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Abstract

We present a semantics for architectural specifications in Casl, including an ex-
tended static analysis compatible with model-theoretic requirements. The main ob-
stacle here is the lack of amalgamation for Casl models. To circumvent this prob-
lem, we extend the Casl logic by introducing enriched signatures, where subsort
embeddings form a category rather than just a preorder. The extended model func-
tor satisfies the amalgamation property as well as its converse, which makes it pos-
sible to express the amalgamability conditions in the semantic rules in static terms.
Using these concepts, we develop the semantics at various levels in an institution-
independent fashion. Moreover, amalgamation for enriched Casl means that a va-
riety of results for institutions with amalgamation, such as computation of normal
forms and theorem proving for structured specifications, can now be used for Casl.

Key words: Algebraic specification, architectural specification, amalgamation,
institutions, Casl.

Introduction

The use of formal methods within the development process of software systems
is important especially for complex or safety-critical systems. Here, ‘formal’
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2 L. Schröder, T. Mossakowski, A. Tarlecki, B. Klin, P. Hoffmann

implies that the specification is based on a logical system, with a rigorously de-
fined syntax and semantics. It has been recognized that structuring operations
for the specification of software systems can be studied largely independently
of the underlying logical system; the most prominent formalization of this con-
cept is the notion of institution [20]. The recently developed language Casl
[3,14,15] has an institution-independent semantics.

The principal motivation for developing the methods presented below is their
application in an institution-independent semantics for Casl architectural
specifications [43]. While many present-day algebraic specification languages
(see e.g. [44,18,21,1,40]) provide operations for building large specifications in a
structured fashion from smaller and simpler ones [11], necessarily different [38]
mechanisms for describing the modular structure of software systems under
development are a rather less common feature. Such a mechanism is supplied
in Casl in the shape of architectural specifications.

The main idea is that architectural specifications describe branching points
in system development by indicating units (modules) to be independently de-
veloped and showing how these units, once developed, are to be put together
to produce the overall result. Semantically, units are viewed as given models
of specifications, to be used as building blocks for models of more complex
specifications, e.g. by amalgamating units or by applying parametrized units.
Architectural specifications have been introduced and motivated in [6]. Here,
we work with a simple subset of Casl architectural specifications, which is
expressive enough to study the main mechanisms and features of the seman-
tics.

A major problem with the semantics is the failure of the so-called amalga-
mation property in the Casl institution. Roughly speaking, this property
states that models of given signatures can be combined to yield a uniquely
determined model of a compound signature, provided that the original models
coincide on common components.

The amalgamation property (called ‘exactness’ in [17]) is a major technical
assumption in the study of specification semantics [39] and is important in
many respects. To give a few examples: it allows the computation of normal
forms for specifications [5,10], and it is a prerequisite for good behaviour w.r.t.
parametrization [19] and conservative extensions [17,36]. The proof system for
development graphs with hiding [32], which allow a management of change for
structured specifications, is sound only for institutions with amalgamation. A
Z-like state based language has been developed over an arbitrary institution
with amalgamation [4].

Many standard logical systems (like multisorted equational [18] and first-order
logic [29] with the respective standard notions of model) admit amalgamation,
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so quite often this property is taken for granted in work on specification for-
malisms. However, the expected amalgamation property fails in the setting of
order-sorted algebra (when subsort relations are interpreted as arbitrary in-
jections), in particular in the Casl institution. Generally, the amalgamation
property may fail if there are components in the models that are not named
in the signatures, e.g. the implicit universe in unsorted first-order logic (which
destroys amalgamation for disjoint unions of signatures), the implicit set of
kinds in LF [22], the implicit set of worlds in temporal or modal logics, or the
implicit subsort injections in the Casl logic.

The lack of amalgamation makes it difficult to statically ensure that models
can be indeed put together as prescribed by an architectural design.

The semantics of Casl architectural specifications is developed in three stages
in order to circumvent this problem. The first step is a purely model-theoretic
semantics. This semantics does not depend on the amalgamation property;
rather, amalgamability is just required whenever it is needed. This makes
the definition of the semantics as straightforward and permissive as possible,
but leaves the user with the task of actually checking these model-theoretic
requirements. Thus, the natural second step is to give a semantics of archi-
tectural specifications in terms of diagrams which express the sharing that is
present in the unit declarations and definitions. This allows us to reformulate
the model-theoretic amalgamability conditions in ‘almost’ static terms. In or-
der to be able to make the static character of these conditions explicit in the
third step, we need the amalgamation property. Since we cannot expect that
this property holds in the given institution (as the case of the Casl institution
shows), we assume that the latter is embedded, in a way that is compatible
with the respective model theories, in an institution that does have amalgama-
tion. Using this representation, we can restate the amalgamability conditions
as entirely static factorization properties of signature morphisms.

In order for this institution-independent semantics of architectural specifica-
tions to be applied to the case of the Casl institution, one problem remains
to be solved: the Casl institution has to be embedded into an institution that
enjoys the amalgamation property.

The source of the failure of amalgamation for the Casl institution are the
subsorts, or, more precisely, the implicit compatibility requirements for sub-
sort embeddings. With this in mind, the main idea in the definition of the
required extended institution is to generalize pre-orders of sorts to categories
of sorts, i.e. to admit several different subsort embeddings between two given
sorts; this gives rise to the notion of enriched Casl signature. With the amal-
gamation property available via enriched signatures, most of the results cited
above can be applied to Casl by forming compound (colimit) signatures in
the extended signature category. Checking the factorization properties aris-



4 L. Schröder, T. Mossakowski, A. Tarlecki, B. Klin, P. Hoffmann

ing in the third step of the semantics of architectural specifications requires
(institution-specific) tool support; a calculus for this purpose is developed
in [25].

The material is organized as follows: Sections 1 and 2 provide an introduction
to Casl architectural sepcifications and the relevant institution-theoretic con-
cepts, respectively. The basic and extended institution-independent semantics
of architectural specifications is laid out in Sections 3 and 4. In Sections 5
and 6, the notion of (standard) Casl signature is recalled, and the notion of
enriched Casl signature is introduced. Section 7 is devoted to the proof that
the colimit property in the extended signature category is not only a sufficient,
but also a necessary criterion for the amalgamation property. Finally, the re-
sults obtained are applied to the problem of statically analysing architectural
specifications in Section 8.

We refer to [2,27] for categorical terminology left unexplained here.

1 Architectural Specifications

The specification language Casl (Common Algebraic Specification Language)
has been designed by CoFI, the international Common Framework Initiative
for Algebraic Specification and Development [14]. Its underlying logical sys-
tem is based on models that feature multiple (preordered) sorts, predicates,
partial and total operations and subsort embeddings (see Sect. 5 for more
details), first order sentences built out of equality, predicate application and
term definedness as atomic formulae, and sort generation constraints. Casl
then provides convenient mechanisms to built structured and architectural
specifications and to group them in libraries [3,15,16].

As indicated above, architectural specifications in Casl provide a means of
stating how implementation units are used as building blocks for larger com-
ponents. (Dynamic interaction between modules and dynamic changes of soft-
ware structure are currently beyond the scope of this approach.)

Units are represented as names to which a specification is assigned. Such a
named unit is to be thought of as a given model of the specification. Units may
be parametrized, where specifications are assigned to both the parameters and
the result. The result specification is required to extend the parameter speci-
fications. A parametrized unit is to be understood as a function which, given
models of the parameter specifications, outputs a model of the result specifi-
cation; this function is required to be persistent in the sense that reducing the
result to the parameter signatures reproduces the parameters.
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Units can be assembled via unit expressions which may contain operations such
as renaming or hiding of symbols, amalgamation of units, and application of
a parametrized unit. Terms containing such operations will only be defined if
symbols that are identified, e.g. by renaming them to the same symbol or by
amalgamating units that have symbols in common, are also interpreted in the
same way in all ‘collective’ models of the units defined so far.

An architectural specification consists in declaring or defining a number of
units, as well as in providing a way of assembling them to yield a result unit.

Example 1 A (fictitious) specification structure for a compiler might look
roughly as follows:

Identifier List
HHHHj �����

ProgramText

����� HHHHj
AbstractSyntax SymbolTable

����� HHHHj ����� HHHHj
Parser StaticAnalyser CodeGeneratorXXXXXXXXXz 9��������

Compiler
?

(The arrows indicate the extension relation between specifications.) An archi-
tectural specification of the compiler in Casl [15] might have the following
form:

arch spec BuildCompiler =
units I : Identifier with sorts Identifier ,Keyword ;

L : Elem → List[Elem];
IL = L[I fit sort Elem 7→ Identifier ]
KL = L[I fit sort Elem 7→ Keyword ]
PT : ProgramText given IL, KL;
AS : AbstractSyntax given PT ;
ST : SymbolTable given PT ;
P : Parser given AS ;
SA : StaticAnalyser given AS , ST ;
CG : CodeGenerator given ST

result P and SA and CG
end

(Here, the keyword with is used to just list some of the defined symbols.
The keyword given indicates imports.) According to the above specification,
the parser, the static analyser, and the code generator would be constructed
building upon a given abstract syntax and a given mechanism for symbol ta-
bles, and the compiler would be obtained by just putting together the former
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three units. Roughly speaking, this is only possible (in a manner that can
be statically checked) if all symbols that are shared between the parser, the
static analyser and the code generator already appear in the units for the ab-
stract syntax or the symbol tables — otherwise, incompatibilities might occur
that make it impossible to put the separately developed components together.
For instance, if both StaticAnalyser and CodeGenerator declare an
operation lookup that serves to retrieve symbols from the symbol table, then
the corresponding implementations might turn out to be substantially differ-
ent, so that the two components fail to be compatible. Of course, this points
to an obvious flaw in the architecture: lookup should have been declared in
SymbolTable.

