
Modularity and Web Ontologies

Bernardo Cuenca Grau∗

Information Management Group
School of Computer Science

University of Manchester, UK
bcg@cs.man.ac.uk

Bijan Parsia and Evren Sirin and Aditya Kalyanpur
Maryland Information and Network Dynamics Lab.

8400 Baltimore Av.
College Park, MD, 20740 USA

bparsia@isr.umd.edu,{evren,aditya}@cs.umd.edu

Abstract

Modularity in ontologies is key both for large scale ontology
development and for distributed ontology reuse on the Web.
However, the problems of formally characterizing a modular
representation, on the one hand, and of automatically iden-
tifying modules within an OWL ontology, on the other, has
not been satisfactorily addressed, although their relevance has
been widely accepted by the Ontology Engineering and Se-
mantic Web communities.
In this paper, we provide a notion of modularity grounded on
the semantics of OWL-DL. We present an algorithm for auto-
matically identifying and extracting modules from OWL-DL
ontologies, an implementation and some promising empirical
results on real-world ontologies.

Introduction and Motivation
In Ontology Engineering, as in Software Engineering, mod-
ularity is a much praised virtue. Modular representations
(or programs) are easier to understand, verify, debug, ex-
tend, reuse parts of, and thus facilitate collaborative devel-
opment. For Web ontologies, where the collaboration is, in
large part, uncoordinated, it is often not enough that the on-
tology be modular in a general sense, but that, for a large
ontology, there are extractable parts that can be reused out-
side the context of the original ontology. Furthermore, there
is the expectation that those fragments are notarbitrary, but
maintain some relation to the meaning of those parts in the
original context. Indeed, if the fragments are “modules”,
one would expect that their extraction preserves key aspects
of their embedded meaning.

However, the problems offormallycharacterizing a mod-
ular representation, on the one hand, and of automatically
identifying modules within an ontology, on the other, have
not been satisfactorily addressed in the Ontology Engineer-
ing and Semantic Web literature, although their relevance
has been widely accepted by those communities.

Basic to a clear notion of modular decomposition of a log-
ical theory (such as an ontology) is an account of the the
correctnessof that decomposition. In (Garson 1989), James
Garson proposed a criterion of validity for fragments of a

∗This author is is supported by the EU Project TONES (Think-
ing ONtologiES) ref: IST-007603.
Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

logical theory. A fragmentT ′ of a theoryT is a logical
modulejust if, for some background logic:

• It is locally correct, i.e. any sentence provable inT ′
should be provable inT .

• It is locally complete, i.e. every sentence in the signature
of T ′ that is provable inT should be provable inT ′.
The intuition is simple: modular fragments of a theory

should entail all and only the entailments regarding its “sub-
ject matter” that the original theory entailed. When a logi-
cal module is extracted from its original context, no conse-
quences in the signature of the module are lost and no new
consequences are obtained. Thus, from a model-theoretic
perspective, logical modules areself-containedunits within
an ontology that can be safely extracted without adding or
removing entailments in the signature of other modules.

Local correctness is a direct consequence of the
monotonicityof a logic and it is a trivial property to show for
the ontology languages we are concerned with. Local com-
pleteness is a strengthening ofuniform interpolation(Pitts
1992) (Wolter 1998) in that the interpolantT ′ is required to
be a subset of the parent theoryT . Contrary to local cor-
rectness, the notion of local completeness poses two major
difficulties:

1. Given that, in FOL as well as in Description Logics, con-
tradictions entail everything, every consistent fragment of
an inconsistent ontology will fail to be locally complete.
Garson uses this fact, plus the difficulty of determining
the consistency of a large evolving FOL theory, to argue
that FOL is not a proper logic for modular KR.

2. Very few logics are known to have uniform interpolation
and it is unlikely that the expressive Description Logics
underlying OWL-Lite and OWL-DL do. In particular, the
solution, as well as the theoretical solvability, of the fol-
lowing problems remains an open question for the logics
underlying OWL-Lite and OWL-DL:

(a) Given a fragmentT ′ of an ontologyT , isT ′ a uniform
interpolant ofT ?

(b) Given an ontologyT and a signatureS ⊆ Sig(T),
is there a uniform interpolantT ′ of T such that
Sig(T ′) = S?

In this paper, we address these issues as follows: first, in
a Description Logic setting, where there is a decision pro-

cedure for consistency checking that is practical for realistic
KBs (Horrocks & Sattler 2005)(Horrocks, Sattler, & Tobies
2000), it is reasonable to demand that an ontology be con-
sistent; second, although we do not provide a general so-
lution for 2a) and 2b), we will be able to ensure that the
modules obtained using our algorithms are indeed uniform
interpolants of the parent ontology.

Unlike (Garson 1989) and (MacCartneyet al. 2003), we
are concerned withreusingparts of ontologies, not just for
improving reasoning performance, but also for the sake of
intelligibility for humans and effective reuse. Thus, we aim
at fulfilling the following additional desiderata:

• Modules should be easilyreusablefor applications.
• Modules should beintelligible, that is, they should make

sense to ontology engineers seeking to (re)use them.

In particular, in Semantic Web applications, reuse often
boils down to the following task: given a concept name in
the ontology that we want to “borrow”, provide the axioms
in the ontology that are “relevant” to its meaning.

Enforcing modules to be logical, in Garson’s sense, is not
sufficient for addressing these additional requirements.

In order to provide effective reuse, our definition of a
module will be relative to a concept name in the signature of
the ontology, such that each name will be assigned a (single)
module. Reusing a concept then boils down to retrieving its
corresponding module within the ontology. In order to im-
prove intelligibility, our goal will be to obtain modules that
deal with a well-defined subject matter within the ontology.

Thus, in this paper, we aim atformalizingandsolvingthe
following problem:

• Given a concept nameA and an ontologyT , retrieve a
fragmentT ′A ⊆ T such that:

1. it is a logical module ofT .
2. it captures the meaning ofA in T in a sensible, well-

understood way.
3. it represents a well-defined subject matter.

Formalizing1) is straightforward. The formalization of2)
and3) is indeed more controversial.

In this paper, we argue that a notion of modularity
that meets the requirements listed in this section is indeed
achievable and propose a formal definition of module as well
as an algorithm for quickly identifying and retrieving mod-
ules within an OWL-DL ontology. We investigate which
OWL-DL ontologies can be “safely” modularized accord-
ing to our notion of modularity; in particular, we enforce the
ontologies to:

• be consistent.
• contain no unsatisfiable concepts.
• contain no “dangerous” General Concept Inclusion Ax-

ioms (GCIs).

