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Words are the building blocks of sentences, yet meaning of a sentence goes
well beyond meanings of words therein. Indeed, while we do have dictionaries
for words, we don’t seem to need them to infer the meaning of a sentence from
meanings of its constituents. Discovering the process of meaning assignment in
natural languages is one of the most foundational issues in linguistics and com-
puter science, whose findings will assist in crafting applications to automate many
language-related tasks, such as document search, automated text generation, an
many others.

To date, the compositional type-logical [16, 14] and the distributional proba-
bilistic models [17, 9] have provided two complementary partial solutions to the
problem of meaning assigning in natural languages. The logical approach is based
on classical ideas from mathematical logic, mainly Frege’s principle that meaning
of a sentence can be derived from the relations of the words in it. The distributional
model is more recent, it can be related to Wittgenstein’s philosophy of ‘meaning
as use’, whereby meanings of words can be determined from their context. The
logical models have been the champions on the theory side, whereas in practice
their probabilistic rivals have provided the best predictions.

This two-sortedness of defining properties of meaning: ‘logical form’ versus
‘contextual use’, has left the question of ‘what is the foundational structure of
meaning?’ even more open a question than before.

A breakthrough towards this goal was achieved by the PIs of this proposal,
by proposing a compositional distributional model of meaning that combines the
compositional type-logical and the distributional probabilistic models (hyperlink):

Mathematical Foundations for a Compositional Distribu-
tional Model of Meaning (Coecke, Sadrzadeh and Clark)

This work has been conceived as groundbreaking and was also covered by the
popular media, e.g. New Scientist and Scientific American (hyperlinks):
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http://www.newscientist.com/article/mg20827903.200-
quantum-links-lters-understand-language.html

http://blogs.scientificamerican.com/guest-blog/2013/05/16/
quantum-mechanical-words-and-mathematical-organisms/

Moreover, both Sadrzadeh and Clark have been awarded prestigious five-year fel-
lowship on the basis of this work, and a 1.5 M GB research network is now funded
by EPSRC which aims for other UK research groups to adopt this model.

Sketch of the technical backbone

Algebraic gadgets that govern grammatical types have been around for a long time.
They have a composition operation that allows to build larger strings of words from
smaller strings of words, as well as a relation ≤ where a · . . . · z ≤ t means that the
string of types a . . . z has as its overall type t. For example, n · tv ·n ≤ s expresses
the fact that a noun, a transitive verb and a noun make up a sentence s. Additional
operations subject to certain laws allow one to derive correct statements such as
n · tv · n ≤ s, where some types, may take a compound form in terms of other
types,. In the case of pregroups we have tv = −1n · s · n−1 and the derivation can
be depicted diagrammatically, and n · tv · n ≤ s becomes:

n ns(n) (n)-1 -1

In [1] it was shown that these kinds of diagrams govern vector space calculus,
and the passage from compositional type-grammar to compositional distributional
meaning build down to interpreting the types as vector spaces in which word-
meanings live, and the wire diagrams as linear maps. This leads to an algorithm
that allows to compute sentence meaning from word meaning:

1. Perform type reduction:

(word type 1) . . . (word type n) ; sentence type

2. Interpret diagrammatic type reduction as linear map:

f :: 7→

(∑
i

〈ii|

)
⊗ id⊗

(∑
i

〈ii|

)

2

http://www.newscientist.com/article/mg20827903.200-quantum-links-lters-understand-language.html
http://www.newscientist.com/article/mg20827903.200-quantum-links-lters-understand-language.html
http://blogs.scientificamerican.com/guest-blog/2013/05/16/quantum-mechanical-words-and-mathematical-organisms/
http://blogs.scientificamerican.com/guest-blog/2013/05/16/quantum-mechanical-words-and-mathematical-organisms/


3. Apply this map to tensor of word meaning vectors:

f (−→v 1 ⊗ . . .⊗−→v n)

A particularly appealing feature of the model is that computations can be done
in a purely diagrammatic language where computation rules are simple topology-
preserving transformations.

A detailed presentation of the model can be found in [7] and experimental
evidence is provided in [12].

Proposed work

The aimed contribution of this project is to further develop this unified model of
meaning, whereby meanings of sentences are built and reasoned about, in a com-
positional and dynamic way, based on their grammar and the meanings of their
constituent words, which themselves are obtained from a practical, natural and ro-
bust model.

The results of the project will improve the performance of what has become
an inseparable toolkit of our daily lives: the internet with its huge pool of services
and naturally occurred data. We aim to achieve these goals alongside the strength
of the complementary existing approaches, using scientific methods from different
disciplines, including computer science, logic, and physics.