In order to keep the presentation as simple as possible, we consider a modified
sublanguage of Casl architectural specifications:

Architectural specifications: ASP ::= arch spec DD∗ result T ;
DD ::= Dcl | Dfn
An architectural specification consists of a list of unit declarations and def-
initions followed by a unit result term.

Unit declarations: Dcl ::= U : SP | U : SP1
τ−→SP2

A unit declaration introduces a unit name with its type, which is either a
specification or a specification of a parametrized unit, determined by a spec-
ification of its parameter and its result, which extends the parameter via a
signature morphism τ — we assume that the definition of specifications and
some syntactic means to present signature morphisms are given elsewhere.
(By resorting to explicit signature morphisms, we avoid having to discuss
the details of signature inclusions.)

Unit definitions: Dfn ::= U = T
A unit definition introduces a (non-parametrized) unit and gives its value
by a unit term.

Unit terms: T ::= U | U [T fit σ] | T1 with σ1 and T2 with σ2

A unit term is either a (non-parametrized) unit name, or a (parametrized)
unit application with an argument that fits via a signature morphism σ, or
an amalgamation of units via signature morphisms σ1 and σ2 required to
form a sink (have a common target signature); we thus slightly generalize the
amalgamation operation of Casl here, again avoiding the need to present
the details of signature unions (cf. [31]). A with-clause or a fit-clause may
be omitted when the associated signature morphism is an identity.

Imports as used in Example 1 can be regarded as syntactical sugar for a
parametrized unit which is instantiated only once: given U1 : SP1,

U2 : SP2 given U1

abbreviates
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U ′
2 : SP1 → SP2 ;

U2 =U ′
2 [U1 ].

2 Institutions

The considerations ahead deal with aspects of the notion of institution [20].
An institution I consists of a category Sign of signatures, a model functor

Mod : Signop → CAT,

where CAT denotes the quasicategory of categories and functors [2], and
further components which formalize sentences and satisfaction. In this context,
we need only the signature category and the model functor. Given a signature
Σ, Mod(Σ) is called the category of (Σ-)models. If σ : Σ1 → Σ2 is a signature
morphism, then Mod(σ) : Mod(Σ2) → Mod(Σ1) is called a reduct functor ;
we say that a Σ2-model M reduces to Mod(σ)(M), which is often denoted by
M |σ.

As indicated in the introduction, a central property that an institution may
or may not satisfy is the amalgamation property. The most important spe-
cial case is amalgamation for pushouts in the signature category, which are
prominently used for instance in instantiations of parametrized specifications.
Given a pushout

Σ - Σ1

Σ2

?
- ΣR

?

in Sign, the amalgamation property requires that that any pair (M1,M2) ∈
Mod(Σ1)×Mod(Σ2) that is compatible in the sense thatM1 andM2 reduce to
the same Σ-model can be amalgamated to a unique ΣR-model M (i.e., there
exists a unique M ∈ Mod(ΣR) that reduces to M1 and M2, respectively),
and similarly for model morphisms. More formally, this means that the above
pushout diagram is mapped by Mod to a pullback

Mod(Σ) � Mod(Σ1)

Mod(Σ2)

6

� Mod(ΣR)

6

of categories.
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More generally, a cocone for a diagram in Sign is called amalgamable if it is
mapped to a limit under Mod. I (or Mod) has the (finite) amalgamation
property if (finite) colimit cocones are amalgamable, i.e. if Mod preserves (fi-
nite) limits. Recall that finite limits can be constructed from pullbacks and
terminal objects, so that finite amalgamation reduces to preservation of pull-
backs and terminal objects — explicitly: initial signatures are mapped to the
terminal (one-point) category, and pushouts of signatures are mapped to pull-
backs of model categories.

If, conversely, Mod reflects limits, then I (or Mod) is called definitionally
complete. It is easily seen that, under cocompleteness of the signature cate-
gory, a model functor that has the amalgamation property is definitionally
complete iff it reflects isomorphisms. (It will become apparent below that in
cases where Sign is actually a 2-category, reflection of equivalences is really
the more appropriate concept. Other 2-categorical notions such as 2-limits or
bilimits [8] are out of the scope of this paper.) Informally speaking, defini-
tional completeness means that identifying symbols, adding a new symbol to
a signature (without constraining it by axioms), or altering ‘properties’ of a
symbol always modifies the model category. We shall see in Section 5 (cf. Ex-
ample 5) that the standard Casl institution fails to be definitionally complete,
essentially because symbol profiles are not implicitly closed under subsorting.
Definitional completeness, which makes the colimit property a necessary con-
dition for amalgamability of cocones, is required, e.g., to ensure a reasonable
degree of completeness for the semantics of architectural specifications with
the static amalgamability conditions as formulated in Section 8.

3 Basic Architectural Semantics

We now proceed to give a basic semantics of the architectural language defined
in Section 1 similarly as for full Casl [16]. We use the natural semantics
style, by presenting rules for the static semantics, with judgements written
as ` � , and for the model semantics, with judgements written as
` ⇒ (where the blank spaces represent, in this order, a context of some

kind, a syntactical object, and a semantical object). We simplify the rules of
the model semantics by assuming a successful application of the corresponding
rules of the static semantics, with symbols introduced there available for the
model semantics as well.

Let us stress that the semantics is given here and in Section 4 in the framework
of an arbitrary institution, with the syntax for specifications and signature
morphisms as used in architectural specifications given elsewhere. Similarly, we
assume that the semantics for specifications is given elsewhere, with ` SP �Σ
and ` SP ⇒M implying M⊆ Mod(Σ). We will regard Mod(Σ) as a class



Amalgamation in the Semantics of Casl 9

of models for the purposes of the model semantics.

The static semantics for an architectural specification yields the signature
of its result unit and a static context that describes the signatures of the
units declared or defined within the specification. Thus, a static context Cst =
(Pst ,Bst) consists of two finite maps: Pst from unit names to parametrized unit
signatures, which in turn are signature morphisms τ : Σ1 → Σ2, and Bst from
unit names to signatures (for non-parametrized units). We require the domains
of Pst and Bst to be disjoint. The empty static context that consists of two
empty maps will be written as C ∅

st . Given an initial static context, the static
semantics for unit declarations and definitions produces a static context by
adding the signature for the newly introduced unit, and the static semantics
for unit terms determines the signature for the resulting unit.

In terms of the model semantics, a (non-parametrized) unit M over a sig-
nature Σ is just a model M ∈ Mod(Σ). A parametrized unit F over a
parametrized unit signature τ : Σ1 → Σ2 is a persistent partial function
F : Mod(Σ1) ⇀ Mod(Σ2) (i.e. F (M)|τ = M for each M ∈ domF ); the
domain of F is determined by the specification of the parameter.

The model semantics for architectural specifications involves interpretations of
unit names. These are given by unit environments E, i.e. finite maps from unit
names to units as introduced above. On the model semantics side, the analogue
of a static context is a unit context C, which is just a class of unit environments,
and can be thought of as a constraint on the interpretation of unit names. The
unconstrained unit context, which consists of all environments, will be written
as C∅. The model semantics for unit declarations and definitions modifies unit
contexts by constraining the environments to interpret the newly introduced
unit names as determined by their specification or definition.

A unit term is interpreted by a unit evaluator Ev , a function that yields a
unit when given a unit environment in the unit context (the unit environment
serves to interpret the unit names occurring in the unit term). Hence, the
model semantics for a unit term yields a unit evaluator, given a unit context.

The model semantics is easily seen to be compatible with the static semantics
in the following sense: we say that C fits Cst = (Pst ,Bst), if, whenever Bst(U ) =
Σ and E ∈ C, then E(U ) is a Σ-model, and a corresponding condition holds
for Pst . Obviously, C∅ fits C ∅

st . Now if C fits Cst , then

Cst ` T � Σ and C ` T ⇒ Ev

imply that Ev(E) is a Σ-model for each E ∈ C. Corresponding statements
hold for the other syntactic categories (unit declarations and definitions, ar-
chitectural specifications).
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The complete semantics is given in Figure 1, where we use some auxiliary
notation: given a unit context C, a unit name U and a class of units V ,

C × {U 7→ V} := {E + {U 7→ V } | E ∈ C,V ∈ V},

where E + {U 7→ V } maps U to V and otherwise behaves like E . Moreover,
given a unit context C, a unit name U and a unit evaluator Ev ,

C ⊗ {U 7→ Ev} := {E + {U 7→ Ev(E )} | E ∈ C}.

We assume that the signature category is equipped with a partial selection of
pushouts (σR : Σ2 → ΣR, τR : Σ1 → ΣR,ΣR) for spans (σ : Σ → Σ1, τ : Σ →
Σ2) of signature morphisms (where (σ, τ) may fail to have a selected pushout
even when it has a pushout):

Σ
σ

- Σ1

Σ2

τ

?

σR

- ΣR

τR
?

.

In Casl, the selected pushouts would be the ones that can be expressed by
signature translations and simple syntactic unions.

Perhaps the only points in the semantics that require some discussion are the
rules of the model semantics for unit application and amalgamation.

In the rule for application of a parametrized unit U , we have the requirement

for each E ∈ C,Ev(E )|σ ∈ domE (U ),

where Ev denotes the unit evaluator and C the unit context. This is just the
statement that the fitting morphism correctly ‘fits’ the actual parameter as an
argument for the parametrized unit. To verify this requirement, one typically
has to prove that σ is a specification morphism from the argument specification
to the specification of the actual parameter (which, in the general case, has to
be determined for the relevant unit term by means of a suitable calculus). In
general, this requires some semantic or proof-theoretic reasoning.