Ontology inconsistency and concept unsatisfiability can
be effectively determined using a DL reasoner, such as
RACER, FaCT++ or Pellet, and are considered to be seri-
ous semantic defects that significantly corrupt the intended
semantics of the ontology. We understand that these defects

need to be resolved and assume that they have been fixed
prior to the modularization process. A more controversial
issue is how to characterize “dangerous” GCIs. Intuitively,
GCIs may impose semantic constraints on the ontologyas
a whole; extracting a fragment from its context in the pres-
ence of these GCIs may yield to unexpected consequences.
In this paper, we provide a formal notion ofsafeontology.
For safe ontologies, we guarantee local correctness and com-
pleteness for the retrieved modules and show that modules
can be identified in polynomial time without any user in-
tervention. We describe an implementation of our modular-
ization algorithm based on Manchester’s OWL-API (Bech-
hofer, Lord, & R.Volz 2003), and the open source ontology
editor Swoop (Kalyanpuret al. 2005), as well as some em-
pirical results on real-world ontologies. Finally, we provide
an insight on how to interpret the retrieved modules from a
modeling perspective.

Preliminaries
In this Section, we introduce the logicSHOIQ (Horrocks
& Sattler 2005) and the notions of uniform interpolation and
logical module in the context of DLs.

Before going into formal details, it is worth mention-
ing that OWL-DL is a notational variant of the Descrip-
tion LogicSHOIN (D) (Horrocks, Patel-Schneider, & van
Harmelen 2003). Our results apply to the logicSHOIQ
instead, which presents some subtle differences with respect
to OWL-DL:

1. SHOIQ generalizes the cardinality restrictions in OWL-
DL to qualifiedcardinality restrictions.

2. OWL-DL provides support fordatatypes.

For ease of presentation, we have decided not to consider
datatypes in this paper. Our results, however, can be easily
extended, and datatypes are indeed supported in our imple-
mentation.

The Description LogicSHOIQ
Let C,R be countably infinite and pair-wise disjoint sets of
conceptandrole namesand letI ⊆ C be a set ofnominals.
We will denote concept and role names with capital letters
A,B andR,S respectively; nominals will be denoted with
lowercase lettersa, b, c.

The set ofSHOIQ-roles (roles, for short) is the setR ∪
{Inv(R)|R ∈ R}, whereInv(R) denotes the inverse of a role
R. Concepts are inductively using the following grammar:

C ← A|¬C|C1 u C2|∃R.C| ≥ nS.C

whereA ranges over concept names (including nominals),
C(i) over concepts,R over roles,S oversimpleroles1, and
n over positive integers. We use the following abbreviations:
C tD stands for¬(¬C u ¬D); > and⊥ stand forA t ¬A
andAu¬A respectively; finally, we use∀R.C and≤ nS.C
as a shorthand for∃R.¬C and¬(≥ n + 1S.C) respectively.

1See (Horrocks & Sattler 2005) for a precise definition of sim-
ple roles.

A role inclusion axiomis an expression of the formR1 v
R2, whereR1, R2 are roles. Atransitivity axiomis an ex-
pression of the formTrans(R), whereR ∈ R. For C,D
concepts, ageneral concept inclusion axiom(GCI) is an ex-
pression of the formC v D. A TBox T is a finite set of
concept inclusion axioms, role inclusion axioms and transi-
tivity axioms.

An interpretationI is a pairI = (∆I , .I), where∆I is
a non-empty set, called thedomainof the interpretation, and
.I is theinterpretation function. The interpretation function
assigns to eachA ∈ C a subset of∆I and to eachR ∈ R
a subset of of∆I ×∆I . For a nominala, the setaI ⊆ ∆I

is additionally required to be a singleton. The interpretation
function extends to complex concept as follows:

(C uD)I = CI ∩DI

(¬C)I = ∆I \ CI

(∃R.C)I = {x ∈ ∆I | ∃y.〈x, y〉 ∈ RI ∧ y ∈ CI}
(≥ nR.C)I = {x ∈ ∆I |

#({y ∈ ∆I | 〈x, y〉 ∈ RI ∧ y ∈ CI}) ≥ n}

The satisfaction of aSHOIQ axiom α in an interpre-
tation I, denotedI |= α, is defined as follows: (1)I |=
R1 v R2 iff (R1)I ⊆ (R2)I ; (2) I |= Trans(R) iff for
everyx, y, z ∈ ∆I , if 〈x, y〉 ∈ RI and〈y, z〉 ∈ RI , then
〈x, z〉 ∈ RI ; (3) I |= C v D iff CI ⊆ DI . The interpreta-
tion I is a model of the TBoxT if it satisfies all the axioms
in T .

A conceptC is satisfiable relative toT if there is a model
I of T such thatCI 6= ∅. We say thatC subsumes D relative
to T if, for every modelI of T , CI ⊆ DI .

Logical Modules and Uniform Interpolation
We now introduce uniform interpolation for TBoxes. A
signatureS ⊆ C ∪ R is a finite set of concept and role
names. The signatureSig(α) (respectivelySig(T)) of an
axiom α (respectively of a TBoxT) is the set of concept
and role names occurring in it. Given a signatureS, we
useCon(S) and Rol(S) to denote respectively the set of
SHOIQ-concepts and roles that can be built using only
symbols inS.

Definition 1 (Uniform interpolation for TBoxes)
A TBoxT ′ is a uniform interpolant of a consistent TBox

T if the following conditions hold:

• T |= T ′.
• For every axiomα such thatSig(α) ⊆ Sig(T ′), if T |= α,

thenT ′ |= α.

Garson’s notion of a logical module can be defined by
using uniform interpolation to formalize local completeness
and by requiring, additionally, the interpolantT ′ to be a sub-
set of the parent ontologyT .

Definition 2 (Logical Module)
LetT be consistent. A TBoxT ′ ⊆ T is a logical module

of T if, for every axiomα such thatSig(α) ⊆ Sig(T ′):
T |= α iff T ′ |= α

Note that, as mentioned before, we will always require
consistencyof the ontologies to be modularized.

The Notion of a Module

In this Section, we formalize the notion of amodule, T ′A, for
a concept nameA in the context of aSHOIQ ontologyT .

As a first requirement, we will enforceT ′A to be a logical
module ofT .

As argued before, logical modules represent, from a
model-theoretic perspective, self-contained units within the
ontology. However, Garson’s notion of local correctness
and completeness is not sufficient to address all our require-
ments, since:

• it does not determine thescopeof the module (i.e. which
symbols should be included in its signature) and, conse-
quently, itssize.

• it does not provide an insight on how to interpret the mod-
ule from amodelingperspective.

In order to address these issues, our definition specifies
a class of logical consequences of the input ontology to be
preserved in the extracted module. The goal is to:

1. force the relevant knowledge about the concept to be in-
cluded in its module.

2. make sure that the module represents a well-defined sub-
ject matter and, consequently, that is self-contained from
a modeling perspective.

This class of entailments determines thescopeof the mod-
ule and thus the axioms ofT that must be included inT ′A.

Including the Relevant Information About the Concept
In traditional DL settings, not all entailments are equally
valued. Indeed, there is a set of standard inference services
which DL-focused systems expose and emphasize, namely:

1. satisfiability of concept namesdetermines whether a con-
cept nameA in the KB is satisfiable, i.e. if there is a
modelI of the KB for whichAI 6= ∅.

2. classificationcomputes the subsumption partial ordering
of all the concept names in the KB.

