
Institution Independent Static Analysis for CASL
?

Till Mossakowski1 and Bartek Klin2

1 BISS, Department of Computer Science, Bremen University
2 BRICS, Århus University

Abstract. We describe a way to make the static analysis for the in-
the-large part of the Common Algebraic Specification Language (Casl)
independent of the underlying logic that is used for specification in-the-
small. The logic here is formalized as an institution with some extra
components. Following the institution independent semantics of Casl

in-the-large, we thus get an institution independent static analysis for
Casl in-the-large. With this, it is possible to re-use the Casl static
analysis for extensions of Casl, or even completely different logics. One
only has to provide a static analysis for specifications in-the-small for
the given logic. This then can be plugged into the generic static analysis
for Casl in-the-large.

1 Introduction

The specification language Casl [Mos97,CoFa,CoF01], based on subsorted par-
tial first-order logic, is the central language of a whole family of languages.
Current research includes the development of extensions of Casl that also con-
sider the specification of higher-order functions [MHKB00,SM] and of reactive
[RR00], [BZ00] and object-oriented [ACZ00] behaviour. Several restrictions of
Casl to sublanguages [Mosc] make it possible to use specialized tool support.

Connected with this, Casl has a clean separation between specification in-
the-small and specification in-the-large. Specification in-the-small here means
specification of individual software modules using signatures and axioms, while
specification in-the-large concerns the combination of both specifications and
software modules. Following this design, also the semantics of Casl exhibits this
separation of concerns: The semantics of specification in-the-small is based on a
particular institution [GB92], while the semantics of specification in-the-large is
defined over an arbitrary but fixed institution [CoFb,Mos00a]. (Strictly speaking,
institutions here are replaced by so-called institutions with qualified symbols
[Mos00a] in order to admit symbol sets and symbol maps as basic primitives,
instead of signature morphisms.) This separation of levels in the semantics makes
it possible to re-use the semantics of Casl in-the-large also for the extensions
and sublanguages of Casl. Only the semantics of Casl in-the-small has to be
adapted individually for each extension (and restricted appropriately for the
sublanguages).
? This research was supported by the ESPRIT-funded CoFI Working Group 29432

and by the DFG project MULTIPLE.

Based on the Casl semantics, we have implemented a static analyser for
Casl, which is part of the Casl tool set CATS ([Mosa,Mos00b], see also the
architecture of CATS in Fig. 1). Now for tool development it is desirable to have
a similar separation of levels as in the semantics.

CASL tool set (CATS)

Parser

Static analysis

Encoding

Interfaces
Command line interface
Graphical interface
Aterm interface
XML interface
WWW interface
LaTeX interface
Module graph interface

CASL CASL extensions
(HasCASL, CSP-CASL)

Lexical analysis
Syntax analysis

Basic specifications
Mixfix syntax
Symbol maps

Structured specifications
Architectural specifications
Libraries

Logical encodings:
SubCFOL, CFOL,
SOL, HOL

Flattening
Elemination of renaming
Elemination of hiding

Logic-specific level

(specification

in-the-small)

Logic-independent level

(specification

in-the-large)

A
b
st

ra
ct

 s
y
n
ta

x

A
b
st

ra
ct

 s
y
n
ta

x
G

lo
b
al

 e
n
v
ir

o
n
m

en
t

L
o
ca

l
en

v
ir

o
n
m

en
t

(s
ig

n
at

u
re

)

SML

Sublanguage analysis
Language Translation
Heterogeneous language

Fig. 1. Architecture of the Casl tool set (CATS)

In this work, we are therefore making our static analysis of Casl in-the-
large institution independent, based on the institution independent semantics.
This permits a similar economy as for the semantics: the static analysis tools for
extensions and sublanguages of Casl need only re-implement the institution-
specific part, while the static analysis of Casl in-the-large remains the same
for all institutions. As a side-effect, the modular design of the Casl tool set

now becomes a good case study for a Casl architectural specification. Architec-
tural specifications [BST98] are a novel feature of Casl; they allow to describe
branching points in system development by indicating units (modules) to be in-
dependently developed and showing how these units, once developed, are to be
put together to produce the overall result. In the context of the present work,
this decomposition roughly will be one into institution-specific and institution
independent parts.

The main contribution of this work is not the introduction of new concepts
or proof of new results. Rather, it is a bridge between theory and practice. We
feel that this is quite an important topic, since it is important both to know
whether and how the theoretical concepts really work in practice, and to give a
solid theoretical basis for practical implementation work. Along these lines, this
paper can also be seen as a step towards bootstrapping Casl by using Casl to
develop Casl tools. Of course, much has to be done to achieve this goal, but
we feel that such a successful bootstrap would be a very convincing argument in
favour of Casl and the methodologies behind it.

