf(L) ⊆ TΓ.
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Proof. Obviously −→
Tf(Z1 × Z2 × · · · ) =

−→
f (Z1)×

−→
f (Z2)× · · · ,

and
−→
f (Σ) = Γ since f is surjective.

The final piece of the puzzle is:

Lemma 29. Every finitely rectangular language is recognizable by a finite algebra.

Proof. Let L ⊆ TΣ be as in (17), and let I ⊆ N be the (finite) set of those n where Zn 6= Σ.
Define A = ΣI , and let α : TA→ A be defined by:

α(a1a2 · · · )(n) = an(n) for n ∈ I.

We need to check that α is a T -algebra. For the unit axiom, given a ∈ A and n ∈ I, calculate:

α(ηA(a))(n) = α(aaa · · · )(n) = a(n).

For the multiplication axiom, given v = v1v2v3 · · · ∈ TTA and n ∈ I, calculate:

α(µA(v))(n) = α(v1,1v2,2 · · · )(n) = vn,n(n)

and
α(Tα(v))(n) = α(α(v1), α(v2), . . .)(n) = α(vn)(n) = vn,n(n)

so both expressions are equal as required, hence α is a T -algebra structure on A.
Define a homomorphism h : TΣ → A as a unique homomorphic extension of the function

h0 : Σ→ A that maps every x ∈ Σ to the function in ΣI constant at x. Explicitly, this is defined
by:

h(w)(n) = α(Th0(w))(n) = wn for w ∈ TΣ, n ∈ I.
Recalling (17), define S ⊆ A by:

S = {g ∈ ΣI | ∀n ∈ I. g(n) ∈ Zn}.

Then, for w ∈ TΣ, calculate:

w ∈ L ⇐⇒ ∀n ∈ I.wn ∈ Zn ⇐⇒ h(w) ∈ S,

hence L is recognized by S ⊆ A along the homomorphism h.

6.2 The free lattice monad

Monad 22. The free lattice monad FL, whose algebras are lattices, has a well-known equational
presentation over a signature with two binary symbols ∨ and ∧. It consists of equations:

x ∨ y = y ∨ x x ∨ (y ∨ z) = (x ∨ y) ∨ z x ∨ (x ∧ y) = x
x ∧ y = y ∧ x x ∧ (y ∧ z) = (x ∧ y) ∧ z x ∧ (x ∨ y) = x

Lattices can be usefully regarded as partial orders, defined by:

x ≤ y iff x ∨ y = y;

∨ and ∧ then become respectively join and meet operations.
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We will prove that recognizable FL-languages are closed under taking direct images along
surjective letter-to-letter homomorphisms. So, to fix the notation, we choose an arbitrary sur-
jective function f : Σ → Γ for Σ,Γ finite, and any language L ⊆ FL(Σ) recognizable by a
homorphism h : FL(Σ)→ A to a finite lattice A. This means that for some subset S ⊆ A:

t ∈ L ⇐⇒ h(t) ∈ S.

Assuming all this, we shall prove that
−→
Tf(L), the direct image of L along Tf , is recognizable

by a homomorphism from FL(Γ) to a finite lattice.
First let us consider the case where L is upwards-closed, i.e., where

s ∈ L and s ≤ t implies t ∈ L.

Consider a homomorphism k : FL(Γ) → FL(Σ) defined as the unique extension of the map
k0 : Γ→ FL(Σ) defined by:

k0(y) =
∨
{x | f(x) = y}.

Note that the above join is nonempty since f is surjective. In particular, we have f(k0(y)) = y
for all y ∈ Γ and, by definition, k0(f(x)) ≥ x for all x ∈ Σ. Since Tf and k preserve meets and
joins by definition, this extends to:

Tf(k(t)) = t and k(Tf(s)) ≥ s (19)

for all t ∈ FL(Γ) and s ∈ FL(Σ).
Then it is easy to see that −→

Tf(L) =
←−
k (L). (20)

Indeed, for the right-to-left inclusion, for k(t) ∈ L one has

t
(19)
= Tf(k(t)) ∈

−→
Tf(L).

For the left-to-right inclusion, take any t ∈ FL(Γ) such that t = Tf(s) for some s ∈ L. Then

k(t) = k(Tf(s))
(19)

≥ s

and, since L is upwards-closed, k(t) ∈ L.

