
Reachability Types, Traces and Full Abstraction
Benedict Bunting

University of Oxford, UK
Andrzej S. Murawski
University of Oxford, UK

Abstract—Reachability types are a recent approach to mod-
elling sharing in higher-order languages, aiming to provide sepa-
ration guarantees through typability. The contextual equivalence
problem in such a setting is exacerbated by the need to consider
reachability-related constraints on the allowable interactions. In
particular, they might weaken the ability of contexts to observe
sequentiality.

In this paper, we investigate contextual equivalence for reach-
ability types through the lens of operational game semantics.
We provide a sound trace model for a language equipped with
reachability types, and show how to refine it to a fully abstract
one, which captures a natural notion of equivalence based on
allowing terms to share functions and locations consistently
with the assigned reachability annotations. We also discuss the
corresponding problem of contextual approximation, along with
an inequational full abstraction result.

This is a first attempt at defining a fully abstract semantics
for reachability types.

Index Terms—reachability types, game semantics, trace mod-
els, full abstraction

I. INTRODUCTION

Type systems that offer control over sharing are seen as
a promising technique for improving program safety and
performance. This has been demonstrated by the recent success
of Rust, whose core is based on the shared XOR mutable
principle, i.e. sharing is restricted to immutable variables.
This policy turns out to be quite restrictive when it comes to
expressing common programming patterns involving higher-
order functions and state, like those expressible in languages
such as ML or Scala. Reachability types [1, 2] are a recent
proposal to address this gap and provide a type system that
is capable of collecting information about sharing as well as
lack thereof, i.e. separation.

The key idea of reachability types is to track reachable
variables/locations by annotating types with type qualifiers,
which contain functions or locations that may be reachable
from a given term. For example, the term h ≜ let r = ref (0)
in λf.λx.(!ℓ + f(!r) + g(x)), where ℓ is a memory location,
! stands for dereferencing, τ ≜ Int → Int and g : τ is free,
would normally be typed as τ → τ . With reachability types,
it can be given the more accurate type below.

(µh.(f : (Int → Int)Q) → (Int → Int){f,g,h,ℓ}){g,ℓ}

The presence of g, ℓ in qualifiers indicates that both the whole
term and its functional result may directly reach the unknown
function g and location ℓ. In contrast, f corresponds to a
dependency on resources contributed by the input. h in turn

For the purpose of Open Access, the author has applied a CC BY public
copyright licence to any Author Accepted Manuscript (AAM) version arising
from this submission.

is a self-reference, which allows one to express the fact that
the functional result of h may reach (private) locations (such
as r) created by h itself. In addition, the argument type τQ

can be used to specify the degree of overlap between h and
its arguments. Setting Q to ∅ corresponds to demanding that
what the argument can reach must be disjoint from what h
can reach, while {ℓ} would allow for scenarios in which the
argument may also reach ℓ, but not g. Similarly, Q = {ℓ, g}
would permit h to share ℓ, g with its arguments. Overall, the
idea of tracking reachability at the type level turns out very
powerful and can be used to express many common program-
ming scenarios such as non-interference, non-escaping, non-
accessibility and scoped borrowing [1].

The use of qualifiers in reachability types complicates ar-
guments about contextual equivalence, such as may be needed
justify reachability-type-based program transformations and
optimisations [3]. For example, whether the term let f = h()
in (let g = h() in f(); g()) is equivalent to let f = h() in
(let g = h() in g(); f()) depends on how h : Unit → (Unit →
Unit) is typed. If h : (µh.Unit → (Unit → Unit){h})∅ then
f, g may share the private state of h and the terms will not be
equivalent, because the order of calls can be detected through
the state. In contrast, for h : (µh.Unit → (Unit → Unit)∅)∅

the terms will behave in the same way.
In this paper, we employ operational game semantics [4, 5]

to provide a formal and precise account of the underpinning
theory of contextual equivalence (and the associated notion of
approximation). Game semantics is already known for provid-
ing a wide range of fully abstract models for various program-
ming paradigms [6, 7]. They rely on representing interactions
between programs and contexts as a dialogue between two
players: O (context) and P (program). A characteristic feature
of operational game semantics is that these dialogues are gen-
erated as traces of a carefully crafted labelled transition system
(LTS), which uses names to represent unknown functions in
the spirit of open/normal-form bisimulation [8, 9]. In addition,
to capture the sharing of private state, the traces of our LTS
will be decorated with sets of abstract states revealed by the
environment.

In order to demonstrate our approach, in Section II we
introduce a minimalistic language with reachability types,
modelled after λ∗ [1]. As our methods exploit the ability to
η-expand terms, the calculus is based on a notion of well-
behaved types, for which η-expansion is guaranteed to be
type-preserving. In Sections III and IV, we introduce the LTS
LP , which is sound. The technical concepts underpinning the
analysis of the model and the soundness result are covered
in Sections V, VI. In particular, the LTS non-trivially adapts

the classic notion of visibility (originally used to characterise
functions that are reachable/visible to players in a language
with first-order references) [10] to the setting of reachability
types. Intuitively, this is done by identifying a family of
subtle technical conditions that further restrict visibility to
make it compatible with types. In Section VII, building on
a definability result, we refine the trace model to a fully
abstract one by introducing rearrangement relations. We show
that one can capture contextual equivalence via complete
trace equivalence up to allowable trace permutations. Program
approximation in turn can be characterised through an ordering
that allows one to omit certain actions. For example, it turns
out that the term let f = h() in f(1); f(2) approximates let
f = h() in f(1) when h : (µh.Unit → (Int → Unit)∅)∅,
because f(1) and f(2) cannot reach any state other than f ’s
private one and, consequently, f(2) does not interfere with the
subsequent computation.

At a high level, we see our work as the beginning of a
semantic study of reachability types. So far, the most closely
related work in this direction is [11], which provides a sound
logical relation for contextual equivalence.

II. LANGUAGE

We shall study λ∗
wb , a simple ML-like language, which

is a variant of λ∗ [1] inspired by the formalisation [12]
and notation of [11]. We present its syntax in Figure 1.
At its core, it is a λ-calculus enriched with constants of
base type, primitive operations, conditionals, integer-valued
references and recursion. It has a standard, small-step call-
by-value operational semantics, expressed as a reduction re-
lation (M,h) → (M ′, h′) between pairs of terms and heaps
(mapping locations to integers). This uses evaluation contexts,
K, to identify the next redex. We write (M,h) ⇓ to mean
(M,h) →∗ (V, h′) for some value V (i.e. it terminates).

Types What makes this language interesting is its types. They
are denoted by τ , with σ being used for qualified types τQ,
in which the annotation Q is referred to as a qualifier. In
our case, qualifiers are either ⊥ (for base types) or a set of
captured variables or locations (for references and functions).
Functions are given a dependent type of the form µf.(x :
τQ1

1) → τQ2

2 . Here x is the argument to the function. When τ1
is a reference or function type, the argument could contribute
locations/functions to the result. Accordingly, if Q1 ̸= ⊥ then
x may appear in Q2, but not in τ2 or τQ1

1 . f is called the
self-reference, which signifies dependence of the result on the
function: it may appear in Q2, but not in τ2 or τQ1

1 . For clarity,
when x does not appear in Q2, such as when it is of base type,
we may omit it (µf.τQ1

1 → τQ2

2). Similarly, we will often drop
the binding when the self-reference is unused ((x : τQ1

1) →
τQ2

2). If neither is used, we simply write τQ1

1 → τQ2

2 .
The qualifiers can be partially ordered by Q1 ⊑ Q2 ≜ Q1 =

⊥ ∨ Q1 ⊆ Q2, which essentially lifts the subset ordering to
include ⊥ as the least element. Joins (⊔) can then be computed
by ⊥ ⊔ Q ≜ Q, Q ⊔ ⊥ ≜ Q, and Q1 ⊔ Q2 ≜ Q1 ∪ Q2

(otherwise), with meets (⊓) given by ⊥⊓Q ≜ ⊥, Q⊓⊥ ≜ ⊥,
and Q1 ⊓Q2 ≜ Q1 ∩Q2 (otherwise).

We will be concerned with types that satisfy a certain well-
formedness condition.

Definition 1. A qualified type σ is well-behaved if σ = βQ or
σ = RefQ or σ = µf.(x : τQ1

1) → τQ2

2)Qf , where τQ1

1 , τQ2

2

are well-behaved, Q2 ⊑ Qf ⊔ {f, x}, Q1 ⊑ Qf , and x ∈ Q2

implies Q1 ⊑ Q2. We shall write wb(σ) to insist that σ be
well-behaved.

These conditions reflect the intuitive reading of qualified
types. In the type (µf.(x : τQ1

1) → τQ2

2)Qf , Q1 represents the
permitted overlap of the argument with the function, and so
should be within what is observed by the function. Similarly,
Q2 expresses what the result of the function might observe,
which must be either observed by the function (Qf), the
argument (x), or something not observable from outside the
function (f). All examples in [1] are well-behaved.
Typing rules We will have typing judgments of the form
Σ;Γ φ M : σ. Σ denotes a heap typing environment,
written ℓ1 : Ref, · · · , ℓn : Ref. For variables, we will have
type assignments ■

■, which have either the standard form :
(used to type arguments) or ◦

◦ for the self-references used
when typing functions. Thus, Γ is a typing environment of
the form x1 ■

■ τQ1

1 , · · · , xm ■
■ τQm

m , where we forbid circular
dependencies by stipulating that τQi

i may contain ℓ ∈ Σ and xj

provided Qj ̸= ⊥ and j < i. We require wb(σ) for any entry
x ■

■ σ ∈ Γ. The final element of the typing judgment is φ, called
the filter. Let us write dom+(Σ; Γ) to be all locations in Σ and
variables in Γ given non-⊥ qualifiers. Then φ ⊆ dom+(Σ; Γ)
and φ can be seen as specifying the locations and variables
that can be observed directly by the term. In the case that
φ = dom+(Σ; Γ), then we will omit φ, and write simply
Σ;Γ ⊢ M : σ. To ease the presentation of the rules, we will
occasionally write things like Σ;Γ φ∪{x} M : σ, where x
may have a ⊥-qualifier in Γ. In such cases, we consider x to
be implicitly removed. We also write Σ;Γ φ M1,M2 : σ as
shorthand for a pair of judgments for M1 and M2.

The type system is given in Figure 1. An important rule
is T-APP, which controls the separation between a function
and its argument. Saturation, written Q∗, identifies variables
and locations reachable from a qualifier. In an application,
the intersection of the saturated qualifiers of the function and
argument is compared with the permitted overlap, ensuring the
argument only reaches things that are permitted, or unobserved
by the function. The rule T-SELF implements self-references,
allowing the qualifier of an abstraction to be replaced by
the self-reference while typing the function body. Sub-typing
is included, allowing variation of qualifiers, with the usual
contra-variance in function arguments.

