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From Bialgebraic Semantics
to Congruence Formats
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Abstract

A general and abstract framework to defining congruence formats for various process
equivalences is presented. The framework extends bialgebraic techniques of Turi
and Plotkin with an abstract coalgebraic approach to process equivalence, based
on a notion of test suite. The resulting technique is illustrated on the example of
completed trace equivalence. Rather than providing formal proofs, the paper is
guiding the reader through the process of deriving a congruence format in the test
suite approach.
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1 Introduction

Process algebra is the area of research concerned with formal descriptions of
complex computational systems, especially those with communicating, con-
currently executing components. Since the 1980s it has been a well-established
and intensively studied area of theoretical computer science (e.g. [4,8,18,21,29]).
Traditionally, its main goal was to develop formalisms for the specification and
verification of concurrent and networked computer systems, and to provide
semantics for concurrent programming languages. Among the best-known
traditional process algebras are ACP [7], CCS [28] and CSP [11].

More recently, methods of process algebra have been applied in other areas
of computer science, in formal approaches to distributed, dynamic and mobile
systems (e.g. π-calculus [14,30], calculus of mobile ambients [12]), security of
cryptographic protocols (spi-calculus [1]) and even computational molecular
biology [13,33].

When describing systems and processes formally, three key aspects must
be considered: syntax, behaviour and process (also called behavioural, obser-
vational or operational) equivalence.
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Syntax refers to the structure of processes, and reflects the fact that it is
natural and convenient to describe various systems as composed of smaller
subsystems. In simple cases, processes are arbitrary terms over an algebraic
signature. More sophisticated syntactic phenomena include variable binding
and structural congruences, where two syntactically different terms are iden-
tified and represent the same process.

Behaviour refers to the kind of actions the processes may take. In tra-
ditional process algebras, processes are allowed to nondeterministically per-
form externally observable actions from a prescribed set. One also considers
deterministic, probabilistic and/or timed behaviour, the ability to perform
unobservable actions, features related to state, input and output.

Process equivalence describes those processes whose behaviours should be
considered “the same”. This notion clearly depends on the chosen notion
of behaviour of processes, but even for a single kind of behaviour one might
consider many different process equivalences, suitable for different purposes.

The most well-established approach to the formal presentation of process
algebras, covering all three aspects mentioned above, is that of structural op-
erational semantics [32,2]. There, the behaviour of processes is modelled by
means of transition relations on processes presented as terms over some sig-
nature. The transition relations in turn are induced by inference rules that
follow the syntactic structure of processes. The intuitive appeal of this ap-
proach and, importantly, its inherent support for modelling nondeterministic
behaviour, made it a natural framework for the formal description of process
algebras.

Generally speaking, a set of operational inference rules induces a transi-
tion system, i.e., a set of processes together with a transition relation on it.
Depending on the form of the rules, this can be a simple labelled transition
system (LTS), an LTS with unobservable steps, a probabilistic transition sys-
tem, a timed transition system etc. Based on the structure of the transition
relation, one can define many different equivalences and preorders on pro-
cesses. The variety of possible process equivalences has been studied most
intensively in the case of LTSs, and includes bisimulation equivalence [31],
simulation equivalence, trace equivalence, testing equivalence and many oth-
ers (for a comprehensive treatment, see [17]). For other notions of transition
system and process behaviour, the most thoroughly studied process equiv-
alences include weak/delay/branching bisimulation equivalences (e.g. [16]),
probabilistic bisimulation equivalence [26], timed bisimulation equivalence [3]
and many others.

For a notion of process equivalence to be practically useful, it must be
compositional (or, in other words, it must be a congruence), i.e., it must be
respected by the syntactic constructs of a chosen process algebra. This is
necessary for any kind of inductive reasoning about processes, for example for
specification and verification of systems component by component.
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Proofs of compositionality of chosen process equivalences with respect to
particular process algebras can be quite demanding. It is therefore desirable
to show general results of this kind that hold on entire classes of process
algebras. In the framework of structural operational semantics, the search
for such results led to the development of various congruence formats. A
congruence format is a restriction on the syntactic form of structural inference
rules that guarantees a particular process equivalence compositional.

One of the most popular congruence formats is GSOS [10], a restriction
on the form of inference rules that guarantees bisimulation equivalence on
the LTS generated from these rules to be compositional. Many other congru-
ence formats have been defined for various notions of behaviour and process
equivalence (see [2] and references therein, but also [5,23]). However, to de-
fine a general congruence format for a given notion of process equivalence is
often a difficult task. Given the growing variety of disparate programming
paradigms and process behaviours, it is desirable to have a general framework
for constructing congruence formats for given notions of syntax, behaviour
and process equivalence. To provide such a framework, one must come up
with abstract notions of syntax, behaviour and equivalence, covering most of
the well-known examples.

One such framework, developed by Turi and Plotkin in [35], is called bial-
gebraic semantics. It is based on the classical algebraic approach to syntax
and a coalgebraic approach to behaviour [34], including a coalgebra span ap-
proach to bisimulation equivalence. In [35], it was shown how to derive, in an
abstract fashion, GSOS as a congruence format for bisimulation equivalence.
Applying the same approach to other kinds of behaviour, Bartels [6] derived
a novel congruence format for probabilistic bisimulation equivalence on prob-
abilistic transition systems, and Kick [23] a format for timed bisimulation on
timed transition systems.

The generality of the original bialgebraic approach is limited by features
of the coalgebra span approach to process equivalence, which covers only a
single notion of equivalence for any given notion of behaviour. In [25,24], the
bialgebraic approach has been modified to accommodate other well-known
equivalences. Instead of the coalgebra span approach, a novel framework for
modelling process equivalences was proposed, based on simple notions of tests
and test suites. This, when combined with the original bialgebraic framework
of Turi and Plotkin, gives a framework for deriving congruence formats for
many different process equivalences.

The purpose of this paper is to explain, as intuitively as possible, the orig-
inal bialgebraic techniques and their extension with test suites. To show some
concrete examples, and to demonstrate that this abstract framework does
lead to novel results, the paper concentrates on the commonly considered
behaviour of labelled nondeterminism, and on two particular process equiva-
lences: bisimulation equivalence and completed trace equivalence. The former
is used to explain the original techniques of Turi and Plotkin, and the latter to
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illustrate the test suite approach. The choice of completed trace equivalence
is motivated by the opinion (see [2]) that it is very difficult to find a general
congruence format for it. The successful derivation of a reasonably general
format therefore serves as evidence that the abstract bialgebraic approach can
bring some concrete and useful results.

The content and style of this paper is motivated by the feeling, expressed
to me by several people, that the bialgebraic test suite approach is complicated
and hard to understand. In particular, formal proofs of correctness of derived
congruence formats shown in [24] are admittedly not very revealing, and they
provide little insight into the process of actual derivation of formats. This
makes it a bit hard for anyone to adapt that approach to their favourite
behaviours and equivalences.

For this reason, I decided to omit almost every formal proof from this
presentation of bialgebraic and test suite techniques. Instead, I tried to provide
as much intuition as possible into each step of the derivation of a congruence
format for completed trace equivalence. I hope that this intuition will make
the test suite approach easier to understand and to use. For a thorough,
detailed and fully formal presentation of the ideas sketched here, the reader
is advised to refer to [24]. A preliminary version of the framework and of the
format presented here was also published as joint work with Pawe l Sobociński
in [25].

Although all relevant definitions are recalled, the reader is assumed to have
basic knowledge of structural operational semantics and concurrency theory.
Being familiar with [17] and [2] should be more than enough. Throughout the
paper, basic notions of category theory are used. The reader is assumed to be
familiar with rudimentary notions like category, functor, natural transforma-
tion, initial object, final object, product, coproduct and pullback. The first
chapters of [27], along many other books, contain definitions of these.

The structure of the paper is as follows. In Sections 2 and 3, some no-
tions and results from the area of structural operational semantics are briefly
recalled. In Section 4, the original bialgebraic approach of Turi and Plotkin
is sketched, together with its abstract representation of the GSOS format. In
Section 5, the abstract test suite approach to various process equivalences is
described. In Section 6, this approach is combined with bialgebraic methods
to give an abstract theorem about congruence formats. That theorem is spe-
cialised to the case of completed trace equivalence, and the reader is guided
through the process of derivation of a congruence format for the equivalence.
The paper is concluded with a set of exercises, and a list of open problems
worth pondering.