The equation (20) implies that
−→
Tf(L) is the inverse image of S ⊆ A along the composite

homomorphism h ◦ k : FL(Y )→ A, and so it is recognizable.
An analogous argument works if L is downwards-closed, with k defined using a meet rather

than a join.
Now consider an arbitrary (i.e. not necessarily upwards- or downwards-closed) language L

recognizable by a homomorphism h : FL(Σ)→ A to a finite lattice A. Without loss of generality
we may assume that L is recognizable by a point in A, i.e., that

L =
←−
h {a}
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for some a ∈ A. This is because both taking inverse images and taking direct images commutes
with unions, and recognizable languages are closed under finite unions.

Let L↑ and L↓ denote the upwards-closure and the downwards-closure of L, respectively.
It is not difficult to check that upwards closure commutes with inverse images, in particular:

←−
h (a↑) = L↑.

Indeed, this amounts to requiring that, for every t ∈ FL(Σ),

h(t) ≥ a ⇐⇒ ∃s ≤ t.h(s) = a.

The right-to-left implication is immediate since h is monotone. For the left-to-right implication,
since h : FL(Σ) → A is surjective, there is some r ∈ FL(Σ) such that h(r) = a. Put s = t ∧ r.
Then obviously s ≤ t, and

h(s) = h(t) ∧ h(r) = h(t) ∧ a = a

as required.
An analogous argument works for downward closures, i.e.:

←−
h (a↓) = L↓.

This means that both L↑ and L↓ are recognizable (by h), hence by the previous argument, their
direct images along Tf are also recognizable. Since recognizable languages are closed under
intersection, it is now enough to prove that

−→
Tf(L↑) ∩

−→
Tf(L↓) =

−→
Tf(L). (21)

To this end, first notice that, since L is recognized by a point, it is convex, i.e.,

s ≤ t ≤ r and s, r ∈ L implies t ∈ L.

This implies that
L↑ ∩ L↓ = L;

indeed the right-to-left inclusion is trivial, and the left-to-right inclusion easily follows from the
convexity of L. This does not immediately imply (21), as taking direct images does not commute
with intersections in general. In this case, however, it does. To see this, first notice that L↑ is a
filter, i.e., it is upward-closed and closed under finite intersections. Similarly, L↓ is an ideal, i.e.,
it is downward-closed and closed under finite unions. Now all we need is the following lemma,
which holds for arbitrary lattice homomorphisms:

Lemma 30. For any lattice homomorphism g : H → K and any filter U ⊆ H and ideal D ⊆ H
such that U ∩D 6= ∅:

−→g (U ∩D) = −→g (U) ∩ −→g (D).

Proof. The left-to-right inclusion is obvious. For the right-to-left inclusion, take any t ∈ K such
that

∃u ∈ U.h(u) = t and ∃d ∈ D.h(d) = t.
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Pick any x ∈ U ∩D (it exists by our assumptions), and put:

y = d ∨ (x ∧ u).

Since x ∈ D and D is downward-closed, also x ∧ u ∈ D and (since D is closed under unions)
y ∈ D. On the other hand, since x ∈ U and U is closed under intersections, also x ∧ u ∈ U and
(since U is upward-closed) y ∈ U . So y ∈ D ∩ U , and it is enough to calculate:

h(y) = h(d) ∨ (h(x) ∧ h(u)) = t ∨ (h(x) ∧ t) = t.

Using this lemma for g = Tf , U = L↑ and D = L↓, we obtain (21) which directly implies
that L is recognizable.

6.3 A non–trivial monad whose finite algebras are trivial

Monad 23. Let T be the monad associated to the signature {f, g}, where f and g are unary
operations, subject to axioms:

fgfgg(x) = x and fgffgg(x) = fgffgg(y).

It is shown that this equational theory has no non-trivial finite models, that is, every non–
empty finite model has only one element [38, Section 2]. Indeed, if (A, f, g) is a finite algebra,
from the equation fgfgg(x) = x we obtain that f is a surjection and g is a injection, which
implies that f and g are bijections since A is finite and f : A→ A and g : A→ A. Hence, from
the equation fgffgg(x) = fgffgg(y), we conclude that x = y for every x, y ∈ A. Therefore,
RecT is trivially closed under direct images along surjective letter–to–letter homomorphisms.