Example 2. We write letx = M inN for (λx.N)M . As
in [1], one can derive the following rule for letx = M inN .

T-LET
Σ;Γ φ M1 : τQ1

1 Σ;Γ, x : τQ1
1 φ∪{x} M2 : τQ2

2 wb(τQ2
2) x ̸∈ FV(τ2)

Σ; Γ φ letx = M1 inM2 : τ
Q2{Q1/x}
2

For example, ⊢ let r = ref 0̂ inλx.r : (µf.Unit⊥ → Ref{f})∅.

2

Syntax

Base Types β ≜ Unit | Bool | Int
Types τ ≜ β | Ref | µf.(x : σ1) → σ2

Qualified Types σ ≜ β⊥ | Refα | (µf.(x : σ1) → σ2)
α Q,R ≜ ⊥ | α α ∈ Pfin(Var ∪ Loc)

Values U, V ≜ () | tt | ff | n̂ | x | ℓ | λx.M | rec y(x).M

Terms M,N≜ V | MN | ref M | !M | M := N | ifM1 thenM2 elseM3 | M ⊕N | M � N

Eval. Ctxt. K ≜ • | V K | KM | ref K | !K | V := K | K := M | ifK thenM elseN
| K ⊕M | V ⊕K | K � M | V � K

Contexts C ≜ • | λx.C | rec y(x).C | MC | CM | ref C | !C | C := M | M := C | if C thenM elseN
| ifM thenC elseN | ifM thenN elseC | C ⊕M | M ⊕ C | C � M | M � C

Notational conventions: x, y ∈ Var, ℓ ∈ Loc, n ∈ Z, i ∈ {1, 2}, ⊕ ∈ {+,−, ∗}, � ∈ {=, <}

Qualifier operations

⊥ ⊔Q ≜ Q, Q ⊔ ⊥ ≜ Q, Q1 ⊔Q2 ≜ Q1 ∪Q2 (otherwise) ⊥+Q ≜ ⊥, Q+Q′ ≜ Q ⊔Q′ (otherwise)
⊥ ⊓Q ≜ ⊥, Q ⊓ ⊥ ≜ ⊥, Q1 ⊓Q2 ≜ Q1 ∩Q2 (otherwise) ⊥+ f ≜ ⊥, Q+ f ≜ Q ∪ {f} (otherwise)
⊥{Q/x} ≜ ⊥, Q1{Q2/x} ≜ (Q1 \ {x}) ⊔Q2 if x ∈ Q1 and Q1 otherwise ⊥̂ ≜ ∅, Q̂ ≜ Q (otherwise)

Term typing

T-UNIT

Σ;Γ φ () : Unit⊥

T-INT

Σ;Γ φ n̂ : Int⊥

T-BOOL
t ∈ {tt,ff}

Σ;Γ φ t : Bool⊥

T-VAR⊥
x : τ⊥ ∈ Γ

Σ; Γ φ x : τ⊥

T-VAR
x ■

■ τQ ∈ Γ x ∈ φ

Σ;Γ φ x : τ{x}

T-LOC
ℓ : Ref ∈ Σ ℓ ∈ φ

Σ;Γ φ ℓ : Ref{ℓ}

T-REF

Σ;Γ φ M : Int⊥

Σ;Γ φ refM : Ref∅

T-ASSIGN

Σ;Γ φ M1 : RefQ Σ;Γ φ M2 : Int⊥

Σ;Γ φ M1 := M2 : Unit⊥

T-DEREF

Σ;Γ φ M : RefQ

Σ;Γ φ !M : Int⊥

T-OPLUS

Σ;Γ φ M1,M2 : Int⊥

Σ;Γ φ M1 ⊕M2 : Int⊥

T-INEQ

Σ;Γ φ M1,M2 : Int⊥

Σ;Γ φ M1 � M2 : Bool⊥

T-IF

Σ;Γ φ N : Bool⊥ Σ;Γ φ M1,M2 : τQ

Σ;Γ φ if N thenM1 elseM2 : τQ

T-ABS

τ = µf.(x : τQ1
1) → τQ2

2 (Σ; Γ, x : τQ1
1 , f ◦

◦ τQf) Qf∪{f,x} M : τQ2
2 Qf ⊑ φ f /∈ FV(M)

Σ; Γ φ λx.M : τQf

T-FIX

τ = µg.(x : τQ1
1) → τQ2

2 (Σ; Γ, x : τQ1
1 , f ◦

◦ τQf) Qf∪{f,x} M : τ
Q2{f/g}
2 Qf ⊑ φ

Σ;Γ φ rec f (x).M : τQf

T-APP

Σ;Γ φ M1 : (µf.(x : τQ
1) → τQ2

2)Qf wb(τQ1
1) Σ; Γ φ M2 : τQ1

1 Q1∗ ⊓Qf∗ ⊑ Q∗ Q2 ⊑ φ, x, f

Σ;Γ φ M1 M2 : τ
Q2{Q1/x}{Qf/f}
2

T-SUB

Σ;Γ φ M : τQ1
1 Σ;Γ ⊢ τQ1

1 <: τQ2
2 Q2 ⊑ φ

Σ;Γ φ M : τQ2
2

T-SELF

Σ;Γ φ M : τQ+Qf f ◦
◦ τ

Qf

f ∈ Γ f ∈ φ

Σ;Γ φ M : τQ+f

T-WEAKENING

Σ;Γ φ M : τQ φ′ = dom+(Σ
′,Γ′)

Σ,Σ′; Γ,Γ′
φ∪φ′ M : τQ

T-EXCHANGE

Σ;Γ, x ■
■ σ, y ■

■ σ′,Γ′
φ M : τQ

Σ;Γ, y ■
■ σ′, x ■

■ σ,Γ′
φ M : τQ

Subtype
S-TRANS
Σ;Γ ⊢ σ1 <: σ2 Σ;Γ ⊢ σ2 <: σ3

Σ;Γ ⊢ σ1 <: σ3

S-BASE

Σ;Γ ⊢ B⊥ <: B⊥

S-REF
Q1 ⊑ Q2 ⊑ dom+(Σ; Γ)

Σ; Γ ⊢ RefQ1 <: RefQ2

S-FUN
Q5 ⊑ Q6 ⊑ dom+(Σ; Γ) Σ; Γ ⊢ σ3 <: σ1 Σ;Γ, f ◦

◦ (µf.(x : σ1) → σ2)
Q5 , x : σ3 ⊢ σ2 <: σ4

Σ;Γ ⊢ (µf.(x : σ1) → σ2)
Q5 <: (µf.(x : σ3) → σ2)

Q6

Reachability and saturation

Σ;Γ ⊢ x⇝ y ⇔ x ■
■ τQ ∈ Σ;Γ, y ∈ Q Σ;Γ ⊢ x∗ ≜ {y | x⇝∗ y} Σ;Γ ⊢ ⊥∗ ≜ ⊥ Σ;Γ ⊢ Q∗ ≜

⋃
x∈Q

x∗

Fig. 1: The system λ∗
wb

3

Properties λ∗
wb enjoys a number of desirable properties. The

first is an ‘open’ version of type preservation [1].

Lemma 3 (Type Preservation). If h : Σ, Σ;Γ φ M : τQ,
and (M,h) → (M ′, h′), then there exists Σ′ such that h : Σ′,
L = dom(Σ′)\dom(Σ), and Σ,Σ′; Γ φ+L M ′ : τQ+L, where
⊥+ L ≜ ⊥ and Q+ L ≜ Q ⊔ L for Q ̸= ⊥.

A key property of well-behaved types is the ability to eta-
expand a value while preserving its type.

Lemma 4. Given a value V and type τ , define the
full eta-expansion ητ (V) by ητ (V) ≜ V for τ ∈ {β,Ref}
and ητ (V) ≜ λx.V ητ1(x), where x is fresh and τ =

µf.(y : τQ1

1) → σ. If wb(τQ) and Σ;Γ Q̂ V : τQ then

Σ;Γ Q̂ ητ (V) : τQ, where ⊥̂ ≜ ∅ and Q̂ ≜ Q otherwise.

This property is necessary when trying to construct a
model based upon operational game semantics, as this involves
applying functions passed between the two players with fresh
values, which is essentially what is occurring in full eta-
expansion. The Lemma also provides enough flexibility to
prove a definability result in Section VII.

In what follows, when we write Γ ⊢ M : σ, we intend to
refer to judgments in which Γ contains no ◦

◦ entries (and so
represents ‘top-level’ typings) and wb(σ).

Contextual Testing The objects of our study are contextual
approximation and equivalence, defined by testing termination
of terms in every possible context. As λ∗

wb makes explicit
the locations available to the context, it becomes natural to
define possible contexts as being allowed additional locations,
so long as they are consistent with the qualifier annotations.
We formalise this below.

Definition 5. We write Σ;Γ ⊢ σ if all non-⊥ qualifiers in σ
refer to dom(Σ) ∪ dom+(Γ). Let Γ = x1 : τ

Q1

1 , · · · xm : τQm
m .

We say that I ⊆ {i |xi ∈ dom+(Γ)} is eligible for enrichment
if X ̸= ∅ and X ⊓ Y = ∅ for X =

d
i∈I(xi∗) and Y =⊔

i ̸∈I(xi∗). Given such I , let ΓI be Γ in which, for each 1 ≤
i ≤ m, we add fresh ℓ to every qualifier in τQi

i that already
contains xj for some j ∈ I , and to Qi if i ∈ I . σI is defined
analogously. We then write (Σ; Γ ⊢ σ) ≺ ((Σ, ℓ : Ref); ΓI ⊢
σI) for one-step enrichment, and (Σ; Γ ⊢ σ) ⪯ (Σ′; Γ′ ⊢ σ′)
for its reflexive and transitive closure.

⪯ captures the typings that can be obtained by extending the
environment with additional locations in a way which satisfies
the separation imposed by the original typing.

Lemma 6. If Σ;Γ ⊢ σ ⪯ Σ′; Γ′ ⊢ σ′ then Σ;Γ ⊢ M : σ
implies Σ′; Γ′ ⊢ M : σ′.

Definition 7 (Context Typing). We type a context C as Σ;Γ ⊢
C : (Σ′; Γ′ : σ′) ⇒ σ when for every Σ′; Γ′ ⊢ M : σ′, we can
type Σ;Γ ⊢ C[M] : σ in such a way that the typing derivation
of M is unchanged.

Contextual testing is then defined over all possible contexts
which respect the imposed overlaps.

