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Abstract

Bialgebraic semantics, invented a decade ago by Turi and Plotkin, is an approach to formal reasoning about
well-behaved structural operational specifications. An extension of algebraic and coalgebraic methods, it
abstracts from concrete notions of syntax and system behaviour, thus treating various kinds of operational
descriptions in a uniform fashion.
In this talk, the current state of the art in the area of bialgebraic semantics is presented, and its prospects
for the future are sketched. In particular, a combination of basic bialgebraic techniques with a categorical
approach to modal logic is described, as an abstract approach to proving compositionality by decomposing
modal logics over structural operational specifications.

Keywords: Structural operational semantics, category theory, algebra, coalgebra, bialgebra

1 Introduction

Since its invention in the early 1980’s, Structural Operational Semantics
(SOS) [36,35,1] has been one of the most popular and successful frameworks for the
formal description of programming languages and process calculi. Not only it has
become the formalism of choice for a clear and concise presentation of innumerable
ideas and formalisms (see [5] for many examples), it has also been proved a viable
option for the description of fully grown programming languages [31]. In the struc-
tural operational approach, the semantics of programs (or processes) is described
by means of transition systems, induced by inference rules following their syntactic
structure. The intuitive appeal of this approach and, importantly, its inherent sup-
port for modelling nondeterministic behaviour, makes it a natural framework for
describing computational languages.

There are many types of standard reasoning applied to structural operational
descriptions to check whether they “behave well”. For example, one often wants
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to prove that a certain equivalence relation on processes, defined by the transition
system induced from a specification, is compositional and thus allows for induc-
tive reasoning. Further, one might be interested in generating a set of equations
characterising a chosen process equivalence. In other cases, a language with an
operationally defined semantics is extended with new operators, and one would like
to ensure that the extension is conservative, i.e., that the behaviour of the old op-
erators is left unchanged. More generally, one would like to compare two languages
and check whether one can be translated to the other such that its operational se-
mantics, or a process equivalence, is preserved. One could also try to combine two
languages, or a set of separately defined operators, and reason about the resulting
language in a modular fashion, based on features of its components.

Proofs of properties such as listed above can be quite demanding, and it would
be unfortunate if they had to be done from scratch for each language considered.
Indeed, the multitude of existing examples of structural operational descriptions,
and the continuous appearance of new ones, calls for a mathematical framework —
a theory of SOS — that would facilitate standard types of reasoning performed on
language specifications.

In the simplest and most widely studied form of SOS, operational specifications
induce labelled transition systems (LTSs) where processes are closed terms over
some algebraic signature, and labels have no specific structure. In that case, a rea-
sonably general theory based on the notion of Transition System Specification (TSS)
has been developed, and much progress towards overcoming the above difficulties
has been made (see [1,14] for a survey). For most classical process equivalences con-
gruence formats have been provided, i.e., syntactic restrictions on inference rules
that guarantee the equivalences compositional. Much work on equational definabil-
ity and conservative extensions has also been done. Least progress has been made
in the area of language translation and modularity, with the notable exception
of Modular Structural Operational Semantics by Mosses [32], which enjoys better
modularity than its classical version when applied to standard cases.

However, the issue becomes more complex with the continuing appearance of
new syntactic and computational paradigms dictated by the everchanging world of
computing. Examples include probabilistic, timed and hybrid systems, ones with
global or local state, name passing, process passing, and stochastic systems. All
these features can be described in some forms of structural operational semantics.
Arguably though, the treatment of these forms in the classical TSS framework
is rather superficial, as it does not take into account the semantic structure of
transition systems involved. As a result, the existing approaches to checking whether
semantic descriptions are well behaved, are hard to adapt to these new paradigms;
instead one usually needs to rework the old solutions from scratch in each case.

It is therefore desirable to have a theory of SOS that would abstract from the
syntactic and computational paradigms involved, and allows one to define and prove
useful properties of semantic descriptions on an abstract level. With such a theory,
SOS will hopefully be better prepared for future changes in the world of computing.