Remark. Even though the monad has the trivial algebra as the only finite model, the monad has
infinite models. One such model is the set of the positive integers with g(n) = 2n, f(22n) = 3n,
f(23n) = n, and f(m) = 1 otherwise, as shown in [38, Section 2]. Also, it is worth mentioning
that given a finite set of identities over a given finitary signature, it is undecidable if there exists
a non-trivial finite model that satisfies the given identities [39]. That is, it is undecidable in
general if the class RecT of recognizable languages is non-trivial. This means that describing the
class RecT or even finding a non–trivial element in RecT could be undecidable.

6.4 The x(y(yz)) = x(yz) monad

Monad 24. Consider a monad T presented by an equational theory with a single binary symbol
• and with a single equation:

•

x •

y •

y z

=

•

x •

y z

. (22)
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This equation is similar to the one that defined Monad 18, but the resulting monad has
rather different properties. For one, its multiplication is not weakly epi-cartesian. To see this,
consider

Σ = {a1, a2, b, c} Γ = {a, b, c}

and f : Σ→ Γ defined by f(a1) = f(a2) = a, f(b) = b and f(c) = c. Define t ∈ TTΓ by:

t =
•

b t′
where t′ =

•

a c
∈ TΓ and b is seen as ηΓ(b) ∈ TΓ.

Then, obviously:

µY (t) =

•

b •

a c.

Now let r ∈ TΣ be defined by:

r =

•

b •

a1 •

a2 c.

It is easy to see that Tf(r) = µY (t). However, there is no p ∈ TTΣ such that TTf(p) = t and
µΣ(p) = r. As a result, the naturality square

TTΣ
µΣ //

TTf
��

TΣ

Tf
��

TTΓ µΓ

// TΓ

is not a weak pullback.
In spite of this, recognizable T -languages are closed under taking direct images along sur-

jective letter-to-letter homomorphisms.
A T -algebra is simply a set equipped with a binary operation which satisfies (22). Assume

finite alphabets Σ and Γ, a surjective function f : Σ → Γ, and a language L ⊆ TΣ that is

recognized by a subset S ⊆ A of a finite T -algebra A; in other words, L =
←−
h (S) for some

T -algebra homomorphism h : TΣ → A. We will show that
−→
Tf(L) is recognized by a finite

T -algebra.
To this end, define a T -algebra

Ā = P+A× P+A.

The intuition is that a tree t ∈ TΓ will be mapped to a value (αL, αR) ∈ Ā such that αL contains
those values in A that can be attained by trees in TΣ which are mapped to t and which are
left sons of their parents. Similarly, αR will stores values for trees that are right sons of their
parents.
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Formally, a binary operation • is defined by:

(αL, αR) • (βL, βR) =
(
{a • b | a ∈ αL, b ∈ βR},
{a1 • (a2 • (· · · (an • b) · ·)) | n ≥ 1, ai ∈ αL, b ∈ βR}

)
,

where • on the right-hand side of the definition denotes the operation in A. It is not difficult to
check that this defines a T -algebra, i.e., that the equation

•

(αL, αR) •

(βL, βR) •

(βL, βR) (γL, γR)

=

•

(αL, αR) •

(βL, βR) (γL, γR)

(23)

holds for all αL, αR, βL, βR, γL, γR ⊆ A. The (slightly) more involved case is the right-to-left
inclusion, where one needs to use the equation (22) for A. For the left-to-right inclusion even
that is not needed.

A homomorphism h̄ : TΓ → Ā is the unique extension of the function that maps every
letter a ∈ Γ to (−−−→

h ◦ ηΣ(
←−
f (a)),

−−−→
h ◦ ηΣ(

←−
f (a))

)
(note that h ◦ ηΣ : Σ→ A is the interpretation of single letters from Σ in the algebra A).

Now define a subset S̄ ⊆ Ā by:

S̄ = {(αL, αR) | αL ∩ S 6= ∅}.

This subset recognizes the direct image
−→
Tf(L). More explicitly, for any tree t ∈ TΓ, one has

h̄(t) ∈ S̄ if and only if t = Tf(r) for some r ∈ TΣ such that h(r) ∈ S. Both implications are
proved by a straightforward induction on the size of t.

7 Counterexamples

In this section, we illustrate cases where direct images of recognizable languages along surjective
letter-to-letter homomorphisms are not recognizable. One such case, Monad 7, was shown in
Section 3. Here we provide three more.