Definition 8 (Contextual Approximation and Equivalence).
Given Γ ⊢ M1,M2 : σ, we define Γ ⊢ M1 ≲ctx M2 : σ
to hold, when for all Γ ⊢ σ ⪯ Σ′; Γ′ ⊢ σ′, h : Σ and
contexts Σ′ ⊢ C : (Σ′; Γ′ : σ′) ⇒ Unit, if (C[M1], h) ⇓
then (C[M2], h) ⇓. We say Γ ⊢ M1 ≃ctx M2 : σ when
Γ ⊢ M1 ≲ctx M2 : σ and Γ ⊢ M2 ≲ctx M1 : σ

Remark 9. We consider our definition of contextual equiv-
alence to be natural, in the sense that not enriching the
typing judgments with locations leads to strange phenom-
ena. Consider τ = Unit⊥ → Unit⊥, the context Γ =
h : τ∅, f : τ{h}, g : τ{h} and terms Γ ⊢ f(); g() : Unit⊥ and
Γ ⊢ g(); f() : Unit⊥. The qualifiers of f and g indicate
that they may communicate through h, so it is natural to
want contextual equivalence to distinguish these two terms.
However, a notion of contextual equivalence that does not
provide the extra location to h would equate them. This is
because of h’s type ((Unit⊥ → Unit⊥)∅), which cannot be
used to transmit any meaningful information between f and
g, apart from generating divergence after a number of calls.
But this does not suffice to separate f(); g() from g(); f()
even if both f and g use h, because both terms generate the
same number of calls to h. In contrast, with an extra location
available to h, the terms can be distinguished.

Surprisingly, changing the type of h to (Unit⊥ → Bool⊥)∅

does allow one to differentiate between the terms (without
extra locations), because a function at this type could com-
municate whether or not it has been called for the first time,
which could then be used to separate the terms. Consequently,
without extra locations provided to h, the equivalence of terms
depends on the type (not qualifier) of variables not appearing
in it, and we view this non-uniformity as undesirable. In any
case, the notion proposed above is more discriminating than
one without extra locations, i.e. our results would then amount
to soundness rather than full abstraction.

Note that our typing judgments are economical in that, in
general, they do not require that qualifiers Q be equal to the
full reachability sets Q∗, e.g. variables can be typed as τ{x}.
While this leads to more concise annotations, some of our
results assume saturation.

Definition 10. If Σ;Γ ⊢ σ is a type, we write Σ;Γ ⊢ σ∗ for the
type obtained by replacing every qualifier Q in σ by Q∗. The
notation can be extended to an environment Σ;Γ pointwise.
A judgment Σ;Γ ⊢ M : σ is saturated if σ = Σ;Γ ⊢ σ∗ and
Σ;Γ = (Σ; Γ)∗.

The saturation procedure preserves the essentials of reacha-
bility types: separation between functions and arguments, and
dependence of the result on the argument or self-reference.

Lemma 11. We have that Γ ⊢ M1,M2 : σ implies Γ∗ ⊢
M1,M2 : σ∗, and Γ∗ ⊢ M1 ≲ctx M2 : σ∗ implies Γ ⊢
M1 ≲ctx M2 : σ.

The full abstraction results presented in the paper will apply
to all saturated judgments Γ ⊢ M : σ with one caveat. As
in [5], we will assume that Ref does not occur in Γ or σ,

4

and call such judgments r-free. We stress that this is just a
restriction on the boundary (Γ and σ only), and subterms of
M may contain arbitrary types and uses of ref . We impose the
restriction due to the complications that arise in fully abstract
modelling of reference-based interfaces [13]. They would be
alleviated somewhat, if contexts could store references [4, 14],
but then the reachability-type framework is more involved [1].
Consequently, the r-free case is a reasonable compromise for
a first full abstraction result in the area.

III. LTS (BASIC NOTIONS)

In this section we set out a trace semantics for reachability
types, which will lead to a full abstraction result. The model
is built in the tradition of operational game semantics, i.e. we
define an LTS whose traces provide an abstract account of
interactions between the program (P, for Proponent) and its
environment (O, for Opponent). The interactions will consist
of sequences of actions that involve two sets of names.

Definition 12. Let FNames, CNames be countably infinite
disjoint sets of function and continuation names respectively.
We set Names ≜ FNames ⊎ CNames.

Elements of Names will appear in structures throughout
this work, and so ν(Z) refers to the set of names used in
some entity Z. We will use f, c (and variants) to range over
FNames and CNames respectively. We will now discuss the
actions that will feature in traces. They will have a polarity,
either O or P, depending on who plays them, and will be either
a question, corresponding to a function call, or an answer,
corresponding to returning a value. The values that appear
in such calls and returns will be generated by the grammar
A ≜ f | () | n̂ | tt | ff , and will be called abstract values.
Altogether we have the four types of actions detailed below.

Definition 13. An action, written generically as a, has one of
the forms:

• Opponent Question (OQ) f(A, c)
• Player Question (PQ) f(A, c)
• Opponent Answer (OA) c(A)
• Player Answer (PA) c(A)

We write f̌(A, c) to mean either f(A, c) or f(A, c), and č(A)
similarly for c(A) or c(A). We refer to f in f̌(A, c), and c in
č(A) as the head names of a, whereas any other names in an
action are said to be introduced by the action. OQ and OA
are O-actions, while PQ and PA are P-actions. We will often
write X to refer to a specific player X ∈ {O,P}. Then X
stands for the opposite player, i.e. O = P and P = O.

The question actions correspond to calls to the function f
with argument A whose result will be passed to continuation
c, whereas the answer actions correspond to returning the
result A to the continuation c. The sequences of actions that
will constitute traces need to satisfy a number of technical
conditions. First of all, they have to be typable. To formalise
this, we start off with a notion of initial names and initial
typing, which will provide an initial supply of typed names.

In what follows we assume that free functional variables
occurring in types are drawn from FNames.

Definition 14. An initial typing is a pair of partial functions
(NO, NP), each mapping a subset of Names to qualified types
such that function names are mapped to qualified function
types; dom(NO), dom(NP) are finite and disjoint; for all X ∈
{O,P}, we have ν(img(NX)) ⊆ dom(NO) ∪ dom(NP). We
abuse notation to treat NX as a set, writing NX for dom(NX).

Remark 15. Given an initial typing (NO, NP) and Q ⊆
Names, we can define Q∗

NO,NP
⊆ Names in a manner

analogous to saturation with respect to a typing context. That
is x ⇝NO,NP

y ⇔ (NO(x) = τQ ∨ NP (x) = τQ) ∧ y ∈ Q,
x∗

NO,NP
≜ {y | x⇝∗

NO,NP
y} and Q∗

NO,NP
≜

⋃
x∈Q x∗

NO,NP
.

We now define what it means to be a basic trace.

Definition 16. Let (NO, NP) be an initial typing. An
(NO, NP)-trace is a sequence t of actions such that:

• actions alternate between P and O actions;
• no name is introduced twice and names from NO ∪NP

are never introduced;
• for any X-action a with head name d, we have d ∈ NX

or d must be introduced in t in an earlier action by X;
• there exists a typing map Ty such that dom(Ty) =
NO ∪ NP ∪ ν(t), Ty(d) = NX(d) for d ∈ NX

and, for any action of the form f̌(A, c), if Ty(f) =
(µg.(x : τQ1

1) → τQ2

2)Q then Ty(A) = τQ1

1 and
Ty(c) = τQ2

2 {f/g}{ν(A)/x}, and, similarly, for any
action of the form č(A), if Ty(c) = σ then Ty(A) = σ.

Note that the definition requires each name in t either to
come from NO ⊎NP or to be introduced at a unique point in
t. Thus, for each name d in t, we can specify its owner as X ∈
{O,P} if d ∈ NX or d was introduced by X . A name owned
by X is called an X-name. Since head names from outside
NO ⊎NP must be introduced in actions of opposite polarity,
it follows that in a trace the players are calling each other’s
functions and also returning to each other’s functions. As head
names that are not in NO ⊎NP must be introduced in earlier
actions, it follows that Ty is unique. Thus, given a (NO, NP)-
trace t and d ∈ NO ∪ NP ∪ ν(t), we can write t ⊢ d:σ if
Ty(d) = σ. Finally, note that the definition requires names that
are introduced to be fresh with respect to the preceding trace.
This corresponds to testing a term with a functional parameter
on a fresh name in the spirit of open bisimulation [8, 9].

Example 17. If NO is [h 7→ (µh.Unit⊥ → (Unit⊥ →
Unit⊥){h})∅, c 7→ Unit⊥] then h((), c1) c1(f)h((), c2) c2(g)
f((), c3) c3(()) g((), c4) c4(()) c(()) is an (NO, ∅)-trace with
Ty(f) = Ty(g) = (Unit⊥ → Unit⊥){h}.

The traces as defined so far do not convey information about
potential state sharing. To this end, we use another countably
infinite set AStates of abstract states to decorate certain
names in traces with finite subsets S of AStates. We will
then say that the name is qualified by S and write fS or cS .

5

Abusing notation, we will also write AS on the understanding
that, for A ̸∈ Names, AS simply stands for (undecorated) A.

Definition 18. Let (NO, NP) be an initial typing, let X ∈
{O,P} and let Υ : NX → P(AStates). Υ is X-consistent
with (NO, NP) provided, for all f ∈ NX , Υ(f) ̸= ∅, and
for any s ∈

⋃
img(Υ), there exists g ∈ NX such that, for

all f ∈ NX , we have s ∈ Υ(f) if and only if g ∈ f∗
NO,NP

.
Moreover, for all c ∈ NX , Υ(c) = Υ(NX ∩ FNames).

Intuitively, the allocation of abstract states by Υ matches the
reachability relation implied by NX , and initial continuation
names get access to all states assigned to function names.

Definition 19. Suppose X ∈ {O,P} and let Υ be X-
consistent with (NO, NP). An (NO, NP)-trace t is called an
(NO, NP ,Υ)-qualified X-trace if it starts with an X action,
each X-name in t is annotated (qualified) with a finite subset
of AStates in such a way that each d ∈ NX is qualified with
Υ(d), and X-names remain unannotated. We will often omit
(NO, NP ,Υ) when it is clear from the context.

Example 20. If NO is as in Example 17, and Υ(h) =
Υ(c) = {l}, then t1 = hl((), c1) c1(f

l,m) hl((), c3)
c3(g

l,n) f l,m((), c4) c4(()) gl,n((), c5) c5(()) cl(()) is an
(NO, ∅,Υ)-qualified-P-trace, as is t2 = hl((), c1) c1(f

m)
hl((), c3) c3(g

n) fm((), c4) c4(()) gn((), c5) c5(()) cl(()).

Traces interpreting terms will be qualified P-traces for some
initial typing (NO, ∅) and O-consistent Υ, i.e. only O-names
will be qualified. However, the more general definition will be
useful when investigating contextual interactions of terms.

IV. LTS (DYNAMICS)

Building on the above notion of traces, we can define
an LTS, called LP , which will generate the set of traces
corresponding to a term, given some initial typing (NO, ∅).
LP will contain terms built from reachability type syntax,
extended to allow function names to appear as values. We
extend → to behave accordingly.