The situation is different with the conditions marked with a (∗) in Figure 1.
These ‘amalgamability conditions’ are typically expected to be at least par-
tially discharged by some static analysis — similarly to the sharing require-
ments present in some programming languages (cf. e.g. Standard ML [33]). Of
course, the basic static analysis given here is not suited for this purpose, since
no information is stored about dependencies between units. This will be taken
care of in the second level of the semantics.
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` DD∗ � Cst Cst ` T � Σ
` arch spec DD∗ result T � (Cst , Σ)

` DD∗ ⇒ C C ` T ⇒ Ev
` arch spec DD∗ result T ⇒ (C,Ev)

C ∅
st ` DD1 � (Cst)1

· · ·
(Cst)n−1 ` DDn � (Cst)n

` DD1 . . .DDn � (Cst)n

C∅ ` DD1 ⇒ C1

· · ·
Cn−1 ` DDn ⇒ Cn

` DD1 . . .DDn ⇒ Cn

` SP � Σ U 6∈ (domPst ∪ domBst)
(Pst ,Bst) ` U : SP � (Pst ,Bst + {U 7→ Σ})

` SP ⇒M
C ` U : SP ⇒ C × {U 7→ M}

` SP1 � Σ1 ` SP2 � Σ2 τ : Σ1 → Σ2 U 6∈ (domPst ∪ domBst)

(Pst ,Bst) ` U : SP1
τ−→SP2 � (Pst + {U 7→ τ},Bst)

` SP1 ⇒M1 ` SP2 ⇒M2

F = {F : M1 →M2 | for M ∈M1, F (M)|τ = M}
C ` U : SP1

τ−→SP2 ⇒ C × {U 7→ F}

(Pst ,Bst) ` T � Σ U 6∈ (domPst ∪ domBst)
(Pst ,Bst) ` U = T � (Pst ,Bst + {U 7→ Σ})

C ` T ⇒ Ev
C ` U = T ⇒ C ⊗ {U 7→ Ev}

U ∈ domBst

(Pst ,Bst) ` U � Bst(U ) C ` U ⇒ {E 7→ E (U ) | E ∈ C}

Pst(U ) = τ : Σ1 → Σ2 Cst ` T � ΣA σ : Σ1 → ΣA

(σR, τR, ΣR) is the selected pushout of (σ, τ)
(Pst ,Bst) ` U [T fit σ] � ΣR

C ` T ⇒ Ev ; for each E ∈ C,Ev(E )|σ ∈ domE (U )
for each E ∈ C, there is a unique M ∈ Mod(ΣR) such that

M |τR = Ev(E ) and M |σR = E (U )(Ev(E )|σ)

}
(∗)

EvR = {E 7→ M | E ∈ C,M |τR = Ev(E ),M |σR = E (U )(Ev(E )|σ)}
C ` U [T fit σ] ⇒ EvR

Cst ` Ti � Σi, i = 1, 2; σ1 : Σ1 → Σ and σ2 : Σ2 → Σ
(Pst ,Bst) ` T1 with σ1 and T2 with σ2 � Σ

C ` T1 ⇒ Ev1 C ` T2 ⇒ Ev2

for each E ∈ C, there is a unique M ∈ Mod(Σ) such that
M |σi = Ev i(E ), i = 1, 2

}
(∗)

Ev = {E 7→ M | E ∈ C and M |σi = Ev i(E ), i = 1, 2}
C ` T1 with σ1 and T2 with σ2 ⇒ Ev

Fig. 1. Basic semantics



12 L. Schröder, T. Mossakowski, A. Tarlecki, B. Klin, P. Hoffmann

4 Extended Static Architectural Semantics

As a solution to the problem just outlined, we now introduce an extended
static analysis that keeps track of sharing among the units by means of a
diagram of signatures; the idea here is that a symbol shares with any symbol
to which it is mapped under some morphism in the diagram.

For our purposes, it suffices to regard a diagram as a graph morphism D :
I → Sign, where I is a directed graph called the scheme of the diagram.
We use categorical terminology for I, i.e. we call its nodes ‘objects’, its edges
‘morphisms’ etc., and we write Ob I for the set of objects.

We will use the usual notion of extension for diagrams. Two diagrams D1, D2

disjointly extend D if bothD1 andD2 extendD and moreover, the intersection
of their schemes is the scheme of D. If this is the case then the union D1 ∪D2

is well-defined. Of course, disjointness can be ensured as usual by renaming
the relevant components in the diagram schemes of D1, D2.

The judgements of the extended static semantics are written as ` �� .
Most of the rules differ only formally from the rules for the static semantics;
the essential differences are in the rules for unit terms. The extended static se-
mantics additionally carries around the said diagram of signatures. Signatures
for unit terms are associated to distinguished objects in the diagram scheme.

Explicitly, an extended static context Cst = (Pst ,Bst , D) consists of a map
Pst that assigns parametrized unit signatures to parametrized unit names
(as before), a signature diagram D, and a map Bst that assigns objects of
the diagram scheme to (non-parametrized) unit names. As before, we require
that the domains of Pst and Bst are disjoint. Cst determines a static context
ctx (Cst) formed by extracting the signature information for non-parametrized
unit names from the diagram and forgetting the diagram itself. The empty
extended static context, which consists of two empty maps and the empty
diagram, is written as C∅st . The extended static semantics for unit declarations
and definitions expands the given extended static context; for unit terms, it
extends the signature diagram and indicates an object in the scheme that
represents the result.

The diagrams enable us to restate the amalgamability conditions in a static
way: for any diagram D : I → Sign, a family 〈Mi〉i∈Ob I of models is called
D-coherent if for each i ∈ Ob I, each Mi ∈ Mod(D(i)), and for each m : i→ j
in I, Mi = Mj|D(m); this is extended to families of model morphisms in the
obvious way. Then, D ensures amalgamability for D′, where D′ extends D,
if any D-coherent model family can be uniquely extended to a D′-coherent
model family, and correspondingly for coherent families of model morphisms.
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` DD∗ �� Cst Cst ` T �� (i,D)
` arch spec DD∗ result T �� (ctx (Cst), D(i))

C∅st ` DD1 �� (Cst)1
· · ·

(Cst)n−1 ` DDn �� (Cst)n

` DD1 . . .DDn �� (Cst)n

` SP � Σ U 6∈ (domPst ∪ domBst)
D′ results from D by adding a new object i with D′(i) = Σ

(Pst ,Bst , D) ` U : SP �� (Pst ,Bst + {U 7→ i}, D′)

` SP1 � Σ1 ` SP2 � Σ2 τ : Σ1 → Σ2

U 6∈ (domPst ∪ domBst)

(Pst ,Bst , D) ` U : SP1
τ−→SP2 �� (Pst + {U 7→ τ},Bst , D)

(Pst ,Bst , D) ` T �� (i, D′) U 6∈ (domPst ∪ domBst)
(Pst ,Bst , D) ` U = T �� (Pst ,Bst + {U 7→ i}, D′)

U ∈ domBst

(Pst ,Bst , D) ` U �� (Bst(U ), D)

Pst(U ) = τ : Σ1 → Σ2 (Pst ,Bst , D0) ` T �� (i, D) σ : Σ1 → D(i)
(σR, τR, ΣR) is the selected pushout of (σ, τ)

D′ results from D by adding new objects j, k
and new morphisms m : j → i, n : j → k with D′(m) = σ,D′(n) = τ

D′′ results from D′ by adding a new object l
and new morphisms r : i → l, s : k → l with D′′(r) = τR, D′′(s) = σR

D′ ensures amalgamability for D′′

(Pst ,Bst , D0) ` U [T fit σ] �� (l, D′′)

(Pst ,Bst , D) ` T1 �� (i1, D1) (Pst ,Bst , D) ` T2 �� (i2, D2)
σ1 : D1(i1) → Σ σ2 : D2(i2) → Σ

D1 and D2 are disjoint extensions of D
D′ results from D1 ∪D2 by adding a new object j and new morphisms

m1 : i1 → j, m2 : i2 → j with D′(m1) = σ1, D′(m2) = σ2

D1 ∪D2 ensures amalgamability for D′

(Pst ,Bst , D) ` T1 with σ1 and T2 with σ2 �� (j, D′)

Fig. 2. Extended static semantics

Although we have formulated this property in terms of model families, it is
essentially static: the class of model families considered is not restricted by
axioms, but only by morphisms between signatures. The static nature of this
condition will be made explicit in Section 8.
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The rules of the extended static semantics are listed in Figure 2; given the
heuristics provided above, they should be largely self-explanatory. However,
the relationship between the basic static and model semantics and the ex-
tended static semantics requires a few comments.

Since, as stated at the end of the previous section, the correctness condition for
arguments of parametrized units cannot be disposed of statically, one cannot
expect that the extended static semantics is stronger than the model seman-
tics, i.e. that its successful application guarantees that the model sematics
will succeed as well. However, this is almost true in the sense that argument
fitting is the only point that is left entirely to the model semantics. Formally,
this can be captured by the statement that, assuming a successful run of the
extended static semantics, the conditions marked with a (∗) in the rules of the
model semantics (cf. Figure 1) can be removed. We denote the judgements of
the thus simplified model semantics by ` s⇒ .