7.1 The marked words monad

Recall Monad 2, i.e. the free semigroup monad (−)+, and Monad 6, i.e., the bag monad B. For
w ∈ Σ+ and β ∈ BΣ, we write w w β if each x ∈ Σ occurs in w at least β(x) times.

Monad 25. Define a functor T on Set by:

TΣ = {(w, β) ∈ Σ+ × BΣ | w w β}
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with the action on fuctions defined componentwise. It is easy to check that this is well-defined,
i.e., that

w w β implies f+(w) w Bf(β).

T carries a monad structure where both unit and multiplication are componentwise inherited
from the monads (−)+ and B. Again, it is straightforward to check that this is well defined.

To get some intuition, an element of TΣ can be understood as a finite, nonempty word
over the alphabet Σ with some positions marked, except that it is not specified exactly which
positions those are; we only know how many positions labeled with every letter are marked. So,
for example, markings

aabcab aabcab and aabcab

denote the same element of T{a, b, c}. This intuition is useful because it allows for a simple
presentation of the monad structure: the unit of a ∈ Σ is unambiguosly presented as a and
multiplication can be illustrated as, for example:

(abac)(abb)(abac)(bac) 7→ abacabbabacbac.

This monad has a simple equational presentation over an algebraic signature that consists
of one binary symbol • and one unary symbol ◦. Using the terminology of marked words, the
intuition will be that • is an operation that concatenates two words, and ◦ erases the marking
from every letter in a word. The equations are as follows:

•

• z

x y

=

•

x •

y z

,

◦
•

x y

=

•

◦ ◦
x y

,

◦
◦
x

=
◦
x

,

•

• ◦
x y x

=

•

◦ •

x y x

The first three equations ensure that every element of TΣ can be presented as a marked word
over Σ, and the last equation characterizes the equivalence of marked words described above.

This completes our exhibition of the monad T .

Now, for the alphabet Σ = {a, b}, consider the language L ⊆ TΣ defined by:

L = {((ab)n, [a 7→ n, b 7→ 0]) | n ∈ N}.

Using the presentation by marked words, L consists of all words of the form

abab · · · ab.

We claim that L is recognizable by a finite T -algebra. Intuitively, this is because a word
w ∈ L cannot be obtained by concatenating or erasing marks from any other marked words,
except by concatenating subwords of w or perhaps erasing a mark from a single letter b.
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The algebra to recognize L has seven values:

A = {AA,AB,BA,BB,B,B,⊥}.

Intuitively, the value BA represents those sub-words of words from L that begin with b and end
with a; analogously for AA, AB and BB, except that the latter value represents only words other
than the singleton b. That word is represented by a separate value B. The value B represents
a singleton marked letter b. Finally, ⊥ is an error value, representing those words that cannot
be completed to a word in L by erasing marks from all letters or by concatenating with other
words.

Relying on the equational presentation of T , to define a T -algebra on A it is enough to
define operations • and ◦ on it. The multiplication table for x • y is:

x
• y AA AB BA BB B B ⊥
AA ⊥ ⊥ AA AB AB ⊥ ⊥
AB AA AB ⊥ ⊥ ⊥ ⊥ ⊥
BA ⊥ ⊥ BA BB BB ⊥ ⊥
BB BA BB ⊥ ⊥ ⊥ ⊥ ⊥
B BA BB ⊥ ⊥ ⊥ ⊥ ⊥
B ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Note that B and BB behave in the same way in this table, and similarly for B and ⊥. However,
these pairs of values are distinguished by the operation ◦, which is defined by:

◦(B) = ◦(B) = B and ◦(x) = ⊥ for x 6∈ {B,B}.

It is easy to check that the operations defined this way satisfy the equational theory of T given
above, therefore they make A a T -algebra.

Since TΣ is a free T -algebra on Σ, any function from Σ to the set A extends uniquely to
a homomorphism from TΣ to the algebra A. Let h be the homomorphism that extends the
function mapping a to AA and b to B. Then we have, for every w ∈ TΣ:

w ∈ L ⇐⇒ h(w) = AB

so L is recognized by A.
Now consider an alphabet Y = {c} and the unique function f : Σ → Γ, which maps both

a and b to c. The direct image of L under Tf is:{(
c2n, [c 7→ n]

)
| n ∈ N

}
. (24)

Using the presentation by marked words, this language consists of all words of the form

cccc · · · cc =

n times︷ ︸︸ ︷
cc · · · cc cc · · · cc︸ ︷︷ ︸

n times

.
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This language is not recognizable by any finite T -algebra. For assume any homomorphism h
from TΓ to some finite algebra A, and consider w1, w2, w3, . . . ∈ TΓ defined by:

wn = (cn, [c 7→ n]) = cn.