Configurations LP is a stack-based transition system. Hence,
its configurations will consist of a state paired up with a stack.
There will be two kinds of states: ⟨γ, ϕ, h,Ty,Ψ,Fn,Υ,Sn⟩
(passive, O to play) and ⟨M, c, γ, ϕ, h,Ty,Ψ,Υ⟩ (active,
internal or P to play). In both, ϕ contains all names introduced
so far by both players, h is the current heap, and Ty is a map
from names to types. Due to subtyping, Ty(d) = τQ stands
for an actual type τQd

d such that τQd

d <: τQ
′

for some Q′.
γ is an environment mapping function names introduced

by P to functions. In an active configuration, M is the term
component, which captures the current behaviour of P, and c
is the continuation O-name to produce the result to.

Ψ and Υ are introduced to account for reachability-related
information about the potential behaviour of the environment
(O), which needs to be explored exhaustively.

Ψ : Names ⇀ P(FNames) is a reachability map, used to
determine which function names are reachable from function

O-names. In LP , this is extended to cover also continuation O-
names, which will be mapped to the reachability set available
at the time the name is introduced. In passive states, Fn
represents the set of function names currently available to O,
and will play a role analogous to the filter.
Υ is a similar mapping from O-names to finite sets of ab-

stract states, and Sn represents the set of abstract states, which
O could have access to. These are used so that the generated
actions can explore all potential scenarios involving sharing,
subject to satisfying constraints dictated by reachability types.

Finally, we use the stack to force the environment (O)
to return to the most recent unreturned call when returning.
The stack alphabet will consist of elements of the form
(c, (K, c′), (f,A)), where c is a continuation P-name, K is
an evaluation context in which to use the value produced to
c, c′ is an continuation O-name to return the result of K to,
and (f,A) provide details of the call.

Transitions The transition rules of LP are presented in Fig-
ure 2. They are labelled transitions between states, with a/m
denoting pushing m to the stack when producing the label a,
and a,m denoting popping m when producing a. We discuss
the five cases in turn.

(Pτ) The (Pτ) rule simply embeds the operational semantics
of the language into LP , and makes it possible to reduce terms
until a value V or a callback K[fV] is reached, at which point
the rules (PA) and (PQ) take over. They rely on an auxiliary
function AVal, which assigns the corresponding set of abstract
values to a given value of Ref-free type: AVal(V) = FNames
(if V is of function type) and AVal(V) = {V } otherwise.

(PA) The (PA) rule handles values. If V is of function type
then it will be included in γ′ using a fresh name A (this is
enforced by AVal(V), ⊎ and [ν(A) 7→ V]) and the type of
A will be recorded in Ty′. The corresponding label cS(A)
announces the passing of A to c, where S = Υ(c) corresponds
to the set of abstract states available at the point when c was
introduced. Finally, the rule initialises the Fn,Sn components
for use in the subsequent passive state. This is done again
by referring to the point of their origin (via Ψ(c),Υ(c)
respectively) and, if A is a name, it will also be included
in Fn . Readers familiar with game semantics will notice that
this is similar to how O-views are calculated. However, there
will be a difference in calculations at O-actions, because not
all names will be available due to reachability constraints.

(PQ) The (PQ) rule deals with callbacks K[fV]. As far as
component updates are concerned, it is similar to the previous
one. If V is of function type then it will be added to γ under a
fresh name, and c will always be a fresh name. This time, the
label is fS(A, c), signifying a call to f , where S = Υ(f) is the
set of abstract states available to f . The Fn,Sn components
are prepared analogously using Ψ(f), Υ(f) respectively. The
main difference is that this action pushes (c, (K, c′), (f,A))
to the stack. This is done to enforce the stack discipline on
environment returns as well as providing all the necessary
information required to return to the call in (OA).

6

(Pτ) ⟨M, c, γ, ϕ, h,Ty,Ψ,Υ⟩ τ−−→ ⟨N, c, γ, ϕ, h′,Ty,Ψ,Υ⟩
when (M,h) → (N,h′)

(PA) ⟨V, c, γ, ϕ, h,Ty,Ψ,Υ⟩ cS(A)−−−−→ ⟨γ · γ′, ϕ ⊎ ν(A), h,Ty · Ty′,Ψ,Ψ(c) ∪ ν(A),Υ,Υ(c)⟩
when S = Υ(c), A ∈ AVal(V), γ′ = [ν(A) 7→ V], Ty′ = [ν(A) 7→ Ty(c)]

(PQ) ⟨K[f V], c′, γ, ϕ, h,Ψ,Ty,Υ⟩ fS(A,c)/(c,(K,c′),(f,A))−−−−−−−−−−−−−−−−→ ⟨γ · γ′, ϕ ⊎ ν(A) ⊎ {c}, h,Ty · Ty′,Ψ,Ψ(f) ∪ ν(A),Υ,Υ(f)⟩
when S = Υ(f), A ∈ AVal(V), γ′ = [ν(A) 7→ V], Ty(f) = (µg.(x : τQ1

1) → τQ2

2)Q,

Ty′ = [ν(A) 7→ τQ1

1 , c 7→ τ
Q2{f/g}{ν(A)/x}
2]

(OA) ⟨γ, ϕ, h,Ty,Ψ,Fn,Υ,Sn⟩ c(AS),(c,(K,c′),(f,A′))−−−−−−−−−−−−−−→ ⟨K[A], c′, γ, ϕ ⊎ ν(A), h,Ty · Ty′,Ψ ·Ψ′,Υ ·Υ′⟩
when Ty(c) = τQ, A ∈ AValty(τ), Ty′ = [ν(A) 7→ Ty(c)], Ψ′ = [ν(A) 7→ F], Υ′ = [ν(A) 7→ S]

– If ν(A) = ∅ then F, S need not be specified.
– Otherwise ArgQ(τ) ⊆ F ⊆ Fn , RΨ

Ty(F ;Fn ′) ∩ Fn ′ ⊆ Q{Ψ(f)/f}, where Fn ′ = Ψ(f) ∪ ν(A′),
S ⊆ S′, if h ∈ RΨ

Ty(F ;Fn ′) ∩ (dom(Υ) \ Fn ′) then Υ(h) ⊆ S′,
where S′ = ((Sn \Υ(f)) ∪ (Υ(f) ∩

⋃
Υ(Q ∩ dom(Υ))) ⊎ T and T ̸= ∅ is disjoint from Υ.

(OQ) ⟨γ, ϕ, h,Ty,Ψ,Fn,Υ,Sn⟩ f(AS ,cS
′
)−−−−−−→ ⟨V A, c, γ, ϕ ⊎ ν(A) ⊎ {c}, h,Ty · Ty′,Ψ ·Ψ′,Υ ·Υ′⟩

when f ∈ Fn, γ(f) = V, Ty(f) = (µg.(x : τQ1

1) → τQ2

2)Q, A ∈ AValty(τ1), Q2 ⊑ Fn ∪ {g, x},
Ty′ = [ν(A) 7→ τQ1

1 , c 7→ τ
Q2{f/g}{ν(A)/x}
2], Ψ′ = [ν(A) 7→ F, c 7→ Fn], Υ′ = [µ(A) 7→ S, c 7→ S′]

– If ν(A) = ∅ then S′ = Sn and F, S need not be specified.
– Otherwise ArgQ(τ1) ⊆ F ⊆ Fn, S′ = Sn ⊎ T, T ⊆ S ⊆ S′,where T ̸= ∅ is disjoint from Υ, and
(S ∪

⋃
g∈F RΨ,Υ

Ty (g)) ∩RΨ,Υ
Ty (f) ⊆ RΨ,Υ

Ty (Q1).

Given N ⊆ Names, [N 7→ V] stands for the map [n 7→ V |n ∈ N]. For A /∈ Names, we take AS to mean A.

Fig. 2: The transition system LP

The (OQ) and (OA) rules, to be discussed next, are
concerned with testing terms from γ (OQ) or continuations
from the stack (OA) with arbitrary abstract values. In their
definition, we use an auxiliary function AValty , which returns
the set of abstract values corresponding to a given Ref-
free type: AValty(Unit) = {()}, AValty(Bool) = {tt,ff},
AValty(Int) = {n̂ |n ∈ Z}, and AValty(τ) = FNames if τ
is a function type.

(OQ) In the (OQ) rule, one of the currently available func-
tions (f ∈ Fn) is retrieved from γ and applied to an abstract
value A with continuation c, producing the f(AS , cS

′
) label

representing a call. Note that fresh names will be used as A if
the argument is of function type, which is enforced using ⊎.
The rule can be seen through the lens of typing an application
f A. In this view, Fn and Sn play a role similar to the filter
(for function names/variables and abstract states/locations,
respectively). Following the variable rule, we must check that
f is with the filter (f ∈ Fn). From the application rule, we
also have to check that the qualifier of the codomain of the
function is within the filter, or the self-reference or argument
(Q2 ⊑ Fn ∪{f, x}). Next, we need to consider the type given
to A. As Ty(f) = (µg.(x : τQ1

1) → τQ2

2)Q, A must have type
τQA

A with τQA

A <: τQ
′

1 for some Q′. If τ1 is a function type,
i.e. ν(A) ̸= ∅, we can consider QA as consisting of two parts,
function names (F) and abstract states (S). The qualifier QA

must then fall within the filter: F ⊆ Fn and S ⊆ S′, where
S′ = Sn ⊎T and T ⊆ S. The role of T here is to model fresh
abstract states, not captured by anything previously disclosed,
corresponding to the growth of the filter during reduction.

Before we can discuss the next condition, we need to

introduce ArgQ(τ) as the combined qualifier of all the argu-
ments in τ : ArgQ(β) = ArgQ(Ref) = ∅ and ArgQ(µf.(x :
τQ1

1) → τQ2

2) = Q1 ⊔ArgQ(τ2). One can show that wb(τQ)
implies ArgQ(τ) ⊆ Q̂. Since ArgQ(τ1) ⊑ ArgQ(τA) (by
τQA

A <: τQ
′

1) and ArgQ(τA) ⊑ QA (by wb(τQA

A)), it follows
that ArgQ(τ1) ⊑ QA, which is reflected by ArgQ(τ1) ⊆ F .

Most importantly, applications require that the overlap be-
tween function and argument is only that permitted by the
qualifier on the function domain ((S ∪

⋃
g∈F RΨ,Υ

Ty (g)) ∩
RΨ,Υ

Ty (f) ⊆ RΨ,Υ
Ty (Q1)), where RΨ,Υ

Ty assigns the set of func-
tion names and abstract states reachable from a given function
name by following Ψ,Υ (for O-names) or the qualifier from
Ty (for P-names) according to the definition below. Observe
the asymmetry between O and P compared to the syntactic
notion of reachability, which arises as game semantics captures
the difference in knowledge between term and environment.