The paper is organized as follows: Section 2 recalls the notion of institution
with qualified symbols, while section 3 recalls the division of the Casl design into
different layers (cleanly separating specification in-the-small from specification
in-the-large). Based on this, in section 4, we informally describe how to separate
these layers also for the static analysis, thus obtaining a generic static analy-
sis for Casl in-the-large. In section 5, we specify this as a Casl architectural
specification. Section 6 contains the conclusions.

2 Preliminaries: Institutions with qualified symbols

The notion of institution [GB92] formalizes what a logical system is. The theory
of institutions takes a predominantly model-theoretic view of logic, with the
satisfaction relation between models and logical sentences adopted as a primary
notion. Somewhat unlike in the classical model-theory though, a family of such
relations is considered at once, indexed by a category of signatures.

Definition 1. An institution I consists of:

– a category Sign of signatures,
– a functor Sen:Sign → Set, giving a set Sen(Σ) of Σ-sentences for each

signature Σ ∈ |Sign|,
– a functor Mod:Signop → Cat1, giving a class Mod(Σ) of Σ-models for

each signature Σ ∈ |Sign|, and
– for Σ ∈ |Sign|, a satisfaction relation |=Σ ⊆ Mod(Σ) × Sen(Σ),

such that for any signature morphism σ: Σ → Σ′, Σ-sentence ϕ ∈ Sen(Σ) and
Σ′-model M ′ ∈ Mod(Σ′) the following satisfaction condition holds:

M ′ |=Σ′ Sen(σ)(ϕ) ⇐⇒ Mod(σ)(M ′) |=Σ ϕ.

1 Cat is the (quasi-)category of all categories.

We write M ′
σ for Mod(σ)(M ′), where σ: Σ−→Σ′ ∈ Sign and M ′ ∈ Mod(Σ′).

In the Casl institution ([CoFb]), signatures are the usual many- and sub-
sorted signatures with partial and total operations and predicates, and sentences
are formulas of the subsorted partial first order logic with equality and sort gen-
eration constraints.

Institutions with qualified symbols add further structure to institutions,
mainly to deal with names and qualifications of symbols and with generation
of signature morphisms from concise and user-friendly symbol maps. Therefore,
an institution with qualified symbols comes along equipped with an underly-
ing set of (fully qualified) symbols, for each signature, and an underlying symbol
translation map, for each signature morphism. Moreover, there also is a notion of
raw symbols, which includes besides the fully qualified symbols also unqualified
or partially qualified symbols as they may be input in specifications.

In order to formalize this, consider an institution (Sign,Sen,Mod, |=) ad-
ditionally equipped with a faithful functor | |:Sign−→Set that extracts from
each signature the set of (fully qualified) symbols that occur in it (i.e. (Sign, | |)
is a concrete category [AHS90]). We assume that there is some fixed ‘universe’
of Sym of symbols that may be used by the specifier when writing symbols (and
symbol mappings). In the Casl institution, the natural choice for |Σ| is the set
of fully qualified symbols of Σ (if we omit qualifications, | | is no longer faithful,
because symbols may be overloaded with different profiles).

Now in Casl symbol mappings, one may (either partially or completely)
omit qualifications of symbols. This leads to the notion of raw symbol, which in
the case of the Casl institution can be a qualified symbol, an unqualified symbol
or a partially qualified symbol. The link between symbols and raw symbols is
given by a matching relation specifying which symbols correspond to which raw
symbols. Finally, in Casl, fitting maps for instantiations of parameterized speci-
fications are automatically extended to compound identifiers, such that they also
act on the components. In order to mimick this behaviour within an arbitrary
institution, we further assume that there is a set ID of compound identifiers.
This leads to the following definition:

Definition 2 ([Mos00a]). An institution with qualified symbols (Sign,Sen,

Mod, |=,Sym, | |, ID,RawSym, IDAsRawSym, SymAsRawSym, matches) con-
sists of

– an institution (Sign,Sen,Mod, |=),
– a set of (fully qualified) symbols Sym,
– a faithful functor | |:Sign−→Set,
– a set ID of compound identifiers,
– a set of raw symbols RawSym with two injections IDAsRawSym: ID −→

RawSym and SymAsRawSym:Sym−→RawSym,
– a matching relation matches ⊆ Sym × RawSym specifying which qualified

symbols match which raw symbols,

such that

– |Σ| ⊆ Sym for each Σ ∈ |Sign|,

– for id, id1, . . . , idn ∈ ID, also id[id1, . . . , idn] ∈ ID (i.e. we can form com-
pound identifiers),

– SY matches SymAsRawSym(SY ′) iff SY = SY ′ for SY ,SY ′ ∈ Sym2 and

– for each SY ∈ Sym, there is a unique Ident ∈ ID with SY matching
IDAsRawSym(Ident), called the name of SY .