Acknowledgements: I am grateful to Piotr Hoffman, Pawe l Sobociński
and Daniele Varacca for comments on a draft of this paper.
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2 Labelled transition systems and process equivalences

Operational descriptions are usually based on the notion of labelled transition
system.

Definition 2.1 A labelled transition system (LTS) 〈X,A,−→〉 is a set X of
processes, a set A of actions, and a transition relation −→ ⊆ X × A × X.
Usually instead of 〈x, a, x′〉 ∈ −→ one writes x

a
−→ x′. An LTS 〈X,A,−→〉

is called finitely branching if for every process x ∈ X there are only finitely
many processes x′ ∈ X and actions a ∈ A such that x

a
−→ x′.

For any x ∈ X, a ∈ A one writes x 6
a

−→ to denote that there is no x′ ∈ X
such that x

a
−→ x′. Moreover, x 6−→ means that x 6

a
−→ for all a ∈ A.

Many preorders and equivalences have been defined on processes in labelled
transition systems. For illustration purposes, this paper concentrates on two
of them: bisimulation equivalence and completed trace equivalence. Many
other equivalences are studied in detail in [17].

Bisimulation equivalence is usually defined based on the classical notion of
bisimulation. In the following two definitions, an LTS 〈X,A,−→〉 is assumed.

Definition 2.2 A relation R ⊆ X ×X is a bisimulation if xRy implies that
for any a ∈ A,

• for any x′ ∈ X if x
a

−→ x′ then there exists y′ ∈ X such that y
a

−→ y′ and
x′Ry′, and

• for any y′ ∈ X if y
a

−→ y′ then there exists x′ ∈ X such that x
a

−→ x′ and
x′Ry′.

Processes x, y ∈ X are bisimulation equivalent, or bisimilar, if there exists a
bisimulation R such that xRy.

It is straightforward to prove that in any LTS bisimulation equivalence is
indeed an equivalence relation, and it is the greatest bisimulation on the LTS.

For finitely branching LTSs, an alternative characterisation of bisimulation
can be given using the following finitary Hennessy-Milner logic. Processes are
considered equivalent if and only if they satisfy exactly the same formulae
from the logic.

Definition 2.3 Given a set of actions A, consider the set of modal formulae
FBS, given by the BNF grammar:

φ ::= > | ⊥ | 〈a〉φ | [a]φ | φ ∧ φ | φ ∨ φ
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where a ranges over A. Given an LTS h = 〈X,A,−→〉, the satisfaction relation
|=h ⊆ X ×FBS is defined inductively as follows:

x |=h > always

x |=h ⊥ never

x |=h 〈a〉φ ⇐⇒ x′ |=h φ for some x′ such that x
a

−→ x′

x |=h [a]φ ⇐⇒ x′ |=h φ for all x′ such that x
a

−→ x′

x |=h φ1 ∧ φ2 ⇐⇒ x |=h φ1 and x |=h φ2

x |=h φ1 ∨ φ2 ⇐⇒ x |=h φ1 or x |=h φ2

Finally, the equivalence ∼=BS⊆ X ×X is defined on a given LTS h by:

x ∼=BS x
′ ⇐⇒ (∀φ ∈ FBS. x |=h φ⇐⇒ x′ |=h φ)

The soundness and completeness results for the Hennessy-Milner logic [19]
say that in any finitely branching LTS, the relation ∼=BS is equal to bisimulation
equivalence.

Once the Hennessy-Milner logic has been recalled, the easiest way to define
other well-known equivalences on LTSs is via suitable fragments of that logic.
This is how we proceed to define completed trace equivalence.

Definition 2.4 Given a set of actions A, consider the set of modal formulae
FCTr, given by the BNF grammar:

φ ::= > | ∅ | 〈a〉φ

where a ranges over A. Given an LTS h = 〈X,A,−→〉, the satisfaction relation
|=h ⊆ X ×FCTr is as in Definition 2.3, with the additional case:

x |=h ∅ ⇐⇒ x 6−→

The equivalence ∼=CTr on X is defined on a given LTS h by:

x ∼=CTr x
′ ⇐⇒ (∀φ ∈ FCTr. x |=h φ⇐⇒ x′ |=h φ) (2.1)

The above logic can be indeed viewed as a fragment of the Hennessy-
Milner logic, since in any LTS, a process satisfies the formula ∅ if and only
if it satisfies formulae [a]⊥ for all actions a. Formulae in FCTr ending with ⊥
are usually called finite, partial traces (or simply traces), and formulae ending
with ∅ are called completed traces.
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3 Structural operational semantics and congruence for-

mats

In the context of structural operational semantics, processes are usually closed
terms over some signature and labelled transition systems are induced from
sets of inference rules.

A signature Σ is a set Σ̄ of language constructs, together with an arity
function ar : Σ̄ → N. For a given set X of variables, ΣX is the set of
expressions of the form f(x1, . . . , xar(f)), where f ∈ Σ̄ and x1, . . . , xar(f) ∈ X.

Given a signature Σ and a set X, the set of terms over Σ with variables
X is denoted TΣX. The subscript in TΣX is omitted if Σ is irrelevant or clear
from the context. Elements of T0 (throughout this paper, 0 denotes the empty
set) are called closed terms over Σ.

For a term t ∈ TX and a function (substitution) σ : X → Y , tσ denotes
the term in TY resulting from t by simultaneously replacing every x ∈ X with
σ(x).

To define inference rules, assume a fixed, countably infinite set of variables
Ξ, ranged over by x1, x2, . . . , y1, y2, . . .. Terms built over variables from Ξ are
typeset t, t′ etc., as opposed to the normal notation t, t′ etc.

In the following, fix an arbitrary set of actions A. For a signature Σ,
a positive Σ-literal is an expression t

a
−→ t′, and a negative Σ-literal is an

expression t 6
a

−→, where t, t′ ∈ TΞ and a ∈ A. An inference rule ρ over Σ is
an expression H

α
, where H is a set of Σ-literals and α is a positive Σ-literal.

Elements of H are then called premises of ρ, and α the conclusion of ρ. The
left side and the right side of the conclusion of ρ are called the source and the
target of ρ, respectively. If the source of a rule ρ is of the form f(x1, x2, . . . , xn),
one says that ρ is a rule for f.

A transition system specification over Σ is a set of rules over Σ.

Example 3.1 An example of a transition system specification is that of basic
process algebra. Assuming a set A of actions, its syntax Σ is defined by the
BNF grammar

t ::= nil | αt | t+t

and the transition system specification BPA over Σ is a collection of rules

αx
α

−→ x

x
α

−→ x′

x + y
α

−→ x′

y
α

−→ y′

x + y
α

−→ y′

where α ranges over A. When presenting terms over the above syntax, the
trailing nils are omitted. This is a rather simple example; in particular, all
premises in the above rules are positive.

It is quite clear how to induce a labelled transition system from the above
rules. First, a notion of a provable positive literal is defined in a straightfor-
ward way. The set of all provable literals forms an LTS with closed terms
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over Σ as processes, and with positive closed literals as transitions. Note that
when negative premises are around, it might be less clear how to associate an
LTS to a transition system specification in a meaningful way (see [2]).

If an LTS can be induced from a set of rules over Σ, one can define various
equivalences (e.g., bisimulation equivalence, completed trace equivalence) be-
tween closed terms over Σ as the corresponding equivalences on the induced
LTS. Such equivalences identify terms whose behaviours as processes are the
same in some sense. However, for an equivalence to be useful in practice, it
should be a congruence:

Definition 3.2 Let Σ be any signature. An equivalence relation R ⊆ T0×T0
is a congruence, if for any f ∈ Σ̄ with ar(f) = n, and for any t1, t

′
1, t2, t

′
2, . . . , tn, t

′
n ∈

T0, whenever tiRt
′
i (i = 1, 2, . . . , n) then f(t1, t2, . . . , tn)Rf(t′1, t

′
2, . . . , t

′
n).

As it turns out, many interesting equivalences are not congruences even for
quite simple languages. Moreover, if a particular equivalence is a congruence
for a given language, the proof of this is can be quite demanding. This is why
it is worthwhile to look for congruence formats of transition system specifi-
cations, i.e., syntactic restrictions on sets of rules that guarantee particular
equivalences on the induced LTSs to be congruences.

One of the most popular congruence format is GSOS [10]. The following
definition assumes a fixed signature Σ.

