
Bialgebras for Structural Operational Semantics:
an Introduction

Bartek Klina,b,1

aUniversity of Warsaw, Faculty of Mathematics, Informatics and Mechanics, Banacha 2, 02-097
Warsaw, Poland

bUniversity of Cambridge, Computer Laboratory, William Gates Bldg., 15 JJ Thomson Avenue,
Cambridge CB3 0FD, UK

Abstract

Bialgebras and distributive laws are an abstract, categorical framework to study various
flavors of Structural Operational Semantics. This papers aims to introduce the reader
to the basics of bialgebras for operational semantics, and to sketch the state of the art
in this research area.

1. Introduction

Structural Operational Semantics (SOS) is one of the most popular frameworks for
the formal description of programming languages and process calculi. It has become the
formalism of choice for a clear and concise presentation of many ideas and formalisms
(see [3] for examples), and it is a viable option for the description of fully grown pro-
gramming languages [38].

In the simplest and most well-studied form of SOS [1], the semantics of processes is
described by means of nondeterministic labeled transition systems (LTSs), induced from
inference rules following their syntactic structure. For example, the rule

x a→ x′ y ā→ y′

x||y τ→ x′||y′

used in the definition of the well-known process calculus CCS [37], means that if a process
x can make a transition labeled with an atomic action a, and if y can make a transition
labeled with a corresponding action ā, then the composite process x||y can combine the
two transitions into one labeled with the label τ .

Already from the original paper on SOS ([40], reprinted as [41]) it was clear that
simple LTSs are only one kind of dynamic systems worth considering, and that to model
different computational paradigms one needs to study transition systems with state,
environments, etc. Later, also probabilistic, stochastic, timed and other kinds of systems
were defined in various flavors of SOS. Although each of these flavors is a little different,

Email address: klin@mimuw.edu.pl (Bartek Klin)
1This work was supported by EPSRC grant EP/F042337/1.

Preprint submitted to Elsevier March 5, 2011

they all share a common underlying theme: the interplay between the structure (syntax)
and the dynamics (behavior) of systems.

Although the latter expression might sound a little vague, in the late 1990s it has
found an elegant and general formalization with the use of basic category theory. The
main conceptual step was made with the development of universal coalgebra, a general
categorical approach that described several different kinds of transition systems in a
uniform way. Since syntax has traditionally been modeled in the dual framework of uni-
versal algebra, with the benefit of hindsight it seems natural that the two theories should
somehow be combined to explain the various flavors of SOS. This indeed happened in the
seminal paper [54] where, building upon earlier initial ideas of [44], SOS specifications
were formalized as distributive laws of syntax over behavior, both modeled as endofunc-
tors on the same category, and models of specifications were defined as bialgebras for
these laws.

More specifically, it was shown in [54] that SOS specifications of LTSs that are in the
so called GSOS format [4], correspond to a certain type of distributive laws of functors
that model syntax over a functor that models the behavior of LTSs. The main prop-
erty of GSOS specifications, that bisimilarity on LTSs induced from them is always a
congruence, was formulated and proved at the abstract level of distributive laws. Since
the bialgebraic framework is parametrized by the notions of syntax and behavior, this
opened a possibility to understand well-behaved SOS formalisms for other kinds of sys-
tems in a uniform manner. This has indeed happened since, and several novel, concrete
specification formats such as probabilistic or stochastic GSOS have been derived by anal-
ysis of the corresponding abstract distributive laws. Although much remains to be done,
the bialgebraic framework has a good claim to be the main abstract approach to SOS.
Furthermore, bialgebras have been used for an abstract understanding of ideas seemingly
unconnected to SOS, such as stream equations or regular languages.

The purpose of this paper is to provide a gentle introduction to the basic framework
of distributive laws for SOS, and a survey of the current state of the art in the area. We
shall define a few types of distributive laws, from simple distributive laws of endofunctors
over endofunctors, to more complex GSOS and coGSOS laws, to the general case of
distributing monads over comonads. For concrete kinds of transition systems, most
of these types correspond to progressively more permissive formats of well-behaved SOS
specifications; to simplify the presentation, we shall concentrate on the very simple stream
systems, a kind of automata with deterministic output and no input at all.

After reading this expository paper, the reader should be prepared (and, hopefully,
motivated) to study the field of bialgebra in more depth. For further reading, the author
recommends to begin with [44, 54] and perhaps [52] to see how the ideas originally
developed, Chapter 3 of [2] for a thorough but gentle exposition, and [34] for a more
abstract categorical perspective.

The structure of the paper is as follows: after Section 2 of preliminaries about algebras
and coalgebras, further development is motivated in Section 3 by a few concrete examples
related to stream systems. Distributive laws are initially motivated not by a study of
inference rules but by well-behaved definitions of operations on infinite streams, but
stream SOS rules soon naturally appear as an additional benefit. In Section 4, the
examples of the preceding section are cast in a general setting of simple distributive
laws of endofunctors over endofunctors, and a basic theory of such laws is developed,
up to an abstract formulation of the congruence property of observational equivalence.

2

Section 5 focuses on the world of stream systems again, and provides a concrete, rule-
based presentation of simple distributive laws for such systems.

Since simple laws of Section 4 are not expressive enough to cover all examples of
interest, in Section 6 more complex types of laws are introduced, motivated by further
examples of operations on stream systems. Section 7 presents concrete rule formats
obtained so far by analysis of distributive laws for various kinds of systems, and Section 8
lists other relevant work related to bialgebras and their applications to SOS.

2. Algebras and Coalgebras

The reader is assumed to be familiar with basic notions of category theory such as
categories, functors and natural transformations. A standard reference for these is [35].

2.1. Syntax via algebras
An algebraic signature Σ is a collection of operation symbols {fi | i ∈ I} where

each fi has an arity ni ∈ N. A Σ-algebra with carrier set X is a map
∐
i∈I X

ni → X,
and therefore a signature Σ shall be identified with the functor ΣX =

∐
i∈I X

ni on the
category Set of sets and functions. In general, given any endofunctor Σ on a category C:

Definition 1. A Σ-algebra is an object X in C together with a map g : ΣX → X. A
Σ-algebra morphism from g : ΣX → X to e : ΣY → Y is a map f : X → Y such that
e ◦ Σf = f ◦ g. Σ-algebras and their morphisms form a category Σ-alg.

There is an obvious forgetful functor UΣ : Σ-alg→ C.
If Σ has an initial algebra a : ΣA→ A, then for any algebra g, the unique algebra map

f from a to g is called the inductive extension of g. The principle of defining maps from
the carrier of an initial Σ-algebra by providing another Σ-algebra is called induction.

For Σ on Set arising from a signature, the set Σ∗0 of closed Σ-terms carries an initial
Σ-algebra structure, and the inductive extension of an algebra g : ΣX → X is the unique
interpretation of closed Σ-terms in g defined by structural induction.

More generally, the set of Σ-terms over a set of variables X is denoted by Σ∗X. It is
easy to see that Σ∗ extends to a functor on Set.

2.2. Behavior via coalgebras
A detailed description of the coalgebraic approach to system dynamics is beyond

the scope of this paper; the interested reader can consult [45] for a thorough introduc-
tion. This section only briefly recalls basic notions and results that will be useful in the
following.

Fix any endofunctor B on a category C, called a behavior functor in this context.

Definition 2. A B-coalgebra is an object X in C together with a map h : X → BX. A
B-coalgebra morphism from h : X → BX to k : Y → BY is a map f : X → Y such that
Bf ◦ h = k ◦ f . B-coalgebras and their morphisms form a category B-coalg.

3

There is an obvious forgetful functor UB : B-coalg→ C.
If B has a final coalgebra z : Z → BZ, then for any coalgebra h, the unique map f

from h to z:

X
h //

f

��

BX

Bf

��
Z z

// BZ

(1)

will be called the coinductive extension of h. This principle of defining maps into the
carrier of a final B-coalgebra by providing another B-coalgebra is called coinduction.

For C = Set, given any coalgebra h : X → BX, we say that x, y ∈ X are observa-
tionally equivalent if they are equated by some coalgebra morphism from h. If B admits
a final coalgebra, this is equivalent to saying that x and y are equated by the coinductive
extension of h. In this case, observational equivalence on h is the kernel relation of the
coinductive extension of h.

In much of the coalgebraic literature (see e.g. [45]), the notion of coalgebraic bisimilar-
ity, based on spans of coalgebra morphisms, is used instead of observational equivalence.
These two notions are equivalent if the behavior functor B preserves weak pullbacks;
see [51] for a comparison of these and other coalgebraic notions of equivalence.

Example 3. A stream system for an alphabet L is a set X of states together with a
transition function h : X → L ×X, i.e., it is a coalgebra for the endofunctor L × − on
Set. When h is understood from context, we shall use the graphical transition notation
x a→ x′ for h(x) = (a, x′).

The set Lω of infinite streams of elements of L, together with the isomorphism z =
〈hd, tl〉 : Lω → L× Lω, where:

hd(a1a2a3a4 · · ·) = a1 tl(a1a2a3a4 · · ·) = a2a3a4 · · · ,

forms a final (L × −)-coalgebra. The coinductive extension of a stream system maps
each state to the infinite stream it produces over time; for example, if L = {a, b, c},
X = {x, y, z} and h is described by the transition graph:

x
a

((y
b

hh z c
zz

,

then the coinductive extension of h maps x to ababab · · · , y to bababa · · · and z to
cccccc · · · . As a result, two states in a stream system are observationally equivalent if
they produce the same stream.

See [46] for a detailed coalgebraic analysis of stream systems.

Example 4. A Mealy machine for an input alphabet K and output alphabet L is a set
X of states together with a transition function t : X × K → X × L. Similarly as for
stream systems, we shall write x a|b→ y for t(x, a) = (y, b) when t is understood from
context. Mealy machines correspond to coalgebras for the endofunctor (L×−)K on Set.

A function f : Kω → Lω is causal if for all n ∈ N, the nth element of f(α) depends
only on the first n elements of α ∈ Kω. The set Γ = {f : Aω → Bω | f is causal } carries
a final Mealy coalgebra as shown in [47].

4

Two states in a Mealy machine are behaviorally equivalent if they have the same
input-output behavior; see [47] for more details and a thorough presentation of the coal-
gebraic perspective on Mealy machines.

Example 5. A labeled transition system (LTS) is a triple (X,L, →) where X is a set
of states, L a set (alphabet) of labels, and → ⊆ X × L×X a transition relation. One
usually writes x a→ y for (x, a, y) ∈ →, and x 6 a→ if there are no y ∈ X such that
x a→ y. An LTS is image-finite if for each x ∈ X and a ∈ L there are only finitely many
y ∈ X such that x a→ y.

LTSs labeled by L can be seen as coalgebra for the functor (P−)L, and image-finite
LTSs for the functor (Pω−)L, where P is the (covariant) powerset, and Pω the finite
powerset functor on Set. P does not admit final coalgebras for cardinality reasons, but
a final Pω-coalgebra exists. Two states in an LTS are observationally equivalent if and
only if they are bisimilar; see e.g. [45] for more details on the coalgebraic understanding
of LTSs.

Example 6. A finitely supported probability distribution on a set X is a function ν :
X → [0, 1] such that ν(x) = 0 for all but finitely many x, and

∑
x∈X ν(x) = 1. A

(reactive) probabilistic transition system (PTS) is a triple (X,L, µ), where X is a set of
states, L a set of labels, and the transition function µ : X × L × X → [0, 1] is such
that µ(x, a,−) is either the constantly zero function or a finitely supported probability
distribution on X, for every x ∈ X and a ∈ L.

PTSs are in one-to-one correspondence with coalgebras for the endofunctor (1 +
Dω−)L, where DωX is the set of all finitely supported probability distributions on X.
This functor admits a final coalgebra. Two states in a PTS are observationally equiva-
lent if and only if they are related by a probabilistic bisimulation; see [9] for a detailed
coalgebraic treatment of PTSs.

Several other kinds of transition systems can be modeled as coalgebras for various
behavior functors; see e.g. [45] for further examples.