3 The different layers of Casl

The design of Casl has been structured in four different layers, which are largely
orthogonal to each other. The first layer, Casl basic specifications, allows to for-
malize axiomatic requirements for a single software module in a specific logic.
This corresponds to specification in-the-small. The other three layers are de-
voted to specification in-the-large: Structured specifications allow to combine
specifications in a structured way, still refering to specification of single software
modules. Architectural specifications allow to prescribe how to decompose the
task of implementing a specification into smaller sub-tasks which can be imple-
mented independently. Finally, basic, structured and architectural specifications
can be collected into libraries.

Architectural specifications Libraries

Structured specifications

Basic specifications

The Casl semantic concepts are structured in layers in a similar way:

2 This property is not technically needed in the semantics, but it is desirable since it
means that for each ambiguity there is a qualification to resolve it.

Operations on pairs (Signature, Model class)
in an arbitrary institution with qualified sym-
bols, admitting amalgamation analysis

Environments
of named en-
tities

Operations on pairs (Signature, Model class)
in an arbitrary institution with qualified sym-
bols

(Signature, Model class) in an institution with
qualified symbols

_ _�

�

�

�

�

�

�

�

_ _

Casl institution with qualified symbols

OO

The semantics of a Casl basic specification is a signature together with a
model class within the Casl institution with qualified symbols (cf. Definition 2
above). Now, insofar as the other layers are concerned, the layer of Casl basic
specifications can be replaced by any other institution with qualified symbols.
More precisely, the semantics of structured specifications can be formalized over
an arbitrary institution with qualified symbols. To define semantics of architec-
tural specifications, the underlying institution needs to satisfy some additional
conditions, connected to the amalgamation property. The Casl institution does
not have the amalgamation property, but this problem can be circumvented us-
ing an embedding into an enriched institution that has the property, as described
in [SMH+01].

4 Generic static analysis

Now the structure of static analysis follows this layer structuring as well. This
enables us to turn the analysis of structured and architectural specifications into
a generic program, with the interface consisting of sorts and operations captur-
ing the static part of an institution with qualified symbols (i.e., the signature
category and the symbol functor) and, moreover, the static analysis for basic
specifications and for symbol maps. Note that symbol maps are usually consid-
ered to be part of structured specifications in the Casl documents. However,
since they are institution-specific and there is no hope to make them institution-
independent, we here count them to the layer of basic specifications.

Architectural analysis

Structured analysis

Interface for institution with qualified symbols
and basic analysis

_ _�

�

�

�

�

�

�

�

_ _

Casl institution with qualified
symbols and basic analysis for
Casl

OO

The generic structured and architectural analysis can then be instantiated
with a program module providing the ingredients of the Casl institution with
qualified symbols, and a basic analysis for it. Of course, it is now possible to
supply any other institution with symbols here.

Note that we have omitted the layer of libraries so far. This has been delib-
erate, since the analysis of libraries is entirely orthogonal to the rest: we only
need to assume that we have a notion of library item and a static analysis for
library items. The library analysis then just performs the item analysis for each
library item in a given library, and takes care of downloads from other libraries.

Interface for library items and library item
analysis

Library
analysis

_ _
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

_ _

Casl basic, structured and ar-
chitectural analysis

OO

The generic library analysis can then be applied to the library item anal-
ysis for Casl basic, structured and architectural specifications. Note that we

presently do not have in mind to apply the library analysis within other con-
texts (although it would be easy to do so). The use of a generic program here
mainly has the reason of a clean separation of concerns.