3. instantiation and retrievaldetermine whether an individ-
ual is an instance of a concept name and retrieve all the
instances of an atomic concept respectively. InSHOIQ,
instantiation and retrieval can be seen as a particular case
of concept subsumption and classification, since individ-
uals are represented by nominal concepts.

For ontology engineers, it is especially important to en-
sure that a module extracted from an OWL ontology for re-
use or maintenance purposes preserves the results of these
reasoning tasks. In other words, if we are to reuse a con-
cept nameA and retrieve a fragmentT ′A of the original on-
tology T , we want to make sure thatA, as well as all its
sub-concepts, super-concepts and instances are included in
T ′A. We argue that such a fragment reasonably captures the
meaning ofA in T .

Ensuring Self-Containment from a Modeling Perspec-
tive Ontologies typically contain knowledge about differ-
ent subject matters. An example is the ontology used in the
OWL documentation: the Wine Ontology (Smith, Welty, &
McGuiness 2004). This ontology describes different kinds
of wines according to various criteria, like the area they are
produced in, the kinds of grapes they contain, their flavor
and color, etc. Thus, the Wine Ontology does not contain
information about wines only, but also information about re-
gions, wineries, colors, grapes, and so on. This illustrates
a common pattern in OWL ontologies: although ontologies
usually refer to a core application domain, they also contain
“side” information about other secondary domains. These
domains, although related, are mostly self-contained in the
sense that they only deal with a single “topic”.

This modeling paradigm is not only characteristic of small
and medium sized ontologies, but also occurs in large, high-
quality knowledge bases, written by groups of experts. A
prominent example is the NCI (National Cancer Institute)
ontology (Golbecket al. 2003), a huge, highly structured
ontology dealing with the biomedical domain. NCI is a
reference terminology covering areas of basic and clinical
science, built with the goal of facilitating translational re-
search in Cancer. The NCI ontology is mainly focused on
genes, but it also contains some information about many
other subject matters, like professional organizations, fund-
ing, research programs, etc.

In order to ensure that our modules are coherent and self-
contained, we require that no subsumption relations exist
between conceptsinside the module (i.e., contained in its
signature) and conceptsoutsidethe module. Such a condi-
tion enforces a logical separation between the module and
its context.

The intuitions described in this Section yield to the fol-
lowing notion of module:

Definition 3 (Module)
A TBoxT ′A ⊆ T is a module for a concept nameA ∈

Sig(T) if:

1. T ′A is a logical module inT .
2. for every conceptB ∈ Sig(T), the following holds:

(a) T ′A |= (A v B)⇔ T |= (A v B).
(b) T ′A |= (B v A)⇔ T |= (B v A).

3. There are no concept namesD,E ∈ Sig(T) such that
D ∈ Sig(T ′A), E /∈ Sig(T ′A) and eitherT |= D v E, or
T |= E v D.

We argue that this formal notion of a module satisfies our
requirements and, hence, it makes perfect sense, both from
a logical and a modeling perspective, to retrieveT ′A instead
of T whenever we need to reuseA.

Safe OWL-DL Ontologies
Given our notion of a module, we show that there is a class
of “safe” OWL-DL theories thatcanbe modularized. In this
Section, we investigate, both from a logical and a model-
ing perspective, when an OWL-DL ontology can be consid-
ered to be safe. In order to understand the potential effect of

“dangerous” GCIs, let us consider the the following simple
ontology, which isnot safe:

T = {> v bob; bob v Person; bob v
∃Drives.Car;Car v V ehicle}

with bob being a nominal. In the absence of the first
axiom, the TBoxTCar = {Car v V ehicle} is a mod-
ule for the concept nameCar in T , according to Defini-
tion 3. However, in the presence of the GCI> v bob, our
definition of module is violated, sinceT |= bob v Car,
but TCar 6|= bob v Car. The problem, in this case, is
caused by the ability of GCIs to fix the size of the inter-
pretation domain in every model of the ontology. The reader
should note that merely including the problematic GCI in
TCar does not help, sinceT |= Car v Person, but
TCar ∪ {> v bob} 6|= Car v Person. In fact, it is not
hard to see that the only module forCar in T is precisely
T .

In order to assess the “globality” of a GCI, we introduce
the notion of adomain expansion.

Definition 4 (Domain Expansion)
Let I = (∆I , .I) andJ = (∆J , .J) be interpretations

such that:1) ∆J = ∆I∪Φ, withΦ a non-empty set disjoint
with ∆I ; 2) AJ = AI for each concept name;3) RJ = RI

for each role name.
We say thatJ is theexpansionof I with Φ.

Intuitively, the interpretationJ is identical toI except
for the fact that it contains some additional elements in the
interpretation domain. These elements do not participate in
the interpretation of concepts or roles. The following ques-
tion naturally arises: ifI is a model ofT , isJ also a model
of T ? Safe ontologies are precisely those whose models are
closed under domain expansions.

Definition 5 (Safety)
Let T be consistent. We say thatT is safe if, for every
I |= T and every setΦ disjoint with∆I , the expansionJ
of I with Φ is a model ofT .

Examples of unsafe axioms are GCIs that:

• fix the size of the domain in every model of the ontology,
e.g.> v bob.
• establish the existence of a “universal” named concept,

i.e., one that is equivalent to>. For example,> v Car.

Examples of safe GCIs are role domain and range and
concept disjointness.

The Modularization Algorithm
In this section, we present an algorithm that, given an input
ontologyT and a conceptA, retrieves a module forA in T .

The main idea of the algorithm is to generate apartition-
ingof the input ontologyT , represented as a directed labeled
graph (thepartitioning graph) and then use the graph to find
the module for each concept inT .

The algorithm consists of three main steps: asafety check,
the generation of a partitioning graphG and the identifica-
tion and extraction of modules fromG.

The Safety Check
In this Section, we show how to detect the presence of “un-
safe” GCIs. We start by introducing the notion oflocality of
a concept:

Definition 6 (Locality)
A conceptC is local if, for every interpretationI for C

and every non-empty setΦ disjoint with∆I , the expansion
J of I with Φ verifies:

CJ = CI

Otherwise, we say thatC is non-local. For S a signature,
we denote bylocal(S) the set of local concepts that can be
constructed using the symbols inS.

Thus, local concepts are those whose interpretation re-
mains invariant under domain expansions. The following
theorem establishes the syntactic countepart to the notion of
locality:

Theorem 1 Let S be a signature andC a concept in
Con(S), then:

• If C is a concept name, thenC ∈ local(S).
• If C is of the form∃R.D or ≥ nR.D, thenC ∈ local(S).
• If C of the formDuE, thenC ∈ local(S) iff any ofD,E

is in local(S).
• If C of the form¬D, then,C ∈ local(S) iff D /∈ local(S).

Furthermore, ifC /∈ local(S), CJ = CI ∪ Φ for every
possible pair of interpretationsI,J s.t. J is an expansion
of I with Φ.

As a consequence of the theorem, the problem of deciding
whetherC ∈ local(S) for some signatureS can be solved in
polynomial time w.r.t. the length|C| of the conceptC.

Using the theorem above, we can find an effective proce-
dure for deciding safety:

Theorem 2 Let T be consistent. Then,T is unsafe iff it
explicitly contains a GCIC v D such thatC is non-local
andD is local.