Theorem 2 Given an architectural specification, if its extended static seman-
tics is defined then its basic static semantics is defined and yields the same
result. Moreover, then its basic model semantics is defined if and only if its
simplified model semantics is defined, and when defined, they yield the same
results.

PROOF. We say that a model family 〈Mi〉i∈Ob I witnesses an environment
E in an extended static context Cst = (Pst ,Bst , D) if it is D-coherent and
E(U ) = Mi for all U ∈ domBst with Bst(U ) = i ∈ Ob I, where I is the
scheme of D. From an extended static context Cst = (Pst ,Bst , D) we extract a
unit context ucx (Cst) which consists of all unit environments E such that

• E(U ) is a parametrized unit over τ whenever Pst(U ) = τ , and
• E is witnessed by a model family in Cst .

The claim can now be made explicit (and strengthened to a form suitable for
induction) for the various syntactic categories as follows:

(i) For Cst = (Pst ,Bst , D), if Cst ` T �� (i,D′) then D′ extends D and
ctx (Cst) ` T �D′(i). Moreover, then:
• for all C ⊆ ucx (Cst), C ` T

s⇒ Ev if and only if C ` T ⇒ Ev ; and
• if C ` T ⇒ Ev then for all E ∈ C, any model family that witnesses E

can be extended to a D′-coherent model family 〈Mj〉j∈Ob I′ such that
Mi = Ev(E ).

(ii) If Cst ` DD∗ �� C ′st then ctx (Cst) ` DD∗ � ctx (C ′st). Moreover, then for
all C ⊆ ucx (Cst), C ` DD∗ s⇒ C ′ if and only if C ` DD∗ ⇒ C ′. Finally, if
C ⊆ ucx (Cst) and C ` DD∗ ⇒ C ′ then C ′ ⊆ ucx (C ′st).

(iii) If ` arch spec DD∗ result T �� (Cst ,Σ)
then ` arch spec DD∗ result T � (Cst ,Σ).
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Moreover, then ` arch spec DD∗ result T
s⇒ (C,Ev) if and only if

` arch spec DD∗ result T ⇒ (C,Ev).

The proof is by induction on the length of the derivation. For the static seman-
tics claims, the induction is easy. For the model semantics, the key observation
is that each of the conditions marked by a (∗) in the rules of the basic model
semantics follows under inductive hypothesis (i) from the other premises of
the rule and from the premises of the corresponding rule of the extended static
semantics. 2

Calling the combination of the extended static semantics and the simplified
model semantics extended semantics, we now have:

Corollary 3 If the extended semantics of an architectural specification is de-
fined, then the basic semantics is defined as well and yields the same result.

Of course, no completeness can be expected here: even if the basic semantics
is successful for a given phrase, the extended semantics may fail. This happens
if the model-theoretic amalgamability conditions hold due to axioms in spec-
ifications rather than due to static properties of the involved constructions.

An additional source of failures of the extended static semantics is that, fol-
lowing [6], we have deliberately chosen a so-called generative static analysis:
the results of applications of parametrized units ‘share’ with other units in
the signature diagram constructed only via the morphisms from the param-
eter signatures to the actual arguments. Thus, two applications of the same
unit to the same argument need not ‘share’. As a consequence, the amalgam-
ability condition of the extended static semantics may fail for them, while the
corresponding condition in the basic model semantics would clearly hold. A
‘non-generative’ (or ‘applicative’) version of the extended static semantics is
sketched in Remark 28 below.

The motivation for this choice is the fact that many typical programming
languages we aim at (notably, Standard ML [33]) impose such a ‘generative’
semantics in their static analysis — working with more permissive conditions
here would make our architectural specifications incompatible with the mod-
ularization facilities of such languages.

However — generativity issues aside — we have as much completeness as one
may hope for, i.e., in general the extended static semantics detects all the
amalgamation that can be established statically. To see this, note that if all
the specifications considered admit all models over their signatures, then in
the notation of the proof of Theorem 2, for any extended static context Cst that
appears in the derivation of the extended static semantics, the corresponding
unit context of the model semantics is ucx (Cst), and hence, the requirements
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marked by a (∗) in the basic model semantics are just equivalent to the corre-
sponding amalgamability requirements in the extended static semantics (see
[24] for a formal statement of an analogous theorem).

5 Standard CASL signatures

We shall now focus our attention on the analysis of the extended static se-
mantics, and in particular of the amalgamation conditions it imposes, in the
particular context of the standard Casl institution. The amalgamation prop-
erty and definitional completeness are the crucial ingredients in the reformu-
lation of the amalgamation conditions in an entirely static form. They will be
ensured in the enriched Casl institution, to be introduced in the next sec-
tion. In order to provide a basis for the definition of the enriched institution,
we sketch the definition of (standard) Casl signatures and their models; for
further details see [12,15].

A Casl signature Σ consists of a preordered set S of sorts and sets of total
and partial function symbols and predicate symbols. Function and predicate
symbols are written f : s̄ → t and p : s̄, respectively, where t is a sort and s̄
is a list s1 . . . sn of sorts (similar notation for lists is used throughout), thus
determining their name and profile. Symbols with identical names are said to
be in the overloading relation if their argument sorts have a common subsort
and (in the case of function symbols) their result sorts have a common super-
sort. Otherwise, their overloading is just ad-hoc overloading without semantic
implications. Partial function symbols may become total on subsorts of their
argument sorts, but not vice versa.

A signature morphism consists of an order-preserving map between the asso-
ciated sort preorders and maps between the symbol sets that are compatible
with symbol profiles, preserve totality (i.e. may map partial to total func-
tion symbols, but not vice versa), and preserve the overloading relation. This
defines the (cocomplete [30]) signature category CASLsign.

A model of a Casl signature is an interpretation of the sorts by sets and
of the sort preorder by injective maps between these sets (in other words: a
functor from the thin category associated to the sort preorder into the cat-
egory of sets and injective maps), of the partial (total) function symbols by
partial (total) functions between the sets specified by their profiles, and of
the predicate symbols by relations. The interpretations of overloaded sym-
bols are required to agree on common subsorts of the argument sorts via the
corresponding subsort injections. Model morphisms are defined by the usual
homomorphism condition (also w.r.t. the sort injections) and preservation of
predicate satisfaction.
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Thus, we have a category ModCASL(Σ) of Σ-models; this assigment extends
to a model functor ModCASL : CASLsignop → CAT in the standard way. It
is folklore that amalgamation fails for this model functor:

Example 4 The simplest case where amalgamation fails is the following: let
Σ be the signature with sorts s and t (and no operations), and let Σ1 be the
extension of Σ by the subsort relation s < t. Then the pushout

Σ - Σ1

Σ1

?
- Σ1

?

in CASLsign fails to be amalgamable (since two models of Σ1, compatible
w.r.t. the inclusion of Σ, may interpret the subsort injection differently).

The following more complex accident, being rather less readily apparent, might
conceivably occur in the specification of Example 1: assume that the specifica-
tion List[Elem] provides a sort List [Elem] of lists of sort Elem. Recall that
the specification of identifiers introduces two sorts Identifier and Keyword ,
and that the program text unit PT incorporates the results of application of
the parametrized unit L to each of these two sorts.

Now suppose that the specifier of Parser decides that keywords should be
treated as identifiers, so that Keyword < Identifier and List [Keyword ] <
List [Identifier ]. Suppose, moreover, that the specifier of StaticAnalyser
finds it convenient to code simple elements as lists in some way, so that
Identifier < List [Identifier ] and Keyword < List [Keyword ]. Singling out the
union P and SA from the term defining the compiler in Example 1, we thus
obtain a diagram of Casl signatures for the union that has the following
(abstracted) form, where the arrows within the squares represent subsort em-
beddings:

s t

u v

-

s - t

u - v

s t

u
?

v
?

?

-

s - t

@
@R

u
?

- v
?

?
(1)
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Even though the above diagram is in fact a pushout in the category
CASLsign, compatible models of the component signatures cannot in gen-
eral be amalgamated, since the composed subsort embeddings s < t < v and
s < u < v in the result need not be the same. (Consequently, the extended
static semantics defined in the previous section would fail here — and so
would the basic semantics, unless the axioms in the specifications constrained
the subsort embeddings very strongly indeed.)

These observations suggest that one should enlarge the signature category in
such a way that both the above examples are no longer pushouts, and that,
moreover, signatures in the enlarged category would, in general, admit more
than one embedding between two sorts. Thus, the ‘correct’ pushout signature
for the diagram above would have the form

s - t

@
@R

@
@R

u
?

- v
?

(2)

Incidentally, ModCASL also fails to be definitionally complete:

Example 5 The inclusion Σ1 ↪→ Σ2, where Σ1 contains sorts s < t and an
operation a : s and Σ2 contains an additional symbol a : t, is not an isomor-
phism, but induces an isomorphism between the model categories Mod(Σ2)
and Mod(Σ1).

In view of the above examples, one may wonder whether interpreting subsorts
by arbitrary injections (rather than subsort inclusions, which would avoid
these problems) is really a good design decision. However, the subsorts-as-
inclusions approach has severe theoretical and practical drawbacks. In par-
ticular, satisfaction fails to be closed under model isomorphism (unless extra
conditions like local filtration are assumed, which, however, behave badly w.r.t.
colimits [23]). Moreover, ‘real-life’ subsort relations (such as Int < Float) do
require coercion functions; see [34] for a detailed discussion.