5 Generic static analysis specified in Casl

arch spec LibraryAnalysis =
units I : Institution;

SAS : Institution → StructuredAbstractSyntax;
AAS : StructuredAbstractSyntax → ArchAbstractSyntax;
GEnv : Institution → GlobalEnv;
StrAna : Institution×StructuredAbstractSyntax×GlobalEnv

→ StructuredAnalysis;
ArchAna : Institution×ArchAbstractSyntax×GlobalEnv ×

StructuredAnalysis → ArchAnalysis;
LibAna : AbstractLibItemAnalysis → LibAnalysis;
SS = SAS [I];
AS = AAS [SS];
G = GEnv [I];
Str = StrAna[I][SS][G];
A = ArchAna[I][AS][G][Str];

result

LibAna [A fit Entry 7→ global entry , Env 7→ global env ,

analysis 7→ arch analysis]
end

Fig. 2. Specification of the static analysis of the Casl tool set as a Casl architectural
specification

Our task is now to formalize the graphical visualization of the separation of
layers in some way. This is exactly the task Casl architectural specifications have
been designed for. Hence, an architectural specification of the overall structure
of the static analysis is given in Fig. 2.

The unit I, satisfying the specification Institution (the specification is given
in Fig. 3 and Fig. 4 below) contains implementation of all the institution-specific
components needed in static analysis of structured and architectural specifica-
tions:

– Abstract syntax of basic specifications, symbol maps and symbol lists, con-
forming to a simple interface specified in the specification BasicAbstract-

Syntax (given below),
– a signature category together with a symbol functor and other components

of an institution with qualified symbols,
– operations performing basic analysis for the institution, i.e., analysis of ba-

sic specifications, symbol maps and symbols lists (note that the analysis of

basic specifications returns a basic specification again, since mixfix grouping
analysis might change the initial abstract syntax tree),

– some additional operations, which in principle can be defined over an ar-
bitrary institution with qualified symbols, but only in a very inefficient to
compute (if computable at all) way. Hence, to achieve good performance, the
task of implementing these operations is assigned to the author of the unit
I. These operations include computation of signature union, subsignature
relation, induction of signature morphisms from raw symbol maps and a few
others,

– an additional operation performing so-called sharing analysis, needed in the
static analysis of architectural specifications. In the recently developed di-
agram semantics of architectural specifications [SMH+01,SMH+], each part
of an architectural specification is evaluated to a diagram D : I → Sign,
where I is a finite category, and Sign is the signature category of the un-
derlying institution. A family of models 〈Mi〉i∈Ob(I) is compatible with D

if for all i ∈ Ob(I), Mi ∈ Ob(Mod(D(i))), and for all m : i → j in I,
Mi = Mod(D(m))(Mj). For two diagrams D : I → Sign, D′ : I′ → Sign,
where D′ extends D, we say that D ensures amalgamability for D′, if any
model family compatible with D can be uniquely extended to a family com-
patible with D′. We can reduce this to the case where D′ extends D by just
one object and one morphism into this object.

We now need a specification of diagrams in the category of signatures and an
operation ensures amalgamability checking whether the extension of a di-
agram with a new node and a new edge (corresponding to some architectural
unit term) ensures amalgamability. Further motivation for introducing this
operation, together with a description of some difficulties in implementing
it in Casl institution, is given in [KHT+,Kli00].

Based on this, several units containing institution independent operations
are built:

– SS and AS, based on the syntactic part of I and containing definitions of
abstract syntax of structural and architectural specifications,

– G, implementing data structures for global environments needed in the static
analysis of structural and architectural specifications,

– Str and A, implementing static analysis of structural and architectural spec-
ifications.

The institution independence of these units is expressed by providing methods
of constructing them (i.e. parameterized units SAS, AAS, Genv, StrAna and
ArchAna, respectively) that can be applied to any unit satisfying the specifica-
tion Institution.

Finally, the resulting unit A is given as a parameter to a parameterized
unit LibAna, which, given a unit implementing static analysis of some abstract
library items (here instantiated with structured and architectural specifications),
implements static analysis of libraries of such items.

We now specify an arbitrary institution with qualified symbols in Casl it-
self. This specification is used as interface specification for the described above
(specification of the) generic structured and architectural analysis in Fig. 2.

spec Institution =
Category with object 7→ sign

and BasicAbstractSyntax and List and FiniteSet and FiniteMap

and Diagram[Category with object 7→ sign]
then %% Basic analysis

ops basic analysis : BASIC SPEC × sign →
BASIC SPEC × sign × [FORMULA];

stat symb map items : [SYMB MAP ITEMS] → Map raw symbol ;
stat symb items : [SYMB ITEMS] → [raw symbol]

%% Structured specifications: Symbols and symbol maps

sorts symbol < raw symbol ;
ID < raw symbol

ops || || : sign → Set symbol ;
|| || : morphism → Map symbol ;

≤ : pred(symbol × symbol);
%% Ordering needed for efficient symbol tables

matches : pred(symbol × raw symbol);
empty signature : sign;