3. Simple stream definitions and distributive laws: examples

In this section we shall see, on a few basic examples of operations on infinite streams,
how a simple form of distributive laws appears in certain coinductive definitions. The
additional structure present in these laws provides certain benefits, such as the presenta-
tion of definitions in terms of rules, or lifting stream systems to terms built of operations.
The purpose of this section is to illustrate these benefits on simple examples and thus
motivate the general development of Section 4. Later, in Section 5, the case of streams
and their definitions will be revisited in more generality.

3.1. Some coinductive definitions
Coinduction, i.e., the use of coalgebra finality as in (1), is often used to define oper-

ations on carriers of final coalgebras. We shall now illustrate this on a few very simple
examples of coinductively defined operations on infinite streams.

5

Example 7. Consider a simple alternating composition operation:

alt : (Lω)2 → Lω

acting on infinite streams as follows:

alt(a1a2a3a4 · · · , b1b2b3b4 · · ·) = a1b2a3b4 · · · (2)

To define alt formally by coinduction, one uses the finality of the coalgebra z = 〈hd, tl〉 :
Lω → L× Lω. To this end, pick an (L×−)-coalgebra structure on the set (Lω)2:

halt : (Lω)2 → L× (Lω)2 halt(α, β) =
(
hd(α) , (tl(β), tl(α))

)
, (3)

and define alt as the unique coalgebra morphism from halt to z:

(Lω)2 halt

//

alt

��

L× (Lω)2

idL×alt
��

Lω z

∼= // L× Lω.

Example 8. Assume that the set L comes equipped with a binary operator +, which
we shall call addition. Pointwise addition of infinite L-streams, ⊕ : (Lω)2 → Lω, is then
defined from an (L×−)-coalgebra:

h⊕ : (Lω)2 → L× (Lω)2 h⊕(α, β) =
(
hd(α) + hd(β) , (tl(α), tl(β))

)
,

again as the unique coalgebra morphism:

(Lω)2 h⊕ //

⊕
��

L× (Lω)2

idL×⊕
��

Lω z

∼= // L× Lω.

Example 9. Coinduction can also be used to define specific streams, seen as constant
(i.e. nullary) operations. For example, for any a ∈ L, the constantly a stream:

a = aaaaaaa · · · (4)

arises as the unique coalgebra morphism from ha:

ha : 1→ L× 1 ha(∗) = (a, ∗)

to z:

1
ha

//

a

��

L× 1

idL×a
��

Lω z

∼= // L× Lω.

6

Example 10. Examples as above can be combined in single definitions that provide
whole families of operations. For instance, Examples 7 and 9 can be combined in a single
coalgebra halt+L : ΣLω → L×ΣLω, where ΣX = X2 +L, that defines the operation alt
and a family of constants {a | a ∈ L} at the same time. The function halt+L is obtained
from halt and the ha by cases (note that L =

∐
a∈L 1):

halt+L(ιalt(α, β)) =
(
hd(α), ιalt(tl(β), tl(α))

)
halt+L(ιa(∗)) = (a, ιa(∗)) (for all a ∈ A),

where ιalt : (Lω)2 → Σ(Lω) and the ιa : 1 → Σ(Lω) are coproduct injections. It is easy
to see that the Σ-algebra on Lω obtained from halt+L by finality, can be in turn defined
from the algebras alt and the a by cases.

This is a particularly simple example, since the operations under definition do not
depend on one another. The same technique can also be used to provide mutually
dependent definitions of operations. For example, one can define two constant streams

g = abababab · · · h = babababa · · ·

by finality, with a coalgebra:

hgh : 2→ L× 2
hgh(ιg(∗)) = (a, ιh(∗))
hgh(ιh(∗)) = (b, ιg(∗)).

where ιh, ιg : 1→ 2 are the coproduct injections.

3.2. Distributive laws
All coalgebras used in the above examples are of a special, well-structured kind. The

values of halt on h⊕ on given streams α and β are obtained by first applying the functions
hd and tl to α and β, and then by suitable arrangement of the results of this application,
without any other use of α and β themselves. Formally, both halt and h⊕ factor through
the pointwise application of the final coalgebra z : Lω → L× Lω as follows:

halt = λaltLω ◦ (z × z) h⊕ = λ⊕Lω ◦ (z × z) (5)

where λaltLω , λ
⊕
Lω : (L× Lω)2 → L× (Lω)2 are defined by:

λaltLω (a, α, b, β) =(a, β, α)

λ⊕Lω (a, α, b, β) =(a+ b, α, β).

These maps λaltLω and λ⊕Lω are natural in arguments α and β, i.e., they merely rearrange
them without any further dependence on their values. Formally, this means that they
are components of natural transformations:

λalt , λ⊕ : (L×−)2 =⇒ L× (−)2

with components on any set X defined by:

λaltX (a, x, b, y) =(a, y, x)

λ⊕X(a, x, b, y) =(a+ b, x, y).

7

It is easy to check that these do form natural transformations. Transformations of this
shape are called distributive laws of the functor (−)2 over the functor L×−.

Somewhat trivially, the definition of ha in Example 9 can be understood in a similar
manner. Here, the relevant distributive law

λa : K1 = (L×−)0 =⇒ L× (−)0 = L×K1

(where K1 is the functor constant at the one-element set 1) has all components equal to
ha, and the factorization through the “pointwise” application of z is trivial:

ha = λaLω ◦ z0 = λaLω

(note that z0, the 0-th power of z, is the identity function on 1).
In Example 10, the combination of coalgebras to define multiple operations at the

same time arises from a similar combination of the corresponding distributive laws. The
joint definition of alt and the constants a arises from a distributive law defined by cases,
as λalt or λa:

λalt+L : Σ(L×−) =⇒ L× Σ− λalt+L
X (ιalt(a, x, b, y)) = (a, ιalt(y, x))

λalt+L
X (ιa(∗)) = (a, ιa(∗))

It is easy to check that, indeed, as in (5),

halt+L = λalt+L
Lω ◦ Σz.

3.3. Rules for stream definitions
Distributive laws that define simple operations on streams can often be conveniently

presented using inference rules. Consider for example the alternating composition op-
eration alt : (Lω)2 → Lω defined in Example 7. The definition (3) of the map
halt : (Lω)2 → L × (Lω)2, can be rephrased with the following family of statements,
one for each a, b ∈ L:

For each α, β ∈ Lω, if

hd(α) = a, hd(β) = b, tl(α) = α′, tl(β) = β′,

then
hd(halt(α, β)) = a, tl(halt(α, β)) = (β′, α′).

Using an arrow notation α a→ α′ to say that hd(α) = a and tl(α) = α′, and an inference
rule notation for implication, this can be rewritten as a family of rules:

x a→ x′ y b→ y′

(x, y) a→ (y′, x′)

for each a, b ∈ L, where x, x′, y, y′ are metavariables that denote streams.
When a whole collection of operations is defined at the same time, it is convenient

to mention the operation under definition in the rules. Here, tupling of streams on both
sides of the conclusion of the rule pertains to the operation alt under definition, and the
rule might be written down as:

x a→ x′ y b→ y′

alt(x, y) a→ alt(y′, x′)
8

Notice a slight subtlety here: formally, we use a family of rules, one for each pair
of labels a, b ∈ L, rather than a single rule where a, b are metavariables that represent
labels. The reason for this choice might not be evident in the above example, but consider
the definition of the pointwise stream addition operation ⊕ of Example (8), which can
similarly be presented as:

x a→ x′ y b→ y′

x⊕ y a+b→ x′ ⊕ y′.

Were this interpreted as a single rule with label metavariables a and b, we would need
to give a formal meaning to the expression a+ b in the conclusion label. It is technically
simpler to fix the value of a and b as labels in each rule, and interpret a + b at the
meta-level, as another element of L. Somewhat more elaborately, one might represent
the above as a family of rules:

x a→ x′ y b→ y′

x⊕ y c→ x′ ⊕ y′

where a, b, c range over L so that c = a+b. In the following, we shall avoid such pedantry
and consistently adopt the convention that all labels in each rule are fixed elements of L.

A constant a of Example 9 can be defined by a single rule with no premises:

a a→ a

Note that this is not a family of rules indexed by a ∈ A. This shows that one often needs
to explicitly say whether one represents a single rule, or a rule schema parametrized by
some labels. We shall, however, sometimes neglect to do this when no risk of confusion
arises, in particular when repeating rules for operations that have been defined previously.

With operations under definition mentioned in the rules, it is quite easy to write
down definitions for families of operations: usually it is enough to put the relevant rules
together. For instance, halt+L of Example 10 can be defined by rules:

x a→ x′ y b→ y′

alt(x, y) a→ alt(y′, x′)
(∀a, b ∈ L)

a a→ a b b→ b
· · · (6)

We have seen just a few examples of rule-based presentations of coinductive defi-
nitions. A more general and formal treatment is postponed until Section 5, where we
shall see that certain syntactic formats of inference rules correspond to various kinds of
distributive laws.

3.4. Behavior for closed terms
A rule-based presentation immediately suggests a notion of inference, i.e., a tree where

every node is an instance of a rule. For example,

a a→ a

b b→ b c c→ c

alt(b, c) b→ alt(c, b)
alt(a, alt(b, c)) a→ alt(alt(c, b), a)

is an inference based on the set of rules given in (6). A general notion of inference will
be formally defined in Section 5; for now, notice how rules induce a stream system on

9

the set of closed terms built of operation symbols alt and a (for a ∈ A). Indeed, one
may define t a→ t′ if and only if it is derivable by rules from (6). The resulting stream
system has e.g. the following transitions:

a a
zz

alt(a, b)
a --

alt(b, a)
b

mm alt(a, alt(b, c))
a ..

alt(alt(c, b), a)
c

nn (7)

Note how we have silently changed the meaning of operation names: alt is now
a term-building construct, i.e., a binary operation symbol in some algebraic signature,
rather than an operation on infinite streams. Similarly, a is now a constant symbol rather
than an infinite stream. Formally, equations (2) and (4) in Examples 7 and 9 should now
be understood as interpretations of operation symbols in a particular algebra for that
signature.

3.5. Lifting behavior to terms
The classical notion of inference easily extends to terms built over a nonempty set

of variables, provided that the variables come equipped with some stream transitions.
Formally, given a set of rules that define operations from a signature Σ, one might extend
a stream system h with a carrier X to a stream system with carrier Σ∗X, the set of Σ-
terms over X. In the extended system, for terms t, t′ ∈ Σ∗X, there is a transition t a→ t′

if and only if it is derivable from the set of premises {x b→ x′ | x b→ x′ in h}.
For example consider rules (6) for L = {a, b}. The stream system on X = {0, 1, 2}:

0 a
// 1

b
// 2

a

}}

induces a system with transitions, among others:

alt(0, 1) a // alt(2, 1) a // alt(2, 0)

a

��

alt(1, a) b // alt(a, 2) a // alt(0, a)

a

��
alt(0, 2)

a

OO

alt(1, 2)
b

oo alt(1, 0)
b

oo alt(a, 0)

a

OO

alt(2, a)
a

oo alt(a, 1)
a

oo

The example of Section 3.4 arises as a special case, where X is empty with the unique
stream system structure.

In some sense, coinductive definitions presented in terms of inference rules provide
a way to interpret the operations under definition not only on infinite streams, but on
an arbitrary stream system. Although terms built over states of a system h are not, in
general, interpreted as states of h again, their behavior is well defined by derivations, in
an extended stream system.

3.6. Initial vs. final semantics
The simple development of the examples we have seen so far provides two ways of

interpreting closed terms as infinite streams.

10

First, as shown in Sections 3.1 and 3.2, a distributive law such as λalt+L gives rise
to a coalgebra halt+L on the set ΣLω, for ΣX = X2 + L, the endofunctor corresponding
to the relevant signature of operations. Further, this gives rise to a Σ-algebra on the set
Lω of streams. Now, since the set Σ∗0 of closed Σ-terms carries an initial Σ-algebra, this
gives rise to a unique algebra morphism from Σ∗0 to Lω. In our example, the Σ-algebra
on Lω is given by equations (2) and (4), and this initial semantics maps, e.g., alt(a, b)
to abababab · · · .