As a direct consequence of Theorems 1 and 2, the problem
of deciding safety of a consistent ontologyT is polynomial
w.r.t the size|T | of T .

The Partitioning Algorithm
In case of a positive result in the safety check, the algorithm
generates a partitioning of the input ontology. In general
(MacCartneyet al. 2003),{Ti}1≤i≤n is apartitioning of a
logical theoryT if T =

⋃
i Ti. Each individualTi is called

apartition and contains a distinct subset of the axioms ofT .
We represent the partitioning by means of a labeled di-

rected graphG = (V,E,L,V). Each nodev ∈ V is labeled
with a non-empty partitionL(v) ⊆ T . The labels of two dif-
ferent nodes are disjoint (L(vi) ∩ L(vj) = ∅ for i 6= j) and
the union of the labels of all the nodes in the graph is pre-
ciselyT (i.e.

⋃
v∈V L(v) = T).

Each edgee = 〈v, w〉 is labeled with a non-empty set
of rolesL(e) occurring inT . Given an edgee = 〈v, w〉,
we denote its first and second elementsv, w by First(e),

-Algorithm Partition (T)
-Input: A SHOIQ ontologyT
-Output: A partitioning graphG = (V,E,L,V)

G← ({v0}, ∅,L,V), with:
L(v0) = T
V(C) = v0 for each conceptC in T
V(R) = 〈v0, v0〉 for each roleR in T

if T not safe,return G
for each roleR occurring inT , BoundTo(R)← ∅
Repeat

G← DoPartitioningStep(G)
until L(v0) = ∅
V← V − {v0}
return G

Figure 1: Partitioning Algorithm

-Algorithm DoPartitioningStep (G)
-Input: A partitioning graphG
-Output: Updated graphG

Create new nodev with L(v) = ∅ and doV← V ∪ {v}
Select non-deterministically a conceptX with V(X) = v0,

or a roleX with V(X) = 〈v0, v0〉
if X a concept,then V(X)← v
if X a rolethen V(X)← 〈v, v0〉
G← moveTerms(G, v)
G← moveAxioms(G, v)
return (G)

Figure 2: Partitioning Steps

Second(e) respectively, and we usee− to denote its inverse
(i.e. e− = 〈w, v〉). We assume that the labels of different
edges are disjoint (L(e) ∩ L(e′) = ∅ for e 6= e′).

Given two partitions, their respective signatures mayin-
tersectand, consequently, we need a mechanism to devise
the “home” partition of a concept. We introduce a mapping
V in the graph that assigns to each concept and role occur-
ring in T asinglenode and edge inG, respectively.

Since each symbol is mapped throughV into a single
node or edge, the functionV allows to “disambiguate” the
shared symbols. This mapping will reveal key for determin-
ing which axioms from the original ontology will be grouped
together in the same partition as well as for retrieving the
module for each concept from the partitioning graph.

The algorithm performs a succession ofpartitioning
steps, as shown in Figure 1. Each step involvesa pair of
nodes in the graph: the nodev0, called thesourcenode,
which initially contains in its label the input ontology and
from which axioms are removed, and a the nodev, the tar-
getnode, generated from scratch, to which these are added.
Note that the source node is alwaysv0 and the target node is
different is each step.

At the beginning of each partitioning step (see Figure 2),
the algorithm selects non-deterministically a symbolX in
the signature ofL(v0) and changes the value ofV(X). In
the case of a concept, for example,V(X) is updated tov,
which intuitively means that the concept is “moved” to the

target partition.
This initial change will trigger new ones, according to

Figure 3.

-Algorithm MoveTerms (G, v)
-Input: A partitioning graphG = (V,E,L,V)

The target nodev in the current partitioning step
-Output: A partitioning graph with updated mappingV

Repeat
for all conceptC occurring inT with V(C) = v0

if any of the following conditions holds:
1)(C v D) or (D v C) ∈ L(v0), andV(D) = v
2)∃R.C or≥ nR.C ∈ L(v0) andSecond(V(R)) = v
3)(C uD) ∈ L(v0) andV(D) = v
4)C of the formD u E andV(E) = v or V(D) = v
5)C of the form∃R.D,≥ nR.D andFirst(V(R)) 6= v0

6)(¬C) ∈ L(v0) andV(¬C) = v
7)C, E ∈ BoundTo(R) andV(E) = v

then V(C)← v
if 2) has held,then BoundTo(R)← BoundTo(R) ∪ {C}

for all roleR with First(V(R)) = v0 or Second(V(R)) = v0

if (R v S) or (S v R) ∈ L(v0) andV(R) 6= V(S)
then V(R)← V(S)

if D of the form∃R.C,≥ nR.C andV(D) = v
then First(V(R))← v

if ∃R.C or≥ nR.C ∈ L(v0), V(C) = v
then Second(V(R))← v

if V(R) 6= (V(Inv(R)))−

then V(R)← (V(Inv(R)))−

until no change inV is triggered
return G

Figure 3: Moving Concepts and Roles

Depending on the final value of theV function, some of
the axioms inL(v0) are removed fromL(v0) and added to
L(v) and the labels of the edges involving the target and the
source nodes are updated accordingly.

In Figure 5, we provide the content of the partitioning
graph at the end of each partitioning step for an example on-
tology. The reader should be able to reproduce these results
using the the algorithms in Figures 1, 3 and 4.2

Significance of the Partitioning Graph It is worth taking
a closer look to the partitioning graph generated in Figure
5. The graph contains four partitionsL(v1), ...,L(v4). A
quick examination of the axioms they contain reveals that
the partitions describe intuitively disjoint subject matters,
namely courses, publications, departments and students re-
spectively.

The correspondence of each partition to a well-defined ap-
plication domain, intuitively disjoint from the rest, is a gen-
eral property of the partitions generated using our algorithm
and can be observed in large, real-world ontologies, such as
NCI.

The decomposition obtained for NCI can be obtained in
less than 45 seconds using our implementation and is shown

2As a remark, the setBoundTo(P) represents the set of terms
that are “forced” to end up in the same partition due to the fact that
a roleP cannot appear in the label of two different edges.

-Algorithm MoveAxioms (G,v)
-Input: A partitioning graphG

The target nodev in the current partitioning step
-Output: An updated partitioning graphG

for eachAxiom α ∈ L(v0)
if α is of any of the following forms:
1)C v D andV(C) = V(D) = v
2)R v S, andV(R) = V(S), with First(V (R)) 6= v0

thenL(v0)← L(v0)− {α} andL(v)← L(v) ∪ {α}
for eachR with V(R) = 〈v0, v〉,
doL(〈v0, v〉)← L(〈v0, v〉) ∪ {R}

for eachR ∈ L(〈vj , v0〉) with vj 6= v
if ∃C ∈ BoundTo(R) with V(C) = v then
L(〈vj , v0〉)← L(〈vj , v0〉)− {R}
if L(〈vj , v0〉) = ∅ then E← E− 〈vj , v0〉
if 〈vj , v〉 /∈ E then
E← E ∪ 〈vj , v〉
L(〈vj , v〉)← L(〈vj , v〉) ∪ {R}

return G

Figure 4: Moving Axioms

on the left hand side of Figure 6. The figure uses the graph
layout in the ontology editor Swoop for visualizing parti-
tioning graphs. In such a layout, the size of the nodes is
proportional to the size of the partitions. Isolated nodes are
represented in white, leaf nodes in gray and nodes with out-
going edges in black.

