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QUBITS vs. BITS
(a informal account)



A bit:

• admits two values 0 and 1,

• admits arbitrary transformations.

• is freely readable,
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A qubit:

• a continuous sphere of values, which is ‘spanned’
(cf. rays in 2D C-space) by two states |0〉 and |1〉.

• transformations are restricted to unitary ones i.e.
which preserve angles and in particular opposites.

• ‘readable’ via quantum measurementsM(|+〉, |−〉):
– have only two possible outcomes |+〉 and |−〉,
– change the initial state |ψ〉 to either |+〉 or |−〉,
⇒M(|+〉, |−〉) does not tell |ψ〉 but destroys |ψ〉 !



The two transitions

P+ :: |ψ〉 7→ |+〉 P− :: |ψ〉 7→ |−〉
have respective chance prob(θ+) and prob(θ−) with

prob(θ+) + prob(θ−) = 1 with prob(θ) = cos2θ

2
.

|ψ〉

|+〉

|−〉

θ−
θ+
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The state of a qubit is described by a pair of complex

numbers
(
z1

z2

)
up to a non-zero complex multiple.

The same state for any z ∈ C0:(
z1

z2

)
and z ·

(
z1

z2

)
:=

(
z · z1

z · z2

)
‘Bit’-inspired notation:

|ψ〉 = z · |0〉 + z′ · |1〉 .
with

|ψ〉 =

(
z1

z2

)
|0〉 =

(
1
0

)
|1〉 =

(
0
1

)



A (non-measurement) transformation of a qubit is
described by a matrix of complex numbers(

u1 v1

u2 v2

)
where

(
u1

u2

)
⊥
(
v1

v2

)
is the image of

(
1
0

)
⊥
(

0
1

)
.



A (non-measurement) transformation of a qubit is
described by a matrix of complex numbers(

u1 v1

u2 v2

)
where

(
u1

u2

)
⊥
(
v1

v2

)
is the image of

(
1
0

)
⊥
(

0
1

)
.

We have:
〈U(ψ)|U(φ)〉 = 〈ψ|φ〉 ,

and in particular:

|ψ〉 ⊥ |φ〉 then U |ψ〉 ⊥ U |φ〉 .



The computational basis qubit measurement is the
non-deterministic application of one of the projectors:
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The computational basis qubit measurement is the
non-deterministic application of one of the projectors:

P0 :=

(
1 0
0 0

)
and P1 :=

(
0 0
0 1

)

They induce a change of state

|ψ〉 7→ P0(|ψ〉) =

(
1 0
0 0

)(
z1

z2

)
=

(
z1

0

)
∼
(

1
0

)

|ψ〉 7→ P1(|ψ〉) =

(
0 0
0 1

)(
z1

z2

)
=

(
0
z2

)
∼
(

0
1

)



Quantum computation is a ‘balancing act’:

• Exploit the enlarged state space

• Avoid destruction of data by measurement



Quantum computation is a ‘balancing act’:

• Exploit the enlarged state space

• Avoid destruction of data by measurement

Whenever more systems are involved:

• State space blows up enormously.

•Measurement dynamics now enables information
flows within networks of quantum systems.



SOME QUANTUM PHENOMENA



1. Quantum teleportation
theory: 1993; 1st experimental realisation: 1997

i

P

U

i

i

⇒Measurement as a dynamic resource
⇒ Transmit continuous data by finite means



2. Entanglement swapping
theory: 1993; 1st experimental realisation: 2007

Pi

iU iU
i

⇒ Entangle without touching



3. Public key exchange
theory: 1984, ’91; you can buy one online

⇒ Can’t be cracked



3. Public key exchange
theory: 1984, ’91; you can buy one online

⇒ Can’t be cracked

4. Fast algorithms
theory: 1992, ’94, ’96; science fiction

⇒ Generates research money and jobs!



Why this sudden new activity?

Cf. in particular the time (= 60 y) it took to discover
quantum teleportation! (people weren’t looking for it)



Why this sudden new activity?

Cf. in particular the time (= 60 y) it took to discover
quantum teleportation! (people weren’t looking for it)

A bug became a feature, ...

after experimental confirmation of violation of the Bell
inequalities by aspect and Gragnier in 1982.



THE VON NEUMANN FORMALISM
(for pure states)



pure state ≡ ‘closed system’

What we won’t explicitly talk about:

• Continuous time Schrödinger evolution.

• Infinite spectrum observable quantities.

•Mixed states and operations



Definition. A finite-dimensional Hilbert space is a
finite dimensional vector space H over the complex
number field C with a sesquilinear inner-product i.e.

〈− | −〉 : H×H → C

which satisfies

〈ψ|c1 · ψ1 + c2 · ψ2〉 = c1〈ψ|ψ1〉 + c2〈ψ|ψ2〉

〈c1 · ψ1 + c2 · ψ2|ψ〉 = c̄1〈ψ1|ψ〉 + c̄2〈ψ2|ψ〉

〈ψ|φ〉 = 〈φ|ψ〉 〈ψ|ψ〉 ∈ R+

〈ψ|ψ〉 = 0 ⇔ ψ = 0

for all c1, c2 ∈ C and all ψ, ψ1, ψ2 ∈ H.