On the other hand, the distributive law λalt+L, via its rule-based presentation from
Section 3.3, induces a stream system on Σ∗0 as described in Section 3.4. Since Lω carries
a final stream system, this gives rise to a unique coalgebra morphism, which again is a
function from Σ∗0 to Lω. In our example, by looking at the appropriate fragment (7)
of the term stream system, it is easy to see that e.g. alt(a, b) is again mapped to
abababab · · · by this final semantics.

In fact, the initial semantics and the final semantics coincide: the inductive exten-
sion of the algebra of operations on Lω equals the coinductive extension of the term
stream system induced by λalt+L. As we shall see in Section 4, this result holds for any
distributive law.

One consequence of this coincidence is that in the term stream system induced by a
distributive law, the behavioral equivalence relation is a congruence, i.e, it is preserved by
all operations in the language under definition. Indeed, recall that behavioral equivalence
is the kernel relation of the coinductive extension of the system (the final semantics), and
since that coinductive extension is also an algebra morphism (the initial semantics), its
kernel relation is a congruence.

Compositionality of behavioral equivalence might seem like a trivial observation in
our simple examples, but in more complex flavors of structural operational semantics,
it is one of the most useful application of distributive laws, as we shall see later in this
paper.

4. Simple distributive laws

We shall now cast the development of Section 3 in a more general setting, and present
a basic theory of simple distributive laws for an arbitrary behavior functor.

Definition 11. A simple distributive law of an endofunctor Σ over an endofunctor B
on the same category C is a natural transformation:

λ : ΣB =⇒ BΣ.

4.1. Algebras on coalgebras
For any coalgebra h : X → BX, a simple distributive law λ defines a B-coalgebra on

ΣX, denoted and defined by:

Σλ(h) : ΣX → BΣX Σλ(h) = λX ◦ Σh.

It is easy to see that this construction extends to an endofunctor Σλ on the category of
coalgebras B-coalg, acting as Σ on coalgebra morphisms. This functor is a lifting of Σ

11

to B-coalg, i.e., the diagram:

B-coalg
Σλ //

UB

��

B-coalg

UB

��
C

Σ
// C

commutes.
If z : Z → BZ is a final B-coalgebra, a Σ-algebra gλ : ΣZ → Z is defined as a unique

Σλ-algebra structure on z, i.e., a unique coalgebra morphism from Σλ(z) to z:

ΣZ
Σz //

gλ

��

ΣBZ
λZ // BΣZ

Bgλ

��
Z

∼=
z

// BZ.

(8)

In examples of Section 3, this is the algebra of operations on the carrier of a final coal-
gebra, defined by a distributive law.

4.2. Coalgebras on algebras
Dually, for any algebra g : ΣX → X, a distributive law λ defines a Σ-algebra on BX,

denoted and defined by:

Bλ(g) : ΣBX → BX Bλ(g) = Bg ◦ λX .

This extends to an endofunctor Bλ on the category of algebras Σ-alg, acting as B on
coalgebra morphisms. This functor is a lifting of B to Σ-alg, i.e., the diagram:

Σ-alg Bλ //

UΣ

��

Σ-alg

UΣ

��
C

B
// C

commutes.
If a : ΣA → A is an initial Σ-algebra, a B-coalgebra hλ : A → BA is defined as a

unique Bλ-coalgebra structure on a, i.e., a unique algebra morphism from a to Bλ(a):

ΣA
a
∼=

//

Σhλ

��

A

hλ

��
ΣBA

λA

// BΣA
Ba

// BA.

(9)

This shall be called the coalgebra induced by λ. In particular, if C = Set and a : ΣΣ∗0→
Σ∗0 is the initial algebra of closed Σ-terms, hλ provides coalgebraic behavior on closed
Σ-terms.

12

4.3. Bialgebras
For a simple distributive law λ : ΣB =⇒ BΣ, a λ-bialgebra is a Σ-algebra g : ΣX → X

together with a B-coalgebra h : X → BX with the same carrier, such that the following
pentagon commutes:

ΣX
g //

Σh

��

X
h // BX

ΣBX
λX

// BΣX.

Bg

OO

(10)

A λ-bialgebra morphism from ΣX
g // X

h // BX to ΣY
k // Y

l // BY is a
morphism f : X → Y in C that is a Σ-algebra morphism and a B-coalgebra morphism
at the same time, i.e., such that the diagram:

ΣX
g //

Σf

��

X
h //

f

��

BX

Bf

��
ΣY

k
// Y

l
// BY

commutes. Bialgebras thus form a category λ-bialg.
Recalling the definition of Σλ from Section 4.1, note that a Σλ-algebra is:

• a B-coalgebra h : X → BX, with

• a Σλ-algebra structure on h, i.e., a B-coalgebra morphism g from Σλ(h) to h.

It is easy to check that the latter condition on g is exactly the diagram (10), therefore
Σλ-algebras are exactly λ-bialgebras. This correspondence easily extends to Σλ-algebra
and λ-bialgebra morphisms, and together with a dual argument for Bλ-coalgebras we
obtain:

Proposition 12. There is an isomorphism of categories:

Σλ-alg ∼= λ-bialg ∼= Bλ-coalg.

�

Note that for any endofunctor on a category with a final object, the (necessarily
unique) algebra structure on the final object is a final algebra. Dually, (necessarily
unique) coalgebras on initial objects are initial coalgebras. Using the isomorphisms of
Proposition 12, it immediately follows that, for a simple distributive law λ : ΣB =⇒ BΣ:

• every final B-coalgebra extends (uniquely) to a final λ-bialgebra, and

• every initial Σ-algebra extends (uniquely) to an initial λ-bialgebra.

Note that the diagrams (8) and (9) define λ-bialgebras; the former is a final, the latter
an initial one. As a result, the B-coalgebra induced by λ is the coalgebraic part of an
initial λ-bialgebra.

13

Consider now the unique bialgebra morphism from the initial to the final one:

ΣA
a //

Σf

��

A
hλ //

∃! f

��

BA

Bf

��
ΣZ

gλ
// Z z

// BZ

where the top row is taken from (9), and the bottom from (8). Note that since a is an
initial Σ-algebra and z is a final B-coalgebra, f is at the same time initial semantics
(i.e. the inductive extension of gλ) and final semantics (i.e. the coinductive extension of
hλ). In the context of SOS, the most useful way to state this coincidence is the following
theorem, stated under the assumption that initial Σ-algebras and final B-coalgebras
exist:

Theorem 13. For any simple distributive law λ, the coinductive extension of the B-
coalgebra hλ induced by λ is an algebra morphism from the initial Σ-algebra. �

For C = Set, this implies that observational equivalence (i.e., the kernel relation of
the coinductive extension) on hλ is a congruence (i.e., the kernel relation of an algebra
morphism) on the initial algebra of closed Σ-terms.

5. Simple stream SOS

We shall now again concentrate on the case of stream systems, where BX = L ×X
for a fixed set L of labels, and see how simple distributive laws can be presented in terms
of inference rules, where the natural notion of a stream system inferred by a set of rules
corresponds to the coalgebra induced by a distributive law.

5.1. Simple stream SOS specifications
Let Ξ be a fixed infinite set of metavariables, ranged over by x, x′, y, y′, For an

algebraic signature Σ, a stream literal is an expression s a→ t, where s (called the source
of the literal) and t (the target) are Σ-terms with variables from Ξ, and a ∈ L is called
the label of the literal. A literal is closed if no variables occur in s or t. A stream rule
is an expression of the form

H

l
, where H is a set of literals called premises and l is a

literal called the conclusion. The source and target of a rule are the source and target of
its conclusion, respectively.

Definition 14. A simple stream SOS rule is a stream rule of the form:

x1
a1→ x′1 · · · xn

an→ x′n

f(x1, . . . , xn) b→ g(y1, . . . , ym)
(11)

where:

• f and g are operations in Σ of arity n and m respectively,

• x1, . . . , xn, x′1, . . . , x
′
n ∈ Ξ are pairwise distinct variables,

14

• yj ∈ {x′1, . . . , x′n} for each j = 1..m,

• b, a1, . . . , an ∈ L.

We shall say that a rule as above is a rule for the operator f ∈ Σ, and is triggered by the
tuple (a1, . . . , an) of labels.

Note that up to bijective renaming of variables, a simple stream SOS rule R can be
presented as a tuple:

R = (f, g, (a1, . . . , an), b, θ), (12)

comprising:

• operations f and g in Σ of arity n and m,

• the triggering tuple (a1, . . . , an) of premise labels,

• the conclusion label b ∈ L,

• a function θ : {1, . . . ,m} → {1, . . . , n} that determines the choice and order of
variables in the rule target.

Everything else in (11) is syntactic sugar.

Definition 15. A simple stream SOS specification for Σ is a set Λ of simple stream SOS
rules such that for each f ∈ Σ (of arity, say, n), and each tuple ~a = (a1, . . . , an) ∈ Ln,
there is exactly one rule in Λ for f that is triggered by ~a.

5.2. From simple stream SOS to distributive laws and back
Given a signature Σ and a set of labels L, a simple stream SOS specification Λ defines

a distributive law λ : Σ(L×−) =⇒ (L×−)Σ, as follows. For an arbitrary set X, we shall
define the value of the component function λX : Σ(L×X)→ L× ΣX on an argument

s = f((a1, x1), . . . , (an, xn)).

To this end, it is useful to write down s as

s = f[σ] (13)

where σ : {1, . . . , n} → L×X is defined by σ(i) = (ai, xi). To define λX(s), let

R = (f, g, (a1, . . . , an), b, θ)

be the unique rule for f in Λ that is triggered by (a1, . . . , an), presented as in (12); then
put

λX(s) = (b, g[π2 ◦ σ ◦ θ])
where π2 : L×X → X is the projection function, and notation analogous to (13) is used
on the right-hand side. Using the more syntactic presentation (11), this can be written
as

λX(s) = (b, t[x′1 7→ x1, . . . , x
′
n 7→ xn]), (14)

where b and t = g(y1, . . . , ym) are taken from R as in (11). Note that since {y1, . . . , ym} ⊆
{x′1, . . . , x′n}, the result of the above substitution on t is a well-defined element of ΣX.

15

Proposition 16. As constructed above, λ : Σ(A×−) =⇒ (A×−)Σ is a natural trans-
formation.

Proof. For any function g : X → Y , one needs to check that λY ◦ Σ(L × g) = (L ×
Σg) ◦ λX . To this end, pick any s = f((a1, x1), . . . , (an, xn)) ∈ Σ(L×X). Then

(L× Σg)(λX(s)) = (b, t[x′1 7→ g(x1), . . . , x′n 7→ g(xn)]),

where b and t come from the unique rule R for f triggered by (a1, . . . , an). Note that the
same rule R is picked in the calculation of λY (Σ(L× g)(s)) according to (14), as

(Σ(L× g)(s)) = f((a1, g(x1)), . . . , (an, g(xn)))

has the same principal operator f and the sequence of argument labels (a1, . . . , an) as s.
As a result, by (14),

λY ((Σ(L× g)(s))) = (b, t[x′1 7→ g(x1), . . . , x′n 7→ g(xn)])

hence λY ((Σ(L× g)(s))) = (L× Σg)(λX(s)). �

Every distributive law λ : Σ(L × −) =⇒ (L × −)Σ arises in this way from a simple
stream SOS specification. Indeed, for any f ∈ Σ of arity n and any ~a = (a1, . . . , an) ∈ Ln,
pick any set of 2n distinct variables x1, . . . , xn, x′1, . . . , x

′
n ∈ Ξ and consider a rule

x1
a1→ x′1 · · · xn

an→ x′n

f(x1, . . . , xn) b→ g(y1, . . . , ym)

where
(b, g(y1, . . . , ym)) = λX(f((a1, x

′
1), . . . , (an, x′n)))

for X = {x′1, . . . , x′n} ⊆ Ξ. Since by definition y1, . . . , ym ∈ X, this is a simple stream
SOS rule, and the collection of such rules for each f and ~a forms a simple stream SOS
specification. It is straightforward to check that λ arises from this specification as in (14).