The partitions of NCI represent a well-defined sub-
domain within the ontology. For example, the knowledge
about genes, drugs, medical techniques, etc. are each asso-
ciated to a different partition. These domains are pair-wise
disjoint in the sense that they do not share objects (a drug is
not a gene and vice-versa). The connections suggest which
domains within the ontology are most relevant. For example,
highly interconnected partitions, such as the ones dealing
with genes and diseases, are central to the ontology. Other
nodes, like the one dealing with anatomical structures, are
leaves in the graph, and hence represent “secondary” sub-
ject matters.

The following theorem justifies why this fact is generally
observed:

Theorem 3 LetT be safe andG = Partition(T) with G =
(V,E,L,V) and |V| = n, then there exists a modelJ =
(∆J .J) of T such that:

• ∆J =
⋃

i=1,...,n ∆J
i with ∆J

i ∩∆J
k = ∅ for i 6= k, and

∆J
i 6= ∅.

• AJ ⊆ ∆J
i , for each concept nameA ∈ Sig(T) such that

V(A) = vi.

• RJ ⊆ ∆J
i ×∆J

j , for each role nameR ∈ Sig(T) such
thatV(R) = 〈vi, vj〉.

The theorem establishes the existence of a very special
family of models forT . These models evaluate each parti-
tion in a differentlogical sub-domain, disjoint from the rest.
We argue that there exists a very close correspondence be-
tween the ability to distinguish disjoint logical sub-domains

T = { V = {v1, v2, v3, v4}
St v ∃enrolledIn.Co E = {〈v4, v1〉, 〈v4, v3〉, 〈v3, v4〉}
St v Person L(v1) = { Co v > }; L(v2) = { Paper v Pub}
Prof v ∃teaches.Co u ∃memberOf.Dept L(v3) = {Dept. v ∃memberOf−.St};
Paper v Pub L(v4) = { St v ∃enrolledIn.Co; St v Person;
Dept. v ∃memberOf−.St Prof v ∃teaches.Co u ∃memberOf.Dept
∃enrolledIn.> v Person} ∃enrolledIn.> v Person}

Figure 5: A Decomposition into a Partitioning Graph

Figure 6:Partitioning Graph for NCI (left) and OWL-S (right)

and the existence of different subject matters within an OWL
ontology.

The theorem provides an insight about the way the on-
tology has been modeled. In particular, it suggests one of
the following: either the partitions correspond to actual non-
overlapping subject matters, intended by the ontology engi-
neer, or the ontology is underspecified and some of the parti-
tions correspond to “unused information”. In the latter case,
these partitions identify parts of the ontology that probably
need to be further developed.

An example of the latter case are the SWEET-JPL ontolo-
gies, which constitute NASA’s effort for providing a formal-
ization of the Earth Science domain. The SWEET ontolo-
gies include several thousand terms, spanning a broad extent
of Earth Science and related concepts using OWL3.

The resulting partitioning graph is shown in Figure 7. The
partitioning reveals a significant number of small indepen-
dent nodes. The existence of these small, independent frag-
ments is hard to detect by direct inspection of the original
ontologies and is not desirable from a modeling perspective,
unless one actually wanted to evolve them separately.

The existence of the class of models identified in Theorem
3 makes it possible to identify axioms thatcannotbe entailed
by the ontologyT :

Theorem 4 LetT be safe andG = Partition(T) with G =

3The ontologies can be downloaded from
http://sweet.jpl.nasa.gov/sweet

(V,E,L,V), then the axioms of the following formcannot
be entailed byT : 1) C v D, with C,D local andV(C) 6=
V(D); 2) R v S with V(R) 6= V(S).

We will use this result to show that the retrieved modules
verify property 3) in Definition 3.

Identification and Extraction of Modules
Themodulefor each concept is obtained from the partition-
ing graph using the algorithm in Figure 8. According to the
Figure, ifV(A) = vi, themodule for A in T is the union
of all the axioms contained in the nodes that are accessible
from vi through a directed path inG. There are cases, how-
ever, where the module forX computed this way does not
satisfy Definition 3. For example, consider the following
ontology:

T = {C v ∀R.B ; B v E; a v C ; a v ∃R.b}
The partitioning algorithm would generate a graph with

two nodesv, w, with L(v) = {C v ∀R.B; a v C; a v
∃R.b} andL(w) = {B v E} connected by an edge〈v, w〉
with L(〈v, w〉) = {R}. The moduleT ′B for B would be just
T ′B = L(w); howeverT |= b v B, which is not entailed in
T ′B , thus violating Definition 3. The problem is caused by
the presence of nominals. When the label of a node contains
nominals, we need to “backtrack” in the graph and consider
its predecessors as well (see Figure 8).

The correctness of our approach is based on the following
theorems:

Figure 7:Partitioning Graph for SWEET-JPL

-Algorithm GenerateModule(G, C)
-Input: The partition graphG

A conceptC in T
-Output: The moduleT ′ for C in T

v ← V(C)
T ′ ← L(v)
Add toT ′ all axioms in the label of the nodes accessible fromv.
if L(v) has nominals,then
for eachpredecessorw of v in G:

Select any conceptD in L(w)
T ′ ← T ′ ∪ GenerateModule(G, D)

return T ′

Figure 8: Generation of Modules

Theorem 5 The ontologyT ′ = GenerateModule(G, C) is
a logical module ofT .

Theorem 6 The ontologyT ′ = GenerateModule(G, C)
with G = Partition(T) is a module forC w.r.t. T .

It is not hard to verify that our modularization algorithm
is worst-case quadratic in the size of the input ontology and
hence the module for a concept in a consistent ontology can
be obtained in polynomial time.

As an example of module extraction from a partitioning
graph, consider Figure 6, which shows the decomposition
for the OWL-S ontologies, describing Web Services. The
ontology exhibits a nice decomposition, since a significant
proportion of nodes correspond to independent or leaf nodes
(white and gray nodes respectively), which is ideal for re-
use. Interestingly, there is a improvement in modularity
for every concept, in the sense that every module isstrictly
smaller than the ontology as a whole. Finally, note that the

whole modularization process iscompletely automatic. No
user intervention is required at any stage of the process.

Related Work
The problem of modularity in Web ontologies has been re-
cently addressed in (StuckenSchmidt & Klein 2004), (Noy
& Musen 2003) and (Seidenberg & Rector 2006).

In (StuckenSchmidt & Klein 2004), the output of the
modularization process is presented as a graph visualization
of the different kinds of information contained in the input
ontology. However, the heuristics used to generate the visu-
alization only consider a small fragment of OWL-DL and no
correspondence between the nodes of the graph and sets of
axioms is provided.