Definition 3.3 [GSOS]A transition system specification Λ is in GSOS format
if every rule ρ ∈ Λ is of the form

{

xi
aij

−→ yij : i ≤ n, j ≤ mi

}

∪
{

xi 6
bik−→ : i ≤ n, k ≤ ni

}

f(x1, . . . , xn)
c

−→ t

with f a language construct in Σ̄ and n = ar(f), such that xi ∈ Ξ and yij ∈ Ξ
are all distinct and are the only variables that occur in ρ. If, moreover, for
every f ∈ Σ̄, Λ contains only finitely many rules for f, then Λ is image-finite.

Any transition system specification Λ in GSOS format induces an LTS as
sketched above. If Λ is image-finite, then the induced LTS is finitely branching
(for details, see [2]). Moreover, as was proved in [10], the bisimulation equiv-
alence ∼=BS is guaranteed to be a congruence on the induced LTS. In other
words, GSOS is a congruence format for bisimulation equivalence.

Several other congruence formats for bisimulation equivalence and for other
well-known equivalences have been defined (for a detailed survey, see [2]).
However, for some time the task of defining a general format for completed
trace equivalence appeared very difficult. That view was supported by the
following examples of seemingly simple and innocent rules, for which, however,
completed trace equivalence fails to be a congruence.
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Example 3.4 Assume A = {a, b}, and extend BPA with an operational rule
for the encapsulation operator ∂{b}:

x
a

−→ y

∂{b}(x)
a

−→ ∂{b}(y)

It is easy to check that the above extension of BPA does not respect
completed traces. Indeed, aa+ab ∼=CTr a(a+b) but ∂{b}(aa+ab) 6vCTr ∂{b}(a(a+
b)), since 〈a〉∅ is a completed trace of ∂{b}(aa+ ab), but not of ∂{b}(a(a+ b)).

Example 3.5 Assume A = {a, b}, and extend BPA with a collection of rules
for binary synchronous composition ×:

x
α

−→ x′ y
α

−→ y′

x× y
α

−→ x′ × y′

where α ranges over A.

Here it is easy to see that aa× (aa+ ab) 6vCTr aa× a(a+ b), since 〈a〉∅ is
a completed trace of aa× (aa+ ab), but not of aa× (a(a+ b)).

However, completed trace equivalence turns out to be a congruence for
BPA, and even for some seemingly more complicated sets of rules, involving
in particular negative premises:

Example 3.6 Extend BPA with a collection of rules for binary sequential
composition ;:

x
α

−→ x′

x; y
α

−→ x′; y

x 6
a

−→ for all a ∈ A y
α

−→ y′

x; y
α

−→ y′

where α ranges over A.

The proof that completed trace equivalence is a congruence for this lan-
guage is left as an exercise.

The above examples are a bit discouraging. It seems hard to identify a
syntactic feature of the rules for encapsulation and synchronous composition
that prevents completed trace equivalence from being a congruence, as these
rules are really quite simple. However, in the following sections a congruence
format will be derived that excludes these examples, and still is general enough
to cover, e.g., the sequential composition operator.

In fact, this paper takes upon a bolder task and provides a method of
deriving congruence formats for any given notion of equivalence with enough
structure. The new format for completed trace equivalence appears as a spe-
cial case of this general approach. To do this, one needs to look at labelled
transition systems, operational equivalences and transition system specifica-
tions a bit more abstractly. Basic category theory proves a useful tool to this
end.
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4 Towards a mathematical operational semantics

We begin with a brief presentation of the beautiful abstract framework de-
veloped by Turi and Plotkin [35] and called bialgebraic semantics or abstract
GSOS. It allowed them to redefine GSOS format and re-prove its congruence
properties for bisimulation equivalence in an abstract fashion. In the follow-
ing sections, that approach is modified to cover other process equivalences, in
particular completed trace equivalence.

Any labelled transition system 〈X,A,−→〉 can be viewed as a function

h : X −→ P(A×X)

(where P is the powerset construction), via the easy correspondence

〈a, y〉 ∈ h(x) ⇐⇒ x
a

−→ y

With P viewed as the covariant powerset endofunctor on the category Set

of sets and functions, a function as above is called a coalgebra for the functor
P(A×−), or P(A×−)-coalgebra in short. It turns out that replacing P(A×−)
with other endofunctors (called behaviour endofunctors in this context) one
can model different kinds of systems, including deterministic, probabilistic,
timed, ones with state, input and output and many others. This has led to
the development of universal coalgebra as an abstract theory of transition
systems (for a detailed introduction, see [34]).

Formally, for any endofunctor B on Set, a B-coalgebra with carrier X
is a function h : X → BX. A coalgebra morphism from g : X → BX to
h : Y → BY is a function f : X → Y such that the following diagram
commutes:

X
f

//

g

��

Y

h
��

BX Bf
//BY

It is easy to see that B-coalgebras and their morphisms form a category,
with identities and composition inherited from Set.

One of the most important achievements of the coalgebraic approach to
processes is the following abstract definition of bisimulation:

Definition 4.1 Let h : X → BX be a coalgebra. A (span) bisimulation
on h is a relation R ⊆ X × X such that there exists a coalgebra structure
r : R → BR that makes the projections π1 and π2 into coalgebra morphisms:

X

h
��

R

r

��

π1oo π2 //X

h
��

BX BRBπ1

oo
Bπ2

//BX
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It turns out that for B = P(A×−), this definition specialises to the stan-
dard definition of bisimulation on LTSs. For other choices of B, it specialises
to other well-known definitions (for details see [34]).

In many technical developments of the coalgebraic approach it is required
that the chosen behaviour functor B preserves weak pullbacks and that in the
category of B-coalgebras a final object (a final B-coalgebra) exists. Unfortu-
nately, the endofunctor P(A×−) does not admit final coalgebras. Therefore,
to use the full power of the coalgebraic approach, it is convenient to restrict
attention to finitely branching LTSs. It is easy to see that such systems corre-
spond to coalgebras for the endofunctor Pf(A×−), where Pf is the covariant
finite powerset functor. This behaviour functor admits final coalgebras and
preserves weak pullbacks (for details, see [34]), and the following developments
apply without any further assumptions.

The next step is to equip carriers of coalgebras with some kind of syntactic
structure, since in the context of structural operational semantics processes in
LTSs are terms over some syntax.

A common technique to represent syntax of simple languages is to represent
signatures as polynomial (i.e., built only of constants, sums and products)
endofunctors on Set. Any signature Σ determines an endofunctor (somewhat
sloppily denoted Σ as well, which should not lead to any confusion) defined
by

ΣX =
∐

f∈Σ̄

∏

ar(f)

X

where
∐

and
∏

denote disjoint unions and cartesian products, respectively.
For example, the signature of the basic process algebra BPA based on a set
of actions A corresponds to the endofunctor

ΣX = 1 + (X + . . .+X)
︸ ︷︷ ︸

|A| times

+X ×X

where 1 is a singleton set, + denotes disjoint union and × denotes cartesian
product. Then, to equip a set X with algebraic structure over the signature
is just to provide a function

g : ΣX −→ X

which, in categorical terms, is called a Σ-algebra. A morphism from an algebra
g : ΣX → X to an algebra h : ΣY → Y is a function f : X → Y such that
the following diagram commutes:

ΣX
Σf

//

g

��

ΣY

h
��

X f
//Y

As in the case of coalgebras, Σ-algebras and their morphisms form a cate-
gory. If Σ is polynomial (as it is the case when it is derived from a signature
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as above), then the initial Σ-algebra

ψ : ΣT0 −→ T0

always exists, where T0 is the set of all closed terms over Σ, and ψ is the
obvious algebraic structure “gluing” terms.

The notion of congruence from Definition 3.2 can be generalised to arbi-
trary Σ-algebras for endofunctors Σ obtained from signatures.

Definition 4.2 Let Σ be a signature and h : ΣX → X an algebra for the
corresponding polynomial endofunctor on Set. An equivalence relation R ⊆
X × X is a congruence on h if for any coproduct injection f : Xn → ΣX,
and for any x1, y1, x2, y2, . . . , xn, yn ∈ X, whenever xiRyi (i = 1, 2, . . . , n) then
h(f 〈x1, x2, . . . , xn〉)Rh(f 〈y1, y2, . . . , yn〉).

It is easy to see that when h is the initial Σ-algebra ψ : ΣT0 → T0, the
above definition specialises to Definition 3.2.