The condition

∀ψ ∈ H1, φ ∈ H2 : 〈f †(φ)|ψ〉 = 〈φ|f (ψ)〉
defines the (always existing and unique) adjoint

f † : H2 → H1 of f : H1 → H2.

We have (g ◦ f )† = f † ◦ g† i.e. (−)† is contravariant.
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• its inverse exist and is equal to its adjoint,
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The condition

∀ψ ∈ H1, φ ∈ H2 : 〈f †(φ)|ψ〉 = 〈φ|f (ψ)〉
defines the (always existing and unique) adjoint

f † : H2 → H1 of f : H1 → H2.

We have (g ◦ f )† = f † ◦ g† i.e. (−)† is contravariant.

A linear operator is unitary if, equivalently,

• its inverse exist and is equal to its adjoint,

• it preserves the inner-product.

Rays are subspaces spanned by a single vector i.e.

span(ψ) = {c · ψ | c ∈ C} .



Postulate 1. [states and transformations]

The state of a quantum system S is described by a ray
in a Hilbert spaceH. Deterministic transformations of
S are described by unitary operators acting onH.



Self-adjoint operators satisfy H† = H .
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Self-adjoint operators satisfy H† = H .

Self-adjoint idempotent operators P : H → H, i.e.

P ◦ P = P = P† ,

are called projectors.

Proposition. Each self-adjoint operator H : H → H
admits a so-called spectral decomposition

H =
∑
i

ai · Pi

where all ai ∈ R and all Pi : H → H are projectors
which are mutually orthogonal i.e.

Pi ◦ Pj = OH for i 6= j .



Postulate 2. [measurements]

A measurement on a quantum system is described by
a self-adjoint operator H =

∑
i ai · Pi , with {ai} the

measurement outcomes and {Pi} the state changes:

1. The initial state ψ undergoes one of the transitions

Pi :: ψ 7→ Pi(ψ)

and the probability of the possible transitions is

prob(Pi, ψ) = 〈ψ|Pi(ψ)〉
where ψ needs to be normalized.

2. The observer which performs the measurement re-
ceives the value ai as a token-witness of that fact.



Remark. The measurements represented by∑
i

ai · Pi and
∑
i

i · Pi

are ‘behaviorally equivalent’.



Remark. The measurements represented by∑
i

ai · Pi and
∑
i

i · Pi

are ‘behaviorally equivalent’.

So one may think of a measurement as:

(P1, . . . ,Pn) .

or even as:
{P1, . . . ,Pn} .



The direct sum is

H1 ⊕H2 := {(ψ, φ) | ψ ∈ H1, φ ∈ H2}

A basis forH1 ⊕H2 is

B1 + B2 = {(e1,0), . . . , (en,0), (0, e′1), . . . , (0, e′m)} .



The direct sum is

H1 ⊕H2 := {(ψ, φ) | ψ ∈ H1, φ ∈ H2}

A basis forH1 ⊕H2 is

B1 + B2 = {(e1,0), . . . , (en,0), (0, e′1), . . . , (0, e′m)} .

The tensor product is

H1 ⊗H2 :=
{
∑

i αi(ψi, φi) | ψi ∈ H1, φi ∈ H2}
‘bilinearity’

A basis forH1 ⊗H2 is

B1 + B2 = {(e1, e
′
1), . . . , (ei, e

′
j), . . . , (en, e

′
m)} .



Postulate 3. [compound systems]

The joint states of a compound quantum system are de-
scribed within the tensor product of the Hilbert spaces
which the states of the subsystems are described.



Enables ‘embedding’ of single system states via

H1 ×H2
ξ (bilinear)

-H1 ⊗H2

H

∃!h (bilinear)

?

∀ζ (bilinear)
-



Enables ‘embedding’ of single system states via

H1 ×H2
ξ (bilinear)

-H1 ⊗H2

H

∃!h (bilinear)

?

∀ζ (bilinear)
-

But there are a lot more states than these, ...

dim(H1 ⊕H2) = dim(H1) + dim(H2),

dim(H1 ⊗H2) = dim(H1)× dim(H2).



For the Bell-state

Bell := |00〉 + |11〉 = e1 ⊗ e1 + e2 ⊗ e2

there are no a1, a2, a3, a4 ∈ C such that:

(
a1

a2
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⊗
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b1
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=
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For the Bell-state

Bell := |00〉 + |11〉 = e1 ⊗ e1 + e2 ⊗ e2

there are no a1, a2, a3, a4 ∈ C such that:

(
a1

a2

)
⊗
(
b1

b2

)
=


1
0
0
1


or equivalently, such that:(

a1

a2

)(
b1 b2

)
=

(
1 0
0 1

)
which indicates a correspondence with the identity.