5.3. Behavior for terms
Given a set Λ of stream rules, a proof is an upwardly branching tree of finite depth,

with nodes labeled by closed literals, such that if H is the set of labels of nodes directly

above a node with label l, then
H

l
is an instance of some rule R in Λ (i.e., it arises from

R by some substitution v : Ξ → Σ∗0). A closed literal l is provable from Λ if there is a
proof with the root labeled with l.

Proposition 17. If Λ is a simple stream SOS specification then for each s ∈ Σ∗0 there
exist unique a ∈ L and t ∈ Σ∗0 such that s a→ t is provable from Λ.

Proof. Straightforward induction on the structure of s. �

For a simple stream SOS specification Λ, the stream system hΛ on Σ∗0 defined by:

hΛ(s) = (a, t) where s a→ t is provable from Λ

is called the system inferred from Λ. This is a well-defined stream system by Proposi-
tion 17.

16

Proposition 18. For a distributive law λ presented by a simple stream SOS specification
Λ, the stream coalgebra hλ induced from λ coincides with the stream system hΛ inferred
from Λ.

Proof. Looking at the definition (9) of hλ, it is enough to show that the diagram

ΣΣ∗0
a
∼=

//

ΣhΛ

��

Σ∗0

hΛ

��
ΣBΣ∗0

λΣ∗0

// BΣΣ∗0
Ba

// BΣ∗0

(15)

commutes. To this end, take any s = f(s1, . . . , sn) ∈ ΣΣ∗0 and note that, by definition
of provability, s a→ t is provable from Λ if and only if for the (necessarily unique, by
Proposition 17) si

ai→ ti provable from Λ,

s1
a1→ t1 · · · sn

an→ tn

s a→ t

is an instance of a rule in Λ. On the other hand, by the definition of λ from Λ, the latter
is equivalent to saying that

λΣ∗0(f((a1, t1), . . . , (an, tn))) = (a, t);

from this (15) follows. �

From Theorem 13 we thus obtain:

Corollary 19. For any simple stream SOS specification Λ, observational equivalence on
the stream system inferred from Λ is a congruence. �

6. More distributive laws

The framework of simple distributive laws has rather limited expressive power. There
are many operations on final coalgebras, and well-behaved coalgebra structures on initial
algebras, that cannot be presented via simple distributive laws. In this section we shall
see a few examples based on stream systems, and present a list of progressively complex
types of distributive laws that are able to cover these examples: copointed, pointed and
bipointed laws, GSOS and coGSOS laws. A version of Theorem 13 can be proved for
each of these types, but there is little need to prove each of them separately, as all types
of laws are subsumed by a single one: distributive laws of monads over comonads. Note
that it is still useful to distinguish the more restrictive types of laws since, as it turns
out, distributive laws of monads over comonads in general lack an easy presentation in
terms of rules, even in the relatively simple case of stream systems. Also, it should be
interesting to observe how different types of laws correspond to more or less permissive
formats of stream SOS specifications.

17

6.1. Copointed laws
As an alternative to Example 7, consider a “zipping composition” operation on infinite

streams:
zip : (Lω)2 → Lω

acting as follows:

zip(a1a2a3a4 · · · , b1b2b3b4 · · ·) = a1b1a2b2a3 · · ·

As in Section 3.1, this operation arises as the coinductive extension of an (L × −)-
coalgebra structure on (Lω)2, denoted and defined by:

hzip : (Lω)2 → L× (Lω)2 hzip(α, β) =
(
hd(α) , (β, tl(α))

)
(compare with (3)). It might be encouraging to see that, similarly to halt in Section 3.2,
hzip factors through the pointwise application of the final coalgebra z : Lω → L× Lω:

hzip = k ◦ (z × z) k(a, α, b, β) = (a, b.β, α)

where . : L×Lω → Lω is the obvious prefixing operation, i.e., the inverse of z. However,
the similarity ends here: . is not a natural transformation, and so k does not extend to
a distributive law of (−)2 over (L×−).

Somewhat informally at this stage, this problem can also be explained in terms of
inference rules. Intuitively, it is reasonably clear that the operation zip can be presented
with a family of rules:

x a→ x′

zip(x, y) a→ zip(y, x′)
(16)

where a ranges over L. This, however, is not a simple stream SOS rule: the third
condition of Definition 14 is violated by the use of the variable y in the rule conclusion.

In spite of these difficulties, the definition of zip can be covered with a slight extension
to the notion of simple distributive law. Note that the function hzip factors through the
pointwise application of the function 〈id, z〉 : Lω → Lω × L× Lω:

hzip = ρzipLω ◦ 〈id, z〉
2

where ρzipLω : (Lω × L× Lω)2 → L× (Lω)2 is defined by:

ρzipLω (α, a, α′, β, b, β′) = (a, β, α′).

This easily extends to a natural transformation ρ : (Id×B)2 =⇒ B(−)2, for BX = L×X.
To extend the framework of Section 4 to transformations of this type, it is convenient to
speak in terms of copointed functors.

Definition 20. A copointed endofunctor (H, ε) on a category C is an endofunctor H on
C together with a natural transformation ε : H =⇒ Id, called the counit.

18

Definition 21. A copointed coalgebra for a copointed functor (H, ε) is a H-coalgebra
h : X → HX such that the diagram

X

h

�� DD
DD

DD
DD

DD
DD

DD
DD

HX εX
// X

commutes.

Definition 22. A distributive law of an endofunctor Σ over a copointed functor (H, ε)
is a natural transformation λ : ΣH =⇒ HΣ such that the diagram

ΣH

Σε �&
FF

FF
FF

FF

FF
FF

FF
FF
λ +3 HΣ

εΣ

��
Σ

commutes.

If C has binary products then for any endofunctor B, the functor Id×B is copointed,
with ε the first projection. It is then called the cofree copointed endofunctor over B. It is
easy to prove that copointed (Id×B)-coalgebras bijectively correspond to B-coalgebras.

Proposition 23. Distributive laws of an endofunctor Σ over the copointed endofunctor
(Id×B) are in one-to-one correspondence with natural transformations ρ : Σ(Id×B) =⇒
BΣ. �

One can now repeat the development of Section 4, replacing the endofunctor B with
the copointed endofunctor H = Id × B, and B-coalgebras with copointed H-coalgebras
throughout. In particular, the definition (9) of the coalgebra induced by a distributive
law translates to

ΣA
a
∼=

//

Σhλ

��

A

hλ
��

ΣHA
λA

// HΣA
Ha

// HA,

and hλ is copointed thanks to the axiom of Definition 22, by initiality of a. This can be
equivalently rewritten, along the correspondence between copointed H-coalgebras and B-
coalgebras, in terms of the corresponding natural transformation ρ as in Proposition 23,
with hλ becoming the unique morphism that makes the diagram:

ΣA
a
∼=

//

Σ〈id,hλ〉
��

A

hλ

��
ΣHA ρA

// BΣA
Ba

// BA

commute. A counterpart of Theorem 13 then says that for every ρ, the coinductive
extension of hλ is an algebra morphism from a.

19

For stream systems, where BX = L×X, natural transformations ρ : Σ(Id×B) =⇒
BΣ can be presented in terms of inference rules just as simple distributive laws in Sec-
tion 5. Indeed, one might simply define:

Definition 24. A copointed stream SOS rule is defined as a simple stream SOS rule in
Definition 14, with the third condition relaxed to:

• yj ∈ {x1, . . . , xn, x′1, . . . , x
′
n} for each j = 1..m.

A more compact presentation of copointed stream SOS rules is also possible:

R = (f, g, (a1, . . . , an), b, θ),

defined as in (12), with the only difference in the type of θ:

θ : {1, . . . ,m} → 2× {1, . . . , n};

the additional two-element component 2 determines whether variables in the target con-
clusion come from the sources or from the targets of their corresponding premises.

Definition 25. A copointed stream SOS specification is a set of copointed stream SOS
rules subject to the condition of Definition 15.

A correspondence of copointed stream SOS specifications with copointed distributive
laws is then proved by analogy to the argument of Section 5.2.

Every simple stream SOS specification is immediately also a copointed stream SOS
specification. This can be understood at the level of distributive laws: every simple
distributive law λ : ΣB =⇒ BΣ easily gives rise to a natural transformation ρ : Σ(Id ×
B) =⇒ BΣ, by composition with a projection natural transformation.

Note that, formally speaking, rule (16) is not a copointed stream SOS rule, as it lacks
a premise for the metavariable y. To fit Definition 24, it should be understood as a family
of rules

x a→ x′ y b→ y′

zip(x, y) a→ zip(y, x′)
for all b ∈ L. This kind of syntactic sugar is usual in rule-based presentations of more
complex types of distributive laws.

6.2. Pointed and bipointed laws
For a fixed a ∈ L, consider a unary “head replacement” operation on infinite streams:

a/− : Lω → Lω

acting as:
a/(b1b2b3b4 · · ·) = ab2b3b3 · · ·

Any similarity to examples from Section 3.1 ends very quickly here, as there is no coalge-
bra structure on Lω for which a/− would be a coinductive extension. For suppose there
is a map h : Lω → L× Lω such that the diagram:

Lω
h //

a/−
��

L× Lω

id×(a/−)

��
Lω

∼=
z

// L× Lω
20

commutes. For every α ∈ Lω one has hd(a/α) = a, hence there must be π1(h(α)) = a.
But for each h with this property, the constant function mapping every stream to
aaaaaa · · · is the coinductive extension of h, hence a/− cannot be the coinductive ex-
tension.

All is not lost, however: the closely related function

[id, a/−] : Lω + Lω → Lω

is a coinductive extension of the coalgebra:

ha/− : Lω + Lω → L× (Lω + Lω)
ha/−(ι1(α)) =

(
hd(α), ι1(tl(α))

)
ha/−(ι2(α)) =

(
a, ι1(tl(α))

)
which factors through the componentwise application of the final (L×−)-coalgebra z:

ha/− = λ
a/−
Lω ◦ (z + z)

where the natural transformation λa/− : (Id + Id)(L×−) =⇒ (L×−)(Id + Id) is defined
by:

λ
a/−
X (ι1(b, x)) = (b, ι1(x)) λ

a/−
X (ι2(b, x)) = (a, ι1(x)).

This situation can be explained in the framework of distributive laws, once the notion
of pointed endofunctor is used. The following development is dual to the one of copointed
functors and laws in Section 6.1.

Definition 26. A pointed endofunctor (Γ, η) on a category C is an endofunctor Γ on C
together with a natural transformation η : Id =⇒ Γ, called the unit.

Definition 27. A (pointed) algebra for a pointed functor (Γ, η) is a Γ-algebra g : ΓX →
X such that the diagram

X

CC
CC

CC
CC

CC
CC

CC
CC
ηX // ΓX

g

��
X

commutes.

Definition 28. A distributive law of a pointed functor (Γ, η) over an endofunctor B is
a natural transformation λ : ΓB =⇒ BΓ such that the diagram

B
Bη

�&
DD

DD
DD

DD

DD
DD

DD
DD

ηB

��
ΓB

λ
+3 BΓ

commutes.

If C has binary coproducts then for any endofunctor Σ, the functor Id+Σ is copointed,
with η the first coproduct injection. It is then called the free pointed endofunctor over
Σ. Dually to the situation of copointed functors, pointed Id + Σ-algebras bijectively
correspond to Σ-algebras.

21

Proposition 29. Distributive laws of the pointed endofunctor Id+Σ over an endofunctor
B are in one-to-one correspondence with natural transformations ρ : ΣB =⇒ B(Id + Σ).

�

As before, for BX = L×X such natural transformations, and the process of inducing
B-coalgebras from them, can be presented in terms of rules and inferences.

Definition 30. A pointed stream SOS rule is a stream rule of the form:

x1
a1→ x′1 · · · xn

an→ x′n

f(x1, . . . , xn) b→ t
(17)

where:

• f is an operation in Σ of arity n,

• x1, . . . , xn, x′1, . . . , x
′
n ∈ Ξ are pairwise distinct variables,

• t is either a variable in {x′1, . . . , x′n}, or a term of the form g(y1, . . . , ym), where g
is an operation in Σ of arity m and yj ∈ {x′1, . . . , x′n} for each j = 1..m,

• b, a1, . . . , an ∈ L.