The algebraic framework allows one to represent terms over a signature
as well. Formally, given any set X, the endofunctor X + Σ− admits initial
algebras, and set of terms over Σ with variables from X is the carrier of an
initial (X + Σ−)-algebra. This construction (from X to that carrier) can be
extended to an endofunctor on Set, denoted TΣ, or T in short, if Σ is irrelevant
or clear from context. In particular, the set T0 of closed terms over Σ is the
carrier of an initial Σ-algebra. In categorical terminology, the functor T is
called the monad freely generated by Σ.

In [35], Turi and Plotkin suggested the notion of bialgebra as an abstract
representation of transition systems with syntactic structure imposed on pro-
cesses. A bialgebra for functors Σ, B on Set is simply a pair of a Σ-algebra
and a B-coalgebra with a common carrier:

ΣX
g

−→ X
h

−→ BX

They then showed how to induce bialgebras for given Σ and B from distributive
laws, i.e., natural transformations of the form

λ : Σ(Id ×B) =⇒ BT

where T is the monad freely generated by Σ. For purposes of this paper it
is not really important how this abstract construction works technically (for
details, see [35]); suffice it to say that any λ as above gives rise to a certain
bialgebra with carrier T0:

ΣT0
ψ

−→ T0
hλ−→ BT0

where ψ is the initial Σ-algebra, and hλ is a coalgebraic structure derived from
λ. Note that the carrier of hλ is the set of closed terms over the signature Σ.
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Recall that when B = Pf(A × −), then hλ is just a finitely branching
LTS. Thus one has a method of deriving LTSs from certain abstract entities:
distributive laws. A central result of [35] states that these distributive laws
in fact correspond to transition system specifications in image-finite GSOS
format, and the abstract construction of hλ from λ specialises to the induction
of LTSs from such specifications:

Theorem 4.3 There is an (essentially 1-1) correspondence between transition
system specifications Λ in image-finite GSOS format over a signature Σ and
with a set of actions A, and natural transformations

λ : Σ(Id × Pf(A×−)) =⇒ Pf(A× T−)

For any such transition system specification Λ, the coalgebra hλ induced from
the natural transformation λ corresponding to Λ is just the LTS induced from
Λ.

Proof The full proof of this theorem was left implicit in [35], but can be
found in [6]. Here it is enough to give some intuition on how to derive a
natural transformation λ from a set of rules Λ.

Fix an arbitrary set of actions A, a signature Σ with its corresponding
polynomial endofunctor, and an image-finite set Λ of GSOS rules over Σ with
actions from A. The task is to define a transformation λ as in the theorem
statement.

For a given set X, the domain of the component function λX is the set

Σ(X × Pf(A×X))

Elements of this set are terms r built of a single, principal language construct
(say, f) only, with variables from X, and with each variable x equipped with a
finite set of pairs that can be viewed as possible transitions originating from x.
Given such information, one might determine what transitions can be made
from r according to rules Λ, by looking on each rule ρ for f in Λ in turn, and
trying to substitute elements of X for variables from Ξ so that variables the
in source of ρ are mapped to variables in r, and that all premises of ρ are
satisfied by sets of transitions provided with r. If this can be done, than ρ
can be “fired” and the resulting transition (i.e., a pair of a label and a term)
is added to the result of λX , which is an element of

Pf(A× TX)

More formally, given a language construct f ∈ Σ̄ with arity n and a set X,
a rule ρ in the GSOS format

{

xi
aij

−→ yij : i ≤ n, j ≤ mi

}

∪
{

xi 6
bik−→ : i ≤ n, k ≤ ni

}

f(x1, . . . , xn)
c

−→ t

13



Klin

defines a map ρX : (X × Pf(A × X))n → Pf(A × TX) as follows: 〈c, t〉 ∈
ρX 〈xi, βi〉i≤n iff there exists a substitution σ : Ξ → X satisfying

(i) σ(xi) = xi

(ii) ∀i ≤ n∀j ≤ mi 〈aij, σ(yij)〉 ∈ βi

(iii) ∀i ≤ n∀k ≤ ni ∀x ∈ X 〈bij, x〉 /∈ βi

(iv) tσ = t

Then given a set Λ of rules in the image finite GSOS format one can define a
function λX : Σ(X × Pf(A ×X)) → Pf(A × TX) by defining for each f ∈ Σ̄
with arity n a function fX : (X × Pf(A×X))n → Pf(A× TX) as follows:

fX : 〈xi, βi〉i≤n 7→
⋃

ρ∈Λ
ρ a rule for f

ρX〈xi, βi〉i≤n

Image finiteness of Λ ensures that this function is well defined, i.e. that it
returns only finite sets. Finally, λX is determined uniquely by the fX ’s since
it is a function from a coproduct. 2

For example, consider the transition system specification BPA (Exam-
ple 3.1) as Λ (assuming a, b, c ∈ A), and take X = {♠,♥,♦,♣}. Consider the
following r1, r2, r3 ∈ Σ(X × Pf(A×X)):

r1 = 〈♣, {〈a,♥〉 , 〈b,♠〉}〉 + 〈♦, {〈a,♣〉}〉

r2 = a 〈♥, {〈b,♦〉 , 〈c,♠〉}〉

r3 = nil

Then the construction described above yields

λXr1 = {〈a,♥〉 , 〈b,♠〉 , 〈a,♣〉}

λXr2 = {〈a,♥〉}

λXr3 = ∅

In [35] it was proved that the congruence property of GSOS is a special
case of the following result:

Theorem 4.4 For any natural transformation

λ : Σ(Id ×B) =⇒ BT

(where B admits final coalgebras and preserves weak pullbacks) the largest
span bisimulation on hλ : T0 → BT0 is a congruence relation on T0.

This, specialised to the case of B = Pf(A × −) and combined with The-
orem 4.3, means that image-finite GSOS is a congruence format for bisimu-
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lation equivalence. The importance of Theorem 4.4, however, is that it can
be applied to other behaviour endofunctors B and thus it serves as a gen-
eral method of deriving congruence formats for equivalences corresponding to
span bisimulations for various behaviours. This method has already been ap-
plied to probabilistic transition systems in [6], yielding a congruence format
for probabilistic bisimulation, and to timed transition systems in [23], where
a congruence format for timed bisimulation was obtained.

The generality of this approach, however, is limited by the scope of the span
bisimulation approach to process equivalence. For any behaviour endofunctor,
only a single, canonical notion of equivalence based on span bisimulations can
be covered. One way to circumvent this is to find another, more general
coalgebraic approach of process equivalence, that in the case of ordinary LTSs
would cover more notions than just bisimulation equivalence (in particular,
completed trace equivalence), but still allows one to prove a counterpart of
Theorem 4.4 to obtain congruence properties.

5 Test suites

In this section, an alternative to the coalgebra span approach to process equiv-
alence is presented, based on simple notions of tests and test suites. An ab-
stract definition of process equivalence is shown, which specialises to most
well-known equivalences on LTSs, in particular to completed trace equiva-
lence. In Section 6 this will be combined with bialgebraic methods, yielding
a method of deriving congruence formats for given notions of equivalence.

Conceptually, the test suite approach is based on intuitions taken from
modal logic: two processes are considered equivalent if they cannot be distin-
guished by any test from a given test suite. Varying the test suites considered,
one obtains different notions of equivalence. The relevant test suites are ob-
tained from the coalgebraic structure of the LTS in question.

The test suite approach departs from the coalgebra span approach in that
to find an equivalence on a coalgebra h, one does not construct a span of
coalgebras, but rather enriches h with additional structure and requires h to
preserve that structure. This general approach was used in [20,22], where coal-
gebras were equipped with binary relations on their carriers. In our approach,
instead, coalgebras are equipped with test suites.

From now on, denote 2 = {tt, ff}. A test on a set X is a function
V : X → 2. A test suite on a set X (denoted θ : X ⇒ 2) is a set of tests
on X. The set of all test suites on a set X, partially ordered by inclusion, is
denoted X∗.

Obviously, any test V on X can be identified with the following subset of
X:

{x ∈ X : V x = tt }

Viewed this way, a test suite on X is a family of subsets of X. In particular,
any topology is a test suite on its carrier. It is useful to keep the intuitive
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set interpretation in mind, but stick to the functional definition for technical
convenience in further developments.

The category of test suites TS is defined as follows:

• objects in TS are pairs 〈X, θ〉, where X is a set and θ : X ⇒ 2 is a test
suite,

• morphisms f : 〈X, θ〉 → 〈Y, ϑ〉 are functions f : X → Y such that

{V ◦ f : V ∈ ϑ } ⊆ θ

To get some intuition, note that morphisms in TS are defined exactly like
continuous morphisms between topologies, when topologies are viewed as test
suites.