Definition 21. Let Ψ : Names ⇀ Names and Ty : Names ⇀
Types be such that dom(Ψ) ∪ img(Ψ) ∪ ν(img(Ty)) ⊆
dom(Ty). Define a directed graph GΨ

Ty by taking the set
of vertices to be dom(Ty) and defining edges (v1, v2) if
(v1 ∈ dom(Ψ) and v2 ∈ Ψ(v1)) or (v1 ̸∈ dom(Ψ),
Ty(v1) = τQ and v2 ∈ Q). We shall write RΨ

Ty(v) for the
set of vertices of GΨ

Ty reachable from v, and RΨ
Ty(U) for⋃

v∈U RΨ
Ty(v). Furthermore, given Υ : Names ⇀ AStates,

let RΨ,Υ
Ty (v) ≜ RΨ

Ty(v) ∪
⋃

Υ(RΨ
Ty(v) ∩ dom(Υ)).

If we imagine the application f A occurring in some eval-
uation context K, the filter for typing K is the original filter
along with any of the fresh locations. Hence, Ψ(c) = Fn and
Υ(c) = S′. The type map Ty is updated to give A the type

7

τQ1

1 (if it is a function type), which corresponds to the fact
that P will view A as having type τQ1

1 , whereas O has some
freedom in its choice of type.

(OA) The (OA) rule can be viewed as returning a result A
(with Ty(A) = τQ) of an earlier call to an imaginary function
f constructed by O, which was called on A′. To this end,
we use the top continuation name c from the stack and pass
an abstract value A to the corresponding evaluation context
(K, c′), producing the c(AS) label. This leads to an active
state with term K[A] and continuation c′. Note that f,A′ are
also available from the stack. The remaining conditions consist
of updating the components of the configuration to account for
new names in ν(A) (if any), so below we assume ν(A) ̸= ∅.

We need to allow A to have types τQA

A <: τQ
′

for some Q′,
where QA = (F, S) represents the resources made available
to A for subsequent use in applications. Thus, we need to
stipulate F ⊆ Fn , where Fn represents the currently available
function names. Because wb(τQA

A) and τQA

A <: τQ
′
, we also

require ArgQ(τ) ⊆ F .
We can classify the names in Fn as follows: those intro-

duced before the function call to f (i.e. Ψ(f), corresponding
self-reference f in Q), the argument A′ (if ν(A′) ̸= ∅), and
those introduced ‘inside’ the function f (i.e. Fn \Fn ′, where
Fn ′ = Ψ(f) ∪ ν(A′)). From F we should be allowed to
reach only those variables from Fn ′ that are permitted by the
qualifier Q{Ψ(f)/f}. This is expressed by RΨ

Ty(F ;Fn ′) ∩
Fn ′ ⊆ Q{Ψ(f)/f}, where RΨ

Ty(U1;U2) is defined below.

Definition 22. Given Ψ,Ty as in Definition 21 and U1, U2 ⊆
dom(Ty), let RΨ

Ty(U1;U2) consist of all u ∈ RΨ
Ty(U1) such

that all vertices on the witnessing paths other than u must
come from outside U2.

Similarly, S may only consist of ‘new’ abstract states
introduced since the corresponding question (Sn \Υ(f)), ‘old’
abstract states from Υ(f) that are permitted by Q (i.e. belong
to

⋃
Υ(Q ∩ dom(Υ))) and, some fresh states T . This is

captured by S ⊆ S′. Finally, we also need to ensure that
the names in F do not lead to abstract states disallowed by
S′: if h ∈ RΨ

Ty(F ;Fn ′) ∩ (dom(Υ) \ Fn ′) then Υ(h) ⊆ S′.
We use (dom(Υ) \ Fn ′) above, because RΨ

Ty(F ;Fn ′) ∩ Fn ′

has already been validated in the preceding test.

Initialisation Recall that LP involves a stack, i.e. its configu-
rations consist of a state and a stack.

Definition 23. Given configurations C,C′ of LP , we write
C

a
=⇒ C′ if C

τ−→∗ C′′ a−→ C′, with τ−→∗ representing multiple
(possibly none) τ -actions. We extend the notation to sequences
of labels: given t = a1 . . .an, we write C

t
=⇒ C′, if there

exist C1, . . . ,Cn−1 such that C
a1==⇒ C1 · · ·Cn−1

an==⇒ C′.

We define Tr(C) = {t | there exists C′ such that C t
=⇒ C′}.

Remark 24. Due to the freedom of name choice, note that
Tr(C) is closed under renamings (of Names and AStates)
that preserve the elements from C.

In order to use LP to generate qualified P-traces from
terms, we need to specify initial configurations. Suppose
Γ = {x1 : τQ1

1 , · · · , xk : τQk

k } and Γ ⊢ M : σ is r-free.
A Γ-assignment ρ is a map from {x1, · · · , xk} to the set of
values and function names, such that, for all 1 ≤ i ̸= j ≤ k,
if τi is not a function type, ρ(xi) : τi, and if τi is a function
type, ρ(xi) ∈ FNames and ν(ρ(xi))∩ν(ρ(xj)) = ∅. ρ simply
creates values (for base-type variables) and function names
(for function-type variables) corresponding to the context.

For a fixed ρ and a continuation name c, let us define Nρ,c =
Ty ≜ [ν(ρ(xi)) 7→ ρ(τQi

i) | 1 ≤ i ≤ k] · [c 7→ ρ(σ)] and Ψ ≜
[ν(ρ(xi)) 7→ ρ(Qi) | 1 ≤ i ≤ k] · [c 7→ dom(Ty)∩FNames]).
Let Υ be O-consistent with (Nρ,c, ∅). We shall call (ρ, c,Υ)
a qualified (Γ, c)-assignment. Then the initial configuration
Cρ,c,Υ
Γ⊢M :σ for LP , is defined to be (⟨ M{ρ}, c, ∅, dom(Ty),

∅, Ty, Ψ, Υ ⟩, ϵ), where ϵ represents the empty stack.

Example 25. Consider ⊢ M1 ≜ λg.g () : σ, where σ =
((Unit⊥ → Unit⊥)∅ → Unit⊥)∅. The only (∅, c)-assignment
is (∅, c,Υ0) with Υ0 = [c 7→ ∅]. We can now derive a trace
from C∅,c,Υ0

⊢M1:σ
. Taking Ψ0 = [c0 7→ ∅],

C∅,c,Υ0

⊢M1:σ
=(⟨M1, c, ∅, {c}, ∅, [c 7→ σ],Ψ0,Υ0⟩, ϵ)

c∅(f)−−−→ (⟨γ, {c, f}, ∅,Ty1,Ψ0, {f},Υ0, ∅⟩, ϵ)
where γ = [f 7→ M1],Ty1 = [c 7→ σ, f 7→ σ].

To continue, O must call f .

f(g
{l1}
1 ,c

{l1}
1)

−−−−−−−−−→(⟨M1 g1, c1, γ, {c, f, g1, c1}, ∅,Ty2,Ψ,Υ⟩, ϵ)
where Ty2 = Ty1 · [g1 7→ (Unit⊥ → Unit⊥)∅, c1 7→ Unit⊥],
Ψ = Ψ0 · [g1 7→ ∅, c1 7→ {f}], Υ = Υ0[g1, c1 7→ l1]

Note that this is the only possible choice of Ψ because f
cannot be included for g1 as it violate the overlap condition.

τ−→∗ (⟨g1 (), c1, γ, {c, f, g1, c1}, ∅,Ψ,Ty2,Υ⟩, ϵ)
g
{l1}
1 ((),d1)−−−−−−−→(⟨γ, ϕ, ∅,Ty3,Ψ, ∅,Υ, {l1}⟩, (d1, (•, c1), g1, ()))

ϕ = {c, f, g1, c1, d1},Ty3 = Ty2 · [d1 7→ Unit⊥]

Fn is empty, so all O can do is answer the pending question.

d1(())−−−−→ (⟨(), c1, γ, ϕ, ∅,Ty3,Ψ,Υ⟩, ϵ)
c
{l1}
1 (())

−−−−−→(⟨γ, ϕ, ∅,Ty3,Ψ, {f},Υ, {l1}⟩, ϵ)

If O wishes to extend this trace, it can only do so by essentially
repeating the last four actions with fresh names.

When defining the semantics of our terms, ultimately we
will be interested only in qualified traces that correspond to
terminating interactions. Recall that LP uses a stack to ensure
that O (the environment) only ever answers the last P-question.
Because the language does not feature any control operators,
answers from P (the term) satisfy an analogous property
for free (we spell this out formally in the next section).
Consequently, the traces that are relevant to contextual testing
in this setting are those in which all questions have been
answered. Note that this implies that the trace must end with
an action by P. This gives rise to the notion of a complete

8

qualified P-trace defined below.

Definition 26. A qualified P-trace from Tr(Cρ,c,Υ
Γ⊢M :σ) is com-

plete if it has odd length and LP has empty stack after
generating it.

Definition 27. The trace semantics of a clean judgement Γ ⊢
M : τQ is defined to be

Tr(Γ ⊢ M : τQ) ≜ { ((ρ, c,Υ), t) | c ∈ CNames, (ρ, c,Υ) is
a qualified Γ-assignment, t ∈ Tr(Cρ,c,Υ

Γ⊢M :τQ), t is complete }

One of our key results will be the soundness of this model
(Theorem 45), which will imply that Tr(Γ ⊢ M1 : τQ) =
Tr(Γ ⊢ M2 : τQ) entails program equivalence.

Example 28. Returning to Example 25, the complete traces of
Tr(C∅,c,Υ0

⊢M1:σ
) all have the form c∅(f) f(gS1

1 , c
S′
1

1) gS1
1 ((), d1)

d1(()) c
S′
1

1 (()) . . . f(gSn
n , c

S′
n

1) gSn
n ((), dn) dn(()) c

S′
n

1 (()),
where n ≥ 0, Ti ⊆ Si ⊆ S′

i =
⋃

1≤k≤i Tk. If we consider
M2 ≜ letx = ref 0̂ inλg.if (!x = 0̂) then (x := 1̂; g ();x :=

0̂) elseΩ then, by a similar process, the traces in Tr(C∅,c,Υ0

⊢M2:σ
)

have the same form. Thus, Tr(C∅,c,Υ0

⊢M1:σ
) = Tr(C∅,c,Υ0

⊢M2:σ
). Thus,

Tr(⊢ M1 : σ) = Tr(⊢ M2 : σ) and so ⊢ M1 ≃ctx M2 : σ.
This is somewhat surprising, as in the standard setting we
have that ⊢ M1 ̸∼= M2. However, the separating context
let f = • in f (λx.f (λy.())) cannot be typed in λ∗

wb , due to
the overlap between f and λx.f (λy.()).

The next sections describe technical properties of traces
generated by LP and how soundness is proved. In Section VII
we refine the model to a fully abstract one.

V. PROPERTIES

Here we discuss the technical properties of qualified traces,
starting with those that concern the underlying traces. We
begin with bracketing, which is essentially the same as in
standard game semantics [15]: in an X-bracketed trace, X
can only answer the ‘top’ X-question. By an X-prefix we
shall mean a prefix ending in an X-action.