The basics of such a theory were proposed by Turi and Plotkin in [40]. Its
beginnings lie in the coalgebraic account of transition systems (see [17] for a gentle
introduction and [38] is a good reference), where the notion used to classify various
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kinds of processes is that of behaviour, modelled as a functor on a category and
formally representing the vague concept of computational paradigm. Combined with
the classical algebraic approach to syntax, these techniques lead to the development
of bialgebraic semantics of processes, which turned out to generalise and explain
many aspects of well-behaved operational semantics.

Since then, the bialgebraic approach has developed considerably, and it has lead
to several results interesting to a wider community. The purpose of this extended
abstract is to give a gentle introduction to basic bialgebraic techniques, aimed at
researchers familiar with SOS; to sketch their current stage of development; and to
present the author’s personal views on their future prospects. Note that much of
interesting work on bialgebras in semantics, some of it less directly related to SOS,
has been omitted in this introductory paper, and the bibliography included is far
from complete.

Acknowledgements. The author is grateful to Gordon Plotkin for continuing
cooperation, and to Alexander Kurz for useful discussions.

2 Bialgebraic semantics

In this section, the framework of bialgebraic semantics is presented together with
some results that have been obtained through its use. To appreciate the following
development, the reader is expected to be familiar with the basics definitions and
techniques of structural operational semantics (see [1] for a reference). Bialgebras
are defined in the language of category theory, so familiarity with basic notions
such as category, functor and natural transformation is also recommended (the first
chapters of [2,30] are good references).

2.1 Processes as coalgebras

In the standard framework of SOS as used e.g. in process algebra [1], structural
operational descriptions specify labelled transition systems (LTSs), i.e., triples
〈X,A,→〉, where X is a set of processes, A a set of labels, and → ⊆ X ×A×X is
a labelled transition relation. It is easy to see LTSs as functions

h : X → P(A×X)

where P is the powerset construction and × is cartesian product. Indeed, an LTS
maps a process x ∈ X to the set of all tuples 〈a, y〉 such that x a−→ y. In the language
of category theory, a map as above is called a coalgebra for the functor P(A × −).
In general, for any functor B, a B-coalgebra is a map (function) h : X → BX for
some object (set) X.

As it happens, coalgebras for some other functors on the category Set of sets and
functions correspond to other well-known types of transition systems. For example:

• Coalgebras for Pf(A × −), where Pf is the finite powerset functor, are finitely
branching LTSs. Coalgebras for (Pf(−))A are image finite LTSs.

• Coalgebras for D(A×−)+1, where D is the probability distribution functor, are
generative probabilistic transition systems.

3



Klin

• Coalgebras for (S× (1+−))S are deterministic transition systems with state and
termination.

Many other examples of systems modelled as coalgebras for functors on Set can be
found in [38]. Coalgebras for functors on other categories have also been used; for
example, in [8], coalgebras for a certain functor on the category NSet of nominal
sets and equivariant functions [13] are shown to correspond to a kind of labelled
transition systems with name binding. The coalgebraic abstraction allows one to
treat many different kinds of systems in a uniform manner. At the same time, many
important notions used in reasoning about transition systems can be explained at
the abstract, coalgebraic level; examples include canonical process equivalences such
as bisimilarity, or modal logics such as Hennessy-Milner logic.

2.2 Terms as algebras

In simple types of structural operational semantics, processes are closed terms over
some algebraic signature. It is standard to consider sets of such terms as algebras for
certain functors on Set. For example, a language syntax described by the grammar

t ::= nil | a.t | t+ t | t||t ,

where a ranges over a fixed set A, corresponds to the functor

ΣX = 1 +A×X +X ×X +X ×X

where 1 is a singleton set, × is cartesian product and + is disjoint union. Note that
an element of the set ΣX can be seen as a simple term of the above grammar, build
of exactly one syntactic construct with variables from X. It turns out that algebras
for the signature (in the usual sense of universal algebra) are maps

g : ΣX → X

with X the algebra carrier. This way, a simple syntax corresponds to a functor on
Set. To model more advances syntactic features such as variable binding, one needs
to move to more complex categories, such as NSet.