T and F denote the constantly true and the constantly false tests. One
also speaks of unions and intersections of tests, denoted with ∨ and ∧ and
defined in the obvious way.

In Section 6, categorical products and coproducts in TS will be used. They
are defined as follows:

〈X, θ〉 + 〈Y, ϑ〉 = 〈X + Y, θ ⊕ ϑ〉

〈X, θ〉 × 〈Y, ϑ〉 = 〈X × Y, θ ⊗ ϑ〉

where

θ ⊕ ϑ= { [V, V ′] : V ∈ θ, V ′ ∈ ϑ }

θ ⊗ ϑ= {V ◦ π1 : V ∈ θ } ∪ {V ′ ◦ π2 : V ′ ∈ ϑ }

(here [V, V ′] : X + Y → 2 denotes the copairing of V and V ′). Checking
the required universal properties is left as an exercise. It will also be useful
to consider another construction on test suites. For test suites θ : X ⇒ 2,
ϑ : Y ⇒ 2, the test suite θ 1 ϑ : X × Y ⇒ 2 is defined by

θ 1 ϑ = {∧ ◦ (V × V ′) : V ∈ θ, V ′ ∈ ϑ } (5.1)

where ∧ : 2 × 2 → 2 is the logical-and operator. It is easy to see that 1 is
associative, therefore parentheses around its use are omitted when appropriate.

Intuitively, given test suites θ : X ⇒ 2 and ϑ : Y ⇒ 2, θ ⊕ ϑ is the test
suite on X + Y containing tests defined by cases using tests from θ on X and
ϑ on Y , θ⊗ϑ contains the tests on X×Y which consist of either a test from θ
on X or a test from θ on Y ; finally, θ 1 ϑ is the test suite on X×Y consisting
of tests built by performing a test from θ on X and simultaneously performing
a test from ϑ on Y and accepting when both tests accept.

Let θ be a test suite on any set X. Specialisation equivalence ∼=θ on X is
defined by

∼=θ = {〈x, y〉 ∈ X ×X | ∀V ∈ θ. V x = V y}
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It is straightforward, and left as an exercise, to show that test suite morphisms
preserve specialisation equivalences.

To equip coalgebras for an endofunctor B on Set with test suites, it is
useful to enrich B to act on the category TS. One says that an endofunctor
B∗ : TS → TS lifts an endofunctor B : Set → Set if p ◦ B∗ = B ◦ p, where
p : TS → Set is the obvious forgetful functor.

Endofunctors on TS lifting a given functor B : Set → Set are determined
by their actions, i.e., families of functions {BX : X∗ → (BX)∗ : X ∈ Set }.
If such a family satisfies a certain mild condition (see [24] for details) then B∗

defined by
B∗ 〈X, θ〉 = 〈BX,BXθ〉 B∗f = Bf

is an endofunctor on TS, and it obviously lifts B. In the following, expressions
like BX , ΣX will denote actions of some corresponding endofunctors B∗, Σ∗

on TS.

Any functor B : Set → Set can be lifted to an endofunctor on TS in
possibly many ways, by defining its action BX on test suites. For our purposes,
one particular way is especially useful. This well-structured method of lifting
endofunctors is based on notions of test constructors and closures. Intuitively
speaking, one might view tests as formulae interpreted on processes. Then
test constructors correspond to modal operators in a language of formulae,
and closures correspond to propositional connectives.

Definition 5.1 Let B be an endofunctor on Set. Tests on the set B2 (i.e,
functions w : B2 → 2) are called B-test constructors, or simply test construc-
tors, if B is irrelevant or clear from context.

Example 5.2 In the running example for this paper, B2 = Pf(A×2). A test
on Pf(A× 2) can be viewed as a way to combine results of multiple tests. For
example, for any a ∈ A there is a test constructor w〈a〉 defined by

w〈a〉β = tt ⇐⇒ 〈a, tt〉 ∈ β

How is such a test constructor used? Assume an LTS h : X → Pf(A × X),
and a test V on X. The function

BV ◦ h : X → B2,

applied to a process x ∈ X, first calculates the set of successors of x in h
(together with the corresponding actions), and then applies the test V to each
of the successors. One can then feed the result of this to the test constructor
w〈a〉, obtaining a test

w〈a〉 ◦BV ◦ h : X → 2

that checks whether, for a given process x, there exists an a-successor of x
satisfying the test V .

The careful reader will by now have noticed the intuitive correspondence
between the test constructor w〈a〉 and the modality 〈a〉 from Definition 2.3.
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Other test constructors mentioned in this paper are w[a] for a ∈ A and w∅,
defined by

w[a]β = ff ⇐⇒ 〈a, ff〉 ∈ β

w∅β = tt ⇐⇒ β = ∅

Definition 5.3 A test suite closure is a (large) family of monotonic functions
ClX : X∗ → X∗ indexed by sets X, such that for any function f : X → Y ,
and for any test suite θ : Y ⇒ 2, one has

ClX {V ◦ f : V ∈ θ } = {V ′ ◦ f : V ′ ∈ ClY θ }

Example 5.4 Test suite closures are conceptually simpler than test construc-
tors in that they do not depend on any behaviour endofunctor. They merely
close test suites under some constructions of choice. Examples of closures are:

Cl>X θ = θ ∪ {T}

Cl∨X θ =
{ ∨

V ∈ϑ V : ϑ ⊆ θ
}

Cl∨∧X θ =
{

∨n

i=1

∧m

j=1 Vij : n,m ∈ N, Vij ∈ θ
}

Obviously Cl∨ is the closure under arbitrary unions, and Cl∨∧ under finite
unions and intersections. The straightforward proof that the above construc-
tions satisfy the requirements of Definition 5.3 is left as an exercise.

We are now ready to define a structured way of lifting endofunctors from
Set to TS.

Theorem 5.5 Let B be an endofunctor on Set. Any set W of B-test con-
structors, together with any test suite closure Cl, induces a lifting of B to an
endofunctor BW on TS, defined by

BW 〈B, θ〉 =
〈
BX,BW

X θ
〉

BWf = Bf

where for any set X, the action BW

X : X∗ → (BX)∗ is a monotonic function
defined by

BW

X θ = ClBX{w ◦BV | w ∈ W, V ∈ θ}

It is straightforward to check that BW defined as above is indeed a functor,
and obviously it lifts B to TS.

As an example, consider again B = Pf(A × −) and take the set of test
constructors

CTr =
{
w〈a〉 : a ∈ A

}
∪ {w∅}

with closure Cl>. The endofunctor on TS arising from this choice along the
lines of Theorem 5.5 will be denoted BCTr. To understand the importance of
this functor, observe that
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h : 〈X, θ〉 −→
〈
BX,BCTr

X θ
〉

is a well-defined morphism in TS, i.e., a BCTr-coalgebra, if and only if

θ ⊇ {T} ∪
{
w〈a〉 ◦BV ◦ h : a ∈ A, V ∈ θ

}
∪ {w∅ ◦BV ◦ h : V ∈ θ }

This means that θ must contain the totally true test T, and be closed un-
der formation of new tests using test constructors w〈a〉 and w∅. Intuitively,
the least such θ is the set of interpretations of modal formulae FCTr on the
underlying LTS h : X → BX. (To grasp this, and to understand the intu-
itive correspondence between test constructors, closures, modal operators and
propositional connectives, it is useful to solve Exercise 8). This leads to the
following theorem:

Theorem 5.6 For any LTS h : X → BX = Pf(A×X), the least test suite θ
on X that lifts h to a well-defined BCTr-coalgebra

h : 〈X, θ〉 −→
〈
BX,BCTr

X θ
〉

exists, and its specialisation equivalence ∼=θ is equal to completed trace equiv-
alence on h.

The full proof of this theorem can be found in [24], together with a family
of analogous results for other well-known process equivalences. For example,
choosing the set of test constructors

BS =
{
w〈a〉 : a ∈ A

}
∪

{
w[a] : a ∈ A

}

with closure Cl∨∧, one obtains a similar characterisation of bisimulation equiv-
alence.

Thus the test suite approach allows one to characterise various process
equivalences in a coalgebraic fashion: as (the specialisation equivalences of)
the least test suites that lift LTSs to coalgebras for suitably lifted behaviour
functors. The next section shows how to combine this approach with bialge-
braic methods, to obtain congruence formats for these process equivalences.