(Noy & Musen 2003) and (Seidenberg & Rector 2006)
describe different structural techniques for extracting rele-
vant fragments of ontologies. Although the output in these
cases, as opposed to (StuckenSchmidt & Klein 2004), is a
set of axioms, a formal characterization of their properties is
lacking and hence no notion of correctness of the process is
established.

(MacCartneyet al. 2003) explores partitioning FOL the-
ories to improve theorem proving performance. The work
rigorously addresses logical issues, such as interpolation.
However, the focus is on improving reasoning performance
only and, thus, does not address reuse tasks. Our goal in
this paper has been very different, since we have examined
modularization primarily for reuse purposes.

In our previous work (Cuenca-Grau, Parsia, & E.Sirin
2005), we proposedE-Connections (Kutzet al. 2004) as a
suitable formalism forcombining(rather than decomposing)
OWL ontologies describing largely disjoint subject matters.
There is indeed a tight relationship betweenE-Connections
and our partitioning algorithm. In fact, the partitioning
graph can be seensyntacticallyas a knowledge base in the
language of anE-Connection, with the roles in the edges
of the graph corresponding tolink relations. This syntac-
tic correspondence provides an intuition on why Theorems
3 and 4 hold. The reader should note, however, that theE-
Connections framework defines its own semantics; in fact,
all the models of anE-Connected KB are enforced to be of
the form given in Theorem 3. In this paper, however, we see
E-Connections as a way of guiding the partitioning process,
rather than as a logical formalism.

Conclusion
Ontology engineers need a clear notion of what to expect
from a modularization process, both from a logical and a
modeling perspective. Without such an understanding, the
ontology engineer is at a loss. The result is the adoption
of ad-hoc and highly unpredictable techniques as a common
practice, which often leads to undesired results.

In this paper, we have presented a method for auto-
matically identifying and extracting relevant fragments of
ontologies, called modules, with precise semantic guaran-
tees. Our method encompasses the full expressive power of
OWL-DL and provides a good computational performance.
Our initial experimental results with real-world ontologies

show that, for most concepts, the modules we obtain can be
notably smaller than the original ontology, which facilitates
re-use, processability, understandability and maintenance.

References
Bechhofer, S.; Lord, P.; and R.Volz. 2003. Cooking the
semantic web with the OWL API. InProc. of the Second
International Semantic Web Conference (ISWC-2003).
Cuenca-Grau, B.; Parsia, B.; and E.Sirin. 2005. Combining
OWL ontologies usingE-connections.Elsevier’s Journal
On Web Semantics4(1).
Garson, J. 1989. Modularity and relevant logic.Notre
Dame Journal of Formal Logic30(2):207–223.
Golbeck, J.; Fragoso, G.; Hartel, F.; Hendler, J.; Parsia, B.;
and Oberthaler, J. 2003. The national cancer institute’s the-
saurus and ontology.Elsevier’s Journal of Web Semantics
1(1).
Horrocks, I., and Sattler, U. 2005. A tableaux decision
procedure for SHOIQ. InProc. of the 19th Int. Joint Conf.
on Artificial Intelligence (IJCAI 2005). Morgan Kaufman.
Horrocks, I.; Patel-Schneider, P. F.; and van Harmelen, F.
2003. FromSHIQ and RDF to OWL: The making of a
web ontology language.Elsevier’s Journal of Web Seman-
tics 1(1):7–26.
Horrocks, I.; Sattler, U.; and Tobies, S. 2000. Practical rea-
soning for very expressive description logics.Logic Jour-
nal of the IGPL8(3):239–263.
Kalyanpur, A.; Parsia, B.; E.Sirin; Cuenca-Grau, B.; and
Hendler, J. 2005. Swoop: A web editing browser.Else-
vier’s Journal On Web Semantics4(2).
Kutz, O.; Lutz, C.; Wolter, F.; and Zakharyaschev, M.
2004.E-connections of abstract description systems.Arti-
ficial Intelligence 156(1):1-73.
MacCartney, B.; McIlraith, S. A.; Amir, E.; and Uribe, T.
2003. Practical partition-based theorem proving for large
knowledge bases. InProc. of the 18th Int. Joint Conf. on
Artificial Intelligence (IJCAI 2003).
Noy, N., and Musen, M. 2003. The PROMPT suite: Inter-
active tools for ontology mapping and merging.Int.Journal
of Human-Computer Studies6(59).
Patel-Schneider, P.; Hayes, P.; and I.Horrocks. 2004. Web
ontology language OWL Abstract Syntax and Semantics.
W3C Recommendation.
Pitts, A. 1992. On an interpretation of second order quan-
tification in first-order intuitionistic propositional logic.
Journal of Symbolic Logic1(57):33–52.
Seidenberg, J., and Rector, A. 2006. Web ontology seg-
mentation: Analysis, classification and use. InProc. of the
2006 International World Wide Web Conference (WWW-
2006).
Smith, M.; Welty, C.; and McGuiness, D. 2004. OWL Web
Ontology Language Guide.W3C Recommendation.
StuckenSchmidt, H., and Klein, M. 2004. Structure-based
partitioning of large class hierarchies. InProc. of the Third
International Semantic Web Conference (ISWC 2004).

Wolter, F. 1998. Fusions of modal logics revisited. In
Kracht, M.; de Rijke, M.; Wansing, H.; and Zakharyaschev,
M., eds.,Advances in Modal Logic. CSLI.

Appendix A: Proofs
Proof for Theorem 1

Let I = (∆I , .I) be an interpretation forC and J =
(∆J , .J) an expansion ofI with setΦ.

First, it is easy to see that, for every roleR (a role name or
its inverse),RJ = RI . Then, we proceed by induction on
the structure ofC. At the base of the induction, we have that,
if C is a concept name then, by definition ofJ , CJ = CI

andC ∈ local(S).
We now verify the induction step:

• Let C be of the form¬D. If D ∈ local(S), by induction,
DJ = DI . SinceCJ = ∆J \DJ , ∆J = ∆I ∪ Φ and
DJ = DI , thenCJ = CI ∪ Φ and thusC /∈ local(S).
If D /∈ local(S), by induction,DJ = DI ∪ Φ; since
CJ = ∆J \ DJ , ∆J = ∆I ∪ Φ andDJ = DI ∪ Φ,
thenCJ = CI and thusC ∈ local(S).
• Let C be of the formC1 uC2. If C1, C2 /∈ local(S), then

CJ = CJ1 ∩ CJ2 = (CI1 ∪ Φ) ∩ (CI2 ∪ Φ) = CI ∪ Φ
and thusC /∈ local(S). If any Ci ∈ local(S), then it is
immediate to verify thatCJ = CI1 ∩ CI2 = CI and thus
C ∈ local(S).

• If C is of the form∃R.D or≥ nR.D, it is easy to see that
the induction hypothesis holds, sinceRJ = RI , CJ =
CI independently of whetherD is local or not.