The project has 2 major interconnected strands:

1. To further develop the process of meaning assignment that acts with the
compositional forms of the logical model on the contextual word-meaning
entities of the distributional model, based on novel information-flow tech-
niques [1], as well as on other linguistic approaches, and other models of
word meaning, such as ontological domains [8] and conceptual spaces [10].

2. To evaluate our theories against naturally occurring data and apply the re-
sults to practical issues based on meaning inference and similarity, e.g. in
search; we develop and implement algorithms to automatize related such
tasks, which may ultimately leading to practical tools.

The work will be divided in a number of workpackages.

W1. Logic and meaning

The overall purpose of this workpackage is to integrate the compositional distri-
butional model of meaning with additional logical structure. Vector spaces (or
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distributions) are notoriously bad in encoding logical structure. However, with lin-
ear logic [11] it became clear that logical structure can be re-instated on top of
linear structure by means of additional operations.

W1a. Meanings of functional words

Within the context of categorical quantum mechanics , which provide initial in-
spiration of the compositional distributional model of meaning, certain Frobenius
algebras [6] allowed one to represent classical operations. Moreover, they allowed
to represent relational structure within linear structure, so since relational structure
comes with boolean logic operations, the indicate a manner to represent logical op-
erations within the distributional model of meaning. Initial investigations showed
the promise of this method in that the basic relative pronouns were successfully
represented, with both in a satisfactory conceptual manner, and supporting with
experimental evidence [2]. We aim to extend this to other functional words, and
also the logical words ‘and’ and ‘or’, and implications.

W1b. Word meaning with intrinsic logical structure

As already mentioned above, ‘plain’ vector spaces structure does not accommodate
logical structure well. However, density matrices have some logical structure build
inside, namely conjunction, disjunction and conjugation, and is still subject to the
high-level categorical formalism [18, 3]. For example, negation of a density matrix
ρ is simply obtained as 1− ρ while for commuting operators ρ, ρ′ the conjunction
is the sum ρ+ρ′, and hence conjunction arise via the De Morgan rule. Each vector
can be represented as a density matrix via:

|v〉 7→ |v〉〈v|

Moreover, the proper density matrices (i.e. not of the form |v〉〈v|) give useful extra
degrees of freedom: they allow for a notion of ‘informative content’ of sentences
in that say, the maximally mixed state provides no information whatsoever, while
those of the form |v〉〈v| are maximally informative.

These density matrices moreover admit a domain-theoretic structure [5], and
hence subjects these to corresponding methods [15].

W1c. Meanings for paragraphs

Once logical operations are at hand, one can chain sentences by the logical con-
junctives such as ‘and’, ‘or’, and build simple text fragments that can also be anal-
ysed by the compositional distributional method. As very simple compositional
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conjunctive operators, consider point wise addition and multiplication. These have
been applied to composing sentences with each other in tasks such as tagging dia-
logue utterances. In such a setting, the meaning of a text containing two sentences
s1 and s2, may be represented as follows

−−→s1 s2 = −→s 1 +
−→s 2

−−→s1 s2 = −→s 1 �−→s 2

But these operations do not reflect the order of sentences and as a result we will
obtain the following unwanted consequence:

−−→s1 s2 = −−→s2 s1

This order does makes a difference in the meaning of a paragraph and the text as a
whole. In this work package we seek new operations between sentence vectors rep-
resenting the flow of meaning within paragraphs of a text. An example of such an
operations is the tensor product or a convoluted version of it that does not increase
the dimensionality. In this case we obtain an order-preserving representation, that
is

−−→s1 s2 = −→s 1 ⊗−→s 2 6= −→s 2 ⊗−→s 1

We will also opt for and work with newer order-preserving versions of conjunction
and disjunction, similar to linear logic additives and multiplicatives. The resulting
vectors of these methods for simple text fragments can be subjected to the same
experimental methods that were used to validate the algorithm to compute sentence
meaning from word meaning.

W2. A calculus of meaning similarity

One of the most successful and wide spread applications of the distributional mod-
els is formalising word similarity. Once word vectors are built, the distances be-
tween them are computed using a variety of measures, each reflecting a different
degree of similarity between meanings of word. The aim of this work package is
to extend these methods from words to sentences. We would like to be able to rea-
son about similarity of meanings between sentences in a compositional way and
develop a calculus of meaning. Such a calculus of meaning will aim for inferring
that, for example, if two sentences s and s′ each consist of three words w1w2w3

and w′1w
′
2w
′
3, then s and s′ have similar meanings whenever we have that wi has a

similar meaning to w′i.

s ∼ s′ ⇔ wi ∼ w′i for all i

The challenge in such an approach is that according to the experimental results, hu-
man beings do not assign equal weights to all words of a sentence. For instance, the
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two sentences “father bought horse” and “uncle purchased cookie” are considered
to be far more similar to each other than the two sentences “father bought horse”
and “uncle rode stallion”, whereas both pairs of sentences have the same number
of pairs of similar words (2 pairs each). The difference in judgement stems from
the fact that in the first pair the verbs (bought and purchased) are similar and in the
second they are not (rode and bought). In this work package, we aim to enrich the
notion of sentence similarity with weights assigned according to the grammatical
roles of the words in the sentence.