6 Enriched signatures

We now introduce a category of enriched signatures in which standard signa-
tures can be represented via a suitable functor. Moreover, we equip this sig-
nature category with a model functor which has the amalgamation property
and is definitionally complete and which extends the original model functor
up to a natural isomorphism; this enables us to treat amalgamability in the
extended setting.
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Example 4 suggests that the failure of amalgamation for standard signatures
can be remedied by replacing the sort preorder by a sort category that admits
more than one embedding between two sorts (similar category sorted algebras,
although without a view on amalgamation, appear in [35]). This will be the
main feature to distinguish enriched and standard signatures. We will certainly
continue to require embeddings to be monomorphic; categories in which all
morphisms are monomorphisms will be called left cancellable.

Moreover, there is an elegant way of handling overloading of function and
predicate symbols: introduce left and right actions of the sort category on the
symbols; in the case of a unary function symbol f : s→ t and sort embeddings
d : u→ s, e : t→ v, the left action gives rise to a function symbol e ·f : s→ v,
and the right action to f · d : u→ t:

t
e

- v

�
�

�
�f · d �

�
�

�
�

e · f
�

u
d

- s

f

6

(The right action also applies to predicate symbols.) The appropriate be-
haviour of models w.r.t. overloading can then be ensured by requiring that the
diagrams that arise from the actions as above are translated to commutative
diagrams of maps (operations) in the models. This requirement replaces the
rather cumbersome overloading axioms for models needed in the case of stan-
dard signatures; similarly, overloading preservation for signature morphisms
now becomes a much more straightforward equivariance condition.

Thus, we arrive at the following

Definition 6 An enriched (Casl) signature Σ consists of

(i) a left cancellable sort category S with morphisms called embeddings ;
(ii) a class F of function symbols and a class P of predicate symbols ; symbols

have profiles as in the case of standard signatures;
(iii) a unary totality predicate on F ;
(iv) a left action of S on F which assigns to each function symbol f : s̄ → t

and each sort morphism e : t→ u a function symbol e · f : s̄→ u;
(v) a right (multi)action of S on F which assigns to each function symbol

f : s̄ → t and each list of sort embeddings d̄ = (di : vi → si)i=1,...,n

(written d̄ : v̄ → s̄) a function symbol f · d̄ : v̄ → t, and a similar right
action on P .

These data are subject to the following axioms:
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(i) The associative law and the identity law hold in the obvious sense (e.g.,
in the above notation, id · f = f and (e · f) · d̄ = e · (f · d̄)).

(ii) For a sort embedding e and function symbols f , g with appropriate pro-
files, e · f = e · g implies f = g.

(iii) Let f , e, and d̄ be as above. If f is total, then f · d̄ and e · f are total.
Moreover, if e · f is total, then f is total.

A signature morphism σ between enriched signatures consists of a functor be-
tween the sort categories and a pair of maps between the classes of function
and predicate symbols, respectively; all three components are denoted by σ.
σ is required to be compatible with symbol profiles and to preserve total-
ity. Moreover, σ is assumed to be equivariant w.r.t. the actions of the sort
categories; i.e. if f , e, and d̄ are as above, then

σ(e) · σ(f) = σ(e · f) and σ(f) · σ(d̄) = σ(f · d̄),

similarly for predicate symbols. An enriched signature is called small if its
sort category and its symbol classes are small. Small enriched signatures and
signature morphisms form a category enrCASLsign.

Typical examples of properly enriched signatures arise as colimits of standard
signatures (the way standard signatures are regarded as enriched signatures
is explained below), such as the one suggested in Diagram (2) of Section 5.
Inserting this enriched signature into its proper place in Diagram (1) of the
same section also provides two examples of signature morphisms as defined
above.

More precisely, one should say that enrCASLsign is a 2-category: 2-cells be-
tween signature morphisms are natural transformations between the functor
parts that satisfy the obvious naturality condition w.r.t. symbols. In partic-
ular, one has a notion of equivalence of enriched signatures defined in the
usual way via ‘inverses up to isomorphism’. As in the case of categories, it is
straightforward to show that such a definition of equivalence amounts to the
following:

Definition 7 A signature morphism σ is called full on symbols if, whenever
f is a symbol with profile f : σ(s̄) → σ(t), then there exists a symbol f̂ with
profile f̂ : s̄ → t such that σ(f̂) = f . σ is faithful on symbols if, whenever f
and g are symbols with identical profile f, g : s̄→ t, then σ(f) = σ(g) implies
f = g. σ is an equivalence if the functor part of σ is an equivalence, σ is full
and faithful on symbols, and σ reflects totality, i.e., whenever σ(f) is a total
function symbol, then so is f .

Equivalent signatures differ only in possibly having different numbers of iso-
morphic copies of each sort.
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A crucial point is that the collection of all sets and partial maps can now be
regarded as a signature. (Due to the rather different treatment of overloading,
there is no obvious way to make this work for the signatures defined in [35]).
More precisely: We have an enriched signature which has the category of sets
and (total) injective maps as sort category and n-ary partial functions and
relations as function and predicate symbols, respectively, with the obvious
assignment of profiles and with totality of partial functions as the totality
predicate. The actions of the sort category are given by composition (in the
case of the right action, by composition with cartesian products of maps or, for
predicates, by taking preimages under such products). This enriched signature
will be denoted by Setp.

This enables us to define models in the spirit of Lawvere [26]:

Definition 8 A model of an enriched signature Σ is a signature morphism

Σ → Setp.

A morphism between two such models σ, τ is a family φ of maps

φs : σ(s) → τ(s), where s ranges over the sorts in Σ,

such that the usual homomorphism condition w.r.t. function symbols and
embeddings holds and satisfaction of predicates is preserved.

Thus, we have a model category of Σ, which we denote by Modenr(Σ). A
signature morphism σ : Σ1 → Σ2 induces a reduct functor Modenr(Σ2) →
Modenr(Σ1) which acts on objects by composition of signature morphisms.
This defines the model functor Modenr : enrCASLsignop → CAT.

The representing functor Enr : CASLsign → enrCASLsign acts on standard
signatures by first forming a suitable completion of the symbol sets — closing
symbol profiles under the sort preorder — to account for the actions of the
sort embeddings, and then reinterpreting the data in the usual way (i.e. the
sort preorder is interpreted as a thin category, and the actions of the sort
category are defined using the mentioned closure of symbol profiles). Thanks
to overloading preservation, morphisms between standard signatures have a
well-defined extension to the respective closures. Thus, this assignment on
objects extends to a functor as required. Note that Enr is faithful, but is
neither full nor injective on objects (e.g., it identifies the two non-isomorphic
standard signatures of Example 5) and, of course, does not preserve colimits
(although it does preserve coproducts, which are just componentwise disjoint
unions here).

Now it is easily verified that one has a natural isomorphism

Modenr ◦ Enrop → ModCASL
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which maps an Enr(Σ)-model to the restriction of the symbol interpretation
to Σ. In particular, as indicated above,

Proposition 9 A cocone in CASLsign is amalgamable w.r.t. ModCASL iff
its image under Enr is amalgamable w.r.t. Modenr.

Thanks to the definition of models as signature morphisms, Modenr satisfies
the amalgamation property in its most general form:

Theorem 10 enrCASLsign is cocomplete, and

Modenr : enrCASLsignop → CAT

preserves limits.

PROOF. To build a colimit of a diagram in enrCASLsign, start with the
set-theoretic colimits of all involved sets (sorts, embedding symbols, function
symbols, predicate symbols), and assign profiles to the arising equivalence
classes of symbols in the obvious way. From these equivalence classes, one
can form terms according to the operations defining an enriched signature
(identities and composition in the sort category and the left and right actions
of the sort category). Terms may contain at most one function or predicate
symbol and are classified accordingly as functions, predicates, or embeddings.
In the next step, terms are identified according to the equations coming from
the component signatures and the (conditional) equations for enriched signa-
tures (identity law, associativity of composition, left cancellation of embedding
symbols, laws for the actions). Finally, the totality predicate is defined as the
smallest set that makes the colimit injections signature morphisms and satis-
fies the axioms concerning preservation and reflection of symbols in enriched
signatures.

Now let D : I → enrCASLsign be a diagram with colimit 〈µi : D(i) →
Σ〉i∈Ob I, let 〈σi : D(i) → Setp〉i∈Ob I and 〈τi : D(i) → Setp〉i∈Ob I be D-
coherent model families, and let 〈φi : σi → τi〉i∈Ob I be a D-coherent family of
model morphisms. Since the objects of model categories are given by a repre-
sentable functor (namely, the functor hom( ,Setp)), and since representable
functors preserve limits, we can amalgamate 〈σi〉i∈Ob I and 〈τi〉i∈Ob I uniquely,
thus obtaining models σ and τ of Σ, i.e. signature morphisms σ, τ : Σ → Setp

(where

σµi = σi : D(i) → Setp

for all i ∈ Ob I, similarly for τ). Morphisms in the model categories had to be
defined in a somewhat less succinct way and hence do not lend themselves to
this type of argument. However, since the colimit is set-theoretic at the level of
sorts, we can (uniquely) amalgamate the φi, obtaining at least a well-defined
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family of maps

φµi(s) = φi
s : σ(µi(s)) → τ(µi(s)),

where i ranges over Ob I and s ranges over the sorts in D(i). All that remains
to be shown is that this family is indeed a model morphism from σ to τ :
Since the symbols (embeddings, function symbols, predicate symbols) in Σ
are generated by the images of the symbols in the D(i), it suffices to prove
the morphism condition for such images. For example, let f : s1 . . . sn → t be
a function symbol in D(i) for some i (predicate symbols and embeddings are
treated analogously). Then

φµi(t)σµi(f) =φi
tσi(f)

⊆ τi(f)(φi
s1
× · · · × φi

sn
)

= τµi(f)(φµi(s1) × · · · × φµi(sn))

(where ⊆ denotes the extension relation for partial maps), i.e., φ satisfies the
homomorphism condition for µi(f). 2

Remark 11 In the next section, we shall construct a representation of en-
riched signatures as equational partial specifications, which also have the amal-
gation property. Thus, the intermediate step via enriched signatures could in
principle be skipped. The advantage of the representation of standard sig-
natures as enriched signatures is that, in order to actually perform a static
analysis of architectural specifications by verifying the colimit property in
concrete cases, one does not need to apply full first order partial equational
reasoning, but only a rather simpler calculus (called the cell calculus in [25])
that relates only to enriched signatures; cf. Section 8 for details.