Proof for Theorem 2

(⇒)
Suppose thatT is unsafe, then there is a modelI |= T

and a setΦ s.t. J 6|= T , with J being the expansion of
I with Φ. We also have thatT is composed of a set of
GCIsC v D and each of these GCIs can be of one of the
following forms (only):

1. BothC,D local concepts. By definition,CJ = CI and
DJ = DI . Therefore,J |= C v D

2. C local andD non-local. Now,CJ = CI andDJ =
DI ∪ Φ. Again, sinceCI ⊆ DI , we have thatJ |= C v
D.

3. C andD non-local. Now,CJ = CI∪Φ andDJ = DI∪
Φ. Again, sinceCI ⊆ DI , we have thatJ |= C v D.

4. C non-local andD local. In this case,CJ = CI ∪Φ and
DJ = DI . However, sinceΦ ∩DI = ∅, J 6|= C v D.

Note that in order not to be satisfied byJ , the GCI must
be of the form 4), which is an unsafe GCI.

(⇐)
Suppose thatT contains explicitly an unsafe GCIC v D.

Since such a GCI is unsafe,C is non-local andD is local.
Let I be a model ofT andJ an extension ofI with some
setΦ, thenDJ = DI andCJ = CI ∪Φ and, sinceDJ =
DI ⊆ ∆I andΦ∩∆I = ∅, J 6|= C v D and consequently
J 6|= T ; thusT is not safe.

Proof for Theorem 3

SinceT is consistent, there exists an interpretationI =
(∆I , .I) s.t. I |= T . We show that we can construct from
I an interpretationJ of the desired form s.t.J |= T . First,
we define the domain∆J of J using the following steps:

1. ∆J ← ∅
2. For everyx ∈ ∆I , generaten new objectsx1, ..., xn and

do∆J ← ∆J ∪ {x1, ..., xn}.

Now, we define the interpretation function.J as well as
then sets(∆J

i)1≤i≤n as follows:

1. Initialize ∆J
i ← ∅ for all 1 ≤ i ≤ n; initialize

AJ , RJ ← ∅ for each concept nameA and role name
R.

2. For every concept nameA with V(A) = vi and every
x ∈ AI , doAJ ← AJ ∪ {xi} and∆J

i ← ∆J
i ∪ {xi}.

3. For every role nameR s.t. V(R) = 〈vi, vj〉 and every
pair 〈x, y〉 ∈ RI , doRJ ← RJ ∪ 〈xi, yj〉, ∆J

i ← ∆J
i ∪

{xi};∆J
j ← ∆J

j ∪ {yj}.

By construction, it is easy to see that:

• ∆J =
⋃

i=1,...,n ∆J
i , with ∆J

i 6= ∅ for 1 ≤ i ≤ n

• ∆J
i ∩∆J

j = ∅ for i 6= j

• AJ ⊆ ∆J
i , for eachA with V(A) = vi

• RJ ⊆ ∆J
i ×∆J

j , with V(R) = 〈vi, vj〉

Note also that, by construction ofJ , 〈xi, yj〉 ∈ RJ ⇔
〈x, y〉 ∈ RI , for every role.

We show thatJ |= T . For such a purpose, we use the
following result(♣):

CLAIM (♣): Let C be a concept s.tV(C) = vi, then:

1. If C is local, thenCJ = {xi|x ∈ CI}
2. If C is not local, thenCJ =

⋃
k 6=i ∆J

k ∪ {xi|x ∈ CI}

Using the definition ofJ and the properties of the parti-
tioning graph, the claim is easily shown by induction on the
structure ofC; the induction uses similar arguments as the
ones employed in the proof for Theorem 1. We just include
here a sample case of the induction step in order to illustrate
the arguments employed along the proof:

• If C of the form∃R.D, thenC is local by Theorem 1. By
construction of the partitioning graphG, V(R) = 〈vi, vj〉
for somej ∈ {1, ..., n} andV(D) = vj . By definition of
J , RJ ⊆ ∆J

i × ∆J
j and∆J

k ∩ ∆J
m = ∅ for k 6= m.

Using the semantics ofSHOIQ it is not hard to see that
CJ ⊆ ∆J

i . It only remains to be shown thatxi ∈ CJ iff
x ∈ CI , with xi ∈ ∆J

i :

– (⇒) If xi ∈ CJ , then there exists an elementyj ∈
∆J

j s.t. 〈xi, yj〉 ∈ RJ andyj ∈ DJ . We have that
〈xi, yj〉 ∈ RJ ⇔ 〈x, y〉 ∈ RI and hence〈x, y〉 ∈ RI .
By induction hypothesis,y ∈ DI . Thereforex ∈ CI .

– (⇐) If x ∈ CI , then there exists an elementy ∈ ∆J
i

s.t. 〈x, y〉 ∈ RI andy ∈ DI . We have that〈xi, yj〉 ∈
RJ ⇔ 〈x, y〉 ∈ RI and hence〈xi, yj〉 ∈ RJ . By
induction hypothesis,yj ∈ DJ and thusxi ∈ CJ .

Using♣ it is easy to show thatJ |= T . By safety of
T and the properties of the partitioning graph,T can only
contain GCIsC v D such thatV(C) = V(D) = vi for
somei ∈ {1, ..., n} and either of the following:

1. BothC,D local concepts. By♣, CJ only contains el-
ements in∆J

i . Also by♣, if xi ∈ CJ , thenx ∈ CI .
SinceI satisfies the GCI,CI ⊆ DI and thusx ∈ DI .
By ♣, x ∈ DJ and henceJ satisfies the GCI.

2. ForC local andD non-local, the argument is identical to
the previous case

3. BothC,D non-local. By♣, bothCJ andDJ contain all
the elements in∆J \∆J

i ; thus we focus only on elements
of ∆J

i . Again by♣, if xi ∈ CJ , thenx ∈ CI . SinceI
satisfies the GCI,CI ⊆ DI and thusx ∈ DI . By ♣,
x ∈ DJ and henceJ satisfies the GCI.

The fact thatJ satisfies the role inclusion and transitivity
axioms inT is straightforward to verify.

Proof for Theorem 5
Lemma 1 Let T ′ = GenerateModule(T , C) with T ′ 6= T
and suppose thatSig(T ′) ∩ Sig(T \ T ′) = ∅. Let I =
(∆I , .I) be a model ofT ′ andJ = (∆J , .J) be a model
of T \ T ′ s.t. ∆I ∩∆J = ∅, then the interpretationM =
(∆M, .M) defined as follows:

• ∆M = ∆I ∪∆J .
• AM = AI if A ∈ Sig(T ′) andAM = AJ otherwise.
• RM = RI if R ∈ Sig(T ′) andRJ otherwise.

is a model ofT .

Proof:
M |= T ′ as a consequence of the definition of safety,

since:

1. T ′ is safe, and safe ontologies are invariant under domain
expansions.

2. For the signature ofT ′,M can be seen as the expansion
of I with set∆J , since the signatures ofT ′ andT \ T ′
are disjoint.

Analogously,T \ T ′ is safe andM can be seen, for the
signature ofT \T ′, as the expansion ofJ with set∆I . Thus
M |= T \ T ′.
Lemma 2 Let T ′ = GenerateModule(T , C) and suppose
that: 1) the signatures ofT andT \ T ′ share at least one
symbol;2) Sig(T ′) does not contain nominals.