Definition 29 (Bracketing). A (NO, NP)-trace t is X-
bracketed if for any X-prefix t′ č(A), we have c ∈ TopX(t′),
where TopX is defined below, and c is not used as a head
name in t′. t is bracketed if it is both O- and P-bracketed.

TopX(ϵ) = NX̄ ∩ CNames
TopX(t č(A)) = NX̄ ∩ CNames c ∈ NX

TopX(t f̌(A′, c) t′ č(A)) = TopX(t)

TopX(t f̌(A, c)) = {c}

The following notion captures situations in which all O-
questions have been answered.

Definition 30 (Complete traces). An O-bracketed (NO, ∅)-
P-trace t is complete if it is of odd length (i.e. ends with a
P-action) and TopO(t) = ∅ (note this subsumes Definition 26).

To describe the other trace properties, it is useful to have
some notation relating a continuation name to the question
it is answering. We extend FNames with a fictional name

f! for the initial continuations to answer, letting FNames! =
FNames ⊎ {f!} and Names! = Names ⊎ {f!}.

Definition 31. For an (NO, NP)-trace t, let us write t ⊢
c:τQ[f, Y] to mean t ⊢ c:τQ and c was introduced in t
in f̌(A, c) with Y = ν(A). We write t ⊢ c:τQ[f!, ∅] for
NX(c) = τQ, i.e. when c was not introduced in t.

Next we introduce terminology that will help us describe
restrictions on the use of names in traces.

Definition 32. A reachability map Ψ : FNames! ⇀
P(FNames) is a partial map from FNames! to P(FNames).
Given an (NO, NP)-trace t, we define the set VisΨX(t) of
names visible to X in t as follows.

VisΨX(ϵ) ≜ (NX ∪NX̄) ∩ FNames

VisΨX(t č(A)) ≜ ν(A) ∪ (NX ∩ FNames) c ∈ NX

VisΨX(t f̌(A, c)) ≜ ν(A) ∪Ψ(f)

VisΨX(t f̌(A′, c) t′ č(A)) ≜ ν(A) ∪VisΨX(t)

Let Ty be the typing corresponding to t. We write
RΨ

t (v) for RΨ
Ty(v) (i.e reachable names), and RΨ

t (f ;U) for
RΨ

Ty(f ;U) (i.e. names reachable without passing through U).

VisΨX(t) will be used in subsequent definitions to restrict
the range of names available to players to the visible ones,
akin to the classic visibility condition [15]. Using RΨ

t (v) and
RΨ

t (f ;U), we will be able to formulate additional restrictions
corresponding to qualifiers in reachability types.

Definition 33 (ΨX-Visibility). Given a reachability map Ψ,
an (NO, NP)-trace t is said to be ΨX-visible if

• dom(Ψ) is {f!} and X-names in (NX ∪ν(t))∩FNames;
• Ψ(f!) = (NO∪NP)∩FNames and, for all f ∈ dom(Ψ)∩
NX , if NX(f) = τQ then Ψ(f) = Q;

• for any X-prefix t′ f̌(A, c) of t with t′ ⊢ f :(µf.(x :
τQ1

1) → τQ2

2)Q, we have f ∈ VisΨX(t′), Q2 ⊑ VisΨX(t′)∪
{f, x}, and if A = g, ArgQ(τ1) ⊆ Ψ(g) ⊆ VisΨX(t′) and
RΨ

t′ (g) ∩RΨ
t′ (f) ⊆ RΨ

t′ (Q1);
• for any X-prefix t′ č(h) of t with t′ ⊢ c:τQ[f, Y], we have
ArgQ(τ) ⊆ Ψ(h) ⊆ VisΨX(t′), and RΨ

t (Ψ(h);Fn ′) ∩
Fn ′ ⊆ Q{Ψ(f)/f} where Fn ′ = Ψ(f) ∪ Y .

Definition 34. An (NO, NP)-trace t is said to be X-visible if
there exists a reachability map Ψ such that t is ΨX-visible.

The next kind of conditions concern annotations with ab-
stract states. Recall that in qualified traces we only required
that initial names be annotated in a way dictated by Υ, leaving
a lot of flexibility for other annotations. The conditions below
describe how other names are annotated. To express them, we
introduce auxiliary notation.

Definition 35. Let t be an (NO, NP ,Υ)-qualified X-trace.
• If t ends in an X-action a then we write Last(t) to refer to

the set of abstract names used in a, i.e. Last(t′ f̌S(A, c)) ≜
S and Last(t′ čS(A)) ≜ S.

• We define Υt : FNames! ⇀ P(AStates) by Υt(d) = S if
dS appears in t (or d ∈ NX̄ and S = Υ(d)), and Υt(f!) =⋃
img(Υ). We also write t ⊢ dS if Υt(d) = S.

9

• Intuitively, OKt(f,Q) is shorthand for the set of abstract
states that can be returned after t as a result of f under qual-
ifier Q. We set OKt(f,Q) ≜ (Last(t)\Υt(f)) ∪ (Υt(f) ∩⋃
Υt(Q ∩ dom(Υt)). The first component represents states

created after the call to f , while the second one ‘filters’
Υt(f) (states existing at the time of the call) through Q.

Below we specify how abstract state can evolve.

Definition 36 (Qualified X-Trace). An (NO, NP ,Υ)-qualified
X-trace t is well-qualified if it satisfies the following.
• If t′ f̌(A, cS

′
) is an X-prefix of t with ν(A) = ∅ then S′ =

Last(t′).
• If t′ f̌(gS , cS

′
) is an X-prefix of t then ∅ ̸= T ⊆ S ⊆ S′,

and S′ = Last(t′) ⊎ T for T disjoint from Υt′ .
• If t′ č(gS) is an X-prefix of t, then ∅ ≠ T ⊆ S ⊆
OKt′(f,Q)⊎T for T disjoint from Υt′ and t′ ⊢ c:τQ[f, Y].

Example 37. Recall Example 20. Both t1 and t2 are
(NO, ∅,Υ)-well-qualified P-traces. For N ′

O = [h 7→
(µh.Unit⊥ → (Unit⊥ → Unit⊥)∅)∅, c : Unit⊥], t2 is a
(N ′

O, ∅,Υ)-well-qualified P-trace, but t1 is not.

Finally, we formulate a condition that ensures the anno-
tations with abstract state are compatible with reachability
maps. Essentially, this condition requires that in a question the
overlap in abstract state between the function and the argument
is restricted according to the qualifier. In an answer, abstract
state on names introduced after the call that are reachable from
the returned value must be permitted by the qualifier.

Definition 38 (Ψ-compatibility). Let t be an (NO, NP ,Υ)-
qualified X-trace that is well qualified, and let Ψ be a reach-
ability map whose domain consists of f! and all X-function-
names from t. We shall call t is Ψ-compatible provided the
following conditions are satisfied.

• If t ⊢ f :(µf.(x : τQ1

1) → τQ2

2)Q then, for any X-prefix
t′ f̌(gS , cS

′
) of t, RΨ,Υt

t (g) ∩RΨ,Υt

t (f) ⊆ RΨ,Υt

t (Q).
• For any X-prefix t′ č(gS) of t, if h ∈ RΨ

t (Ψ(g);Fn) ∩
(dom(Υt) \ Fn) implies Υt(h) ⊆ OKt′(f,Q), where
t′ ⊢ c:τQ[f, Y] and Fn = Ψ(f) ∪ Y .

Now we can state how these properties relate to LP .

Lemma 39. Let Γ ⊢ M : σ be r-free, (ρ, c,Υ) a qualified
Γ-assignment and Nρ,c as in the definition of Cρ,c,Υ

Γ⊢M :σ If
Cρ,c,Υ
Γ⊢M :σ

t
=⇒ C then t is a (Nρ,c, ∅,Υ)-well-qualified P -trace

whose qualifiers match the qualifying map ΥC in C and
1) t is bracketed;
2) t is ΨO-visible and Ψ-compatible, where Ψ is the reach-

ability map of C restricted to FNames and extended to
f! by Ψ(f!) = (NO ∪NP) ∩ FNames;

3) t is Ψ′P -visible for some Ψ′.

That we obtain an (Nρ,c, ∅,Υ)-well-qualified P-trace fol-
lows the setup of our LTS. O-bracketing is enforced by our
use of the stack, while P-bracketing is a known condition
satisfied by terms that do not use control operators [5, 15, 16].
The properties in 2) are enforced by the LTS to simulate the

permitted behaviours of contexts, e.g. O-visibility is achieved
thanks to the f ∈ Fn condition in (OQ) as well as maintaining
the Fn component so that it corresponds to the set of visible
names. The property 3) is the most interesting, as it arises out
of the behaviour of the term being used to generate the trace.
The proof amounts to showing how to construct a suitable
choice of ΨP . This is done by typing the various terms and
evaluation contexts found in any configuration on the path,
depending crucially on the type preservation result (Lemma 3).
From the qualifier of the value V used to define γ(f) in (PQ)
or (PA), we extract a suitable choice for ΨP (f).

VI. SOUNDNESS

We now show soundness of the model, which will involve
reasoning about context behaviour. First we reduce testing
with arbitrary contexts to testing with evaluation contexts and
closing substitutions, i.e. Closed Instances of Use (CIU) [17].
Given Γ = x1 : τ

Q1

1 , · · · , xm : τQm
m , we write Σ;Γ ⊢ γ for

substitutions γ such that Σ; x1 : τ
Q1

1 , · · · , xi−1 : τ
Qi−1

i−1 ⊢
γ(xi) : τ

Qi

i and FV(γ(xi)) = ∅.

Definition 40 (CIU Approximation). Given Γ ⊢ M1,M2 : σ,
we let Γ ⊢ M1 ≲ciu M2 : σ, when for all Γ ⊢ σ ⪯ Σ′; Γ′ ⊢
σ′ and Σ, h,K, γ, such that Σ′ ⊆ Σ, h : Σ, FV(K) = ∅,
Σ;Γ′ ⊢ K : (Σ′; Γ′ : σ′) ⇒ Unit⊥, and Σ′; Γ′ ⊢ γ, we have
(K[M1]{γ}, h) ⇓ implies (K[M2]{γ}, h) ⇓.

≲ciu can be shown to subsume ≲ctx in the following sense.

Lemma 41 (CIU). Γ ⊢ M1 ≲ctx M2 : σ implies Γ ⊢ M1 ≲ciu

M2 : σ. If Γ ⊢ M1,M2 : σ is saturated, Γ ⊢ M1 ≲ciu M2 : σ
implies Γ ⊢ M1 ≲ctx M2 : σ.