6 A congruence format for completed traces

Throughout this section, fix the behaviour functor B = Pf(A×−).

To reconstruct the bialgebraic framework of Turi and Plotkin in the test
suite framework, it is necessary to lift from Set to TS not only B (which can
be done as shown in Section 5), but also a polynomial syntactic endofunctor
Σ and the monad T freely generated by Σ. There are several natural ways of
lifting polynomial endofunctors to TS, and it is convenient not to commit to
any of them until later in this section, when the choice of lifting can be better
motivated. However, it is useful to remark that whenever a functor Σ is lifted,
the monad freely generated by it is lifted automatically:
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Theorem 6.1 Assume an endofunctor Σ on Set and the monad T freely
generated by Σ. If Σ is lifted to a functor Σ∗ on TS, then Σ∗ freely generates
a monad T ∗ and T ∗ lifts T .

A proof of this theorem, together with a concrete characterisation of T ∗ in
terms of Σ∗, can be found in [24].

We are now ready to state the main result of the test suite approach
to congruence formats. The following statement concerns only completed
trace equivalence, but it can be immediately modified to cover other process
equivalences covered by the coalgebraic test suite approach of Section 5.

Theorem 6.2 Consider a transition system specification Λ in the image finite
GSOS format over a signature Σ and a set of actions B. Let

λ : Σ(Id ×B) =⇒ BT

(where B = Pf(A × −) and T is the monad freely generated by Σ) be the
natural transformation corresponding to Λ along the lines of Theorem 4.3.
Moreover, assume a lifting of Σ to an endofunctor Σ∗ on TS such that for
every Σ∗-algebra

g : Σ∗ 〈X, θ〉 −→ 〈X, θ〉 ,

the specialisation equivalence ∼=θ is a congruence on g : ΣX → X in the sense
of Definition 4.2.

If λ lifts to a well-defined natural transformation

λ : Σ∗(Id ×BCTr) =⇒ BCTrT ∗

then completed trace equivalence on the LTS generated by Λ is a congruence
in the sense of Definition 3.2.

This theorem, proved in [24], served as an abstract basis for a congruence
format for completed trace equivalence. Indeed, all one must do to obtain
such a format is to choose a lifting Σ∗, and then find a syntactic restriction on
image-finite GSOS specifications that, transformed along the correspondence
of Theorem 4.3, guarantee the natural transformation lifting condition of The-
orem 6.2. The remainder of this section is aimed at describing the process of
choosing a Σ∗, and then finding suitable syntactic restrictions. Rather than
giving formal proofs (which can be found in [24]), the aim is to provide as
much intuition as possible, to help the reader in finding analogous formats for
other process equivalences.

First, observe that for a natural transformation λ to satisfy the assump-
tions of Theorem 6.2, it is enough that for any object 〈X, θ〉 ∈ TS, the com-
ponent function λX is a well-defined morphism when lifted to TS:

λX : Σ∗(〈X, θ〉 ×BCTr 〈X, θ〉) −→ BCTrT ∗ 〈X, θ〉
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If all these components are well-defined, the naturality of the lifted transfor-
mation comes for free, since composition in TS is inherited from Set. By
definition of TS, the above is equivalent to the following condition:

{
V ◦ λX : V ∈ BCTr

TXTXθ
}
⊆ ΣX×BX(θ ⊗BCTr

X θ) (6.1)

which needs to be guaranteed for any θ : X ⇒ 2.

We can now try to choose a lifting Σ∗ of Σ to TS. The obvious choice is
to replace products by products and coproducts by coproducts, i.e., for

ΣX =
∐

f∈Σ̄

∏

ar(f)

X

take

Σ∗ 〈X, θ〉 = 〈ΣX,ΣXθ〉

where

ΣXθ =
⊕

f∈Σ̄

θ ⊗ · · · ⊗ θ
︸ ︷︷ ︸

ar(f) times

(6.2)

Σ∗ defined this way is indeed a functor and it lifts Σ. However, using this
lifting for Theorem 6.2 one obtains a rather severe syntactic restriction for Λ.

To realise this, consider a language with a binary language construct f

(together with some others, including a constant nil), described by a GSOS
rule

x
a

−→ x′ y
b

−→ y′

f(x, y)
c

−→ nil

together with some others, chosen so that completed trace equivalence for
the language is a congruence. Moreover, consider the test suite θ : X ⇒ 2
consisting of just the totally true test T. It then turns out that the totally
true test on TX is an element of TXθ. Then BCTr

TXTXθ contains the test W =
w〈c〉 ◦ BT : BTX → 2 that checks whether its argument contains any pair
with c as the first component.

Now one would like the test W ◦ λX : Σ(X × BX) → 2 to belong to
ΣX×BX(θ ⊗ BCTr

X θ). This is, however, impossible: the functor Σ∗ and its
action defined as in (6.2) are not rich enough to contain it. Indeed, given an
r ∈ Σ(X ×BX), to check whether λXr passes W , one needs to check that

• r = f(〈x, β〉 , 〈y, γ〉) for some x, y ∈ X, β, γ ∈ BCTr

X θ,

• 〈a, x′〉 ∈ β for some x′, and

• 〈b, y′〉 ∈ γ for some y′.

The first condition can be checked, since the action ΣX×BX is a coproduct and
thus defined by cases. However, due to the use of the categorical product ⊗
in (6.2), one cannot check both of the remaining conditions at the same time.
This rules out any rules with multiple premises from the format!
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Another reason for the above definition of ΣX to be unsuitable for our
purposes is illustrated by a language with a unary construct g (together with
some others, including a constant nil), described by GSOS rules

x
a

−→x′

g(x)
c

−→ nil

x
b

−→x′

g(x)
c

−→ nil

Here, to check whether λXr passes the same test W as above, one needs to
check that

• r = g(〈x, β〉) for some x ∈ X, β ∈ BCTr

X θ, and

• 〈a, x′〉 ∈ β for some x′, or

• 〈b, x′〉 ∈ β for some x′.

Intuitively, λXr may pass W for any of two reasons corresponding to two rules
above, but the construction of Σ∗ does not allow to check for disjunction of
those.

Based on these intuitions, another choice of Σ∗ is proposed, replacing the
action of (6.2) with

ΣXθ =
⊕

f∈Σ̄

Cl∨Xar(f) θ 1 · · · 1 θ
︸ ︷︷ ︸

ar(f) times

(6.3)

where 1 is as defined in (5.1), and Cl∨ is the closure under arbitrary unions,
as defined in Example 5.4. This choice of Σ∗ will be used as the basis for
further considerations.

To proceed with syntactic conditions guaranteeing (6.1) it is necessary
to understand the nature of tests in ΣXθ : ΣX ⇒ 2, TXθ : TX ⇒ 2 and
BCTr

TXTXθ : BTX ⇒ 2 for any test suite θ : X ⇒ 2.

From (6.3) it is straightforward to see that tests in ΣXθ are arbitrary
unions of tests that, given a term r ∈ ΣX, can

• check the principal language construct in r, and

• perform one test Vi ∈ θ on every variable xi in r, accepting when all tests
accept.

Hence tests from ΣXθ can be represented using terms from Σθ. Formally, for
every t ∈ Σθ, the corresponding test υ(t) : ΣX → 2 accepts a term r ∈ ΣX
if and only if there is a substitution σ : X → θ such that σr = t and every x
passes σ(x). Then ΣXθ is the set of all unions of tests of the form υ(t).

It turns out that tests in TXθ can be described in a very similar way, as
unions of tests of the form υ(t) for t ∈ Tθ, where υ is defined as above (for
a detailed proof of this, see [24]). In other words, tests in TXθ are unions of
tests that, given a term t ∈ TX, can

• check the syntactic structure of t, and
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• perform a test Vi ∈ θ on every variable xi in t, accepting when all tests
accept.

The description of BCTr

TXTXθ : Pf(A × TX) ⇒ 2 is now easy, by definition
of BCTr. A test from this test suite can either

(a) accept immediately (the totally true test), or

(b) be a union of tests that choose a term t ∈ Tθ and an action a ∈ A and check
whether the argument set contains a pair 〈a, r〉 such that r passes υ(t), or

(c) check for emptiness of the argument set.