If a functor Σ corresponds to an algebraic signature, then the set of terms over
the signature and over a set X of variables is denoted TΣX, or TX if Σ is clear
from context. In particular, T0 is the set of closed terms over Σ. This set admits an
obvious and canonical algebra structure, denoted ψ : ΣT0 → T0. This Σ-algebra is
initial: for any other algebra g : ΣX → X there is a unique homomorphism from ψ

to g, i.e., a map g] : T0 → X such that g] ◦ ψ = g ◦ Σψ. Intuitively, g] is defined
by structural induction, where g defines the inductive step. The construction T

is also a functor, and it is called the monad freely generated by Σ. The notions
of initial algebra and freely generated monad do not depend on Σ corresponding
to an algebraic signature, and can be defined for many other functors. For more
intuitions about this categorical approach to induction, see e.g. [17].
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2.3 Abstract GSOS

Simple structural operational descriptions induce LTSs with closed terms as pro-
cesses. In other words, the set of processes is equipped with both a coalgebraic
structure, which maps a process to a structure of its successors, and an algebraic
structure, which describes how to obtain a process by combining other processes.
Formally, induced LTSs are coalgebras h : T0 → BT0 for a suitable behaviour B,
and for T the monad freely generated by syntax Σ.

To model the process of inducing LTSs with syntax abstractly, a sufficiently
abstract notion of structural operational description is needed. For a first attempt,
consider a standard set of operational inference rules for a toy language with syn-
chronous product:

x
a−→ x′ y

a−→ y′

x⊗ y
a−→ x′ ⊗ y′ a

a−→ nil
(1)

where a ranges over a fixed set A of labels. The syntax of this language corresponds,
as in §2.2, to the functor

ΣX = 1 +A+X ×X .

Rules (1) induce a standard LTS labelled with A, i.e., a coalgebra for the functor

BX = P(A×X) .

But how to model the rules on the abstract level? Informally, they define the be-
haviour (i.e., the set of successors) of a term built of a single syntactic construct and
variables, based on some information about the behaviour of subterms represented
by the variables. For example, given processes x, y from any set X, and sets of
successors for x and for y, the leftmost rule defines the set of successors for the
process x⊗ y. Note that while successors of x and y are variables and therefore can
be thought of as arbitrary elements of X, the derived successors of x⊗ y are simple
terms from ΣX. Formally, the left rule in (1) can be modelled as a function

λ⊗ : BX ×BX → BΣX

defined by

λ⊗(β, γ) = { 〈a, x⊗ y〉 ∈ A× ΣX | 〈a, x〉 ∈ β ∧ 〈a, y〉 ∈ γ } .

Similarly, the right rule represents a function λA : A→ BΣX defined by

λA(a) = {〈a, nil〉} ,

and even the lack of any rules for the construct nil defines its behaviour: the
process nil has no successors. This can be viewed as a function λnil : 1 → BΣX:

λnil(∗) = ∅ .

The three functions can be combined into a function

λ : ΣBX → BΣX
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defined by cases and corresponding to (1). Note that the structure of X and the
nature of its elements are completely ignored in the definition of λ. Formally, λ is
natural over X:

λ : ΣB =⇒ BΣ . (2)

A natural transformation like this is called a distributive law of Σ over B, and a first
attempt to model structural operational rules would be to consider distributive laws
of the syntax functor over the behaviour functor. We have just seen a reasonable
example covered by this notion. Moreover, it turns out that the process of inferring
LTSs from SOS rules can be explained abstractly at the level of distributive laws.
Indeed, the unique algebra morphism hλ from the initial Σ-algebra as below:

T0
hλ

��

ΣT0
ψoo

Σhλ

��
BT0 BΣT0Bψ

oo ΣBT0λT0

oo

is an LTS of the required type. 3 The reader is encouraged to check that for the
transformation λ defined as above, the inductively defined hλ is exactly the expected
LTS induced by (1).