7 Definitional completeness

To reformulate the static amalgamability conditions of the extended static
semantics to a more manageable form and to establish that the reformula-
tion does not strengthen the conditions unnecessarily, we need not only the
amalgamation property, but also definitional completeness for enriched Casl.
To prove definitional completeness we introduce a further representation of
enriched signatures in a suitable class of small categories which is easily seen
to have this property; we then go on to show that the representation is suffi-
ciently well-behaved to transfer definitional completeness back to the setting
of enriched signatures. In an intermediate step, we introduce a coding of en-
riched signatures as equational partial specifications in the sense of [13], thus
essentially providing an extension of the existing embedding of the Casl logic
into partial first-order logic with equality [12].



24 L. Schröder, T. Mossakowski, A. Tarlecki, B. Klin, P. Hoffmann

Let Lex denote the category of small left exact (lex) categories (i.e. small
categories with finite limits) and left exact (lex, finite limit preserving) func-
tors. The model category Modlex(A) of a small lex category A is the category
Lex(A,Set) of lex functors A → Set and natural transformations. By com-
position of lex functors, this assignment extends to a functor

Modlex : Lexop → CAT.

Modlex trivially has the amalgamation property, i.e. preserves limits. More-
over, being a 2-functor, Modlex preserves equivalences. Conversely,

Theorem 12 Modlex reflects equivalences.

PROOF. For any lex category A, the finitely presentable objects in
Modlex(A) are precisely the representable functors [28]. Thus, any equiva-
lence Modlex(A) → Modlex(B) restricts to an equivalence between the re-
spective subcategories of representable functors (since equivalences preserve
all categorical properties [2], in particular finite presentability). The latter are
equivalent to A and B, respectively, via the Yoneda Embedding. 2

The above theorem captures an essential component of the definitional com-
pleteness for enriched Casl; as far as we can see, even a direct proof of Corol-
lary 20 below would have to somehow incorporate the nontrivial properties
shown here succinctly by categorical means.

An (equational partial) specification S = (Ω,A) is defined (slightly extending
the definition in [13]) as follows:

Ω is a signature consisting of sorts and (partial) operation symbols with pro-
files as before. This signature gives rise to a notion of sorted terms in context in
the usual way, where a context is a list x1 : s1, . . . , xn : sn of sort assignments
for variables, abbreviated as x̄ : s̄, where x̄ = (x1, . . . , xn) and s̄ = (s1, . . . , sn).
The judgement ‘the term α has sort t in context Γ’ is written

Γ � α : t.

Lists of terms are called multi-terms ; if Γ � αi : ti for i = 1, . . . ,m, then we
write Γ � α : t̄, where α = (α1, . . . , αm). In fact, application of an operator
f is regarded as forming a term f(α) from a multi-term α. As a slight twist,
the empty multi-term () doubles as a term of ‘sort’ (). Given a judgement
ȳ : t̄� β : ū, the term obtained by simultaneously substituting αi for yi, i =
1, . . . ,m is (somewhat inaccurately) denoted βα.
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(var)
x in Γ

x
e
= x

(sym)
α

e
= β

β
e
= α

(tr)

α
e
= β

β
e
= γ

α
e
= γ

(cong)

α
e
= β : t̄

f : t̄→ u
def f(α)

f(α)
e
= f(β)

(str)
def f(α)

def α
(ax)

φ⇒ȳ:t̄ ψ ∈ A
Γ � α : t̄

φα def α

ψα
(unit)

def α : ()

α
e
= ()

Fig. 3. Deduction rules for existential equality in context Γ

A is a set of axioms that take the form of implications: an existential equation
in context Γ is a pair φ = (α1, α2), consisting of two terms Γ � αi : t, i = 1, 2,
for some sort t. Such an equation is written α1 e

= α2 or, explicitly indicating
the result sorts, α1 e

= α2 : t. We will also write equations between multi-
terms, thereby meaning just the obvious sets of equations between terms;
such equations are also referred to as existential equations. We use notations
like φ ∧ ψ and true to denote the union of sets of equations and the empty
set of equations, respectively. An implication in context Γ is a sentence of the
form φ⇒ ψ, where φ and ψ are existential equations (between multi-terms) in
context Γ. The context may be explicitly indicated by writing φ⇒Γ ψ. α

e
= α

is sometimes abbreviated as def α. For Γ � α : t̄ and an existential equation
ψ = (β1, β2) in context ȳ : t̄, ψα denotes the equation β1α

e
= β2α in context

Γ.

In Figure 3, we present the rules of a deduction system for existential equality
associated to a specification S = (Ω,A). The rules given in the figure are
parametrized over a fixed context Γ (which appears explicitly in the rules
(var) and (ax)); proofs in this system are best thought of as beginning with
the words ‘Let x1 : s1, x2 : s2 . . . ’. Both the congruence rule and the strictness
rule readily generalize to arbitrary terms in place of basic operations. The
system is obviously sound w.r.t. the notion of model defined below in the
sense that, whenever a valuation of the context variables in a given model
satisfies a set of equations, then it satisfies all equations that can be deduced
from that set. The system will turn out to be complete as well. We write
φ `Γ ψ if ψ can be deduced from φ in context Γ by means of these rules; in
this case, we say that the implication φ⇒Γ ψ is a theorem.

A morphism between specifications is defined as a theory morphism in the
usual sense, i.e. a signature morphism that transforms axioms into theorems.
Thus, specifications form a category epSpec.
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A model of the signature Ω is an algebra that interprets sorts as sets and
symbols as partial operations in the usual way. Given such a model, a valuation
(for a context) is an interpretation of the variables in the context by elements
of the appropriate sorts; valuations extend to terms as usual. A valuation η
satisfies an existential equation (in the same context) iff both terms in the
equation are defined and equal under η; the satisfaction of implications is
defined correspondingly. A model of a specification S = (Ω,A) is a model of
Ω in which all implications in A are satisfied by all valuations for their context;
it is clear how this leads to a model functor Modeps : epSpecop → CAT.

Using the deduction system of Figure 3, we can now construct a lex category
Theps(S) from S: the objects of Theps(S) are pairs A = (Γ, φ) consisting of a
context Γ and an existential equation φ in that context. Morphisms (Γ, φ) →
(ȳ : t̄, ψ) are terms in context Γ � α : t̄ such that

φ `Γ ψα ∧ def α,

taken modulo existential equality deducible from φ in context Γ. The identity
on (Γ, φ) is represented by x̄, where Γ = (x̄ : s̄). Composition is defined
via simultaneous substitution of representing terms. This is a well-defined
operation thanks to the generalized congruence rule and the following meta-
theorem, which also shows that the composite is indeed a morphism:

Proposition 13 If φ and ψ are existential equations in context ȳ : t̄ and
Γ � α : t̄, then φ `ȳ:t̄ ψ implies φα ∧ def α `Γ ψα.

PROOF. Induction over the length of the derivation of φ `ȳ:t̄ ψ. 2

As expected, ‘concatenation’ of contexts (which may require variable renam-
ing) together with conjunction of existential equations defines finite products,
and

x̄ : (x̄ : s̄, φ ∧ α1 e
= α2) → (x̄ : s̄, φ)

is an equalizer of α1, α2 : (x̄ : s̄, φ) → B in Theps(S). Thus, Theps(S) is indeed
a lex category. It is easily seen that Theps extends to a functor

Theps : epSpec → Lex

(since signature morphisms act in the obvious way on contexts and terms, and
preserve deduction when further extended to existential equations). Similarly
as in [13], one easily verifies that one has an equivalence of categories

Modlex(Theps(S)) → Modeps(S)

(natural in S) and concludes, using the fact that representable functors are
models of Theps(S), that the deduction system of Figure 3 is complete.
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def(e · f)(x̄) ⇒x̄:s̄ (e · f)(x̄)
e
= e(f(x̄))

def e(f(x̄)) ⇒x̄:s̄ (e · f)(x̄)
e
= e(f(x̄))

}
f : s̄→ t function symbol,
e : t→ u embedding;

def(f · d̄)(x̄) ⇒x̄:v̄ (f · d̄)(x̄) e
= f(d̄(x̄))

def f(d̄(x̄)) ⇒x̄:v̄ (f · d̄)(x̄) e
= f(d̄(x̄))

}
f function or predicate symbol,
d̄ : v̄ → s̄ embeddings;

true ⇒x:s e(d(x))
e
= (e ◦ d)(x), d : s→ t, e : t→ u embeddings;

true ⇒x:s ids(x)
e
= x, s sort;

true ⇒x̄:s̄ def f(x), f : s̄→ t total function symbol;

e(x)
e
= e(y) ⇒x:s, y:s x

e
= y, e : s→ t embedding.