Alternative definition of the tensor product:

H1 ⊗H2 := H(∗)
1 ( H2

cf. the bijective correspondence:

∑
i,j
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· · · αij · · ·
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Alternative definition of the tensor product:

H1 ⊗H2 := H(∗)
1 ( H2

cf. the bijective correspondence:

∑
i,j

αi,j| i j〉 ∼

 ...
· · · αij · · ·

...

 .

These ‘channels’ allow information to flow between
quantum systems e.g. in the case of teleportation.



Measuring the left system for a Bell-state i.e. we apply

{P0 ⊗ id,P1 ⊗ id}

to the whole system we obtain

(P0 ⊗ id)(Bell) = |00〉 (P1 ⊗ id)(Bell) = |11〉



Measuring the left system for a Bell-state i.e. we apply

{P0 ⊗ id,P1 ⊗ id}

to the whole system we obtain

(P0 ⊗ id)(Bell) = |00〉 (P1 ⊗ id)(Bell) = |11〉

that is, we get a certain answer if next we apply

{id⊗ P0, id⊗ P1} .
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Dirac notation is formally justified by letting

• |ψ〉 := ψ and called KET ,

• 〈ψ| := ψ† and called BRA,

• concatenation be composition,

linear map matrix BRA-KET

ψ† ◦ φ
(
c̄1 . . . c̄m
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Representing vector ψ ∈ H by linear map

|ψ〉 : C→ H :: 1 7→ ψ

Dirac notation is formally justified by letting

• |ψ〉 := ψ and called KET ,

• 〈ψ| := ψ† and called BRA,

• concatenation be composition,

linear map matrix KET-BRA

ψ ◦ ψ†
 c1

...
cm

( c̄1 . . . c̄m
)

Pψ := |ψ〉〈ψ|



QUANTUM TELEPORTATION
(towards a logical account)
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and the 2nd and 3rd one are in the Bell-state.
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1. The 1st qubit is in state

|ψ〉 = c0 · | 0〉 + c1 · | 1〉 ,
and the 2nd and 3rd one are in the Bell-state.

2. Perform a measurement on 1st & 2nd qubit in basis

{|00〉 + |11〉 , |00〉 − |11〉 , |01〉 + |10〉 , |01〉 − |10〉} .

3. Perform corresponding matrix on the 3rd qubit:(
1 0
0 1

) (
1 0
0 −1

) (
0 1
1 0

) (
0 −1
1 0

)



|Bell〉† = 〈Bell| =
(

1 0 0 1
)

f ⊗ g =


f00

(
g00 g01

g10 g11

)
f01

(
g00 g01

g10 g11

)
f10

(
g00 g01

g10 g11

)
f11

(
g00 g01

g10 g11

)


Lemma 0. (f ⊗ 1) ◦ (1⊗ g) = (1⊗ g) ◦ (f ⊗ 1).

Lemma 1. ∀ |Ψ〉 , ∃ f : |Ψ〉 = (1⊗ f ) ◦ |Bell〉.

Lemma 2. (f ⊗ 1) ◦ |Bell〉 = (1⊗ fT ) ◦ |Bell〉.

Lemma 3. (〈Bell| ⊗ 1) ◦ (1⊗ |Bell〉).



f ≡ f |Ψ〉 ≡ Ψ

g ◦ f ≡
g

f
f ⊗ g ≡ f fg

Lemma 0. (f ⊗ 1) ◦ (1⊗ g) = (1⊗ g) ◦ (f ⊗ 1).

Lemma 1. ∀ |Ψ〉 , ∃ f : |Ψ〉 = (1⊗ f ) ◦ |Bell〉.

Lemma 2. (f ⊗ 1) ◦ |Bell〉 = (1⊗ fT ) ◦ |Bell〉.

Lemma 3. (〈Bell| ⊗ 1) ◦ (1⊗ |Bell〉) = 1.



Lemma 0:

f

fg f

fg=

Lemma 1 & Lemma 2:

f

Ψ
= f= T

Lemma 3:

=
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fi
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MEASUREMENT-BASED COMPUTATION



fi

Ψi

gΨ

T



fi

fi

T

g



fi
T

g’

fi



g’

Evaluating a function via the act of measurement
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QUANTUM SPEED-UP
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The quantum computational circuit model:

preparation ; unitary ; measurement

E.g. the Deutsch-Jozsa algorithm:

(p) (| 0〉 + . . . + |N〉)⊗ (|0〉 − |1〉) with N := 2n − 1

(u) | i j〉 7→ | i (f (i) + j)〉 given f : Bn → B

(m) measure 1st n qubits in basis {| 0〉+ . . .+ |N〉, . . .}

Parallelism: 1 measurement⇒ global property of f .
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Step 1: encode f : Bn → B as a (reversible) unitary:

Uf :: | i j〉 7→ | i (f (i) + j)〉

Step 2: apply f to all the inputs at once:

Uf(| 0〉+ . . .+ |N〉, |0〉) = | i f (0)〉+ . . .+ |N f (N)〉

Step 3: observe that what you aimed for fails since
measuring exposes one term and destroys all others.