The above encourages one to model sets of SOS rules as distributive laws. How-
ever, there are many examples which do not fit into the simple framework described
so far. Consider, for example, rules like

x
a−→ x′

x + y
a−→ x′

x
a−→ x′

x|y a−→ x′|y
x

a−→ x′

!x a−→ x′|!x
. (3)

According to the first rule, an inferred successor of a process x + y does not need
to be a term built of a single syntactic construct; indeed, it is merely a variable.
In the second rule, the inferred successor is not built solely of successors of the
subprocesses x and y; instead, the variable y is used itself. In the third rule, both
problems occur, although here the inferred successor is not a variable, but a complex
term with more than one syntactic construct. All these rules cannot be represented
as a natural transformation (2) for the obvious choices of B and Σ.

A more general framework was proposed already in the original paper [40], where
distributive laws

λ : Σ(Id×B) =⇒ BT (4)

were considered. B-coalgebras can be induced from such laws much the same as
shown above for the simple laws. It turns out that for B = P(A×−), and for Σ and
T corresponding to an algebraic signature, laws of this kind correspond exactly to
specifications in the well-known format GSOS [6]; hence the name abstract GSOS.
In particular, the three problematic rules (3) can be modelled as distributive laws.

In [40], distributive laws dual to (4) were also considered, i.e., natural transfor-
mations

ν : ΣD =⇒ B(Id + Σ) (5)

3 The pair 〈ψ, hλ〉 is a λ-bialgebra [40], the central notion of bialgebraic semantics.
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where D is the comonad cofreely generated by B, just as T in (4) is the monad
freely generated by Σ. For B = Pf(A×−), DX is the set of finite or infinite trees
edge-labelled by A and node-labelled by X, quotiented by strong bisimilarity, and
distributive laws (5) correspond to sets of SOS rules in the safe ntree format [11,40].

Both GSOS and safe ntree formats guarantee bisimilarity to be a congruence
on the induced LTS. An important contribution of [40] was to show that these
congruence properties can be proved on the abstract level of distributive laws, and
thus they are immediately translated to SOS frameworks based on different notions
of syntax and behaviour. Several applications of this result, together with some
other work on bialgebraic semantics published so far, are mentioned in the remainder
of this section.

2.4 Categorical foundations

In [40], natural transformations of the type (4) and (5) are considered as special
cases of the more general notion of a distributive law of a monad over a comonad.
In [28,29,37], various types of distributive laws are studied on the abstract, cate-
gorical level. In [4], different kinds of distributive laws are studied and related on
the concrete example of LTSs; also a complete proof of one-to-one correspondence
between abstract GSOS and concrete GSOS specifications is included there.

2.5 Abstract GSOS for probabilistic and timed systems

In [3,4], the abstract GSOS framework is applied to reactive probabilistic systems
and probabilistic automata, represented as coalgebras for suitable functors. A con-
gruence format for probabilistic bisimilarity is derived.

In [18,19], the same framework is applied to processes with timed transitions.
Congruence results regarding time bisimilarity are proved, and a congruence format
for the case of discrete time is derived. In [20,21], the combination of timing with
action is studied more carefully, with insights on combining different behaviours to
obtain a modular account of semantics.

2.6 Recursion

In [23], abstract GSOS is studied in a CPO-enriched setting, where recursion is
possible to express via straightforward fixpoint constructions. There, it is shown
how to combine standard GSOS distributive laws with recursive equations to obtain
other well-behaved distributive laws. Another bialgebraic approach to recursive
equations is [16].

2.7 Name binding

In [9,10], syntax with variable binding was modelled algebraically in a presheaf
category, and the standard SOS description of the π-calculus was shown to fit in the
abstract GSOS format there, although no actual format was proposed. Recently [8],
such a format, a special case of abstract GSOS, has been proposed in the closely
related setting of nominal sets [13], with congruence properties related to a version
of open bisimilarity. Interestingly, in nominal settings the syntax and behaviour
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functors reside in different categories. The basic bialgebraic setting is suitably
generalised to accommodate this.