Fig. 4. Axioms associated to an enriched Casl signature

It is straightforward to translate an enriched Casl signature Σ into an equa-
tional partial specification Spec(Σ) = (Ω,A): the sorts in Ω are the sorts of
Σ; the symbols in Ω are the function and predicate symbols of Σ, where the
range of all predicate symbols is the ‘sort’ (), and the embedding symbols
with the obvious unary profiles. The axioms are given in Figure 4 (note: to-
tality of embedding symbols is a consequence of the axiom for composition of
embeddings). This obviously extends to a functor

Spec : enrCASLsign → epSpec.

It is easily verified that Modeps ◦ Specop is naturally isomorphic to Modenr.

Remark 14 The translation functor Spec can be modified to retain predi-
cates and include an elementhood predicate and partial projection functions
for subsorts, thus providing an extension to enriched Casl of the existing
embedding of the Casl logic SubPFOL= (subsorted partial first-order logic
with equality) into PFOL= (partial first-order logic with equality) [12].

Putting the two translations together, we have a representation

Thenr := Theps ◦ Spec : enrCASLsign → Lex

of enriched signatures as lex categories.

Theorem 15 Thenr reflects equivalences.

The proof relies on two statements (Lemmas 17 and 18 below) concerning
deduction in Spec(Σ) = S:

Definition 16 A (multi-)term α in S is said to reduce to an embedding d (list
d̄ of embeddings) in Σ if all symbols in α are embeddings, and their composite
is d (d̄), with the composite of an empty chain of embeddings taken to be the
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identity. In this case we write α � d (α � d̄). Reduction to a function or
predicate symbol f in Σ (α � f) is defined analogously, using also the left
and right actions of the sort category.

Lemma 17 Let x̄ : s̄� α, β : t, and let h : s̄→ t be a symbol in S such that

def α `x̄:s̄ β
e
= h(x̄).

Then β � h.

PROOF. Call an existential equation α1
e
= α2 reductively equivalent if, for

each a ∈ Ω, α1 � a is equivalent to α2 � a. The set of reductively equivalent
equations is closed under application of the deduction rules of Figure 3 (with
the axioms given in Figure 4). Thus, since def α is reductively equivalent, so
is β

e
= h(xw); this implies the claim. 2

Lemma 18 If
true `x̄:s̄ def f(x̄)

in S for a function symbol f : s̄→ t in Σ, then f is a total symbol.

PROOF. Call an existential equation φ leaf-total if, whenever a term of the
form g(β), where g is a function symbol and β � d̄ for a list d̄ of embeddings,
occurs as a subterm in φ, then g · d̄ is a total symbol. The set of leaf-total
equations is closed under deduction. Thus, def f(x̄) as in the statement is
leaf-total, which implies the claim. 2

In a nutshell, this means that the only terms that are provably equal to symbols
are the obvious candidates, and that only total function symbols are provably
total.

Remark 19 In this context, it is interesting to note that, even for standard
Casl signatures, there are provably total terms that cannot be expressed
using only total function symbols. Consider the Casl specification

spec Sp =
sorts s < t ;

u, v < w

ops c : u;
c : v ;
f : w →? t ;
f : u →? s ;
f : v → t ;
g : s → s
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The term () � g(f(c)) : s is provably defined, but can only be expressed using
the partial profile f : u→? s. The reason for this phenomenon appears to be
the absence of intersection types in Casl.

PROOF (Theorem 15)

Let σ : Σ1 → Σ2 be a morphism of enriched signatures such that Thenr(σ) is
an equivalence.

σ is isomorphism-dense: Let s be a sort in Σ2. Then there exists an iso-
morphism α : (x : s, true) → Thenr(σ)(B) for some object B of Thenr(Σ1).
Lemma 17 implies that both α and its inverse reduce to embeddings, so that
s is isomorphic to an object of the form σ(t) in the sort category of Σ2.

σ is faithful: Let f, g : s̄→ t be function symbols in Σ1 (predicate symbols and
embeddings are treated analogously) such that σ(f) = σ(g). Then by fullness
of Thenr(σ), the morphism

x̄ : (x̄ : s̄, def f(x̄) ∧ def g(x̄)) → (x̄ : s̄, def f(x̄))

in Thenr(Σ1) is an isomorphism, the inverse of which is necessarily x̄. Thus,
we have morphisms

f(x̄), g(x̄) : (x̄ : s̄, def f(x̄)) → (z : t, true)

in Thenr(Σ1). By faithfulness of Thenr(σ), these morphisms are equal, i.e.

def f(x̄) `x̄:s̄ f(x̄)
e
= g(x̄).

This implies f = g by Lemma 17.

σ is full on embeddings: Let e : σ(s) → σ(t) be an embedding in Σ2. By
fullness of Thenr(σ), there exists a morphism

α : (x : s, true) → (y : t, true)

in Thenr(Σ1) such that Thenr(σ)(α) = e, i.e.

`x:σ(s) σ(α)
e
= e(x).

By Lemma 17, σ(α) � e; hence, α � d for some embedding d : s → t, and
σ(d) = e.

σ is full on symbols: Let f : σ(s̄) → σ(t) be a function symbol in Σ2

(predicate symbols are treated analogously). Let Γ = (x̄ : σ(s̄)), and let
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A = (Γ, def f(x̄)). By isomorphism-density of Thenr(σ), we have an isomor-
phism β : A→ Thenr(σ)(B) in Thenr(Σ2) for some B = (ȳ : ū, φ) in Thenr(Σ1).
By Lemma 17, β must be equal to a list of embeddings. Thus, by fullness of
σ on embeddings, β = σ(d̄)(x̄) for some list d̄ : s̄→ ū of sort isomorphisms.

The morphism

f(x̄) ◦ β−1 : Thenr(σ)(B) → (z : σ(t), true)

has a preimage α : B → (z : t, true) under Thenr(σ). Then σ(α)β = f(x̄) as
morphisms A→ (z : σ(t), true), i.e.

def f(x̄) `Γ f(x̄)
e
= σ(α)σ(d̄)(x̄),

so that σ(αd̄(x̄)) � f (where now x̄ : s̄) by Lemma 17. This implies αd̄(x̄) � g
for some symbol g, and σ(g) = f .

σ reflects totality: If f : s̄ → t is a function symbol such that σ(f) is total,
then in Thenr(Σ2) we have

x̄ : (x̄ : σ(s̄), true) → (x̄ : σ(s̄), def σ(f)(x̄)),

and so by fullness of Thenr(σ),

x̄ : (x̄ : s̄, true) → (x̄ : s̄, def f(x̄))

is a morphism in Thenr(Σ1), which implies `x̄:s̄ def f(x̄). By Lemma 18, f is
total. 2

By Theorems 12 and 15, Modenr reflects equivalences. Since it is trivial to
show that a signature morphism σ is bijective on sorts if Modenr(σ) is an
isomorphism, this implies

Corollary 20 Modenr is definitionally complete.

In particular, we now have a necessary and sufficient criterion for amalgama-
bility in CASLsign:

Corollary 21 A cocone in CASLsign is amalgamable iff its image under
Enr is a colimit in enrCASLsign.

8 Static Analysis via Enriched Signatures

We are now ready to translate the amalgamation conditions that appear in
the rules for unit application and amalgamation in the extended static se-
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mantics to entirely static conditions. To this end, we assume that we have
a cocomplete category EnrSign of enriched signatures with a model functor
Modenr : EnrSignop → CAT which has the amalgamation property and
is definitionally complete, and a functor Φ : Sign → EnrSign such that
Modenr ◦ Φop and Mod : Signop → CAT are naturally isomorphic. For the
standard Casl institution, these data have been constructed in Section 6,
with definitional completeness proved in Section 7.

Recall that the amalgamation conditions of Section 4 required diagrams to
ensure amalgamability for certain extensions, which was defined as unique
extendability of coherent families of models (and their morphisms). By the
assumption on the model functors, this requirement is equivalent to the corre-
sponding statement for the translations of the diagrams via Φ. By the amalga-
mation property, a D-coherent family of models for a diagram D in EnrSign
is essentially the same as a model of the colimit signature colimD. Thanks to
definitional completeness, we thus have:

Proposition 22 Let D′ be a diagram in EnrSign that extends D. D ensures
amalgamability for D′ iff the induced morphism colimD → colimD′ is an
isomorphism.

This condition can be checked by means of a factorization property in the
cases of interest here:

Definition 23 Let A be a category, and let D′ : I′ → A be a diagram that
extends D : I → A. Then D covers D′ if, for each j ∈ Ob I′, the sink of all
D′(m) : D(i) → D′(j), where i ∈ Ob I and m : i→ j in I′, is an episink.

Proposition 24 Let D and D′ be diagrams in a cocomplete category, where
D′ extends D. If D covers D′, then the induced morphism colimD → colimD′

is an isomorphism iff the colimit cocone for D extends to a cocone for D′.

PROOF. Let f denote the induced morphism colimD → colimD′. If f is an
isomorphism, then the extension D′ → colimD is obtained by composing the
colimit cocone for D′ with f−1. Conversely, if ν : D′ → colimD extends the
colimit κ : D → colimD, then ν factors through the colimit µ : D′ → colimD′

by a morphism g : colimD′ → colimD. Since κ is an episink, gf = id. The
covering condition ensures fν = µ, so that fg = id, since ν = gµ and µ is an
episink. 2

Remark 25 In case Modenr has the amalgamation property, but fails to be
definitionally complete, the conditions above still provide a sufficient amal-
gamability criterion (more precisely: the criterion given in Proposition 22 is, in
the weaker setting, sufficient but not in general necessary, while Proposition 24
remains unaffected).
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The covering condition is satisfied when amalgamability is checked in the rules
of the extended static semantics in the two cases that correspond to Casl con-
structs: unit application, where the diagram is extended by a selected pushout
(cf. Section 3), and Casl amalgamation, where the diagram is extended by a
sink consisting of two inclusions of standard Casl signatures into their union.
The factorization condition concerns then the translation under Φ of a sink
(τ1, τ2) in CASLsign, which in both cases yields an episink (Φ(τ1),Φ(τ2)) in
enrCASLsign:

Φ(D(i1))
Φ(τ1)- Φ(Σ) �

Φ(τ2)
Φ(D(i2))

@
@

@
@µi1 R 	�

�
�

�

µi2

colim Φ ◦D

θ

?