Step 4: be really really clever by now doing:

Uf(| 0〉 + . . . + |N〉, |0〉 − |1〉)

Step 5: then measure 1st n qubits in basis:

{| 0〉 + . . . + |N〉, . . .}
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(
(
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)
= ±(

∑
i

| i〉)⊗(| 0〉−| 1〉)

and that ∑
i

(−1)f(i) = 0

whenever f is ‘balanced’.

In one go we distinguish constant from balanced
functions, . . . . . . so what?
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Why quantum computing?

Contra: The Deutsch-Jozsa algorithm is useless.

Pro: Shor’s ‘very similar’ factoring algorithm is ex-
ponentially faster than faster than know classical one.

Contra: There aren’t many other quantum algorithms
nor might there ever be a device to run them on.

Pro: Quantum computing is also about:
• Communication and cryptographic protocols.

• The fresh perspective yields in new physics.

• Fresh data and concepts for quantum foundations.

• Fresh challenges for the quantum formalism.
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Meanwhile, new physical phenomena :

— quantum informatic protocols —

Meanwhile, new physical insights:

— tensor product key to quantum theory —

Meanwhile, new logic:

— linear logics & interaction logic —

Meanwhile, new algebra:

— monoidal categories ≡ pictures —



WHY MONOIDAL CATEGORIES?



BECAUSE THEY ARE EVERYWHERE!
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1. Let A be a raw potato.
A admits many states e.g. dirty, clean, skinned, ...

2. We want to process A into cooked potato B.
B admits many states e.g. boiled, fried, deep fried,
baked with skin, baked without skin, ... Let

A
f

-B A
f ′

-B A
f ′′

-B

be boiling, frying, baking. States are processes

I := unspecified
ψ

-A.
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3. Let
A

g ◦ f
-C

be the composite process of first boiling A
f

-B and
then salting B

g
-C. Let

X
1X -X

be doing nothing. We have 1Y ◦ ξ = ξ ◦ 1X = ξ.
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A⊗D f⊗h
-B ⊗ E

be boiling potato while frying carrot. Let

C ⊗ F x
-M

be mashing spice-cook-potato and spice-cook-carrot.
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5. Total process:

A⊗D f⊗h
-B⊗E g⊗k

-C⊗F x
-M=A⊗D x◦(g⊗k)◦(f⊗h)

-M.

6. Recipe = composition structure on processes.

7. Law governing recipes:

(1B ⊗ g) ◦ (f ⊗ 1C) = (f ⊗ 1D) ◦ (1A ⊗ g)

i.e.

boil potato then fry carrot = fry carrot then boil potato



7. A more general law on recipes:
(g ◦ f )⊗ (k ◦ h) = (g ⊗ k) ◦ (f ⊗ h)

i.e.

boil pot then salt pot, while, fry car then pepper car

| |
boil pot while fry car, then, salt pot while pepper car
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Very successful in proof theory and programming:

proof theory programming
Propositions Data Types

Proofs Programs

BLUE = systems
Red = processes

but also applies to:

biology chemistry physics
Biological syst. Chemical syst Physical syst
Biological proc Chemical proc Physical proc



— (physical) data in monoidal category —
Systems:

A B C

Processes:

A
f

-A A
g

-B B
h

-C

Compound systems:

A⊗B I A⊗ C f⊗g
-B ⊗D

Temporal composition:

A
h◦g

-C := A
g

-B
h

-C A
1A -A
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g ◦ f ≡
g

f
f ⊗ g ≡ f fg
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f

A

B
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f† : B → A

f

B

A
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ψ : I→ A π : A→ I π ◦ ψ : I→ I

ψ
A

A
π

ψ
π



— graphical notation —

Thm. [Joyal & Street ’91] An equational statement
between expressions in symmetric monoidal categor-
ical language holds if and only if it is derivable in the
graphical notation via homotopy.
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— merely a new notation? —

(g ◦ f )⊗ (k ◦ h) = (g ⊗ k) ◦ (f ⊗ h)

=

f h

g k

f h

g k



— (pure) Classical vs. Quantum —

classical

quantum
=

=
=



— quantum-like —

A A

=

A

A

A

A



— quantum-like —

(A , η : I→ A⊗ A)

A I⊗ A'oo (A⊗ A)⊗ Aη† ⊗ 1Aoo

A

1A

OO

' //A⊗ I 1A ⊗ η
//A⊗ (A⊗ A)

'

OO



— quantum-like —
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A
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— quantum-like —

ff

=
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— sliding —

=

f f

=

f

f



— sliding —

=

f f

=

f

f

In QM: cups = Bell-states, caps =Bell-effects, π-rotations = transpose
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classical data flow?

f

ALICE

BOB

=

ALICE

BOB

f



classical data flow?

f

ALICE

BOB

=

ALICE

BOB

f

⇒ quantum teleportation
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Applying “decorated” normalization 3

=
f

f

f f

⇒ Entanglement swapping



— examples —
FdHilb :

ηH : C→ H⊗H :: 1 7→
∑
i

|ii〉

Rel :

ηX = {(∗, (x, x))|x ∈ X} ⊆ {∗} × (X ×X)

n-Cob :



— completeness —

Thm. [Selinger ’05] An equational statement between
expressions in dagger compact symmetric monoidal
categorical language holds if and only if it is deriv-
able in the graphical notation via homotopy.