As before, a more compact presentation of copointed stream SOS rules is also possible,
where every rule is in one of two forms

R1 = (f, g, (a1, . . . , an), b, θ) R2 = (f, (a1, . . . , an), b, k)

with R1 defined as in (12) and R2 defined similarly, with k ∈ {1, . . . , n} determining the
variable in the conclusion target.

Definition 31. A pointed stream SOS specification is a set of pointed stream SOS rules
subject to the condition of Definition 15.

For example, the operation a/− explained above can be defined with a pointed stream
SOS specification:

x b→ x′

a/x a→ x′

where b ranges over L.
Every simple stream SOS specification is also a pointed stream SOS specification. At

the level of distributive laws, every simple distributive law λ : ΣB =⇒ BΣ easily gives
rise to a natural transformation ρ : ΣB =⇒ B(Id + Σ), by composition with a coproduct
injection.

A common generalization of copointed and pointed distributive laws are bipointed
ones, i.e., distributive laws of pointed functors over copointed functors subject to obvious
axioms. Such a law of a free pointed functor Id+Σ over a cofree copointed functor Id×B
is equivalent to a natural transformation ρ : Σ(Id×B) =⇒ B(Id + Σ). For BX = L×X,
these can be presented in terms of inference rules; the definition of bipointed stream SOS
should be evident from Definitions 24 and 30.

22

One very simple example of a bipointed stream SOS specification is the following
definition of a unary prefixing operation a.−:

a.x a→ x

understood as shorthand for a family of rules

x b→ x′

a.x a→ x

where b ranges over L. As before, a version of Theorem 13 implies that observational
equivalence on systems induced from such specifications is always a congruence.

6.3. GSOS laws
Distributive laws can be generalized further, while retaining both the congruence

property of observational equivalence (Theorem 13) and convenient rule-based presen-
tations for specific behavior functors B. We shall now study the class of laws with
the most practical importance: GSOS distributive laws, whose name will be justified in
Section 7.2.

As an example, consider a unary stream operation

hdrep : Lω → Lω

that repeats the head of its argument at every odd position of the result:

hdrep(a1a2a3a4 · · ·) = a1a2a1a3a1a4a1 · · ·

With our interpretation of stream rules and proofs, it is natural to specify this operation
by rules:

x a→ x′

hdrep(x) a→ zip(x′, a)

where a (with the corresponding a) ranges over L and operations zip, a are specified as
before.

Note, however, that the rule above is not in either of the stream rule formats described
so far, as the target of its conclusion is a complex term built of two operation symbols.
Although it is possible to define hdrep with a copointed stream SOS specification:

x a→ x′

hdrep(x) a→ zipla(x′)
x b→ x′

zipla(x) b→ zipra(x′) zipra(x) a→ zipla(x)

(where a, b range over L and a redundant premise is elided in the rightmost rule), this
comes at a price: the language signature needs to be extended with a potentially infinite
family of auxiliary operations zipla and zipra.

Instead, one may understand the rules for hdrep (together with ones for zip and a)
directly as a natural transformation

ρ : Σ(Id×B) =⇒ BΣ∗ (18)

23

where BX = L ×X, ΣX = X + X2 + L arises from the basic signature of operations,
and Σ∗ is the term construction functor mentioned in Section 2.1. The use of Σ∗ in the
codomain of ρ corresponds the use of a complex term as a rule conclusion target, just
as the use of Id + Σ in pointed laws corresponded to the use of variables as conclusion
targets.

To understand such transformations in the framework of distributive laws, it is con-
venient to use copointed functors (see Section 6.1) and the standard categorical notion
of a monad, which extends that of a pointed functor.

Definition 32. A monad (T, η, µ) on a category C is an endofunctor T on C together
with natural transformation η : Id =⇒ T (called the unit) and µ : TT =⇒ T (called the
multiplication), such that the diagrams:

T
Tη +3

BB
BB

BB
BB

BB
BB

BB
BB

TT

µ

��

T
ηTks

||
||

||
||

||
||

||
||

T

TTT
Tµ +3

µT

��

TT

µ

��
TT µ

+3 T

commute.

Definition 33. An Eilenberg-Moore algebra for a monad (T, η, µ) is a T -algebra g :
TX → X such that the diagram

X

CC
CC

CC
CC

CC
CC

CC
CC
ηX // TX

g

��

TTX
µXoo

Tg

��
X TXg

oo

commutes. With ordinary T -algebra morphisms, these form a category T -Alg.

For example, given an algebraic signature Σ, the term functor Σ∗ together with
obvious natural transformations η : Id =⇒ Σ∗ (interpretation of variables as terms)
and µ : Σ∗Σ∗ =⇒ Σ∗ (glueing terms built of terms) is a monad. It is called the free
monad over Σ. By structural induction on terms, any algebra g : ΣX → X induces
a function g] : Σ∗X → X (i.e. term interpretation in g). The Σ∗-algebra g] is an
Eilenberg-Moore algebra for the monad Σ∗. The construction of g] from g provides a
one-to-one correspondence between Σ-algebras and Eilenberg-Moore Σ∗-algebras, and an
isomorphism of categories

Σ-alg ∼= Σ∗-Alg.

In general, for any endofunctor Σ on a category C, if the forgetful functor UΣ :
Σ-alg→ C has a left adjoint FΣ, then the monad Σ∗ = UΣFΣ arising from the adjunc-
tion is called the free monad over Σ, and the correspondence between Σ-algebras and
Eilenberg-Moore Σ∗-algebras still holds. If C has coproducts then Σ∗X is the carrier of
an initial algebra for the functor ΣXY = X + ΣY .

From now on, assume endofunctors Σ, B on a category C with products, such that a
free monad Σ∗ over Σ exists. In such a situation (18) makes sense:

24

Definition 34. A GSOS law (of Σ over B) is a natural transformation

ρ : Σ(Id×B) =⇒ BΣ∗.

Using copointed functors, GSOS laws can be seen as distributive laws.

Definition 35. A distributive law of a monad (T, η, µ) over a copointed functor (H, ε)
is a natural transformation λ : TH =⇒ HT such that the diagrams:

H
Hη

�&
FF

FF
FF

FF

FF
FF

FF
FF

ηH

��
TH

λ
+3 HT

TH
λ +3

Tε �&
FF

FF
FF

FF

FF
FF

FF
FF

HT

εT

��
T

TTH
Tλ +3

µH

��

THT
λT +3 HTT

Hµ

��
TH

λ
+3 HT

commute.

Proposition 36. GSOS laws of Σ over B are in one-to-one correspondence with dis-
tributive laws of the free monad Σ∗ over the cofree copointed endofunctor Id×B.

Proof. This is not quite as obvious as Propositions 23 and 29. A proof can be found
in [33]. �

For BX = L×X on Set and Σ arising from a signature, GSOS laws can be presented
in terms of inference rules much as bipointed stream SOS rules (compare Definition 30):

Definition 37. A stream GSOS rule is a stream rule of the form:

x1
a1→ x′1 · · · xn

an→ x′n

f(x1, . . . , xn) b→ t
(19)

where:

• f is an operation in Σ of arity n,

• x1, . . . , xn, x′1, . . . , x
′
n ∈ Ξ are pairwise distinct variables,

• t is a Σ-term built over variables {x1, . . . , xn, x′1, . . . , x
′
n},

• b, a1, . . . , an ∈ L.

As before, some syntactic sugar can be removed from stream GSOS rules. A more
compact representation of a rule is a tuple:

R = (f, (a1, . . . , an), b, t),

comprising:

• an operations f in Σ of arity n,

• the triggering tuple (a1, . . . , an) of premise labels,

• the conclusion label b ∈ L,
25

• a Σ-term t over a fixed set of 2n variables.

Definition 38. A stream GSOS specification is a set of stream GSOS rules subject to
the condition of Definition 15.

Proposition 39. Every stream GSOS specification gives rise to a GSOS law for BX =
L×X, and every such GSOS law arises from a stream GSOS specification.

Proof. By analogy to Proposition 5.2. �

From general results in Section 6.5 it will follow that behavioral equivalence on coal-
gebras induced by GSOS laws is a congruence.

Note that every bipointed stream SOS specification is a stream GSOS specification.
At the level of distributive laws, any natural transformation ρ : Σ(Id×B) =⇒ B(Id + Σ)
immediately yields a GSOS law by composition with the obvious natural inclusion from
Id + Σ to Σ∗.

6.4. coGSOS laws
Dually to GSOS laws, one can generalize bipointed laws to natural transformations

that involve cofree comonads over behavior functors.

Definition 40. A comonad (D, ε, δ) on a category C is an endofunctor D on C together
with natural transformation ε : D =⇒ Id (called the counit) and δ : D =⇒ DD (called
the comultiplication), such that the diagrams:

D

δ

��{{
{{

{{
{{

{{
{{

{{
{{

CC
CC

CC
CC

CC
CC

CC
CC

D DD
Dε

ks
εD

+3 D

D
δ +3

δ

��

DD

Dδ

��
DD

δD
+3 DDD

commute.

Definition 41. An Eilenberg-Moore coalgebra for a comonad (D, ε, δ) is a D-coalgebra
h : X → DX such that the diagram

DX

Dh

��

X

DD
DD

DD
DD

DD
DD

DD
DD

h

��

hoo

DDX DX εX
//

δX

oo X

commutes. With ordinary D-coalgebra morphisms, these form a category D-Coalg.

If the forgetful functor UB : B-coalg→ C has a right adjoint GB , then the resulting
comonad B∞ = UBGB on C is called the cofree comonad over B. Dually to the situation
with monads, Eilenberg-Moore B∞-coalgebras are in bijective correspondence with B-
coalgebras:

B∞-Coalg ∼= B-coalg.
26

If C has products then B∞X is the carrier of a final coalgebra for the functor BXY =
X ×BY .

For example, the cofree comonad over BX = L × X on Set is B∞X = (L × X)ω,
with counit and comultiplication defined by:

εX
(
(a1, x1)(a2, x2)(a3, x3) · · ·

)
= x1

δX
(
(a1, x1)(a2, x2)(a3, x3) · · ·

)
=
((
a1, (a1, x1)(a2, x2) · · ·

)
(
a2, (a2, x2)(a3, x3) · · ·

)
· · ·

)
.

The Eilenberg-Moore (L × −)ω-coalgebra corresponding to a stream system h : X →
L×X maps every state x ∈ X to the stream of labels and states produced by h starting
from x.

Assume endofunctors Σ, B on a category C with coproducts, such that a cofree
comonad B∞ over B exists.

Definition 42. A coGSOS law (of Σ over B) is a natural transformation

ρ : ΣB∞ =⇒ B(Id + Σ).

This can be cast in the framework of distributive laws dually to Definition 34:

Definition 43. A distributive law of a pointed functor (Γ, η) over a comonad (D, ε, δ)
is a natural transformation λ : ΓD =⇒ DΓ such that the diagrams:

D
ηD

�&
EE

EE
EE

EE

EE
EE

EE
EE

Dη

��
ΓD

λ
+3 DΓ

ΓD
λ +3

Γε
�&

EE
EE

EE
EE

EE
EE

EE
EE

DΓ

εΓ

��
Γ

ΓD
λ +3

Γδ

��

DΓ

δΓ

��
ΓDD

λD +3 DΓD
Dλ +3 DDΓ

commute.

Proposition 44. CoGSOS laws of Σ over B are in one-to-one correspondence with
distributive laws of the free pointed endofunctor Id + Σ over the cofree comonad B∞.

Proof. Dual to Proposition 36. �

Again, for BX = L×X and polynomial Σ, coGSOS laws can be presented in terms
of inference rules:

Definition 45. A stream coGSOS rule is a stream rule of the form:

x1
a1

1→ x′1 x′1
a2

1→ x′′1 · · · x
(i−1)
1

ai1→ x
(i)
1 · · ·

...
...