[] : ID × [ID] → ID ;
name : symbol → ID

%% Architectural specifications: sharing analysis

op ensures amalgamability :
diagram × node × sign × edge × morphism →? diagram

%% Derived operations

ops signature union : sign × sign →? sign;
final union : sign × sign →? sign;
is subsig : pred(sign × sign);
generated sign, cogenerated sign : [raw symbol] × sign → morphism;
induced from morphism : Map raw symbol × sign → morphism;
induced from to morphism : Map raw symbol ×sign×sign → morphism

%% Axioms omitted
end

Fig. 3. Specification of institutions with qualified symbols

Since our target implementation language is Standard ML [Pau91], a higher-
order functional programming language, we use HasCasl [SM,MHKB00], a poly-
morphic higher-order extension of Casl designed for the specification of Haskell
programs, as specification language. In particular, in the examples below, we will
use polymorphic type constructors such as Map a, Set a, Table a b and [a] (for
maps, sets, index tables and lists). However, note that the use of HasCasl is not
really essential here and it is done only to get better readability. The specifica-

spec Category =
sorts object , morphism

ops id : object → morphism;
o : morphism × morphism →? morphism;

dom, cod : morphism → object

%% Axioms omitted
end

spec Diagram[Category] =
List

then sorts node, edge, diagram

ops dom, cod : edge → node;
fresh node : diagram → node;
fresh edge : diagram × node × node → edge;
add node : diagram × node × object →? diagram;
add edge : diagram × edge × morphism →? diagram;
empty diagram : diagram;
object at node : diagram × node →? object ;
morphism at edge : diagram × edge →? morphism;
diagram nodes : diagram → [node];
diagram edges : diagram → [edge];
node in diagram : pred(node × diagram)

%% Axioms omitted
end

spec BasicAbstractSyntax =
%% Minimum needed for interface to structured analysis

sorts FORMULA,SYMB ITEMS ,SYMB MAP ITEMS ,BASIC SPEC

end

Fig. 4. Auxiliary specifications used to specify institutions with qualified symbols

tions can be easily rewritten in plain Casl; but then one has to explicitly include
a separate instantiation of lists, maps etc., for each required element type. Also,
product sorts have to be introduced explicitly, and operations of predicate type
have to be replaced by predicates.

Axioms in this specification are omitted as irrelevant for the general pre-
sentation given in this paper. All the needed axioms can be derived from the
semantics of Casl.

The specification Institution, shown in Fig. 3, is essential for extending the
Casl tool set CATS with static analysis for future extensions and/or restrictions
of Casl. To reuse the static analysis of structured and architectural specifica-
tions in an enriched language, one should implement all the specified operations
for the new language. If architectural specifications are omitted in the modified
language, the implementation of the operation ensures amalgamability can be
omitted. For restrictions of Casl, one can either just use the ordinary Casl tool
set, combined with a sublanguage analyzer that we have developed, or one can
re-implement the analysis of a sublanguage (e.g. to obtain better efficiency) and
use the generic analysis for Casl in-the-large as described above.

The specification StructuredAbstractSyntax of the abstract syntax for
structured specifications is given in Fig. 5. It is based on the abstract syntax for
basic specifications (including sorts SY MB ITEMS and SY MB MAP ITEMS

as a syntax for raw symbols and raw symbol maps). It follows the Casl ab-
stract syntax [CoF01], except that the productions for SY MB ITEMS and
SY MB MAP ITEMS are omitted – they belong to the institution-specific
part. We also provide a specification StructuredAnalysis with the profiles of
the analysis functions for structured specifications. Moreover, the corresponding
specifications for the architectural level are given in Fig. 6.

The specification GlobalEnv, given in Fig 7, provides data structures for
the information that is extracted by the static analysis. For structured speci-
fications, the structure is roughly kept (mainly, symbol maps are replaced by
the corresponding signature morphisms), while basic specifications are fully ex-
panded to signature and set of axioms that they denote. The data structures for
architectural specifications closely follow their semantics, as given in [CoFb].

The specification AbstractLibItemAnalysis is given in Fig. 8. It contains
a sort LIB ITEM for the syntax of abstract library items (the constituents of
a library), a sort Env for the semantics of these, and a sort ITEM NAME to
name them. Environments (sort Env) are then just tables of entries indexed by
item names. The function analysis takes a LIB ITEM and analysis it in the
given environment.