— completeness —

Thm. [Selinger ’05] An equational statement between
expressions in dagger compact symmetric monoidal
categorical language holds if and only if it is deriv-
able in the graphical notation via homotopy.



— completeness —

Thm. [Selinger ’05] An equational statement between
expressions in dagger compact symmetric monoidal
categorical language holds if and only if it is deriv-
able in the graphical notation via homotopy.

Thm. [Selinger ’08] An equational statement between
expressions in dagger compact symmetric monoidal
categorical language holds if and only if it is derivable
for Hilbert spaces, linear maps, composition thereoff,
Bell-states, tensor product, and adjoints.



— yanking as deduction —

f f

f

†

†

A

B A

A B

B

• Hilbert-Schmidt
• Choi-Jamiolkowski



THE NO CLONING THEOREM
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If

U(ψ1 ⊗ φ0) = ψ1 ⊗ ψ1 U(ψ2 ⊗ φ0) = ψ2 ⊗ ψ2

then

〈U(ψ1 ⊗ φ0)|U(ψ2 ⊗ φ0)〉 = 〈ψ1 ⊗ ψ1|ψ2 ⊗ ψ2〉

〈ψ1 ⊗ φ0|ψ2 ⊗ φ0〉 = 〈ψ1 ⊗ ψ1|ψ2 ⊗ ψ2〉

〈ψ1|ψ2〉〈ψ0|ψ0〉 = 〈ψ1|ψ2〉〈ψ1|ψ2〉

〈ψ1|ψ2〉 = 〈ψ1|ψ2〉2

〈ψ1|ψ2〉 = 0 or 〈ψ1|ψ2〉 = 1

i.e. ψ1 and ψ2 need to be either equal or orthogonal.



— no-cloning vs. natural diagonal —

{∆A : A→ A⊗ A}A

A
f

-B

A⊗ A

∆A

?

f⊗f
-B ⊗B

∆B

?



— no-cloning vs. natural diagonal —

{∆H :: | i 〉 7→ | i i 〉}H

C 17→|0〉+|1〉
- C⊕ C

NO!

C⊗ C

17→1⊗1

?

1⊗1 7→(|0〉+|1〉)⊗(|0〉+|1〉)
- (C⊕ C)⊗ (C⊕ C)

|0〉 7→ |00〉
|1〉 7→ |11〉

?

|00〉 + |11〉 6= (|0〉 + |1〉)⊗ (|0〉 + |1〉)



— no-cloning vs. natural diagonal —

{∆X :: x 7→ (x, x)}X

{∗} {(∗,0),(∗,1)}
- {0, 1}

NO!

{∗} × {∗}

{(∗,(∗,∗))}

?

{(∗,0),(∗,1)}×{(∗,0),(∗,1)}
- {0, 1} × {0, 1}

{(0,(0,0)),(1,(1,1))}

?

{(0, 0), (1, 1)} 6= {0, 1} × {0, 1}



— no-cloning vs. natural diagonal —

Thm. [Abramsky’09] In a compact symmetric monoidal
category with a uniform copying operation, i.e. a monoidal
natural transformation {∆A : A → A ⊗ A}A , every
morphism is a scalar multiple of the identity.



— no-cloning vs. natural diagonal —

Thm. [Abramsky’09] In a compact symmetric monoidal
category with a uniform copying operation, i.e. a monoidal
natural transformation {∆A : A → A ⊗ A}A , every
morphism is a scalar multiple of the identity.

Remark. This results can be lifted to a no-broadcasting
theorem by relying on Selinger’s CPM-construction.

pure C mixed C pure Q mixed Q
broadcastable: yes YES no no

cloneable: yes NO no no
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— high-level QM-methods in linguistics —
Lambek grammar of a sentence:

v wΨnot

Meaning of the words in it:
−−−→
John⊗−−→does⊗−→not⊗−−→like⊗−−−→Mary

Substitute logical meanings of words:

J Mnot like

Reduce:
J M =

not not MJ
like like
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QUANTUM KEY DISTRIBUTION



— complementarity —
Two bases

{|0〉, . . . , |n〉} and {|0〉, . . . , |n〉}
are complementary (or unbiased) if

|〈 i || j 〉| = 1√
n

yielding equal transition probabilities.