Since A is finite, there are some n 6= m such that h(wn) = h(wm). Now consider

v = (cn, [c 7→ 0]) = cn ∈ TΓ.

We have that
h(wnv) = h(wmv)

but wnv belongs to the direct image (24) and wmv does not, so h does not recognize the direct
image.

7.2 The balanced associativity monad

Monad 26. Consider a monad T presented by a single binary symbol • and a single equation:

•

• x

x y

=

•

x •

y x

. (25)

Elements of TΣ do not have a canonical form as simple and intuitive as for the marked
words monad, but we shall need only a limited understanding of them. First, notice that for
any a ∈ Σ, t ∈ TΣ and n ≥ 1 there is:

•

a •

• a

t a n times

=

•

• a

• a

a t

n times
(26)

This is proved by simple induction on n. The base case n = 1 is simply (25) with x = a
and y = t, and for the induction step calculate:

•

a •

• a

• a

t a
n+ 1 times

(25)
=

•

• a

a •

• a

t a n times

ind. ass.
=

•

• a

• a

• a

a t

n+ 1 times
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Furthermore, for any a, c ∈ Σ and n ≥ 1 we have:

•

a •

• a

a •

c a

n times
=

•

• a

• a

a •

a c

n times

n times

(27)

(on the left, the shaded pattern is repeated n times). This is again proved by induction. The
base case n = 1 is (25) with x = a and y = c, and for the induction step calculate:

•

a •

• a

a •

• a

a •

c a

n+ 1 times ind. ass.
=

•

a •

• a

• a

• a

a •

a c

n times

n times

=

•

• a

• a

• a

a •

a •

a c

n times

n times

where the last equality follows from (26) with

•

a •

a cn times

= t.

Now, for the alphabet Σ = {a, b, c}, consider the language L ⊆ TΣ that consists of all trees
of the form

•

a •

• b

a •

c b

n times

for n ≥ 1. Note that the equation (25) does not apply anywhere in such a tree, so every tree of
this shape forms a singleton equivalence class with respect to the congruence induced by (25).
It is easy to recognize L with an algebra of six values:

A = {a, b, c, L,R,⊥},
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with the operation • interpreted by:

c • b = R a • R = L L • b = R

and x • y = ⊥ for all other combinations of x, y ∈ A. It is easy to check that equation (25) holds
in this algebra, indeed

•

• x

x y

=

•

x •

y x

= ⊥

for all x, y ∈ A.
Then the unique homomorphism from h : TΣ → A that maps a to a, b to b and c to c

recognizes L:
t ∈ L ⇐⇒ h(t) = L.

Now consider an alphabet Γ = {a, c} and a function f : Σ→ Γ:

f(a) = f(b) = a, f(c) = c.

The direct image of L under Tf consists of words as in the equation (27). This language is not
recognizable by any finite T -algebra. For assume any homomorphism from TΓ to some finite
algebra A, and consider t1, t2, t3, . . . ∈ TΓ defined by:

•

a •

a cn times

= tn.

Since A is finite, there are some n 6= m such that h(tn) = h(tm). Then the terms

•

• a

tn a n times

and

•

• a

tm a n times

have the same value under h, but the one on the left is in the direct image of L along Tf (due
to (27)) and the one on the right is not, so h does not recognize the direct image.

7.3 The not-quite-Mal’cev monad

Recall Monad 12, presented by a ternary operation symbol p and a unary operation symbol s
subject to the equations

p(x, x, y) = s(y) = p(y, x, x). (28)
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If, additionally, there were s(y) = y, then the monad would immediately have a Mal’cev term
and the machinery of Section 4.2 would apply.3

Note that any algebra for a monad that has a Mal’cev term induces a T -algebra on the
same set. For instance, if (G, ·, e) is a group, then (G, p, s), where p(x, y, z) := x · y−1 · z and s
is the identity function, is a T -algebra. A finite T -algebra that does not have a Mal’cev term is
P = ({0, 1, 2, 3, 4, 5, 6}, p, s) where p is defined as:

p(x, y, z) =


1 if x 6= 5, y = 5 and z 6= 5

2 if x 6= 6, y = 6 and z 6= 6

3 if (x, y, z) = (0, 1, 2),

4 otherwise,

and with s(x) = 4 for all x. The fact that (28) hold in P can be easily checked by hand.
Now, consider the alphabet Σ = {a, b, c}, the homomorphism h : TΣ → P such that

h(a) = 0, h(b) = 5 and h(c) = 6, and the subset S = {3} ⊆ P . The recognizable language

L =
←−
h (S) is the infinite language:

L = {p(a, p(x1, b, x2), p(x3, c, x4)) | xi ∈ TΣ, x1, x2 6= b, x3, x4 6= c}.