We are now ready to tackle the main task of this section and find syntactic
restrictions on an image-finite GSOS transition system specification Λ that
would guarantee the condition (6.1); in other words, they should allow one
to find, for any test V ∈ BCTr

TXTXθ, a test W ∈ ΣX×BX(θ ⊗ BCTr

X θ) such that
W = V ◦ λX . There are three cases to consider, corresponding to three kinds
of tests in BCTr

TXTXθ:

(a) If V is the totally true test, then W is also the totally true test. It turns
out that this test is always in ΣX×BX(θ⊗BCTr

X θ). Indeed, for each language
construct f ∈ Σ̄ consider the test Wf that, given a term r ∈ Σ(X × BX),
checks that the principal construct in r is f, and then for each variable 〈x, β〉
in r ignores x and performs the totally true test on β. Clearly all terms in
Σ(X ×BX) with f as the principal construct pass Wf. Then W defined by
cases from all Wf. Hence this case does not impose any restrictions on λ.

(b) Since ΣX×BX(θ ⊗ BCTr

X θ) is a union by (6.3), it is enough to consider not
unions, but single tests of the kind described in case (b) above. Assume V
checks whether the argument set contains a pair 〈a, r〉 such that r passes
υ(t), for some fixed term t ∈ Tθ and a ∈ A. There are several syntactic
restriction one should impose on λ to ensure that W = V ◦λX ∈ ΣX×BX(θ⊗
BCTr

X θ).
First, no variable on the left side of any premise in any rule can appear

in the target of that rule. Consider for example a rule

x
a

−→ x′

f(x)
b

−→ g(x)

and a test V ∈ BCTr

TXTXθ that checks whether the argument set contains a
pair 〈b, g(x)〉 with x ∈ X passing some fixed test V0 ∈ θ. To express this
as a test on Σ(X × BX), one needs to check that the argument term is
of the form f(〈x, β〉) such that x passes V0 and β contains a pair 〈a, x′〉
for some x′ ∈ X. However, this is impossible by definition of ⊗: tests in
ΣX×BX(θ⊗BCTr

X θ) can, for any single variable 〈x, β〉 in the argument term,
perform a test either on x or on β, but not on both.
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Similarly, no variable can appear on the left side of more than one positive
premise in any rule. Consider a rule

x
a

−→ y x
b

−→ z

f(x)
c

−→ nil

and a test V that checks whether the argument set contains a pair 〈c, nil〉.
To express this as a test on Σ(X × BX), one needs to perform two sepa-
rate tests on the transition set corresponding to a single variable, which is
forbidden by the use of 1 in (6.3).

Almost exactly the same reasoning shows that no variable can appear
more than once in the target of any rule. Consider a rule

f(x)
a

−→ g(x, x)

and a test V that checks whether the argument set contains a pair 〈b, g(x, y)〉
with x ∈ X passing some fixed test Vx ∈ θ, and y ∈ Y passing some other
fixed test Vy ∈ θ, chosen so that the intersection of Vx and Vy is not in θ.
To express this as a test on Σ(X × BX), one needs to perform both tests
Vx and Vy on a single variable, which is again forbidden by the use of 1

in (6.3).
The structure of the functor BCTr allows a limited use of negative premises

in inference rules. To illustrate this, consider a rule

x 6
a

−→ for all a ∈ A

f(x)
b

−→ nil

and a test V that checks whether the argument set contains a pair 〈b, nil〉.
One can express this as the test on Σ(X × BX) that, for a given r ∈
Σ(X × BX), checks whether r = f(〈x, β〉) for some x ∈ X, β ∈ BX, and
then checks whether β is empty.

On the other hand, a more liberal use of negative premises cannot be
allowed. Indeed, consider a rule

x 6
a

−→

f(x)
b

−→ nil

and the test V as previously described. Here, in the corresponding test on
Σ(X×BX), one needs to check that the given r is of the form f(〈x, β〉) and
that β does not contain any tuple of the form 〈a, x′〉. However, this kind of
check on β does not belong to BCTr

X θ.

(c) The final test V from BCTr

TXTXθ to be considered is the test checking for the
emptiness of the argument set. The task is to represent the test W = V ◦λX
as a test from ΣX×BX(θ ⊗BCTr

X θ).

24



Klin

For a term r ∈ Σ(X × BX), the set λXr is obtained as described in
Theorem 4.3. For this set to be empty, one requires that the procedure
described informally there does not yield any transitions from r. In other
words, no rule for the principal construct of r can be fired according to the
data contained in r. This property of r must be expresses as a test from
ΣX×BX(θ ⊗BCTr

X θ).
To analyse the fact that no rule for a construct f can be fired, it is

convenient to speak about minimal blocking sets for f. Such a minimal
blocking set is a set of literals obtained by choosing a single premise from
every rule for f. A minimal blocking set can have less elements than there
are rules, if some literals appear as premises of more than one rule.

Intuitively, no rule for f can be fired based on data contained in r ∈
Σ(X ×BX) if and only if for some minimal blocking set B for f, no literals
from B are “satisfied” by r. If the latter property can be expressed, for
every B, as a test WB in ΣX×BX(θ ⊗ BCTr

X θ), then the required test W can
be obtained as the union of all such tests. However, to achieve this, some
restrictions on the form of B are needed.

First, if B contains some positive literal x
a

−→ y, then it has to contain

positive literals x
b

−→ yb for every b ∈ A. Only then one can contribute to
checking that no literals from B are satisfied by r, checking for emptiness
of the transition set provided in r with the variable from X corresponding
to x.

On the other hand, if B contains some negative literal x 6
a

−→, then it

cannot contain any other negative literal x 6
b

−→ with the same variable on
the left side. Indeed, to check that x 6

a
−→ is not satisfied, one wants to

test the tuple 〈x, β〉 ∈ X × BX corresponding to x in r, by checking that
β contains a tuple 〈a, x′〉 for some x′ ∈ X. But, because of the use of 1

in (6.3), only one such test can be performed on this tuple.
Finally, note that if B contains both a positive literal and a negative literal

with the same variable on the left side and the same action as a label, then
some literals from B surely must be satisfied, no matter what r is. If this
happens, the required test WB is the totally false test on Σ(X ×BX). This
test is always an element of ΣX×BX(θ⊗BCTr

X θ), since it is the empty union
of tests.

The above considerations do not imply at all that the restrictions men-
tioned are sufficient for λX to satisfy (6.1) for any X and θ. However, it turns
out that they are, as is proved in detail in [24]. This leads to the following
definition:

Format 1 A set of image finite GSOS rules Λ is in CTr-format, if:

(i) For each rule ρ ∈ Λ:
• if ρ has a negative premise x 6

a
−→, then for every label b ∈ A, ρ has also

the negative premise x 6
b

−→,
• no variable occurs more than once in the target of ρ,
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• no variable occurs simultaneously in the left-hand side of a premise and
in the target of ρ,

• no variable occurs simultaneously in the left-hand side of a positive
premise and in the left-hand side of any other premise of ρ.

(ii) For each construct f of the language, for every minimal blocking set for
f, either
• for some x, y ∈ Ξ, a ∈ A, both x

a
−→ y and x 6

a
−→ belong to B, or

• both conditions below hold:
· for every x, y ∈ Ξ, a ∈ A, if x

a
−→ y ∈ B then for every b ∈ A there is

some y′ ∈ Ξ such that x
b

−→ y′ ∈ B, and
· for every x ∈ Ξ, a ∈ A, if x 6

a
−→ ∈ B then for every b ∈ A different

from a, x 6
b

−→ 6∈ B.

To illustrate the use of CTr-format, consider again the examples described
in Section 3.

It is easy to see that BPA (Example 3.1) is in CTr-format. It is clear that
all rules of BPA satisfy condition 1 of the format. For condition 2, consider
a language construct a− corresponding to a ∈ A. Since the only rule for a−:

ax
a

−→ x

has no premises, it does not have any minimal blocking set. For the binary
construct +, the only minimal blocking set is

{

x
a

−→ x′ : a ∈ A
}

∪
{

y
a

−→ y′ : a ∈ A
}

and satisfies condition 2 of the format.

On the other hand, the semantics for the encapsulation operator ∂ (Exam-
ple 3.4) is not in CTr-format if A = {a, b}. Indeed, the encapsulation operator
fails to satisfy the format: the set {x

a
−→ y} is a minimal blocking set for ∂{b},

but it does not satisfy condition 2.

Similarly, the semantics for the synchronous composition (Example 3.5)
is not in CTr-format already if A = {a, b}. Here, the rules for synchronous

composition fail to satisfy the format. Indeed, the set {x
a

−→ x′, y
b

−→ y′}
is a minimal blocking set for the language construct ×, but does not satisfy
condition 2.