The specification LibAnalysis is built on top of AbstractLibItemAnal-

ysis. It provides data structures for both libraries with possible downloads from
other libraries (this follows the Casl abstract syntax, except that an intermedi-
ate non-terminal LIB ITEM ′ is needed here to separate the library item-specific
from the library item-independent parts), and a function check that statically
analyses a library, using the given function analysis from AbstractLibItem-

Analysis. It returns an environment corresponding to the library, and also takes

spec StructuredAbstractSyntax =
Institution and List and FiniteMap and String

then sorts SPEC NAME = string ;
VIEW NAME = string

free types FIT ARG ::= fit spec(SPEC ; [SYMB MAP ITEMS])
| fit view(VIEW NAME ; [FIT ARG]);

RENAMING ::= renaming([SYMB MAP ITEMS]);
RESTRICTION ::= hide spec([SYMB ITEMS])

| reveal spec([SYMB MAP ITEMS]);

GENERICITY ::= genericity(PARAMS ; IMPORTS);
PARAMS ::= params([SPEC]);
IMPORTS ::= imports([SPEC]);

SPEC ::= basic(BASIC SPEC)
| translation(SPEC ; RENAMING)
| reduction(SPEC ; RESTRICTION)
| union spec([SPEC])
| extension([SPEC])
| free spec(SPEC)
| local spec(SPEC ; SPEC)
| closed spec(SPEC)
| spec inst(SPEC NAME ; [FIT ARG]);

VIEW TYPE ::= view type(SPEC ; SPEC);

PRE LIB ITEM ::= spec defn(SPEC NAME ;
GENERICITY ;
SPEC)

| view defn(VIEW NAME ;
GENERICITY ;
VIEW TYPE)

end

spec StructuredAnalysis =
StructuredAbstractSyntax and GlobalEnv

then

ops spec analysis : sign × global env × SPEC →? spec lenv × SPEC ;
structured analysis :

global env × PRE LIB ITEM →? global env × PRE LIB ITEM

%% Axioms and hidden operations omitted
end

Fig. 5. Specification of structured abstract syntax and analysis

spec ArchAbstractSyntax =
StructuredAbstractSyntax

then

sorts UNIT NAME = string ;
ARCH SPEC NAME = string ;
UNIT TYPE NAME = string

free types

ARCH SPEC ::= basic arch spec([UNIT DECL DEFN];
RESULT UNIT)

| named arch spec(ARCH SPEC NAME);

UNIT DECL DEFN ::= unit decl case(UNIT DECL)
| unit defn case(UNIT DEFN);

UNIT DECL ::= unit decl(UNIT NAME ; UNIT SPEC ;
UNIT IMPORTED);

UNIT IMPORTED ::= unit imported([UNIT TERM]);
UNIT DEFN ::= unit defn(UNIT NAME ; UNIT EXPRESSION);

UNIT SPEC ::= unit type case(UNIT TYPE)
| spec name case(SPEC NAME)
| arch spec case(ARCH SPEC)
| closed unit spec(UNIT SPEC);

UNIT TYPE ::= unit type([SPEC]; SPEC);

RESULT UNIT ::= result unit(UNIT EXPRESSION);
UNIT EXPRESSION ::= unit expression([UNIT BINDING]; UNIT TERM);
UNIT BINDING ::= unit binding(UNIT NAME ; UNIT SPEC);
UNIT TERM ::= unit translation(UNIT TERM ; RENAMING)

| unit reduction(UNIT TERM ; RESTRICTION)
| amalgamation([UNIT TERM])
| local unit([UNIT DEFN]; UNIT TERM)
| unit appl(UNIT NAME ; [FIT ARG UNIT]);

FIT ARG UNIT ::= fit arg unit(UNIT TERM ; [SYMB MAP ITEMS]);

LIB ITEM ::= sort PRE LIB ITEM

| arch spec defn(ARCH SPEC NAME ;
ARCH SPEC)

| unit spec defn(SPEC NAME ; UNIT SPEC)
end

spec ArchAnalysis =
ArchAbstractSyntax and StructuredAnalysis

then

op arch analysis : global env × LIB ITEM →? global env × LIB ITEM

%% Axioms and hidden operations omitted
end

Fig. 6. Specification of architectural abstract syntax and analysis

spec GlobalEnv =
Institution and List and Table and String

then

sorts SPEC NAME = string ;
UNIT NAME = string ;
ITEM NAME = string

free types

spec env ::= basic env(sign; [FORMULA])
| translate env(spec env ; morphism)
| derive env(spec env ; morphism)
| union env([spec env])
| extension env([spec env])
| free spec env(spec env)
| closed spec env(spec env)
| spec inst env(SPEC NAME ; spec env ; morphism; [spec env]);