Dual LTS The approach to proving soundness in trace seman-
tics is to consider the composite interaction between traces
generated for the term and the context [4, 5]. The LTS LP

represents traces for the term, so next we provide another
‘dual’ LTS, called LO, to correspond to the choice h,K, γ in
CIU testing. Its transition rules are presented in Figure 3. The
key difference is that Sn (the set of available abstract states)
now appears in active (P) configurations, and Υ is updated
in P-actions. The assignment of abstract states to P-names
(Υ) is based upon the locations present in the corresponding
value stored in γ. To enable that, LO includes an additional
component Φ, the location map, mapping

⋃
img(Υ) to empty

or singleton sets of locations in dom(h). In essence, Φ
determines what location a given abstract state grants access
to. The rules (PA) and (PQ) rely on the following auxiliary
function, which is used to extract the abstract states S from
the locations used in V and allocate new abstract states for
locations not yet covered by abstract state.

Definition 42. Given location map Φ and value V , let S =
Φ−1(Loc(V)) and L = Loc(V) \Φ(S). Define QLocΦ(V) to
consist of all pairs (S ⊎ S′,Φ′) such that S′ ⊆ AStates is
non-empty (and disjoint from S), dom(Φ′) = S′, and

• if L = ∅ then Φ′(s) = ∅ for all s ∈ S′;
• if L ̸= ∅ then Φ′ is a bijection from S′ to {{ℓ} | ℓ ∈ L}.

10

(Pτ) ⟨M, c, γ, ϕ, h,Ty,Ψ,Υ,Sn,Φ⟩ τ−−→ ⟨N, c, γ, ϕ, h′,Ty,Ψ,Υ,Sn,Φ⟩
when (M,h) → (N,h′)

(PA) ⟨V, c, γ, ϕ, h,Ty,Ψ,Υ,Sn,Φ⟩ c(AS)−−−−→ ⟨γ · γ′, ϕ ⊎ ν(A), h,Ty · Ty′,Ψ,Ψ(c) ∪ ν(A),Υ ·Υ′,Φ · Φ′⟩
when A ∈ AVal(V), γ′ = [ν(A) 7→ V], Ty′ = [ν(A) 7→ Ty(c)], Υ′ = [ν(A) 7→ S].
If ν(A) = ∅ then Φ′ = ∅. Otherwise (S,Φ′) ∈ QLocΦ(V).

(PQ) ⟨K[f V], c′, γ, ϕ, h,Ty,Ψ,Υ,Sn,Φ⟩ f(AS ,cS
′
)/(c,(K,c′),(f,A))−−−−−−−−−−−−−−−−−→ ⟨γ · γ′, ϕ ⊎ ν(A) ⊎ {c}, h,Ty′′,Ψ,Ψ(f) ∪ ν(A),Υ′′,Φ · Φ′⟩

when A ∈ AVal(V), γ′ = [ν(A) 7→ V], Ty(f) = (µg.(x : τQ1

1) → τQ2

2)Q, Ty′ = [ν(A) 7→ τQ1

1 , c 7→ τ
Q2{f/g}{ν(A)/x}
2],

Υ′ = [ν(A) 7→ S, c 7→ S′]
If ν(A) = ∅ then S′ = Sn and Φ′ = ∅. Otherwise (S,Φ′) ∈ QLocΦ(V), S′ = Sn ⊎ dom(Φ′).

(OA) ⟨γ, ϕ, h,Ty,Ψ,Fn,Υ,Φ⟩ cS(A),(c,(K,c′),(f,A′))−−−−−−−−−−−−−−→ ⟨K[A], c′, γ, ϕ ⊎ ν(A), h,Ty · Ty′,Ψ′,Υ, S,Φ⟩
when S = Υ(c), Ty(c) = τQ, A ∈ AValty(τ), Ty

′ = [ν(A) 7→ Ty(c)], Ψ′ = [ν(A) 7→ F]
If ν(A) = ∅ then F not needed.
Otherwise ArgQ(τ) ⊆ F ⊆ Fn and RΨ

Ty(F ;Fn ′) ⊆ Q{Ψ(f)/f}, where Fn ′ = Ψ(f) ∪ ν(A′).

(OQ) ⟨γ, ϕ, h,Ty,Ψ,Fn,Υ,Φ⟩ fS(A,c)−−−−−→ ⟨V A, c, γ, ϕ ⊎ {c} ⊎ ν(A), h,Ty · Ty′,Ψ ·Ψ′,Υ, S,Φ⟩
when f ∈ Fn, S = Υ(f), γ(f) = V, Ty(f) = (µg.(x : τQ1

1) → τQ2

2)Q, A ∈ AValty(τ1), Q2 ⊑ Fn ∪ {g, x},
Ty′ = [ν(A) 7→ τQ1

1 , c 7→ τ
Q2{f/g}{ν(A)/x}
2], Ψ′ = [ν(A) 7→ F, c 7→ Fn],

If ν(A) = ∅ then F not needed. Otherwise ArgQ(τ1) ⊆ R ⊆ Fn and (
⋃

g∈F RΨ
Ty(g)) ∩RΨ

Ty(f) ⊆ RΨ
Ty(Q).

Fig. 3: The dual transition system LO

Initialisation Let us now fix an r-free judgement Γ ⊢ M : σ.
Following the pattern of CIU equivalence (Definition 40), we
will now define an initial configuration for LO for any h,K, γ,
where Γ ⊢ σ ⪯ Σ′; Γ′ ⊢ σ′, Σ′ ⊆ Σ, Σ ⊢ h, FV(K) =
∅, Σ;Γ′ ⊢ K : (Σ′; Γ′ : σ′) ⇒ Unit⊥, and Σ′; Γ′ ⊢ γ.
Let us fix a continuation name ◦, which we use to determine
when the context has returned. Just as we needed a qualified
(Γ, c)-assignment to initialise LP , this time we shall need an
analogous notion for LO, to be defined next, which also needs
to include Φ and ensure it is consistent with qualifiers in Γ′.

A location qualified (Γ′, c)-assignment is (ρ, c,Υ,Φ),
where ρ is a Γ-assignment, c ∈ CNames \ {◦}, Υ is P-
consistent with (∅, Nρ,c), and Φ is such that, for any x :
τQ ∈ Γ of function type, if x : (τ ′)Q

′ ∈ Γ′ then Q′ =
Q∪

⋃
Φ(Υ(x)). (ρ, c,Υ,Φ) is said to be compatible with γ if

ρ and γ agree on values of base type. The initial configuration
Cρ,c,Υ,Φ
Γ′,h,K,γ for LO is then defined to be (⟨γρ, dom(Nρ,c) ⊎

{◦}, h, Ty, Ψ, ν(ρ), Υ, Φ⟩, (c, (K, ◦), f!, ())), where γρ =
[ρ(x) 7→ γ(x) | γ(x) ∈ FNames], Ty = Nρ,c · [◦ 7→ Unit⊥],
Ψ = [◦ 7→ ∅, f! 7→ dom(γρ)].

Dual properties We can now consider the properties of LO,
and see how they ‘line-up’ with those of LP .

Lemma 43. Let Γ, σ be r-free and Σ,Γ′, h,K, γ be as in
CIU. For a location qualified (Γ′, c)-assignment (ρ, c,Υ,Φ)

compatible with γ, if Cρ,c,Υ,Φ
Γ′,h,K,γ

t
=⇒ C then t is a

([◦ 7→ Unit⊥], Nρ,c,Υ)-well-qualified O-trace whose quali-
fiers match the qualifying map ΥC in C and

1) t is bracketed;
2) t is Ψ′P -visible and Ψ′-compatible for some Ψ′;
3) t is ΨO-visible, where Ψ is the reachability map of C

restricted to FNames!.

Qualification and 1) follow from the way LO is set up. This
time, 3) are the constraints that we have imposed to mirror

3) in Lemma 39, to match the behaviour of the term being
placed in the context. Well-qualification and 2) are now the
interesting properties, obtained by considering how the terms
and contexts produced during evaluation can be typed.

Given an (NO, NP ,Υ)-qualified X-trace t, let us write t⊥

for the (NP , NO,Υ)-qualified X-trace obtained by changing
the polarity of each name. Equipped with Lemmata 39 and 43,
we can arrive at a correctness result for contextual interactions:
any terminating contextual interaction is based on a complete
trace t generated by the program and a matching trace t⊥ ◦(())
generated by the context.

Lemma 44 (Correctness). Suppose Γ ⊢ M : σ is r-
free, Σ,Γ′, h,K, γ are as in CIU, and (ρ, c,Υ,Φ) is a lo-
cation qualified (Γ′, c)-assignment compatible with γ. Then
(K[M]{γ}, h) ⇓ iff there exists a complete t ∈ Tr(Cρ,c,Υ

Γ⊢M :σ)

such that t⊥ ◦(()) ∈ Tr(Cρ,c,Υ,Φ
Γ′,h,K,γ).

It follows that complete trace inclusion is sound for ≲ciu.

Theorem 45. For any r-free Γ ⊢ M1,M2 : σ, Tr(Γ ⊢ M1 : σ)
⊆ Tr(Γ ⊢ M2 : σ) implies Γ ⊢ M1 ≲ciu M2 : σ.

VII. REARRANGEMENTS

In Lemmata 39 and 43 we identified a number of technical
properties that characterise the traces produced by the program
and the context respectively. We dub them relevant below.

Definition 46. An (NO, NP ,Υ)-qualified X-trace is relevant
if it is well-qualified, bracketed, X-visible as well as ΨX-
visible and Ψ-compatible for some Ψ.

While complete trace inclusion gives us a sound model for
≲ciu (Theorem 45), it cannot be expected to be complete.
This is because, under reachability restrictions, contexts may
have restricted power to observe the order of in which certain
actions are generated or even if they are generated at all. We
formalise the intuitions next.

11

Note that in a qualified X-trace the head names of X-
actions are annotated with sets of abstract states. We say that
two such actions are conflicting if the annotations are not
disjoint, i.e. they share an abstract state.

Definition 47. Let X ∈ {O,P} and t, t′ be relevant X-traces.
We define t ⪯X t′ to hold if t is obtained by removing some
actions (possibly none) in t′ and permuting them so that:
• for any conflicting X-actions a1,a2 in t′ s.t. a1 occurs

before a2, if a2 occurs in t then a1 occurs in t before a2;
• each X-action in t must be immediately followed by the

same X-action as in t′.
We will write t ≃X t′, when t is a permutation of t′. Given
fixed t′, the set of all t such that t ⪯X t′ (resp. t ≃X t′) will
be denoted by

Π

X(t
′) (resp. ΠX(t′)).

Example 48. Recall t1, t2 from Example 20. Define t′1
= hl((), c1) c1(f

l,m) hl((), c3) c3(g
l,n) gl,n((), c5) c5(())

f l,m((), c4) c4(()) cl(()) and t′2 = hl((), c1) c1(f
m) hl((), c3)

c3(g
n) gn((), c5) c5(()) fm((), c4) c4(()) cl(()). We have

t2 ≃P t′2, but neither t1 ⪯P t′1 nor t′1 ⪯P t1.