W2a. Equations for functional words

Several functional words can be reduced to other functional words and this can be
used to design meanings for more complicated functional words from the simpler
ones. In previous work this was implicit and making it explicit led to the develop-
ment of meanings for a new range of functional words. For instance, in previous
work, the meaning of ‘does’ and ‘not’ are reverse-engineered from the intended
overall meaning of the sentence [7]. Applying the sketched algorithm of page 2,
the meaning of the sentence ‘Alice does not like Bob’ becomes as follows:

Alice not like Bob

meaning vectors of words

not

grammar

does

When substituting ‘does’ and ‘not’ as follows:

Alice like Bobnot

we do get the intended meaning:

not

Alice like Bobnot

=

Alice Bob

likes

Recently, we discovered that the functional word ‘whose’ as a relative pronoun can
be decomposed in ‘which’ and ‘has’, via the map-state duality and dimensionality
reduction on ‘has’, as shown below:
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∼=
S

’s
N

N
N

N
has

One is then able to derive the meaning of ‘whose’ from meanings of ‘which’ and
‘has’ as follows:

S N

which

NNN SN

has

∼=

N N S N N

’s

This demonstrates how from certain simpler functional words one can deduce
the meaning of more complex ones. In this work package we aim to find the build-
ing blocks of functional words and then combine them to obtain other functional
words. So far, the words that allow for unification of meanings across the sentence
seem to be crucial building blocks. A word such as ‘which’ unifies the information
of its head noun with the information of the rest of the sentence. For instance,
in the clause ‘dogs which eat meat’, the word ‘which’ is unifying the meaning of
‘dogs’ with subjects of ‘eat meat’, in other words ‘meat-eaters’.

W2b. Equations for non-functional words

Meanings of words can be assigned in terms of definitions taken from dictionaries,
in terms of a smaller set of words. Possibly, also structural components may be
used to ‘construct’ the meaning of words of compound types. This, for example,
has already been investigated for the case of verbs, where Frobenius algebras al-
lowed to reduce the dimensional requirements for representation of the verbs [13].
As shown below, a verb which is normally a 3-legged triangle and an element of the
tensor space N ⊗S⊗N , is being constructed from a two legged triangle in N ⊗S
and by padding the elements of the remaining dimension with 0. This procedure
suggests three different internal structures for a verb shown below:

∼= or or
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Experiment has shown that choosing one specific structure depends on the task, for
instance, in disambiguation tasks where the object of the verb plays a crucial role,
the middle case has performed best because it makes the role of the subject more
explicit in the verb. Examples of such verbs are ‘to file nails’ versus ‘to file books’.

In this work package, we aim to extend the above methods and study the inter-
nal structure of words based on their denotations and their conceptual meaning. So
far words such as ‘John’ and ‘justice’ and ‘man’ have all been treated uniformly
and as nouns. Where as they each have a very different denotation and concep-
tual meaning. Proper nouns are very rare in a corpus and their occurrence may
not mean much, unless they stand for famous characters. Concept nouns, however,
may only acquire meaning as a result of their non-denotational properties, “justice”
is one such example: it does not refer to any actual object in the real world. The
word “man” on the other hand, is a common noun and can be seen as the sum of
the individuals that are male. These considerations allow us to formalise the inter-
nal structures of words and use these when combining their meanings in building
complex units such as sentences.

W3. Automation

When working in distribution-only models one needs to do concrete calculations
on real number vectors which have dimensions in the range of 2× 103 to 6× 106.
The latter are all the unique words of one of the medium-sized copora we work with
(the British National Corpus) and the former are the 2000 most occurring words
of it. In compositional distributional models, one has to work with matrices and
tensors of various ranks. Hence these dimensions will become exponentially larger.
For instance an intransitive verb is an element of a space with tensor rank 2 (i.e. a
matrix) and it will have dimensions, at least, (2×103)×(2×103). A transitive verb
is an element of a space with tensor rank 3 (i.e. a cube) and will have dimensions,
again at least, (2 × 103) × (2 × 103) × (2 × 103). Further, the various vectors,
matrices, and cubes of words within a phrase and sentence need to interact with
each other via matrix-multiplication and tensor-contraction operations to produce
the meaning of the phrase and sentence. The corresponding computations will
very quickly become hairy and intractable. The need for automations is greatly
felt. Below, we suggest two solutions to this problem, they complement each other
and can be used in parallel.