π/4
π/4
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— key distribution —
step 1.
• Alice encodes bit either in green or red basis.

step 2.
• Alice sends qubit to Bob.

step 3.
• Bob decodes qubit either in green or red basis.

step 4.
• Alice and Bob (publicly) compare their choices of

bases and retain only bits for which bases match.

step 5.
• Alice and Bob compare part of their resulting key.



— key distribution —
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=

= classical = environment = random

=

=
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— underlying complementarity calculus —

The ingredients:

= =

The Rules:
= =

idempotence ‘antipotence’

Everything else follows from this.



— underlying complementarity calculus —

In fact, everything reduces to the structure of:

~

~
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— observables and classical data —

NON-FEATURE:
quantum data cannot be

copied nor deleted
FEATURE:

classical data CAN be
copied and deleted

OBSERVABLE:
copying operation + deleting operation



— observables and classical data —
A commutative monoid is a set A with a binary map

− • − : A× A→ A

which is commutative, associative and unital i.e

(a • b) • c = a • (b • c) a • b = b • a a • 1 = a



— observables and classical data —
A commutative monoid is a set A with a binary map

µ(−,−) : A× A→ A

which is commutative, associative and unital i.e

µ(µ(a, b), c) = µ(a, µ(b, c)) µ(a, b) = µ(b, a) µ(a, 1) = a



— observables and classical data —
A commutative monoid is a set A with a binary map

µ : A× A→ A

which is commutative, associative and unital i.e

µ◦(µ×1A) = µ◦(1A×µ) µ = µ◦σ µ◦(1A×e) = 1A

with:

σ : A× A→ A× A :: (a, b) 7→ (b, a)

e : {∗} → A :: ∗ 7→ 1



— observables and classical data —
A commutative monoid is a set A with a binary map

µ : A× A→ A

which is commutative, associative and unital i.e

µ◦(µ×1A) = µ◦(1A×µ) µ = µ◦σ µ◦(1A×e) = 1A

A cocomutative comonoid is a setAwith a binary map

δ : A→ A× A
which is cocommutative, coassociative and counital i.e

(δ×1A)◦δ = (1A×δ)◦δ δ = σ◦δ (1A×e′)◦δ = 1A



— observables and classical data —
A commutative monoid is object A with morphism

µ : A⊗ A→ A

which is commutative, associative and unital i.e

µ◦(µ⊗1A) = µ◦(1A⊗µ) µ = µ◦σ µ◦(1A⊗e) = 1A

A cocomutative comonoid is object A with morphism

δ : A→ A⊗ A
which is cocommutative, coassociative and counital i.e

(δ⊗1A)◦δ = (1A⊗δ)◦δ δ = σ◦δ (1A⊗e′)◦δ = 1A



— observables and classical data —
A commutative monoid is object A with morphisms

: A⊗ A→ A : I→A

s.t.

= ==

A cocommutative comonoid is objectAwith morphisms

: A→ A⊗ A : A→I

s.t.

= ==



— observables and classical data —
FSet:

::

{
|00〉, |01〉, |10〉 7→ |0〉
|11〉 7→ |1〉 ::

{
|0〉 7→ |00〉, |01〉, |10〉
|1〉 7→ |11〉

::

{
|00〉 7→ |0〉
|11〉 7→ |1〉 Z ::

{
|0〉 7→ |00〉
|1〉 7→ |11〉



— observables and classical data —
FSet:

::

{
|00〉, |01〉, |10〉 7→ |0〉
|11〉 7→ |1〉 ::

{
|0〉 7→ |00〉, |01〉, |10〉
|1〉 7→ |11〉

::

{
|00〉 7→ |0〉
|11〉 7→ |1〉 Z ::

{
|0〉 7→ |00〉
|1〉 7→ |11〉

Z is the only commutative comonoid on {0, 1} in FSet.



— observables and classical data —
FRel:

::

{
|00〉, |01〉, |10〉 7→ |0〉
|11〉 7→ |1〉 ::

{
|0〉 7→ |00〉, |01〉, |10〉
|1〉 7→ |11〉

Z ::

{
|00〉 7→ |0〉
|11〉 7→ |1〉 Z ::

{
|0〉 7→ |00〉
|1〉 7→ |11〉



— observables and classical data —
FdHilb:

::

{
|00〉, |01〉, |10〉 7→ |0〉
|11〉 7→ |1〉 ::

{
|0〉 7→ |00〉, |01〉, |10〉
|1〉 7→ |11〉

Z ::

{
|00〉 7→ |0〉
|11〉 7→ |1〉 Z ::

{
|0〉 7→ |00〉
|1〉 7→ |11〉

X ::

{
| + +〉 7→ |+〉
| − −〉 7→ |−〉 X ::

{
|+〉 7→ | + +〉
|−〉 7→ | − −〉

Y ::

{
| ] ] 〉 7→ | ] 〉
|= =〉 7→ |=〉 Y ::

{
| ] 〉 7→ | ] ] 〉
|=〉 7→ |= =〉



— observables and classical data —

If a (co)commutative (co)monoid satisfies

= =

it is a dagger special commutative Frobenius algebra.