...

xn
a1
n→ x′n x′n

a2
n→ x′′n · · · x

(i−1)
n

ain→ x
(i)
n · · ·

f(x1, . . . , xn) b→ t

where:
27

• f is an operation in Σ of arity n,

• x1, . . . , xn, x′1, . . . , x
′
n, . . . , x

(i)
1 , . . . , x

(i)
n , . . . ∈ Ξ are pairwise distinct variables,

• t is either a variable that occurs in one of the premises, or a term of the form
g(y1, . . . , ym), where g is an operation in Σ of arity m and y1, . . . , ym ∈ Ξ are (not
necessarily pairwise distinct) variables that all occur in the premises of the rule,

• b, a1
1, . . . , a

1
n, . . . , a

i
1, . . . , a

i
n, . . . ∈ L.

We shall say that a rule as above is a rule for the operator f ∈ Σ, and is triggered by the
tuple 〈(a1

1a
2
1a

3
1 · · ·), . . . , (a1

na
2
na

3
n · · ·)〉 of streams of labels.

Removing syntactic sugar one obtains a more compact representation, where each
stream coGSOS rule is in one of the forms:

R1 = (f, g, (α1, . . . , αn), b, θ) R2 = (f, (α1, . . . , αn), b, i, j)

where

• f and g are operations in Σ of arity n and m,

• (α1, . . . , αn) is the triggering tuple of premise label sequences, where each αi ∈ Aω,

• b ∈ L is the conclusion label,

• θ : {1, . . . ,m} → N × {1, . . . , n} or i ∈ {1, . . . , n}, j ∈ N determine the choice and
order of variables in the conclusion target.

Note that unlike all previous rule formats considered so far, stream coGSOS rules
allow lookahead in their premises, where variables from targets of premises can appear as
sources of other premises. Intuitively, this means that to decide the initial transition of a
term f(t1, . . . , tn) one is allowed to test more than one step of behavior of the subterms
t1, . . . , tn.

Definition 46. A stream coGSOS specification for Σ is a set Λ of stream coGSOS rules
such that for each f ∈ Σ (of arity, say, n), and each tuple ~α = (α1, . . . , αn) ∈ (Lω)n,
there is exactly one rule in Λ for f that is triggered by ~α.

Notice that in a stream coGSOS specification, inferred transitions originating in a
term f(t1, . . . , tn) may depend on transitions of terms other than the subterms t1, . . . , tn.
This means that it takes a little more care to prove that a stream coGSOS specification
meaningfully infers a stream system: formally, a counterpart of Proposition 17 is not
as obvious as for all classes of laws considered in previous sections. Nevertheless, the
proposition is still true thanks to the third condition of Definition 45. Indeed, the
condition ensures that no provable transition increases the depth of the term under
transition, therefore transitions originating from a given term depend only on transitions
of terms of smaller depth and Proposition 17 can be proved by induction on the depth
of terms.

Proposition 47. Every stream coGSOS specification gives rise to a coGSOS law for
BX = L×X, and every such coGSOS law arises from a stream coGSOS specification.

28

Proof. Recall that B∞X = (L×X)ω and proceed by analogy to Section 5.2. �

Typically one should strive for a finite representation of SOS rules and specifications,
so a practical coGSOS specification would normally involve some shorthand and syntactic
sugar. For example, the unary tail operation tl on streams can be specified by a family
of rules:

x a→ x′ x′ a′→ x′′

tl(x) a′→ x′′
(20)

where a, a′ range over L, which should be understood as shorthand for

x a→ x′ x′ a′→ x′′ · · · x(i−1) a(i−1)

→ x(i) · · ·
tl(x) a′→ x′′

for all a, a′, a′′, . . . ∈ L.
Note, however, that the stream coGSOS format does not force one to use any such

shorthand, and it allows infinitely many premises in a single rule. As a result, it is
straightforward to specify stream operations like skipa that removes all a’s from its
argument except an infinite tail of a’s if it is present:

x a→ x′ x′ a→ x′′ · · · x(n−1) a→ x(n) x(n) b→ y

skipa(x) b→ skipa(y)

x a→ x′ x′ a→ x′′ · · · x(i−1) a→ x(i) · · ·
skipa(x) a→ x′

where n ranges over N and b over L \ {a}. Such operations have little operational sense:
note that skipa positively detects, in a single step of computation, that its argument
will never produce a label different from a. Nevertheless, from general results in Sec-
tion 6.5 it follows that behavioral equivalence on coalgebras induced by coGSOS laws is
a congruence.

As in Section 6.3, every bipointed stream SOS specification is a stream coGSOS
specification. At the level of distributive laws, any natural transformation ρ : Σ(Id ×
B) =⇒ B(Id+Σ) yields a coGSOS law by composition with the obvious natural projection
from B∞ to Id×B.

6.5. The general case: distributing monads over comonads
We now move to the most expressive type of distributive laws considered in the

bialgebraic study of SOS.

Definition 48. A distributive law of a monad (T, η, µ) over a comonad (D, ε, δ) is a

29

natural transformation λ : TD =⇒ DT such that the diagrams:

D
ηD

�&
EE

EE
EE

EE

EE
EE

EE
EE

Dη

��
TD

λ +3

Tε �&
EE

EE
EE

EE

EE
EE

EE
EE

DT

εT

��
T

TTD

µD

��

Tλ +3 TDT
λT +3 DTT

Dµ

��
TD

λ
+3

Tδ

��

DT

δT

��
TDD

λD +3 DTD
Dλ +3 DDT

commute.

One can repeat the entire development of Section 4 for distributive laws of mon-
ads over comonads, replacing Σ with a monad T , B with a comonad D, Σ-algebras
with Eilenberg-Moore T -algebras and B-coalgebras with Eilenberg-Moore D-coalgebras
throughout.

It is straightforward to check that, as in Section 4, a distributive law λ of a monad
T over a comonad D lifts the monad T to D-Coalg and the comonad D to T -Alg. In
this setting, unlike for simple laws in Section 4, the converse holds as well:

Proposition 49. For any monad T and comonad D, the following are equivalent:

• Distributive laws of T over D,

• Liftings of T to D-Coalg,

• Liftings of D to T -Alg.

Proof. See [54] or [22]. �

Bialgebras for λ are defined as in Section 4.3, and the counterpart of Proposition 12
is proved by routine calculations. As a result, a version of Theorem 13 also holds:

Theorem 50. For any distributive law λ of T over D, the coinductive extension of the
D-coalgebra induced by λ is an algebra morphism from the initial T -algebra. �

Here the D-coalgebra h induced by λ is defined by analogy to (9):

TT0
µ0 //

Th

��

T0

h

��
TDT0

λT0

// DTT0
Dµ0

// DT0,

(21)

since µ0 : TT0→ T0 is an initial Eilenberg-Moore T -algebra.
Distributive laws of monads over comonads generalize all other laws considered so far

in this section. For GSOS laws, assuming B admits a cofree comonad B∞:

Proposition 51. Every GSOS law ρ : Σ(Id × B) =⇒ BΣ∗ induces a distributive law
λ : Σ∗B∞ =⇒ B∞Σ∗ of the free monad Σ∗ over the cofree comonad B∞.

30

Proof. This is proved both in [54] and [2], and [33] gives a particularly simple proof in
terms of functor and monad liftings, with Proposition 49 as a crucial proof step. �

Moreover, the B-coalgebra induced by a GSOS coincides with the B∞-coalgebra
induced as in (21) by the corresponding distributive law λ, along the correspondence of
B-coalgebras and Eilenberg-Moore B∞-coalgebras. Thus from Theorem 50 it follows that
coinductive extensions of B-coalgebras induced by GSOS laws are algebra morphisms.

Dually, it can be proved that coGSOS laws are a special case of monadic distributive
laws. The same follows for other, simpler types of laws we considered.

Although distributive laws of monads over comonads offer the most general abstract
perspective on well-behaved SOS, so far they have not been applied in concrete studies
of SOS rule formats. Indeed, no convenient rule-based characterizations of such laws are
known, even for the simplest behavior functors and even if only free monads and cofree
comonads are considered.

To illustrate the problem, consider the behavior functor BX = L×X of stream sys-
tems, and any functor Σ corresponding to an algebraic signature. Since distributive laws
of Σ∗ over B∞ generalize both GSOS and coGSOS laws of Σ over B, the corresponding
format of stream SOS rules should generalize both stream GSOS and stream coGSOS.
It is therefore tempting to allow rules where both complex target terms (as in stream
GSOS) and lookahead premises (as in stream coGSOS) are allowed. However, this im-
mediately leads into trouble: consider L = {a, b} and a language with one constant c
and one unary operation f, “specified” by rules:

c a→ f(c)
x a→ x′ x′ a→ x′′

f(x) b→ c

x a→ x′ x′ b→ x′′

f(x) a→ c

x b→ x′

f(x) ...→ · · ·

where the shorthand convention of (20) is used. The conclusion of the rightmost rule is
irrelevant and does not influence the essence of the example. It is easy to see that no
unique outgoing transition from the term f(c) can be inferred from these rules: even if
infinite or circular inferences are allowed, f(x) a→ c is derivable if and only if f(x) b→ c
is. As a result, the above rules do not meaningfully define a stream system. Note how the
rule for c is in the stream GSOS format, and the rules for f are in the stream coGSOS
format, but when put together they do not define a distributive law at all. Similar
examples of ill-behaved stream specifications are given e.g. in [6].

Due to these difficulties, and due to the problematic operational meaning of coGSOS-
definable operations as explained in Section 6.4, concrete rule-based presentations of
distributive laws are almost always restricted to GSOS laws (exceptions include the
characterization of general distributive laws for a simple kind of timed systems, see
Section 7.4, and a treatment of the tyft/tyxt format for LTSs, see Section 8.5).

7. GSOS formats from distributive laws

We shall sketch the current state of the art in the area of concrete presentations
of GSOS laws for various behavior functors. The simple example of stream GSOS was
explained in Section 6.3. In all examples that follow (except the last one in Section 7.4),
the underlying category is Set and syntactic functors Σ arise from algebraic signatures.
All the following rule formats use metavariables from a fixed infinite set Ξ.

31

7.1. Mealy machines
Recall from Example 4 that Mealy machines with input alphabet K and output

alphabet L are coalgebras for the functor BX = (L ×X)K . We now give a rule-based
characterization of GSOS laws for this behavior functor.

Definition 52. A Mealy GSOS rule is an expression of the form:

x1
a1|b1→ x′1 · · · xn

an|bn→ x′n

f(x1, . . . , xn) a|b→ t
(22)

where:

• f is an operation in Σ of arity n,

• x1, . . . , xn, x′1, . . . , x
′
n ∈ Ξ are pairwise distinct variables,

• t is a Σ-term built over variables {x1, . . . , xn, x′1, . . . , x
′
n},

• a, a1, . . . , an ∈ K and b, b1, b2, . . . , bn ∈ L.

A rule as above is triggered by a tuple (f1, . . . , fn), where fi : K → L, if bi = fi(ai) for
i = 1..n.

Definition 53. A Mealy GSOS specification for Σ is a set Λ of Mealy GSOS rules such
that for each f ∈ Σ (of arity, say, n), each label a ∈ K and tuple ~f = (f1, . . . , fn) ∈
(LK)n, there is exactly one rule in Λ for f that is triggered by ~f .

A Mealy machine inferred from a Mealy GSOS specification is defined in a straight-
forward way, via a standard notion of inference. Using methods similar to those used for
stream systems, one then proves:

Proposition 54. Every Mealy GSOS specification gives rise to a GSOS law for BX =
(L×X)K , and every such law arises from a Mealy GSOS specification in this way. �

Corollary 55. Observational equivalence on the Mealy machine inferred from a Mealy
GSOS specification is a congruence. �

As in the case of stream systems, shorthand notation and syntactic sugar might be
used to present Mealy GSOS specification in practice. Some small examples of Mealy
GSOS specifications can be found in [15].

7.2. Labeled transition systems
Specifications of nondeterministic labeled transition systems are by far the most stud-

ied flavor of SOS (see [1] for a survey), and were the original motivating example in [54]
for the abstract study of SOS in terms of distributive laws. Recall from Example 5 that
(image-finite) labeled transition systems are coalgebras for the functor BX = (PωX)L.

The following well-known definition was formulated first in [4].