............

(3)

(D denotes the original diagram in CASLsign, and the µi denote the colimit
injections in enrCASLsign).

Example 26 The simple union of sort preorders presented in Example 4,
Diagram (1), fails to admit a factorization as above: the colimit will have two
different sort embeddings s→ v as depicted in Diagram (2). Thus, the above
diagram specializes to

s - t

u - v

-

s - t

@
@R

u
?

- v
?

�

s t

u
?

v
?

S
S
S
Sw /�

�
�
�

s - t

@
@R

@
@R

u
?

- v
?

?

..............

—

and it is clear that the morphism indicated by the dotted arrow fails to exist.

Thus we have essentially reduced the amalgamation problem to proving the
existence of the factorizations required in the above proposition.

In order to provide a construction for the factorization θ in enrCASLsign,
we note additionally that in the two cases of interest the images of Φ(τ1)
and Φ(τ2) jointly generate Φ(Σ) (categorically: (Φ(τ1),Φ(τ2)) is an extremal
episink), i.e. that each symbol in Φ(Σ) can be built up from symbols com-
ing from the Φ(τi) by means of the operations defining enriched signatures
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(composition and identities, left and right actions), and the totality predicate
is the smallest one with the property that the τi preserve totality. It is now
clear how θ has to be defined if it exists, namely by extending the effect of
µi1 and µi2 to composite symbols (e.g., θ(τ1(e) · τ2(f)) = µi1(e) · µi2(f)). The
task that remains is to check whether this yields a well-defined map (which
is, then, automatically a signature morphism). This requires a calculus for
proving equality of morphisms and symbols in the colimit; see [25]. Due to the
way enriched signatures are defined, this problem is at least as hard as the
corresponding one for colimits of left cancellable categories, which is in fact
shown to be undecidable in general, but decidable by a polynomial algorithm
in practically relevant cases, see [25].

Remark 27 Using coproducts of signatures, the factorization condition for
sinks is, in fact, easily reducible to the case where D′ extends D by a single
new morphism. It is easy to check that coproducts of standard Casl signa-
tures are preserved by the representation functor to enriched Casl signatures.
Therefore, in the cases of interest as depicted by Diagram (3), one may always
replace D by a diagram D+ extending D by a new node i for the coproduct of
D(i1) and D(i2) together with edges for the coproduct injections; preservation
of coproducts implies that the colimits of Φ◦D and of Φ◦D+ coincide. Let then
τ : D+(i) → Σ be the factorization of the sink (τ1, τ2) through the coproduct.
Φ(τ) is an (extremal) epimorphism iff (Φ(τ1),Φ(τ2)) is an (extremal) episink.
Now the colimit injection µi : Φ(D+(i)) → colim Φ ◦ D+ factors (µi1 , µi2)
through the coproduct Φ(D+(i)) of Φ(D(i1)) and Φ(D(i2)). Therefore, the
factorization condition for the sink as depicted by Diagram (3) is equivalent
to the existence of a factorization θ for µi through Φ(τ):

Φ(D+(i))
Φ(τ)

- Φ(Σ)

@
@

@
@µi R

colim Φ ◦D+

θ
?

...........

This simplification is exploited in [25].

Remark 28 In the construction of a non-generative static semantics for unit
application (cf. Section 4), the above machinery provides an easy criterion
for the equivalence of two instantiations: let U be a parametrized unit over
τ : Σ1 → Σ2. Two actual argument models are considered to be (partially)
equivalent if they reduce (via fitting morphisms σi : Σ1 → D(ji), i = 1, 2,
where D denotes the present context diagram with nodes j1, j2 given by the
extended static analysis of the respective argument terms) to the same model
of the parameter signature Σ1. This will be the case for all pairs of models
that appear in D-coherent families if

µj1 ◦ Φ(σ1) = µj2 ◦ Φ(σ2),
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where µ is the colimit cocone for Φ◦D. In this case, we can use the same edge
of the diagram scheme to represent τ in both applications of U ; this has the
effect that the two results with signatures Σ1

R and Σ2
R share to exactly the right

degree via the maps Σ2 → Σi
R, i = 1, 2, that appear in the defining pushouts.

The resulting semantics would capture all the aspects of ‘non-generativity’
that can be detected statically, without considering the implications of the
actual semantic model identity.

9 Conclusions and future work

We have used a small and modified but quite representative subset of Casl
architectural specifications to present and discuss its complete semantics given
in an institution-independent way. Besides the basic static and model seman-
tics, we have laid out an extended static analysis, where sharing information
between models is stored as a diagram of signatures. This has allowed us to for-
mulate the required amalgamability conditions ‘almost’ statically, i.e. without
referring to particular models constructed. Given a representation (preserving
the model categories) of the underlying institution in one that has the amal-
gamation property, these conditions can be replaced by literally static ones.
Moreover, in the case that also the converse of the amalgamation property
holds, the static conditions may in a suitable sense be regarded as ‘complete’
w.r.t. the model-theoretic ones.

The results presented here are independent of the logical structure of institu-
tions — sentences and satisfaction do not play any explicit role here (except
for being used implicitly in basic specifications, of course). However, the sen-
tences become relevant as soon as we discuss further issues of verification in
architectural specifications (represented here by the remaining fitting condi-
tion in the semantics of unit applications). As proposed in [24], formal proof
obligations can be extracted from such conditions using colimits of specifica-
tion diagrams, but only if the underlying institution has the amalgamation
property. The technique proposed here should allow us to circumvent this re-
quirement: specification diagrams can be translated to the enriched signature
category and put together there, opening a way also for the development of
tools supporting validation and verification of Casl (architectural) specifica-
tions.

Applying this semantics to the case of the Casl institution required the con-
struction of a representation of the Casl institution (the extension to sen-
tences, disregarded here, is straightforward) in enriched Casl, an institution
with a category of enriched signatures that satisfies the amalgamation property
(and also its converse). This representation carries the additional benefit of
making a number of results (e.g. concerning normal forms and proof systems)
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about institution-independent specification languages applicable to Casl.

In more detail, we have modified Reynolds’ approach [35] to subsorting via
sort categories by using actions of the sort category on function and predicate
symbols. In this way we elegantly deal with the problems of both overload-
ing and amalgamation. Moreover, the associated logic admits a reduction to
partial conditional equational logic. For the latter, we provide a sound and
complete proof system, extending and simplifying the work of [13].

Typically, the use of enriched Casl will be as follows. Specifications are writ-
ten in ordinary Casl. In situations where the user inputs a certain combina-
tion (colimit) of signatures (e.g. when writing an instantiation of a parame-
terized specification), the natural requirement will be to check whether this
combination remains a colimit in the category of enriched Casl signatures,
thus guaranteeing amalgamability of models. At this stage, enriched Casl
remains completely hidden from the user. In contrast to this, there are also
situations where a combination of signatures (colimit) is automatically pro-
duced by a tool (e.g. during a proof in a development graph or during static
analysis of architectural specifications). In these situations, it is advisable to
use the properly enriched signatures that may crop up as intermediate results
rather than to reject them immediately. Theorem proving in the enriched
Casl logic is eased by the fact that this logic can be embedded into partial
first-order logic with equality in much the same way as the Casl logic. Algo-
rithms related to the actual computation of colimits of enriched signatures (a
prerequisite for the development of tools for architectural specifications and
proof support) are discussed in [25].

Future lines of research include the generalization of the techniques devel-
oped in this work to arbitrary institutions, resulting in particular in a generic
procedure for ‘making institutions amalgamable’. It appears that institutions
where finite amalgamation fails fall into two classes — one where preservation
of pushouts fails (with the Casl institution as an example), and one where
preservation of initial objects (and coproducts) fails. The institutions with un-
named universes mentioned in the introduction belong to the latter class. It
is plausible to assume that these institutions can — in analogy to the exten-
sion of unsorted to multisorted logic — be made amalgamable by introducing
‘multiple universes’.

At a level that stays closer to Casl-related problems, one may wonder whether
the techniques applied here work for derived signature morphisms, i.e. ones
that may map symbols to arbitrary terms, as well (or even for the yet more
general derived signature morphisms discussed in [7]). The first complication
that arises here is that, in order to ensure cocompleteness of the signature
category, one will have to include axioms of some limited form (at least strong
equations) as constituents of generalized signatures. It is, then, easy to find
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a sufficient criterion for amalgamability of cocones by means of an encoding
of such generalized signatures as equational partial specifications in much the
same sense as above. However, it is an open problem how to obtain a criterion
that is also necessary, i.e. how to find an intermediate step similar to the
enriched signatures defined above that allows one to also establish definitional
completeness. Furthermore, the notion of derived signature morphism itself
requires, in a setting with partial functions, rather more care than usual;
cf. [41].

We conjecture that not only the amalgamation property, but also the Craig
interpolation property (in the weakened form valid in multisorted logic [9]),
which fails in standard Casl, holds in enriched Casl. This property, which
seems to be related to amalgamation in some way [37], is required by the
institution-independent proof calculus for ASL-like specifications [10].
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