Let I = (∆I , .I) be a model ofT ′ andJ = (∆J , .J)
be a model ofT s.t. ∆I ∩∆J = ∅, then the interpretation
M = (∆M, .M) defined as follows:

• ∆M = ∆I ∪∆J .
• AM = AI ∪ AJ , if A ∈ Sig(T ′) andAM = AJ other-

wise.

• RM = RI ∪RJ if R ∈ Sig(T ′) andRJ otherwise.

is a model ofT .

Proof:
We first show the following claim (♦):

1. For every conceptC in T s.t.C ∈ Con(Sig(T ′)), CM =
CJ ∪ CI .

2. For every other conceptC occurring inT , CM = CJ , if
C is local and andCM = CJ ∪∆I otherwise.

Proof for♦:
Let C ∈ Con(Sig(T ′)). The proof goes by induction on

the structure ofC; the base of the induction is straightfor-
ward to verify, using the definition ofM. For the induction
step, we include here, as a sample, the cases of negation
and existential restriction; the remaining cases can be easily
checked using similar arguments:

• Let C be of the form¬D. By induction hypothesis,
DM = DJ ∪DI . By the semantics,CM = ∆M \DM.
Hence,CM = (∆J ∪∆I) \ (DJ ∪DI). SinceDJ ⊆
∆J , DI ⊆ ∆I , and ∆I ∩ ∆J = ∅, we have that
CM = (∆I \ DI) ∪ (∆J \ DJ) = (¬D)I ∪ (¬D)J ,
which verifies the induction hypothesis.

• Let C be of the form∃R.D. We have thatRM = RI ∪
RJ and by induction hypothesisDM = DI ∪DJ , with
∆I∩∆J = ∅, RI ⊆ ∆I×∆I andRJ ⊆ ∆J ×∆J . By
the semantics of(∃R.D) it is easy to see that the induction
hypothesis holds.

Let nowC ∈ Con(Sig(T \ T ′)) s.t. C /∈ Con(Sig(T ′)).
First note that ifR is a role occurring inT \T ′, thenRM =
RJ , for any role. The proof again goes by induction on the
structure ofC. The base of the induction is easy to verify;
for the induction step, we include here the cases of negation
and existential restriction:

• Let C be of the form¬D. Two possibilities:

– D is local, in which caseC is non-local. SinceD is
local, by induction hypothesisDM = DJ . By the
semantics of concept negation,CM = ∆M \ DM.
Hence,CM = (∆J ∪∆I)\DJ . SinceDJ ⊆ ∆J and
∆I∩∆J = ∅, we have thatCM = ∆I∪(∆J \DJ) =
∆I ∪ (¬D)J = ∆I ∪ CJ .

– D is non-local, in which caseC is local. SinceD is
non-local, by induction hypothesisDM = DJ ∪∆I .
By the semantics,CM = ∆M \DM. Hence,CM =
(∆J ∪∆I) \ (∆I ∪DJ . SinceDJ ⊆ ∆J and∆I ∩
∆J = ∅, we have thatCM = ∆J \DJ = (¬D)J .

• If C is of the form∃R.D, thenC is local. Given the way
modules are generated, we have two possibilities
– D ∈ Con(Sig(T \ T ′)) but not inCon(Sig(T ′)). We

haveRM = RJ . Again two possibilities:

∗ D is local, which implies thatDM = DJ . It is im-
mediate to see thatCM = CJ using the semantics of
existential restrictions.
∗ D is non-local, in which caseDM = DJ ∪∆I . Since

RM = RJ , there is no elementy ∈ ∆M s.t. 〈x, y〉 ∈
RM andy ∈ ∆I , sincey must be in∆J . Therefore
CM = CJ and the induction hypothesis holds.

– D ∈ Con(Sig(T ′)). In this case, againRM = RJ and
DM = DJ ∪ DI . We have thatDI ⊆ ∆I and the
proof reduces to the case above.

Using the safety ofT and♦, it is not hard to see that
M |= T . In particular,

• if C v D ∈ T ′ then, by♦, CM = CJ ∪CI andDM =
DJ ∪DI . SinceI,J |= T ′, thenCI ⊆ DI andCJ ⊆
DJ ; therefore,CM ⊆ DM andM satisfies the axiom.

• if C v D ∈ T \ T ′ then, by♦, CM = CJ , if C is local
andCM = CJ ∪Φ, if C is non-local; analogously forD.
SinceT is safe, we can only have safe GCIs inT \ T ′; it
is easy to verify that, ifC v D is safe andJ satisfies it,
then also doesM.

Proof for Theorem 5
We now prove Theorem 5 using Lemma 1 and Lemma 2.
In order forT ′ to be locally complete w.r.t.T it must

verify the following condition: for every axiomC v D s.t.
C,D ∈ Con(Sig(T ′)), if T |= C v D, thenT ′ |= C v D.

By the way modules are generated, we have three possi-
bilities:

1. T ′ = T .
2. Sig(T \ T ′) andSig(T ′) are disjoint.
3. Sig(T \T ′) andSig(T ′) are not disjoint andSig(T ′) does

not contain nominals.

Case1) is obvious; we prove2) and3)
Case2): Suppose thatT |= C v D but T ′ 6|= C v D.

Then, there is a modelI of T ′ s.t. I 6|= C v D. Since
Sig(T ′) andSig(T \ T ′) are disjoint, we can always find a
modelJ |= T \ T ′ s.t. ∆I ∩ ∆J = ∅. Then, the inter-
pretationM as defined in Lemma 1 is a model ofT . By
Theorem 2, the GCIC v D must be safe. It is not hard to
see thatM 6|= C v D, which yields a contradiction.

Case3): Suppose thatT |= C v D but T ′ 6|= C v D.
Then, there is a modelI of T ′ s.t. I 6|= C v D. Since
T ′ does not contain nominals, we can always find a model
J |= T s.t. ∆I ∩∆J = ∅. Then, the interpretationM as
defined in Lemma 2 is a model ofT . SinceI 6|= C v D,
CI 6⊆ DI . Since, by♦ in Lemma 2CM = CI ∪ CJ and
DM = DI ∪DJ and by definition ofI,J , CI ∩∆J = ∅
it follows thatCI 6⊆ DI ∪DJ and thereforeM 6|= C v D,
which yields a contradiction.

Proof for Theorem 6
We show thatT ′ is a module forA w.r.t. T . First,T ′ is a
logical module, as shown in Theorem 5. Second, condition
3) in Definition 3 holds as a direct consequence of Theo-
rem 4. We now verify condition 2) in Definition 3.LetB a
concept name inSig(T). Two possibilities:

• B ∈ Sig(T ′). In this case Properties 2a), 2b) in Definition
2 hold as a straightforward consequence of Theorem 5.

• B /∈ Sig(T ′). In this case, by Theorem 4,T 6|= A v B
andT 6|= B v A. By monotonicity, these entailments
also do not hold inT ′ and thus 2a), 2b) also hold.