Now consider Γ = {a, d} and f : Σ → Γ defined by f(b) = f(c) = d and f(a) = a. We
show that that the direct image of L under the surjective letter-to-letter homomorphism Tf is
not recognizable. To see this, note that the direct image contains (the equivalence class of) the
term s(a), because

s(a) = p(a, p(d, d, d), p(d, d, d)) = Tg( p(a, p(c, b, c), p(b, c, b) ).

On the other hand, if t1 6= t2 ∈ TΓ then the direct image of L does not contain the term

p(s(t1), s(t2), a).

Since TΓ is infinite, for any homomorphism g from TΓ into a finite T -algebra A there are some
terms t1 6= t2 such that g(t1) = g(t2). Then the terms

s(a) = p(s(t1), s(t1), a) and p(s(t1), s(t2), a)

are mapped to the same value by g, but only the former one belongs to the direct image of L
along Tf .

8 Related problems

Our main focus has been on recognizable languages being preserved under taking direct images of
surjective letter-to-letter homomorphisms. This is because, in the proof of Proposition 1, which
concerns the particular example of the monad of finite words, direct images are taken only along

3 We are grateful to an anonymous reviewer whose insightful question led to a significant improvement of this
example.
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projection homomorphisms that arise from the logical existential quantifier; those homomor-
phisms are indeed surjective and letter-to-letter. It therefore makes sense to incorporate this
particular closure property in an abstract definition of MSO for other monads.

However, it should be noted that Proposition 1 would remain true if surjective letter-to-
letter homomorphisms were replaced in its statement by arbitrary letter-to-letter, or indeed by
arbitrary homomorphisms. The corresponding closure property would become stronger, so one
may expect some monads to become non-examples for these more restrictive variants of monadic
MSO. In this section we identify some of these monads.

8.1 Homomorphisms that are not letter-to-letter

First, let us consider preserving recognizable languages under taking direct images of arbitrary
T -algebra homomorphisms, i.e. ones that arise from functions f : Σ → TΓ via Kleisli lifting
(as opposed to letter-to-letter homomorphims, which are of the form Tf : TΣ→ TΓ for a map
f : Σ → Γ). This preservation property fails even for very basic monads, such as commutative
monoids and seminearrings:

Example 31. Recall Monad 6, i.e., the free commutative monoid monad B. The language
a∗ ⊆ B{a, b} is recognized by the commutative monoid ({0, 1},max, 0) via the homomorphism
h : B{a, b} → {0, 1} such that h(a) = 0 and h(b) = 1. Now, consider the homomorphism
h : B{a, b} → B{a, b, c} such that h(a) = ab and h(b) = c. Then, the direct image of a∗ is the
language {w ∈ B{a, b, c} | w(a) = w(b)} which is not recognizable.

Another counterexample is:

Monad 27. A seminearring is a set equipped with two monoids, i.e., associative binary oper-
ations + and · (called horizontal and vertical composition; the latter is usually denoted simply
by juxtaposition) with units respectively 0 and 1, subject to additional axioms

(x+ y)z = xz + yz and 0x = 0.

As expected, the free seminearring monad T is presented by the equational theory of semin-
earrings. This is a rather fundamental monad from the perspective of logic: in [40, Sec. 6]
it is explained how seminearrings are a reasonable choice for an algebra of trees. Indeed, the
free seminearring over a set Σ is the set of all unranked forests with holes (called multicontexts
in [40]).

Consider the language

L = ab∗ = {abn | n ∈ N} ⊆ T{a, b}.