— observables and classical data —

If a (co)commutative (co)monoid satisfies

= =

it is a dagger special commutative Frobenius algebra.

Thm. (with Pavlovic & Vicary) In FHilb these †CFAs
exactly correspond with orthonormal bases on the un-
derlying Hilbert space via the correspondence:

{| i 〉}i ←→ | i 〉 7→ | ii 〉



— observables and classical data —
FdHilb examples:

::

{
|00〉, |01〉, |10〉 7→ |0〉
|11〉 7→ |1〉 ::

{
|0〉 7→ |00〉, |01〉, |10〉
|1〉 7→ |11〉

Z ::

{
|00〉 7→ |0〉
|11〉 7→ |1〉 Z ::

{
|0〉 7→ |00〉
|1〉 7→ |11〉

X ::

{
| + +〉 7→ |+〉
| − −〉 7→ |−〉 X ::

{
|+〉 7→ | + +〉
|−〉 7→ | − −〉

Y ::

{
| ] ] 〉 7→ | ] 〉
|= =〉 7→ |=〉 Y ::

{
| ] 〉 7→ | ] ] 〉
|=〉 7→ |= =〉



— observables and classical data —

A †CFA is a pair:

which is such that:

= ==

= =



— observables and classical data —

A †CFA is a family:

‘spiders’ =


m︷ ︸︸ ︷
....

....

︸ ︷︷ ︸
n

∣∣ n,m ∈ N


which is such that, for k > 0:

m+m′−k︷ ︸︸ ︷
........

....

....

....

︸ ︷︷ ︸
n+n′−k

=

m+m′−k︷ ︸︸ ︷
....

....

︸ ︷︷ ︸
n+n′−k



— (0, 2)-spiders = “Bell-states” —

Definition. Each dag. spec. comm. Frobenius algebra
induces a 2-frontleg/0-backleg spider, the Bell-state:



— (0, 2)-spiders = “Bell-states” —

Definition. Each dag. spec. comm. Frobenius algebra
induces a 2-frontleg/0-backleg spider, the Bell-state:

Proposition. Bell-states satisfy ‘yanking’:
m︷ ︸︸ ︷

........

....

....

....

︸ ︷︷ ︸
n

=

m︷ ︸︸ ︷

....

....

︸ ︷︷ ︸
n



COMPLEMENTARY BASES



— observables and classical data —

Thm. [C & Duncan ’08] Complementarity means:



— observables and classical data —

Thm. [C & Duncan ’08] Complementarity means:



— observables and classical data —
FdHilb:

::

{
|00〉, |01〉, |10〉 7→ |0〉
|11〉 7→ |1〉 ::

{
|0〉 7→ |00〉, |01〉, |10〉
|1〉 7→ |11〉

Z ::

{
|00〉 7→ |0〉
|11〉 7→ |1〉 Z ::

{
|0〉 7→ |00〉
|1〉 7→ |11〉

X ::

{
| + +〉 7→ |+〉
| − −〉 7→ |−〉 X ::

{
|+〉 7→ | + +〉
|−〉 7→ | − −〉

Y ::

{
| ] ] 〉 7→ | ] 〉
|= =〉 7→ |=〉 Y ::

{
| ] 〉 7→ | ] ] 〉
|=〉 7→ |= =〉



— observables and classical data —
FRel:

::

{
|00〉, |01〉, |10〉 7→ |0〉
|11〉 7→ |1〉 ::

{
|0〉 7→ |00〉, |01〉, |10〉
|1〉 7→ |11〉

Z ::

{
|00〉 7→ |0〉
|11〉 7→ |1〉 Z ::

{
|0〉 7→ |00〉
|1〉 7→ |11〉

::

{
|00〉, |11〉 7→ |0〉
|01〉, |10〉 7→ |1〉 ::

{
|0〉 7→ |00〉, |11〉
|1〉 7→ |01〉, |10〉

⇒ Complementarity can be modeled with relations!
Coecke & Edwards ’08: 0808.1037. Pavlovic ’08: 0812.2266. Evans et al ’09: 0909.4453.



— computing with spiders —

Z-spin:

δZ : |i〉 7→ |ii〉

X-spin:

δX : |±〉 7→ | ± ±〉



— computing with spiders —



— computing with spiders —

i.e.

(δ†Z ⊗ 1) ◦ (1⊗ δX) =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 = CNOT



— computing with spiders —


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ◦


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 = ?



— computing with spiders —



— computing with spiders —



— computing with spiders —



— computing with spiders —



quantomatic – Dixon / Duncan / Kissinger

http://dream.inf.ed.ac.uk/projects/quantomatic/



ENTANGLEMENT



Classifying entanglement: Two multipartite quantum
states compare if by (possibly probabilistic) either lo-
cal or classical means one can be turned into the other.



Classifying entanglement: Two multipartite quantum
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cal or classical means one can be turned into the other.

Two qubits:

Proof: A linear map either has an inverse or not.