Example 49. For t1 = hS((), c1) c1(f
T) fT (1, c2) c2(())

fT (2, c3) c3(()) cS0 (()) and t2 = hS((), c1) c1(f
T)fT (1, c2)

c2(()) cS0 (()), with S ∩ T = ∅ then t2 ⪯P t1.

The following result captures the limitations on what con-
texts can observe about a trace.

Lemma 50 (Closure under

Π

O). Let Γ′, h,K, γ, ρ, Υ, Φ and
c be such that Cρ,c,Υ,Φ

Γ′,h,K,γ is a context configuration. If t ∈
Tr(Cρ,c,Υ,Φ

Γ′,h,K,γ), then
Π

O(t) ⊆ Tr(Cρ,c,Υ,Φ
Γ′,h,K,γ).

This motivates the order on traces introduced below.

Definition 51. Tr(Γ ⊢ M1 : τQ) ⊆ ΠTr(Γ ⊢ M2 : τQ) is de-
fined to hold if, for all ((ρ, c,Υ), t) ∈ Tr(Γ ⊢ M1 : τQ), there
exists t′ ∈

Π

P(t) such that ((ρ, c,Υ), t′) ∈ Tr(Γ ⊢ M2 : τQ).

Using Lemmata 44, 50, one can prove that ⊆ Πis sound
for ≲ciu. To obtain completeness, we show that the relevant
traces correspond to some interaction with a context. This
is demonstrated by the definability result below. Because of
Lemma 50, definability can only hold up to

Π

O.

Lemma 52 (Definability). Let Γ ⊢ σ be an r-free judgement,
and (ρ, c,Υ) a qualified (Γ, c)-assignment. Suppose t ◦(()) is a
relevant ([◦ 7→ Unit⊥], Nρ,c,Υ)-qualified O-trace, i.e. t⊥ is a
complete (Nρ,c, ∅,Υ)-qualified P-trace. There exists a passive
configuration C such that t ◦(()) ∈ Tr(C), and, whenever
t′ ◦(()) ∈ Tr(C), then t′ ◦(()) ∈

Π

O(t ◦(())) (up to renaming
via permutations on Names and AStates preserving Nρ,c ⊎
{◦} and Υ). Moreover, there exists Γ′, h,K, γ as in CIU, and
Φ such that C = Cρ,c,Υ,Φ

Γ′,h,K,γ .

Now, thanks to Lemmata 44, 50 and 52, we arrive at the
first full abstraction result.

Theorem 53 (Full Abstraction for ≲ciu). For any r-free
judgements Γ ⊢ M1,M2 : τQ, we have Γ ⊢ M1 ≲ciu M2 : σ
iff Tr(Γ ⊢ M1 : τQ) ⊆ ΠTr(Γ ⊢ M2 : τQ).

Finally, we proceed to investigate ≃ciu. By the result above,
for ≃ciu-equivalent terms, we obtain Tr(Γ ⊢ M1 : τQ) ⊆ Π

Tr(Γ ⊢ M2 : τQ) ⊆ ΠTr(Γ ⊢ M1 : τQ). Hence, for any t1 in
Tr(Γ ⊢ M1 : τQ), there exist t2 from Tr(Γ ⊢ M2 : τQ) and
t′1 from Tr(Γ ⊢ M1 : τQ) such that t′1 ⪯P t2 ⪯P t1. Note
that t1, t′1 are generated by the same term and, by t′1 ⪯P t1,
the first action where they could differ must be a P-action.
Consequently, M1 must have generated the same trace up to
that action. Thus, the active states that have been reached are
nearly the same (up to Ψ). Consequently, they contain the
same term, meaning that the next action is bound to be the
same. Hence, t1 = t′1. Thus, t2 must be a permutation of t1.
Consequently, ≃ciu is characterised by permuted traces.

Definition 54. The permutation semantics of an r-free judge-
ment Γ ⊢ M : τQ is defined to be Perm(Γ ⊢ M : τQ) ≜
{((ρ, c,Υ), t)|((ρ, c,Υ), t′) ∈ Tr(Γ ⊢ M : τQ), t ∈ ΠP (t

′)}.

Theorem 55 (Full Abstraction for ≃ciu). For any r-free
judgements Γ ⊢ M1,M2 : τQ, Γ ⊢ M1 ≃ciu M2 : σ iff
Perm(Γ ⊢ M1 : σ) = Perm(Γ ⊢ M2 : σ).

Using Lemma 41, we can now derive our final result.

Corollary 56 (Full Abstraction). For any r-free saturated
judgements Γ ⊢ M1,M2 : τQ, Γ ⊢ M1 ≲ctx M2 : σ iff
Tr(Γ ⊢ M1 : τQ) ⊆ ΠTr(Γ ⊢ M2 : τQ), and Γ ⊢ M1 ≃ctx

M2 : σ iff Perm(Γ ⊢ M1 : σ) = Perm(Γ ⊢ M2 : σ).

Example 57. Recall the (in)equivalences discussed in the
Introduction. If h : (µh.Unit⊥ → (Unit⊥ → Unit⊥){h})∅,
the Corollary implies inequivalence because of t1 ̸≃P t′1
(Example 48). When h : (µh.Unit⊥ → (Unit⊥ → Unit⊥)∅)∅,
t1, t

′
1 do not arise and t2 ≃P t′2, so the terms are equivalent.

Example 58. Recall the approximation example from the
Introduction. The terms generate t1, t2 from Example 49
respectively. Because t2 ⪯P t1, our claim follows.

VIII. CONCLUSION

We presented the first full abstraction result for a language
with reachability types. We show how restricting aliasing com-
plicates the notion of contextual testing, leading to a refined
notion of visibility, and the use of a novel reordering of traces
to capture the inability of contexts to observe sequentiality.

Since their introduction [1], reachability types have been
extended with polymorphism [2], and it would be interesting
to investigate combining this with the polymorphic trace
semantics of [18]. The language λ⋄ of [2] also allows for
functions to be observably ‘pure’ (without local state), which
poses a challenge for trace semantics, though recent work [19]
has achieved full abstraction for a pure language using traces.

Lifting the r-free restriction would require carefully dis-
closing locations [4, 13], which would have to interact with
abstract state in some way. Reasoning techniques could also be
built upon the LTS [20]. Melliès has characterised innocence
using closure of strategies under permutation of independent
moves using Mazurkiewicz traces [21], and it would be
interesting to understand the connection to our approach.

12

REFERENCES

[1] Y. Bao, G. Wei, O. Bracevac, Y. Jiang, Q. He, and T. Rompf, “Reacha-
bility types: tracking aliasing and separation in higher-order functional
programs,” Proc. ACM Program. Lang., vol. 5, no. OOPSLA, pp. 1–32,
2021.

[2] G. Wei, O. Bračevac, S. Jia, Y. Bao, and T. Rompf, “Polymorphic
Reachability Types: Tracking Freshness, Aliasing, and Separation in
Higher-Order Generic Programs,” Proc. ACM Program. Lang., vol. 8,
no. POPL, pp. 393–424, 2024.

[3] O. Bračevac, G. Wei, S. Jia, S. Abeysinghe, Y. Jiang, Y. Bao, and
T. Rompf, “Graph IRs for Impure Higher-Order Languages: Making
Aggressive Optimizations Affordable with Precise Effect Dependencies,”
Proc. ACM on Program. Lang., vol. 7, no. OOPSLA2, pp. 400–430,
2023.

[4] J. Laird, “A fully abstract trace semantics for general references,”
in Proceedings of ICALP, ser. Lecture Notes in Computer Science.
Springer, 2007, vol. 4596, pp. 667–679.

[5] G. Jaber and A. S. Murawski, “Complete trace models of state and
control,” in Proceedings of ESOP, ser. Lecture Notes in Computer
Science, vol. 12648. Springer, 2021, pp. 348–374.

[6] S. Abramsky and G. McCusker, “Game semantics,” in Logic and Com-
putation, H. Schwichtenberg and U. Berger, Eds. Springer-Verlag, 1998,
proceedings of the NATO Advanced Study Institute, Marktoberdorf.

[7] A. S. Murawski and N. Tzevelekos, “An invitation to game semantics,”
ACM SIGLOG News, vol. 3, no. 2, pp. 56–67, 2016.

[8] D. Sangiorgi, “A theory of bisimulation for the pi-calculus,” Acta Inf.,
vol. 33, no. 1, pp. 69–97, 1996.

[9] S. B. Lassen and P. B. Levy, “Typed normal form bisimulation,” in
Proceedings of CSL, ser. Lecture Notes in Computer Science. Springer,
2007, vol. 4646, pp. 283–297.

[10] S. Abramsky and G. McCusker, “Call-by-value games,” in Proceedings
of CSL, ser. Lecture Notes in Computer Science, vol. 1414. Springer-
Verlag, 1997, pp. 1–17.

[11] Y. Bao, G. Wei, O. Bracevac, and T. Rompf, “Modeling Reachability
Types with Logical Relations,” CoRR, vol. abs/2309.05885, 2023.
[Online]. Available: https://doi.org/10.48550/arXiv.2309.05885

[12] [Online]. Available: https://github.com/TiarkRompf/reachability/tree/
main/base/lambda star full

[13] A. S. Murawski and N. Tzevelekos, “Full abstraction for Reduced ML,”
Annals of Pure and Applied Logic, vol. 164, no. 11, pp. 1118–1143,
Nov. 2013.

[14] J. Laird, “A game semantics of names and pointers,” Annals of Pure
and Applied Logic, vol. 151, no. 2–3, pp. 151–169, Feb. 2008.

[15] J. M. E. Hyland and C.-H. L. Ong, “On Full Abstraction for PCF: I.
Models, observables and the full abstraction problem, II. Dialogue games
and innocent strategies, III. A fully abstract and universal game model,”
Information and Computation, vol. 163(2), pp. 285–408, 2000.

[16] J. Laird, “Full abstraction for functional languages with control,” in
Proceedings of LICS, 1997, pp. 58–67.

[17] I. Mason and C. Talcott, “Equivalence in functional languages with
effects,” Journal of Functional Programming, vol. 1, no. 3, pp. 287–
327, Jul. 1991.

[18] G. Jaber and N. Tzevelekos, “A trace semantics for System F parametric
polymorphism,” in Proceedings of FOSSACS, ser. Lecture Notes in
Computer Science, vol. 10803. Springer, 2018, pp. 20–38.

[19] V. Koutavas, Y.-Y. Lin, and N. Tzevelekos, “Fully abstract normal form
bisimulation for call-by-value PCF,” in Proceedings of LICS. IEEE,
2023, pp. 1–13.

[20] G. Jaber and A. S. Murawski, “Compositional relational reasoning via
operational game semantics,” in Proceedings of LICS. IEEE, 2021, pp.
1–13.

[21] P.-A. Melliès, “Asynchronous games 2: The true concurrency of inno-
cence,” vol. 358, no. 2–3, pp. 200–228.

13