This language is recognized by a finite seminearring (with 5 elements). Now consider the homo-
morphism h : T{a, b} → T{a, b} with h(a) = a+ a and h(b) = b. The direct image of L along h
is the language

{abn + abn | n ∈ N}
which is not recognizable. Indeed, for any seminearring homomorphism f : T{a, b} → S for a
finite S, there must be some n 6= m such that f(bn) = f(bm); then f(abn) = f(abm) and

f(abn + abn) = f(abn + abm).
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8.2 Letter-to-letter homomorphisms that are not surjective

One may also consider the preservation of recognizable languages under direct images along arbi-
trary (i.e. not necessarily surjective) letter-to-letter homomorphisms. In all our counterexamples
in Section 7, the failure of preservation seems to be caused by different letters being identified by
a homomorphism; in other words, non-injectivity of homomorphisms seems to be the key issue.
One may wonder if additionally requiring preservation under non-surjective homomorphisms
changes the picture at all. As it turns out, it does.

Example 32. Recall Monad 21, the reader monad from Section 6.1. Note that T{1} = {1ω} =
{111111 · · · }. Consider the “full” language L = T{1} ⊆ T{1}; it is clearly recognizable by
the unique homomorphism to the one-element T -algebra. However, its direct image along the
inclusion ι : T{1} → T{0, 1}:

−→
Tι(L) = {1ω} ⊆ T{0, 1}

is not recognizable. Indeed, it is not finitely rectangular according to the terminology of Sec-
tion 6.1 (and, being a singleton, it is not a union of finitely rectangular sets either), so its
recognizability would contradict Lemma 27.

Example 33. Recall Monad 23, the monad whose finite models are trivial from Section 6.3. If
we consider the inclusion ι : {x} → {x, y} then the direct image of the recognizable language
L = T ({x}) under Tι is not recognizable. Indeed, the only recognizable languages are ∅ and
TX for any finite X since the only finite model is the trivial model, but L is not one of those
languages.

Example 34. Recall Monad 22, the free lattice monad FL from Section 6.2. We shall consult
the first chapter of [41] for basic facts about free lattices. First, the following theorem due to
Whitman [42] provides an effective procedure for comparing two elements of a free lattice:

Theorem 35 ([41], Thm. 1.8). For any elements a, b, c, d ∈ FL(Σ), a∧ b ≤ c∨ d if and only if:

a ≤ c ∨ d, b ≤ c ∨ d, a ∧ b ≤ c, or a ∧ b ≤ d.

Writing down terms to denote elements of free lattices, one usually implicitly applies the
associativity laws and writes e.g. t1 ∧ t2 ∧ t3 instead of (t1 ∧ t2) ∧ t3. With this convention in
mind, the following canonical form of terms is considered:

Definition 36. In a free lattice FL(Σ), a formal join t = t1 ∨ · · · ∨ tn with n > 1 is in canonical
form if:

• each ti is in Σ or a formal meet in canonical form,

• ti 6≤ tj for all i 6= j,

• if ti =
∧
tij then tij 6≤ t for all j.

Dual conditions define the canonical form of formal meets.
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By [41, Thm. 1.17-18], every element in FL(Σ) can be presented by a term in canonical
form, and moreover this presentation is unique up to commutativity laws.

It will be important to us that Definition 36 provides a procedure for transforming a term t
into canonical form, and that this procedure relies only on removing some redundant subterms
from t. As a corollary, if an element in a ∈ FL(Σ) is presented by a term t in canonical form
such that some w ∈ Σ appears in t, then a cannot be presented by any term where w does not
appear. Indeed, if such a presentation t′ existed then the canonical form of t′ would not contain
w either, which would contradict the uniqueness of canonical presentation.

The last basic fact about free lattices that we shall need is that for |Σ| ≥ 3 the lattice
FL(Σ) is infinite and it contains a strictly increasing infinite chain (see [41, Ex. 1.24]).

Now let
Σ = {p, q, r} Γ = {p, q, r, s}

with ι : Σ→ Γ the inclusion function. The language L = TΣ ⊆ TΣ is recognizable by the unique

homomorphism to the one-element lattice. We shall show that its direct image
−→
Tι(L) ⊆ TΓ is

not recognizable.

To this end, for any pair of terms t1 < t2 ∈
−→
Tι(L), consider the term

t = (t1 ∨ s) ∧ t2.

Using Theorem 35, it is easy to check that s is incomparable with both t1 and t2, and that
t1 < t < t2. Moreover, if t1 and t2 are in canonical form then so is t; to prove this use again
Theorem 35 and the fact that s is incomparable with t1, t2 and all their subterms. As a result,
t cannot be presented by any term where the generator s does not appear; in other words,

t 6∈
−→
Tι(L).