However, BPA extended with sequential composition (Example 3.6) is in
CTr-format. Condition 1 of the format is checked easily. For condition 2, it
is enough to check it for the sequential composition operator. First, observe
that for any minimal blocking set B for the construct ; one has

{

x
a

−→ x′ : a ∈ A
}

⊆ B
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Then realise that the only minimal blocking set B that does not contain x 6
a

−→
for any a ∈ A (and if it does, it necessarily satisfies condition 2) is

{

x
a

−→ x′ : a ∈ A
}

∪
{

y
a

−→ y′ : a ∈ A
}

which also satisfies condition 2.

7 Concluding remarks

This paper describes a general, abstract framework for derivation of congru-
ence formats for given notions of syntax, behaviour and process equivalence.
The general theory, presented in Sections 4-6, provides a rather abstract condi-
tion (Theorem 6.2) that guarantees congruence properties of transition system
specifications. Section 6 contains a recipe for specialising this abstract condi-
tion to a concrete format for completed trace equivalence on labelled transi-
tion systems. The intuition provided there will hopefully assist the reader who
would want to apply the abstract framework to other notions of behaviour and
process equivalence.

The recipe for the derivation of a new format is as follows: first, find a be-
haviour endofunctor appropriate for the kind of transition system considered.
This paper concentrates only on ordinary LTSs, but other kinds of systems
can be modelled coalgebraically as described in [34]. Then, find a concrete
representation of the abstract GSOS format. For LTSs, this is provided in
Theorem 1. For probabilistic and timed systems, analogous characterisations
were given in [6,23]. Having done this, one needs to model the process equiv-
alence in question in the test suite framework. This paper shows how to do it
for completed trace equivalence, and mentions also bisimulation equivalence.
In [24], various other equivalences on LTSs are modelled this way. Later, one
needs to experiment a bit and choose the best notion of syntax lifting, and
finally find additional restrictions on the concrete representation of GSOS that
guarantee the counterpart of the condition (6.1).

8 Exercises

The following exercises are not very difficult, and they can be used as warm-
ups while reading this paper.

1. In addition to process equivalences, many researchers have defined various
process preorders. For example, completed trace preorder is defined by

x vCTr x
′ ⇐⇒ (∀φ ∈ FCTr. x |=h φ =⇒ x′ |=h φ)

(compare with (2.1)). In general, a process equivalence is the symmetric
closure of its corresponding preorder. A preorder R satisfying the composi-
tionality condition of Definition 3.2 is called a precongruence.

27



Klin

Show that if a process preorder is a precongruence on some language,
than the corresponding process equivalence is a congruence.

2. Write a transition system specification such that bisimulation equivalence
is not a congruence on the generated LTS.

3. Show that completed trace equivalence ∼=CTr is a congruence for BPA ex-
tended with sequential composition (Example 3.6).

Hint: Show how the set of all formulae in FCTr satisfied by a process t; t′

can be calculated from the corresponding sets for processes t and t′.

4. Trace equivalence ∼=Tr is defined as completed trace equivalence, but using
a restricted logic

φ ::= > | 〈a〉φ

with semantics as in Definition 2.3. Failures equivalence ∼=Fl is defined by
an extended logic

φ ::= > | 〈a〉φ | Q̃

(where Q ranges over subsets of A), with semantics as in Definition 2.3,
extended with an additional case

x |=h Q̃ ⇐⇒ x 6
a

−→ for all a ∈ Q

Show that
∼=Fl ⊆ ∼=CTr ⊆ ∼=Tr

on any LTS. Then show that neither ∼=Fl nor ∼=Tr is a congruence for BPA

extended with sequential composition (Example 3.6).

5. Check the universal properties of products and coproducts in TS as defined
in Section 5.

6. Show that morphisms in TS preserve specialisation equivalences of test
suites. Show that the converse is not true, i.e., that there exist functions
preserving specialisation equivalences that are not test suite morphisms.

7. Prove that Cl>, Cl∨ and Cl∨∧ are test suite closures according to Defini-
tion 5.3.

8. For any LTS h : X → BX, the set of formulae FCTr defined in Section 3
can be interpreted as a test suite θCTr : X ⇒ 2:

θCTr = {Vφ : φ ∈ FCTr and V x = tt ⇐⇒ x |=h φ }

Prove that

h : 〈X, θCTr〉 −→
〈
BX,BCTr

X θCTr

〉

is a well-defined coalgebra in TS.

9. From the experience of choosing a lifting Σ∗ and its action ΣX in Section 6,
it seems that choosing a richer lifting (i.e., such that gives a larger test
suite on a given argument test suite) one gets a more general congruence
format. Following this idea, replace the closure Cl∨ with the closure under
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arbitrary unions and intersections. Take for granted that descriptions of
tests from ΣXθ and TXθ remain as described in Section 6, with the only
difference that instead of unions of tests represented by terms, it contains
all unions of intersections of such tests. Try to find restrictions on λ that
guarantee (6.1) in this case, and realise what goes wrong.

Hint: It is enough to consider a rule as simple as

x
a

−→ y

f(x)
a

−→ g(y)

9 Problems to tackle

This section contains some open problems and possible ways to improve or
generalise the test suite approach.

1. The entire test suite approach seems closely related to modal logic decom-
position techniques of, e.g., [15]. Tests correspond to modal formulae, test
constructors and closures to modal operators and propositional connectives,
and the condition (6.1) seems to say something about the possibility to de-
compose modal formulae along inference rules. This correspondence must
be investigated.

2. CTr-format cannot be compared with any other congruence format for com-
pleted trace equivalence, since it is, to the author’s best knowledge, the first
such format published. Note, however, that there are natural examples of
GSOS specifications that behave well with respect to completed trace se-
mantics, but are not in CTr-format, as the following example (pointed out
by Rob van Glabbeek) shows, extending BPA with a collection of rules for
binary Kleene star ?:

x
α

−→ x′

x ? y
α

−→ x′; (x ? y)

y
α

−→ y′

x ? y
α

−→ y′

where α ranges over A. It is straightforward to check that completed trace
equivalence is a congruence for the above rules. However, BPA extended
with the Kleene star is not in CTr-format. The first rule in Example 5.25
does not satisfy the third part of condition 1 of the format. Indeed, the
variable x occurs both on the left side of the premise and in the target of
the rule.

This means that there is some improvement to be made concerning the
generality of the formats derived with the test suite approach.

On the concrete level, the solution would be to apply the frozen/liquid
position trick of [9]. There, variables in inference rules are divided into
two sets, treated rather differently in the format, which allows for more
generality of the format. The “failure trace format” of [9] states that if there
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exists a division of all variables satisfying certain conditions, then failure
trace equivalence (another well-known process equivalence) is a congruence.

The test suite approach as described here does not cover any techniques
of this kind. In particular, in both liftings Σ∗ from Section 6 all positions
in terms are treated equally.

The solution to this problem might rely on an almost immediate gener-
alisation of Theorem 6.2. In the statement of the theorem, the lifting Σ∗ is
arbitrary but fixed. It is easy to see that one can quantify universally over
all such liftings in the definition of a format. Theorem 6.2 then takes the
form “for any Λ, if there exists a lifting Σ (satisfying the algebra congruence
condition) such that λ lifts, then completed trace (or another) equivalence is
a congruence”. This gives an additional degree of freedom in the definition
of a format, and it seems to correspond somehow to the quantification over
divisions of variables in the frozen/liquid position technique.

3. An obvious direction of future work is to apply the test suite approach
to other well-known process equivalences on LTSs and compare the results
obtained with other known congruence formats. In [25,24], this has been
done for trace equivalence and failures equivalence. Then one should want
to apply the technique to other behaviour endofunctors. Two good starting
points are [6] and [23], where concrete descriptions of abstract GSOS for
probabilistic and timed transition systems are given.

4. There is a common agreement in the literature on coalgebraic techniques
that bisimulation equivalence is a canonical process equivalence. This canon-
icity is presently not reflected in the test suite approach; it is not clear what
is special about the choice of test constructors and a test suite closure lead-
ing to a test suite description of bisimulation equivalence. One should try
to fill this gap, defining a canonical choice of test constructors and a closure
for any behaviour endofunctor (and even any underlying category in place
of Set), providing a notion of bisimulation equivalence parametrised by be-
haviour (as it is done in the coalgebra span approach). An expected result
would be that the corresponding condition (6.1) would be vacuous, related
to the fact that GSOS is a congruence format for bisimulation equivalence.
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