%% intended use: (name, body, fitting morphism, actual args)
spec lenv ::= SPEC ENV (sign; sign; spec env)
%% intended use: (flattened sign, flattened hidden sign, env)

op empty spec lenv : spec lenv

type genericity env = (spec lenv × [spec lenv] × sign)
%% intended use: (union of envs for all imports,
%% list of envs for formal parameters,
%% signature union of all imports and all formal parameters)

type comp sigs = [sign];
unit sig = comp sigs × sign;
st based unit ctx = Table UNIT NAME node;
based par unit sig = node × par unit sig ;
st par unit ctx = Table UNIT NAME based par unit sig ;
ext st unit ctx = st par unit ctx × st based unit ctx × diagram;
arch sig = ext st unit ctx × unit sig

%% architectural signatures
free type global entry ::= spec defn env(genericity env ; spec lenv)

| view defn env(genericity env ; spec lenv ; morphism; spec lenv)
| arch spec defn env(arch sig)
| unit spec defn env(unit sig)

type global env = Table ITEM NAME global entry

op empty global env : global env

end

Fig. 7. Specification of global environments

spec AbstractLibItemAnalysis =
String and Table

then sorts LIB ITEM ,Entry ;
ITEM NAME = string ;
Env = Table ITEM NAME Entry

ops analysis : Env × LIB ITEM →? Env × LIB ITEM

end

spec LibAnalysis =
AbstractLibItemAnalysis

then

sorts LIB NAME = string

free types

ITEM NAME OR MAP ::= item name(ITEM NAME)
| item name map(ITEM NAME ; ITEM NAME);

LIB ITEM ′ ::= sort LIB ITEM

| download items(LIB NAME ;
[ITEM NAME OR MAP]);

LIB DEFN ::= lib defn(LIB NAME × [LIB ITEM]);
Lib Env ::= lib env(Table LIB NAME (Env × LIB DEFN))

op check : Lib Env × LIB DEFN → Lib Env × Env × LIB DEFN

%% Axioms and hidden operations omitted
end

Fig. 8. Specification of abstract library analysis

and returns a library environment, which is a table associating library names
with environments.

6 Conclusion and future work

We have shown how to structure the static analysis of Casl within the Casl

tool set (CATS) in a modular way. We therefore have followed the structuring
of the Casl design and semantics into several layers, and outlined how the
static analysis can be turned into a generic program which is parameterized over
an arbitrary institution (plus some extra components). We also have specified
this modular structure of the Casl static analysis in Casl itself, using a Casl

architectural specification with parameterized units.

At the implementation level, these parameterized units are realized as Stan-
dard ML functors (SML is the implementation language of the Casl tool set).
Thus, this work can also be seen as a case study of relating Casl architec-
tural specifications and Standard ML implementations. The size of the different
components of the Casl tool set is as follows:

Parsing and printing 7.000 lines of code
Institution-specific analysis 9.000 lines of code
Institution-independent analysis 9.000 lines of code

Total 25.000 lines of code

This means that for replacing the Casl institution with some other institu-
tion like higher-order Casl, one has to re-program both the institution-specific
analysis and the parsing and printing, while the generic institution-independent
analysis can be re-used.

In the future, this should be applied to several extensions of Casl, like
HO-Casl [MHKB00], HasCasl [SM], Casl-LTL [RR00], SB-CASL [BZ00], LB-
Casl [ACZ00], etc.

We hope that also large parts of the institution-specific analysis of Casl

basic specifications can be re-used, since these extensions are built on top of
Casl. However, it is not clear whether this re-use can be turned into a generic
program. At the moment, this kind of re-use seems to be more a “copy and paste”
re-use. The same also holds for parsing and printing, since generally it seems to
be difficult to build parsers for “grammars with holes” and to instantiate the
holes with different (institution-specific) grammars later on.

A related direction of future work is the construction of a static analysis
for heterogeneous Casl [Mosb]. Heterogeneous Casl combines several logics for
basic specifications within one language, while the structured and architectural
specifications basically are those of Casl.

References

[ACZ00] D. Ancona, M. Cerioli, and E. Zucca. Extending Casl by late binding.
In C. Choppy, D. Bert, and P. Mosses, editors, Recent Trends in Algebraic

Development Techniques, 14th International Workshop, WADT’99, Bonas,

France, volume 1827 of Lecture Notes in Computer Science. Springer-Verlag,
2000.

[AHS90] J. Adámek, H. Herrlich, and G. Strecker. Abstract and Concrete Categories.
Wiley, New York, 1990.