We have just proved that between any two distinct but ordered elements of
−→
Tι(L) there is

some element not in
−→
Tι(L). Recall that FL(Σ) contains a strictly increasing infinite chain, and

since Tι is an injective function, the set
−→
Tι(L) also contains a strictly increasing infinite chain.

Inserting an element out of
−→
Tι(L) between each two neighbouring elements in that chain, we

obtain an infinite, strictly increasing chain that alternates between elements that are in and out

of
−→
Tι(L). This implies that the set

−→
Tι(L) is not recognizable.

It should be mentioned that for a weakly cartesian monad T , the class RecT is in fact closed
under direct images of all (not necessarily surjective) letter-to-letter homomorphisms. The proof
of this is the same as in Section 5.3 but with the full powerset functor P used instead of P+.
Only two points are worth making in this case: (1) the “projection” π2 : ∈X → PX is no longer
surjective (the empty set is not in the image) and (2) the empty set plays the role of an “error
state” in a powerset algebra (every letter that is not in the image of the function g is mapped to
the empty set and any “operation” that involves the empty set has the empty set as a result).

9 Future work

Technically, our main object of study in this paper was a notion: a monad for which languages
recognizable by finite algebras are closed under taking direct images along surjective letter-to-
letter homomorphisms. For such monads the abstract definition of monadic MSO makes sense,
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in that it only describes recognizable languages. Our various sufficient conditions, examples
and counterexamples show that the notion seems rather subtle, but they do not provide a full
characterization of it. The search for such a characterization is an obvious direction of further
study.

It should also be said that the notion itself is a result of a few design decisions. It could
be that its variants, such as the ones described in Section 8, lead to simpler characterizations
while still covering essentially the same class of practically relevant examples. Some other design
decisions we have not even mentioned: for example, is an arbitrary finite algebra the right notion
of a recognizing device? Sometimes, in particular for infinitary monads, the answer might not
be obvious, and one may want to consider a restricted class of finite algebras instead. (Note
that, for an infinitary monad, a finite algebra may not admit a finite description.) Similarly, it
is not clear whether one should not restrict even further the class of homomorphisms to take
direct images along. This design space deserves careful exploration.

We focussed our attention on monads on the category of sets, but this leaves several natural
examples out of scope. For example, the category of ranked sets is a convenient setting to
study various algebras of trees and graphs. Other interesting base categories include that of
vector spaces, or that of nominal sets. Another interesting idea is to employ the topo-algebraic
technology of [43, 44], where recognizability of word languages is studied beyond the regular
setting. In general, any category where a meaningful notion of direct image of a language can
be formulated, may be a territory worth exploring.

The most ambitious goal is to go beyond the “definable ⇒ recognizable” implication of the
correspondence between MSO definability and recognizability of languages. Is there a generic
version of the converse implication? How far can Proposition 1 be generalized? What about
decidability questions about MSO? The paper [14] makes some initial steps in these and other
related directions. However, much remains to be done, all in the spirit of bridging the divide
between Structure and Power.
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[19] Miko laj Bojańczyk and Bartek Klin. A non-regular language of infinite trees that is rec-
ognizable by a sort-wise finite algebra. Logical Methods in Computer Science, Volume 15,
Issue 4, December 2019.

[20] Bart Jacobs. Trace semantics for coalgebras. Electronic Notes in Theoretical Computer
Science, 106:167 – 184, 2004. Proceedings of the Workshop on Coalgebraic Methods in
Computer Science (CMCS).

[21] Bartek Klin and Julian Salamanca. Iterated covariant powerset is not a monad. Electronic
Notes in Theoretical Computer Science, 341:261 – 276, 2018. Procs. MFPS XXXIV.

[22] M. Zwart and D. Marsden. No-go theorems for distributive laws. 2019 34th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–13, 2019.

[23] Steve Awodey. Category Theory. Oxford University Press, Inc., New York, NY, USA, 2nd
edition, 2010.

[24] Saunders MacLane. Categories for the Working Mathematician. Springer-Verlag, New
York, 1971. Graduate Texts in Mathematics, Vol. 5.

[25] Janusz Brzozowski. Open problems about regular languages. In Formal Language Theory,
pages 23–47. Elsevier, 1980.
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[40] M. Bojańczyk. Algebra for trees. To appear.
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