W3a. Automating the meaning computations

One of the tangible tools of the seminal work of the PI and Abramsky [1] has been
a diagrammatic calculus, proven sound and complete with regard to the high level
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categorical language developed for quantum protocols. These diagrams abstract
away the concrete computations performed on numbers and provide a high level
view of the interactions that happen between the meanings of the words within a
sentence, and among vectors, matrices, and tensor spaces in general. They have
proven extremely useful in the language application and in simplifying the com-
putations of the compositional distributional models. For example, to be able to
derive the information-flows in a relative clause, one does not need to compute the
corresponding vectors of the words therein to the end detail. All that is needed is to
draw the corresponding meaning diagram, normalise it, and trace the strings. For
instance, the meaning of a relative clause such as ‘men who eat cookies’ and its
normalised form are as follows:

N S N NN N NN S

men who eat cookies

∼=
N S N NN

men eat cookies

The vector meaning of the clause can then be read from the normalised dia-
gram; for the above example this is as follows:

−−−−−−−−−−−−−−→
men who eat cookies = −−→men� (eat×−−−−→cookies)

Normalising the diagrams becomes harder as the sentences and phrases become
longer and more complex. For instance, consider the following diagram which is
not any more easy to normalise just by tracing the strings by eye:

NN N NN SN SN N SNN S N

Movies that Mary liked which are famous

Normalization can be automated by developing a software that does graph-
reductions and then uses a computer algebra tool to represent the elementary shapes
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and strings to their linear algebraic forms. A similar tool has been developed in the
PI’s research group for normalising diagrams of quantum protocols in the soft-
ware package Quantomatic [19]. In this work package, we aim to extend and
tailor Quantomatic to language-related operations and reductions. A preliminary
feasibility study has been performed by a former undergraduate project jointly su-
pervised by the PI and CO-PI in Oxford and the new additions and alterations will
follow the recommendations of that project.

W3b. Quantum-computational speedup

The direct formal analogy between the compositional distributional model of mean-
ing and the high-level semantics for quantum computing of [1, 6, 4], makes the idea
that quantum computational speed-up may be highly beneficial for tasks proposed
in this project. In particular quantum search, in the light of the importance for
search in natural language processing tasks, deserves a serious analysis from our
perspective. In particular, in recent work quantum search algorithms have been
recast in the same diagrammatic language that we have employed above [20]. The
idea of applying the speed-up of quantum algorithms to language tasks such as doc-
ument search is a novel idea that has not been explored much. This is mainly due
to a lack of a common language between the two fields of linguistics and physics.
Our approach overcomes this difficulty. We aim to use our common diagrammatic
and categorical languages to depict the general patterns of information flow in both
fields, develop quantum-like algorithms for language search, and apply these to
tasks for empirical validation and impact.

W4. Empirical Validation

As the theoretical constructions and underpinnings are extended to cover larger
and larger fragments of language, we will also need to provide empirical evidence
for the new constructions. The initial information provided to us by distributional
models vary from corpus to corpus and task to task. Experimentation will make
sure the constructions can be carried over from one concrete setting to another and
suggests parameters and domain specific adjustments. We work with corpora such
as the British National Corpus (BNC), UKWac and Google’s n-gram corpus. The
sizes of these corpora vary from each other and their data is collected from differ-
ence sources. For instance, the BNC contains a snapshot of news on one specific
day in early 90’s. UKWac includes all the Wikipedia articles, and Google’s n-
grams corpus contains millions of books from the past couple of centries. For our
purposes, the information in these corpora have to be parsed and each word has
to be tagged with its corresponding grammatical relations. Automatic parsers that
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cover large-scale corpora are available, an example is C&C, developed jointly by
our close collaborator S. Clark (Cambridge). Then one has to build initial vectors
and matrices and cubes depending on the grammatical role of each word. To this
extent, for each experiment we repeat the above cycle in a different way, depend-
ing on the programmers involved. In this package, we aim to provide a uniform
platform for such experimentation. Further, we will develop necessary datasets and
gold standards to compare the performances of our model with human judgement
and other models. As an example, consider the first few entries of a handcrafted
dataset below:

Term Description
1 emperor person who rule empire

2 queen woman who reign country
3 mammal animal which give birth
4 plug plastic which stop water
5 carnivore animal who eat meat
6 vegetarian person who prefer vegetable
7 doll toy that girl prefer
8 football game that boy like
9 skirt garment that woman wear

10 widow woman whose husband die

This dataset was developed to experiment with vectors of relative pronouns on a
term/description classification task. The goal of this task is to automatically assign
the right descriptions to the words by computing the similarity between the term
and the description. So far our model has outperformed other models, but for
these results to be reliable and make an impact, we need to build the corresponding
datasets from real corpora and the phrases and clauses seen in those corpora. This
is the kind of task this project will help us achieve in large scale.
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