2.8 Van Glabbeek spectrum

In [25,22,24], abstract GSOS is interpreted in certain fibered categories. This allows
one to derive congruence formats for process equivalences other than the canonical
coalgebraic notion of bisimilarity. In particular, novel formats for completed trace
and failures equivalences on LTSs were obtained.

3 Future directions

Bialgebraic techniques are still in the initial stage of development and much remains
to be done if a general and practical theory of structural operational semantics is
to be achieved. This section briefly presents the author’s personal view on the
most promising directions of development, and the most important challenges to be
taken.

3.1 Relations to reactive systems

In modern process algebra, much attention is paid to a semantic framework alterna-
tive to SOS, i.e., to reactive systems [27]. Many languages, such as the π-calculus or
ambient calculus, are naturally described in the language of reactive systems, where
dynamic behaviour is described by an unlabelled reaction relation together with a
suitable structural congruence. The reactive approach is quite intuitive and easy to
use; however, it imposes less structure on the described language and in particular
it does not easily facilitate compositionality. It would be very desirable to build a
bridge between SOS and reactive systems, and be able to translate or compare oper-
ational descriptions between the two formalisms. It seems that sufficiently abstract
theories of both approaches is indispensable to that end. The bialgebraic approach
will hopefully become such a theory for SOS, and [27,39] can be seen as attempts
to develop such a theory for reactive systems.

3.2 Modal logic decomposition

In a coalgebraic approach to modal logics and system testing [15,26,34], one consid-
ers a contravariant adjunction between a category C of processes, where coalgebras
for a functor B are systems, and a category D of tests, with a functor L representing
the syntax of a logic. The functors B and L are connected along the adjunction,
and the connection provides an interpretation of the logic over B-coalgebras.

In the bialgebraic setting, processes are equipped with syntax represented by
a functor Σ on C, with a distributive law λ of Σ over B representing operational
semantics. It is then natural to consider a functor Γ on D, connected to Σ along the
adjunction and representing the “behaviour of the logic”. Intuitively, Γ-coalgebras
describe ways of decomposing modal logics over the syntax Σ. One can try to come
up with a distributive law of L over Γ, connected to λ along the adjunction. If this
succeeds, then logic decomposition is compatible with the operational semantics and
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the process equivalence defined by the logic L is compositional with respect to the
language defined by λ. This provides a general framework for proving congruence
results, of which [22,24] is a special case. On the concrete level, the resulting
congruence principle is related to work on decomposing modal logics such as [12].

3.3 Equations and weak equivalences

An important tool in practical operational semantics are equations between process
terms, allowing language designers to prepare shorter and more intuitive descrip-
tions. While in principle, equations are easily to express on the abstract bialgebraic
level by considering syntactic monads other than the freely generated ones, the de-
velopment of concrete formats based on this observation is a difficult challenge. One
would like to match the more concrete development of [33].

Dually, it is also important to treat weak equivalences such as weak bisimilarity
in the bialgebraic setting, providing congruence results for them. This would require
a general coalgebraic approach to weak equivalences, a major challenge with no
satisfactory solution so far.

3.4 Modularity

The ultimate practical goal of a theory of SOS must be a general, easy-to-use and
expressive framework for the modular development of operational semantics. The
ambition of the bialgebraic approach is to make the framework parametrised by
notions of syntax and behaviour. However, many problems need to be solved be-
fore such a framework appears. A theory of well-behaved translations between
operational descriptions needs to be developed, and notions of morphisms between
distributive laws such as those in [41] seem good steps to this end. Modular con-
struction of SOS descriptions will also require techniques for combining rules based
on different types of behaviour. Initial attempts to that end were made in [20,21].
In the coalgebraic world, much work on composing behaviours has been done in
relation with modal logics [7].

References

[1] Aceto, L., W. J. Fokkink and C. Verhoef, Structural operational semantics, in: J. A. Bergstra, A. Ponse
and S. Smolka, editors, Handbook of Process Algebra, Elsevier, 2002 pp. 197–292.
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