32

Definition 56. A GSOS rule is an expression of the form{
xij

aj→ yj
}
j=1..m

{
xik 6

bk→
}
k=1..l

f(x1, . . . , xn) c→ t

where:

• f is an operation in Σ of arity n,

• m ∈ N is the number of positive, and l ∈ N of negative premises in the rule,

• all ij , ik ∈ {1, . . . , n},

• t is a Σ-term over Ξ,

• all the xi and yj are distinct variables, and no other variables appear in t,

• aj , bk, c ∈ L.

A rule as above is triggered by a tuple (E1, . . . , En) of sets of enabled labels, where each
Ei ⊆ L, if:

• aj ∈ Eij for all j = 1..m, and

• bk 6∈ Eik for all k = 1..l.

Definition 57. An image finite GSOS specification is a set Λ of GSOS rules such that
for each operation name f in Σ, each c ∈ L, and each tuple ~E = (E1, . . . , En) of subsets
of L, there are only finitely many rules for f in Λ with c as the conclusion label, that are
triggered by ~E.

The LTS inferred from a GSOS specification is defined as expected, with negative
premises xi 6 bik→ satisfied by the lack of a corresponding transition. The finiteness
condition in Definition 57 ensures that the inferred LTS is image-finite.

Proposition 58. Every GSOS specification gives rise to a GSOS law for BX = (PωX)L,
and every such law arises from a GSOS specification in this way.

Proof. This result, especially the second part of it, is much more delicate to prove than
the related Propositions 39 and 54. Although the result was first stated in [54, 52], the
first complete proof was given in [2]. �

Corollary 59. Observational equivalence (i.e., bisimilarity) on the LTS inferred from a
GSOS specification is a congruence. �

CoGSOS laws for LTSs have also been given a characterization in [54], in terms of
the so-called safe ntree specifications.

Definition 60. A safe ntree rule is an expression of the form{
zi

ai→ yi
}
i∈I

{
wj 6

bj→
}
j∈J

f(x1, . . . , xn) c→ t

where:
33

• f is an operation in Σ of arity n,

• I and J are countable, possibly infinite index sets,

• the xk, yi, zi and wj are variables, the xk and yi are all distinct and they are the
only variables that occur in the rule (in particular, each zi and wj is an occurrence
of some xk or yi),

• the dependency graph of premise variables (where positive premises are seen as
directed edges) is well-founded, i.e., it does not contain cycles or infinite backward
chains,

• t is either a variable or a term built of a single operator from Σ and variables,

• ai, bj , c ∈ L.

See [54] for further details.

Proposition 61. Every safe ntree specification gives rise to a coGSOS law for BX =
(PωX)L.

It is not known whether this characterization is complete, i.e., whether every coGSOS
law arises from a safe ntree specification.

7.3. Probabilistic systems
Recall from Example 6 that (reactive) probabilistic transition systems (PTSs) are

coalgebras for the functor BX = (DωX + 1)L. GSOS laws for this functor were charac-
terized as probabilistic GSOS (PGSOS) specifications in [2].

Definition 62. A PGSOS rule is an expression of the form{
xi

a→
}
i=1..n, a∈Ri

{
xi 6 a→

}
i=1..n, a∈Pi

{
xij

bj [uj] . yj
}
j=1..m

f(x1, . . . , xn) c[w·u1·...·um]
. t

where:

• f is an operation in Σ of arity n,

• m ∈ N, and all ij ∈ {1, . . . , n},

• Pi, Ri ⊆ L with Pi ∩ Ri = ∅, are sets of prohibited and requested labels for each
i = 1..n respectively,

• t is a Σ-term over Ξ,

• all the xi and yj are distinct variables in Ξ, and no other variables appear in t,

• c ∈ L,

• u1, . . . , um are distinct probability variables taken from some fixed set,

• w ∈ (0, 1] is the weight of the rule.
34

A rule as above is triggered by a tuple of sets of enabled labels (E1, . . . , En), where each
Ei ⊆ L, if Ri ⊆ Ei and Pi ∩ Ei = ∅ for all i = 1..n.

Definition 63. A PGSOS specification is a set Λ of PGSOS rules such that for each
operation name f in Σ, each c ∈ L, and each tuple ~E = (E1, . . . , En) of subsets of L,
there are only finitely many rules for f in Λ with c as the conclusion label, that are
triggered by ~E; moreover, if there are any such rules, their weights must add up to 1.

As hinted by a different shape of some arrows in the definition of a PGSOS rule, a
PTS is inferred from a PGSOS specification in a way different from simple proof-based
definitions we have seen so far. The PTS structure on closed Σ-terms is defined by
structural induction on sources of transitions as follows: for a term s = f(s1, . . . , sn),
calculate the sets Ei of enabled labels, for i = 1..n. For each rule R for f triggered by
(E1, . . . , En), calculate its contributions to the inferred probabilistic transition system
as follows: for each tuple of processes (tj)j=1..m, let vj = µ(sij

bj→ tj) and define the
contribution of R to the transition

s c→ t[xi 7→ si, yj 7→ tj]

to be the product w · v1 · . . . · vj . The probability of a transition from s is then defined as
the sum of contributions of all rules for f and c triggered by (E1, . . . , En). The conditions
on a PGSOS specification ensure that the outgoing probabilities from any given process
and any label add up to 0 or 1.

Proposition 64. Every PGSOS specification gives rise to a GSOS law for BX = (DωX+
1)L, and every such law arises from a PGSOS specification in this way.

Proof. See [2]. �

Corollary 65. Observational equivalence (i.e., probabilistic bisimilarity) on the PTS
inferred from a GSOS specification is a congruence. �

In [2], GSOS laws for the more complex Segala systems are also studied, where prob-
abilities are combined with nondeterminism in a two-layered behavior. A rather complex
rule format is defined there, called Segala-GSOS, and it is proved that every Segala-
GSOS specification induces a GSOS law for the Segala behavior functor. It is not known
whether every such GSOS law arises in this way.

7.4. Other systems
In [31], a rule-based presentation of GSOS laws for stochastic systems was given;

these are similar to reactive probabilistic transition systems, but without the condition
that rates of outgoing transitions add up to 1. Consequently, stochastic GSOS is rather
similar to PGSOS of Section 7.3.

In [29], a more general class of weighted transition systems was studied. There, tran-
sitions are labeled with weights taken from some commutative monoid W, and obser-
vational equivalence adds together weights of transitions as needed. Labeled transition
systems appear as a special case W is the two-element monoid of truth values and logical

35

disjunction. Stochastic systems arise for W = R≥0 the monoid of nonnegative real num-
bers with addition. A general rule-based presentation of GSOS laws for a “weighted”
behavior functor was given in [29], parametrized by W and called W-GSOS. Ordinary
GSOS and stochastic GSOS are rediscovered from the general format. However, for arbi-
trary W, it was only proved that W-GSOS specifications induce GSOS laws for weighted
behavior; it is not known whether every such GSOS law arises in this way.

In [23, 24], Kick studied a certain basic type of timed systems as coalgebras for the so-
called evolution comonad ET on Set. He provided a complete rule-based characterization
of distributive laws of free term monads over ET ; this is the only such characterization
known for a nontrivial type of behavior. However, the evolution comonad is rather basic,
and to deal with practical examples one must combine it with other types of behavior,
as argued in [25, 26].

Some attention has been put to the study of SOS specifications for name-passing
calculi such as the π-calculus [48]. Name-passing systems can be understood as coalgebras
for endofunctors on categories of presheaves, or on the category Nom of nominal sets [11].
In this framework, additional complications arise from the fact that syntactic signature
functors typically act on a different category than the behavior functors. To deal with
this, a generalized treatment of distributive laws was developed in [14], and modified
later in [12]. A rule-based presentation of generalized GSOS laws for a particular choice
of behavior functor on Nom was given in [12, 13].

8. Related work

8.1. Distributive laws and regular expressions
A neat example application of distributive laws is Jacobs’s study [19] of deterministic

automata and regular expressions. Is is well known that deterministic automata are
coalgebras (quite similar to Mealy machines from Example 4) and that the set of all
languages carries a final coalgebra structure. In [19] a GSOS law of the syntax of regular
expressions over the deterministic automata behavior is defined. Regular expressions
carry an initial, and all languages a final bialgebra structure. Further, a completeness
proof for Kozen’s axiomatization of regular expressions is formulated in the language of
bialgebras for the distributive law.

8.2. Structured coalgebras
Closely related to bialgebras are structured coalgebras, i.e., coalgebras for functors on

categories Alg(Γ) for an equational specification Γ. By Proposition 12, bialgebras are
coalgebras for a functor on a category of algebras. On the other hand, if the functor on
Alg(Γ) is a lifting of some endofunctor on the underlying category C, then its coalgebras
are bialgebras for a distributive law of a monad over a comonad, by Proposition 49.

In [7], structured coalgebras were used to study labeled transition systems where both
states and transition labels are models of some specifications. Also, lax coalgebras were
studied there to relax the standard coalgebraic notion of transition system morphism. In
the context of structured coalgebras, it is natural to study structural equations on terms
of the language under definition. In [8], a bisimulation-like condition on such equations
was defined that guarantees the congruence property of bisimilarity. Moreover, the notion

36

of dynamic bisimilarity, where system states can be tested by putting them in syntactic
contexts, was formalized in terms of structured coalgebras.

In some contexts (e.g. [5]), it is useful to consider structured coalgebras for functors on
Alg(Γ) that do not lift any endofunctors on Set, and hence do not arise from distributive
laws. This situation is more general, but considerably less structured than the bialgebraic
framework.

8.3. Variety of system equivalences
The basic framework of distributive laws aims at proving congruence results for the

canonical notion of observational equivalence, or coalgebraic bisimilarity, for each cat-
egorical notion of system behavior. This contrasts with the multitude of equivalences
defined even for single kinds of systems (see e.g. [55]).

One idea to circumvent this problem is to study systems as coalgebras where the
chosen equivalence becomes the canonical observational equivalence. For example, when
labeled transition systems (LTSs) are understood as coalgebras in the category of semi-
lattices, trace equivalence becomes the canonical notion. This general idea has been used
on the coalgebraic level several times (see e.g. [16, 18, 21, 42]). In [53], it was used in
an example of an SOS specification for which trace equivalence is a congruence, with
semantics defined by a GSOS law in the category of semi-lattices.

Another idea is to extend the framework of distributive laws to cope with multiple
equivalences instead of the canonical one. In the approach of logical distributive laws [27,
28, 30], process equivalences are modeled via modal logics that characterize them, such
as Hennessy-Milner logic and its fragments. An abstract treatment of logics is developed
in the framework of coalgebraic modal logic, which is combined with the basic approach
to distributive laws to provide an abstract understanding of SOS that behaves well with
respect to various process equivalences.

A recent alternative approach is [39], where system equivalences are modeled via
special “objects of observations” in the underlying category.

8.4. Categories of distributive laws
In this paper, distributive laws and the corresponding SOS specifications were studied

as isolated objects. However, from the point of view of category theory, it is natural
to speak of morphisms of distributive laws, and categories of them. Distributive law
morphism should hopefully provide an abstract perspective on well-behaved translations
of SOS specifications. Also, via standard categorical notions of limits and colimits,
distributive laws can be combined to form more complex ones; this opens a possibility
of an abstract framework for modular SOS development.

Basic notions of distributive law morphisms were studied at the abstract level in [43].
However, little has been done to understand them in terms of concrete rule formats, their
translations and combinations, apart from a few examples provided in [56] and [26].

8.5. Beyond GSOS
In the world of classical SOS specifications of labeled transition systems [1], GSOS is

far from the most general format that guarantees bisimilarity to be a congruence. One
of the more general ones is the ntyft/ntyxt format, where arbitrary terms are allowed as
sources of premises. The presence of negative premises at this level of generality makes

37

it far from obvious whether an SOS specification meaningfully defines an LTS at all;
however, if an LTS is defined, then bisimilarity on it is a congruence (see [1] for details).

In [50], a categorical approach was developed to the tyft/tyxt format, where neg-
ative premises are forbidden, but arbitrary terms are allowed as sources of premises.
Using basic techniques of topos theory, a general definition of a tyft/tyxt specification is
provided which is more concrete, but also considerably more complicated, than various
definitions of distributive laws considered in this paper. It is then proved that any such
specification defines a lifting of the syntactic monad of the language under definition, to
a category of transition systems; this provides a link to the distributive law framework.
The general approach is also instantiated in a topos of nominal sets, and a few examples
of specifications for name-passing systems are seen as special cases.