Classifying entanglement: Two multipartite quantum
states compare if by (possibly probabilistic) either lo-
cal or classical means one can be turned into the other.

Two qubits:

Proof: A linear map either has an inverse or not.

Three qubits:

Proof: Significantly non-trivial.



GHZ-SLOCC-class representative:

GHZ = |000〉 + |111〉

Many applications in quantum computing e.g. fault-
tolerance; canonical witness of quantum non-locality.
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GHZ = |000〉 + |111〉

Many applications in quantum computing e.g. fault-
tolerance; canonical witness of quantum non-locality.

W-SLOCC-class representative:

W = |001〉 + |010〉 + |100〉

Occurs naturally in condensed matter physics



GHZ-SLOCC-class representative:

GHZ = |000〉 + |111〉

Many applications in quantum computing e.g. fault-
tolerance; canonical witness of quantum non-locality.

W-SLOCC-class representative:

W = |001〉 + |010〉 + |100〉

Occurs naturally in condensed matter physics

Beyond these it’s a total mess: continuous classes for
which the structure nor applications are known (there
are some notable exceptions such as graph states).
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Proposition. [CK’10] An anti-special CFA on C2, i.e.

= =

induces a W-class state , and vice versa.

Proposition. Every CFA on C2 is either special or
anti-special; every monoid on C2 extends to an CFA.



Proposition. [CK’10] A special CFA on C2, i.e.

= =

induces a GHZ-class state , and vice versa.

Proposition. [CK’10] A anti-special CFA on C2, i.e.

= =

induces a W-class state , and vice versa.

Proposition. Every CFA on C2 is either special or
anti-special; every monoid on C2 extends to an CFA.

⇒ algebra meets entanglement classification.



Proposition. [CK’10] A special CFA on C2, i.e.

= =

induces a GHZ-class state , and vice versa.

Proposition. [CK’10] A anti-special CFA on C2, i.e.

= =

induces a W-class state , and vice versa.

Proposition. Every CFA on C2 is either special or
anti-special; every monoid on C2 extends to an CFA.

Conjecture: all behaviors arise from composition.



NON-LOCALITY



Value assignment: Given a particular quantum state,
assign to all measurements definite outcomes.
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Value assignment: Given a particular quantum state,
assign to all measurements definite outcomes.

Hidden-variable representation for a state: A prob-
ability distribution over value assignments which pro-
duces the quantum mechanical probabilities.

Bell’s thm: this is not possible for the Bell-state i.e. no
hidden-variable representation exists.

GHZ thm: this is not possible for the GHZ-state, in
fact, no value assignment even exists.

The argument takes place in the Clifford fragment;
Clifford circuits can be efficiently classically simulated.



For a GHZ-state measurement outcomes on two of the
sub-systems determine the state of third sub-system:

ψ φ
ψ φ = .ψ φ

=



For a GHZ-state measurement outcomes on two of the
sub-systems determine the state of third sub-system:

ψ φ
ψ φ = .ψ φ

=

This always yields an Abelian group on those states
that our unbiased for the ‘GHZ-basis’.



For a GHZ-state measurement outcomes on two of the
sub-systems determine the state of third sub-system:

ψ φ
ψ φ = .ψ φ

=

This always yields an Abelian group on those states
that our unbiased for the ‘GHZ-basis’.

In the case ofX- and Y -measurements this is Z4, with:
• the X-eigenstate |+〉 is the unit
• the X-eigenstate |−〉 is the involution
• the Y -eigenstates |]〉 and |=〉 are the remainder



For the unit |+〉 and the involution |−〉 we have:

|+〉�|+〉 = |+〉 |+〉�|−〉 = |−〉 |−〉�|−〉 = |+〉

i.e. even occurrences of |−〉 in correlations.



For the unit |+〉 and the involution |−〉 we have:

|+〉�|+〉 = |+〉 |+〉�|−〉 = |−〉 |−〉�|−〉 = |+〉

i.e. even occurrences of |−〉 in correlations.

For |=〉 and |]〉 we have:

|]〉 � |=〉 = |+〉 |=〉 � |=〉 = |−〉 |]〉 � |]〉 = |=〉

i.e. odd occurrences of {|−〉, |=〉} in correlations.



{|+〉, |−〉} × {|+〉, |−〉} × {|+〉, |−〉}

{|+〉, |−〉} × {| ] 〉, |=〉} × {| ] 〉, |=〉}

{| ] 〉, |=〉} × {|+〉, |−〉} × {| ] 〉, |=〉}

{| ] 〉, |=〉} × {| ] 〉, |=〉} × {|+〉, |−〉}

Above line: three red observables have even {|−〉}-occurrences

Below line: each row has odd {|−〉, | =〉}-occurrences ⇒ three
rows together have odd {|−〉, |=〉}-occurrences⇒ since blue ob-
servables occur twice for the same system and hence don’t con-
tribute to signs, three red observables have odd {|−〉}-occurrences.
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