[BST98] Michel Bidoit, Donald Sannella, and Andrzej Tarlecki. Architectural spec-
ifications in Casl. In AMAST ’98, Proc. 7th Intl. Conference on Alge-

braic Methodology and Software Technology, Manaus, volume 1548 of LNCS,
pages 341–357. Springer-Verlag, 1998.

[BZ00] H. Baumeister and A. Zamulin. State-based extension of Casl. In Pro-

ceedings IFM 2000, volume 1945 of Lecture Notes in Computer Science.
Springer-Verlag, 2000.

[CoFa] CoFI. The Common Framework Initiative for algebraic specification and
development, electronic archives. Notes and Documents accessible from
http://www.brics.dk/Projects/CoFI/.

[CoFb] CoFI Semantics Task Group. Casl – The CoFI Algebraic Specification
Language – Semantics. Note S-9 (Documents/CASL/Semantics, version
1.0), in [CoFa], forthcoming.

[CoF01] CoFI Language Design Task Group. Casl – The CoFI Algebraic Specifica-
tion Language – Summary. Documents/CASL/Summary, in [CoFa], March
2001.

[GB92] J. A. Goguen and R. M. Burstall. Institutions: Abstract model theory for
specification and programming. Journal of the Association for Computing

Machinery, 39:95–146, 1992. Predecessor in: LNCS 164, 221–256, 1984.
[KHT+] B. Klin, P. Hoffman, A. Tarlecki, T. Mossakowski, and L. Schröder. Check-

ing amalgamability conditions for Casl architectural specifications. In
J. Sgall, A. Pultr, P. Kolman, editors, Mathematical Foundations of Com-

puter Science, volume 2136 of Lecture Notes in Computer Science, pages
451–463. Springer-Verlag, 2001.

[Kli00] B. Klin. An implementation of static semantics for architectural specifica-
tions in Casl (in Polish). Master’s thesis, Warsaw University, 2000.

[MHKB00] T. Mossakowski, A. Haxthausen, and B. Krieg-Brückner. Subsorted partial
higher-order logic as an extension of Casl. In C. Choppy, D. Bert, and
P. Mosses, editors, Recent Trends in Algebraic Development Techniques,

14th International Workshop, WADT’99, Bonas, France, volume 1827 of
Lecture Notes in Computer Science, pages 126–145. Springer-Verlag, 2000.

[Mosa] T. Mossakowski. The Casl tool set. Available at
http://www.tzi.de/cofi/CATS.

[Mosb] T. Mossakowski. Heterogeneous development graphs and heterogeneous
borrowing. Submitted.

[Mosc] Till Mossakowski. Relating Casl with other specification languages: the
institution level. Theoretical Computer Science. To appear.

[Mos97] Peter D. Mosses. CoFI: The Common Framework Initiative for Algebraic
Specification and Development. In TAPSOFT ’97, Proc. Intl. Symp. on

Theory and Practice of Software Development, volume 1214 of LNCS, pages
115–137. Springer-Verlag, 1997.

[Mos00a] T. Mossakowski. Specification in an arbitrary institution with symbols. In
C. Choppy, D. Bert, and P. Mosses, editors, Recent Trends in Algebraic

Development Techniques, 14th International Workshop, WADT’99, Bonas,

France, volume 1827 of Lecture Notes in Computer Science, pages 252–270.
Springer-Verlag, 2000.

[Mos00b] Till Mossakowski. Casl: From semantics to tools. In S. Graf and
M. Schwartzbach, editors, TACAS 2000, volume 1785 of Lecture Notes in

Computer Science, pages 93–108. Springer-Verlag, 2000.
[Pau91] L. C. Paulson. ML for the Working Programmer. Cambridge University

Press, 1991.
[RR00] G. Reggio and L. Repetto. Casl-CHART: a combination of statecharts

and of the algebraic specification language Casl. In Proc. AMAST 2000,
volume 1816 of Lecture Notes in Computer Science. Springer Verlag, 2000.

[SM] L. Schröder and T. Mossakowski. HasCasl: Towards integrated specifica-
tion and development of Haskell programs. Submitted.

[SMH+01] L. Schröder, T. Mossakowski, P. Hoffman, B. Klin, and A. Tarlecki. Se-
mantics of architectural specifications in Casl. In H. Hußmann, editor,
Fundamental Approaches to Software Engineering, volume 2029 of Lecture

Notes in Computer Science, pages 253–268. Springer-Verlag, 2001.
[SMH+] L. Schröder, T. Mossakowski, P. Hoffman, B. Klin, and A. Tarlecki. Amal-

gamation in the semantics of Casl. Submitted to Theoretical Computer
Science.