8.6. Stream equations and productivity
Specifications of infinite streams and operations on them, used in Section 3 as a simple

framework to demonstrate the workings of distributive laws, is an active research area
with many interesting recent developments. A coalgebraic perspective on the subject
was explained in [46].

Traditionally, operations on streams are defined by systems of mutually recursive
equations, but it is not difficult to translate such systems into sets of stream rules and
back. The main concern in papers such as [10] is whether systems of equations uniquely
define a collection of operations. General conditions on equation systems have been
developed that guarantee that, based on notions such a productivity [49]. Although
stream GSOS and stream coGSOS formats can easily be translated to conditions on
stream equations that guarantee uniquely defined operations on streams, these do not
seem as permissive as other conditions known in the community.

It not as yet clear whether the general framework of distributive laws of monads over
comonads (Section 6.5) can bring anything new to the understanding of stream equation
systems.

8.7. Generalized coinduction
It is well-known that the basic coinduction principle (1) does not capture definitions of

many useful operations on final coalgebras. Several authors enhanced the expressivity of
coinduction with generalized “coiteration schemata” dually to various iteration schemata
such as primitive recursion or course-of-value iteration. In [2, 6, 20, 32], distributive
laws were used to bring some order to this area and provide a uniform view on various
extended coiteration schemata. For example, in [2, 20], based on earlier ideas of [32], the
principle of λ-coiteration, for a distributive law λ : ΣB =⇒ BΣ is defined as follows: for
a BΣ-coalgebra h, its λ-coiterative extension is a map that makes the diagram:

X
f //

h

��

Z

z

��
BΣX

BΣf
// BΣZ

Bg
// BZ

commute, where z is the final B-coalgebra and g is the algebraic part of the final λ-
bialgebra, defined as in (8). Under mild conditions, a unique such f exists. Similar

38

definition principles are provided also for more complex types of distributive laws λ. The
same idea is used to define the notion of λ-bisimulation, a coalgebraic generalization of
the bisimulation up-to principle.

Similar ideas were pursued in [6], where various coiteration principles are derived
from a notion of generalized distributive law that connects three different endofunctors.

For recent developments in this area, see [36].

8.8. Microcosm principle
As explained in this paper, distributive laws can be used to define operations on the

carriers of coalgebras. Sometimes, however, it might be interesting to study operations on
coalgebras themselves. For example, the parallel composition operation of the process
algebra CCS is usually seen as an operation on states of a labeled transition system,
but it also makes sense to speak of whole transition systems running in parallel. As
argued in [17], this two-layered view of parallel composition is an instance of a general
phenomenon called the microcosm principle. It is argued that GSOS specifications define
operations on labeled transition systems, which then yield the standard interpretation as
operations on elements of the final coalgebra. This might be seen as a refinement of the
distributive law formalization of classical GSOS. It is unclear whether it can be applied
to GSOS specification formats for other behavior functors.

References

[1] L. Aceto, W. J. Fokkink, and C. Verhoef. Structural operational semantics. In J. A. Bergstra,
A. Ponse, and S. Smolka, editors, Handbook of Process Algebra, pages 197–292. Elsevier, 2002.

[2] F. Bartels. On Generalised Coinduction and Probabilistic Specification Formats. PhD dissertation,
CWI, Amsterdam, 2004.

[3] J. A. Bergstra, A. Ponse, and S. Smolka. Handbook of Process Algebra. Elsevier, 2002.
[4] B. Bloom, S. Istrail, and A. Meyer. Bisimulation can’t be traced. Journal of the ACM, 42:232–268,

1995.
[5] F. Bonchi and U. Montanari. Coalgebraic symbolic semantics. In Procs. CALCO’09, volume 5728

of LNCS, pages 173–190, 2009.
[6] Daniela Cancila, Furio Honsell, and Marina Lenisa. Generalized coiteration schemata. ENTCS,

82(1), 2003.
[7] A. Corradini, M. Große-Rhode, and R. Heckel. A coalgebraic presentation of structured transition

systems. Theoretical Computer Science, 260(1-2):27–55, 2001.
[8] A. Corradini, R. Heckel, and U. Montanari. Compositional SOS and beyond: a coalgebraic view of

open systems. Theoretical Computer Science, 280:163–192, 2002.
[9] E.P. de Vink and J.J.M.M. Rutten. Bisimulation for probabilistic transition systems: A coalgebraic

approach. Theoretical Computer Science, 221(1-2):271–293, 1999.
[10] J. Endrullis, C. Grabmayer, D. Hendriks, A. Isihara, and J. W. Klop. Productivity of stream

definitions. Theoretical Computer Science, 411(4-5):765–782, 2010.
[11] M. Fiore and S. Staton. Comparing operational models of name-passing process calculi. Information

and Computation, 204:524–560, 2006.
[12] M. Fiore and S. Staton. A congruence rule format for name-passing process calculi from mathe-

matical structural operational semantics. In Proc. LICS’06, pages 49–58. IEEE Computer Society
Press, 2006.

[13] M. Fiore and S. Staton. A congruence rule format for name-passing process calculi. Information
and Computation, 207(2):209–236, 2009.

[14] M. P. Fiore and D. Turi. Semantics of name and value passing. In Proc. LICS’01, pages 93–104.
IEEE Computer Society Press, 2001.

[15] H. Hansen and B. Klin. Pointwise extensions of GSOS-defined operations. Math. Struct. Comp.
Sci., 2010. To appear.

39

[16] I. Hasuo, B. Jacobs, and A. Sokolova. Generic trace semantics via coinduction. Logical Methods in
Computer Science, 3(4), 2007.

[17] I. Hasuo, B. Jacobs, and A. Sokolova. The microcosm principle and concurrency in coalgebra. In
Procs. FoSSaCS’08, volume 4962 of LNCS, pages 246–260, 2008.

[18] C. Hermida and B. Jacobs. Structural induction and coinduction in a fibrational setting. Informa-
tion and Computation, 145(2):107–152, 1998.

[19] B. Jacobs. A bialgebraic review of deterministic automata, regular expressions and languages. In
Essays dedicated to Joseph A. Goguen, volume 4060 of LNCS, pages 375–404, 2006.

[20] B. Jacobs. Distributive laws for the coinductive solution of recursive equations. Information and
Computation, 204:561–587, 2006.

[21] B. Jacobs and J. Hughes. Simulations in coalgebra. ENTCS, 82, 2003.
[22] P. T. Johnstone. Adjoint lifting theorems for categories of algebras. Bull. London Math. Soc.,

7:294–297, 1975.
[23] M. Kick. Bialgebraic modelling of timed processes. In Proc. ICALP’02, volume 2380 of LNCS,

pages 525–536. Springer, 2002.
[24] M. Kick. Rule formats for timed processes. In Proc. CMCIM’02, volume 68 of ENTCS, pages

12–31. Elsevier, 2002.
[25] M. Kick and J. Power. Modularity of behaviours for mathematical operational semantics. In Procs.

CMCS’04, volume 106 of ENTCS, pages 185–200. Elsevier, 2004.
[26] M. Kick, J. Power, and A. Simpson. Coalgebraic semantics for timed processes. Information and

Computation, 204:588–609, 2006.
[27] B. Klin. Bialgebraic semantics and modal logic. In Proc. LiCS’07, pages 336–345. IEEE Computer

Society Press, 2007.
[28] B. Klin. Bialgebraic methods and modal logic in structural operational semantics. Information and

Computation, 207:237–257, 2009.
[29] B. Klin. Structural operational semantics for weighted transition systems. In Semantics and Alge-

braic Specification, volume 5700 of LNCS, pages 121–139, 2009.
[30] B. Klin. Structural operational semantics and modal logic, revisited. In Proc. CMCS’10, volume

264 of ENTCS, pages 155–175. Elsevier, 2010.
[31] B. Klin and V. Sassone. Structural operational semantic for stochastic systems. In Proc. FOS-

SACS’08, volume 4962 of LNCS, pages 428–442, 2008.
[32] M. Lenisa. From set-theoretic coinduction to coalgebraic coinduction: some results, some problems.

ENTCS, 19, 1999.
[33] M. Lenisa, J. Power, and H. Watanabe. Distributivity for endofunctors, pointed and co-pointed

endofunctors, monads and comonads. In Proc. CMCS’00, volume 33 of ENTCS, pages 230–260.
Elsevier, 2000.

[34] M. Lenisa, J. Power, and H. Watanabe. Category theory for operational semantics. Theoretical
Computer Science, 327(1-2):135–154, 2004.

[35] S. Mac Lane. Categories for the Working Mathematician. Springer, second edition, 1998.
[36] S. Milius, L. S. Moss, and D. Schwencke. CIA structures and the semantics of recursion. In Procs.

FOSSACS’10, volume 6014 of LNCS, pages 312–327, 2010.
[37] R. Milner. Communication and Concurrency. Prentice Hall, 1988.
[38] R. Milner and M. Tofte. The Definition of Standard ML. MIT Press, revised edition, 1997.
[39] Lúıs Monteiro. A coalgebraic characterization of behaviours in the linear time - branching time

spectrum. In Procs. WADT’08, volume 5486 of Lecture Notes in Computer Science, pages 251–
265, 2009.

[40] G. D. Plotkin. A structural approach to operational semantics. DAIMI Report FN-19, Computer
Science Department, Aarhus University, 1981.

[41] G. D. Plotkin. A structural approach to operational semantics. Journal of Logic and Algebraic
Programming, 60-61:17–139, 2004.

[42] J. Power and D. Turi. A coalgebraic foundation for linear time semantics. ENTCS, 29, 1999.
[43] J. Power and H. Watanabe. Distributivity for a monad and a comonad. In Procs. CMCS’99,

volume 19 of ENTCS, page 102. Elsevier, 1999.
[44] J. J. M. M. Rutten and D. Turi. Initial algebra and final coalgebra semantics for concurrency. In

J. de Bakker et al., editor, Proc. of the REX workshop A Decade of Concurrency – Reflections and
Perspectives, volume 803 of LNCS, pages 530–582. Springer, 1994.

[45] J.J.M.M. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science, 249:3–
80, 2000.

[46] J.J.M.M. Rutten. Behavioural differential equations: a coinductive calculus of streams, automata

40

and power series. Theoretical Computer Science, 308(1):1–53, 2003.
[47] J.J.M.M. Rutten. Algebraic specification and coalgebraic synthesis of Mealy machines. In

Procs. FACS 2005), volume 160 of ENTCS, pages 305–319. Elsevier Science Publishers, 2006.
[48] D. Sangiorgi and D. Walker. The π-Calculus: a Theory of Mobile Processes. Cambridge University

Press, 2003.
[49] B. A. Sijtsma. On the productivity of recursive list definitions. ACM Trans. Program. Lang. Syst.,

11(4):633–649, 1989.
[50] S. Staton. General structural operational semantics through categorical logic. In Procs. LICS’08,

pages 166–177, 2008.
[51] Sam Staton. Relating coalgebraic notions of bisimulation. In Procs. CALCO’09, volume 5728 of

LNCS, pages 191–205, 2009.
[52] D. Turi. Functorial Operational Semantics and its Denotational Dual. PhD thesis, Vrije Univer-

siteit, Amsterdam, 1996.
[53] D. Turi. Categorical modeling of structural operational rules: case studies. In Proc. CTCS’97,

volume 1290 of LNCS, pages 127–146. Springer, 1997.
[54] D. Turi and G. D. Plotkin. Towards a mathematical operational semantics. In Proc. LICS’97,

pages 280–291. IEEE Computer Society Press, 1997.
[55] R. J. van Glabbeek. The linear time – branching time spectrum I. In J. A. Bergstra, A. Ponse, and

S. Smolka, editors, Handbook of Process Algebra, pages 3–99. Elsevier, 1999.
[56] H. Watanabe. Well-behaved translations between structural operational semantics. ENTCS, 65,

2002.

41

