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We present novel laws describing the interaction of a pair of mutually unbiased observables. These
laws yield a diagrammatic calculus which enables matrix-free reasoning about quantum systems. To
illustrate the elegance of this approach we establish some properties of standard quantum logic gates,
compute the quantum Fourier transform and demonstrate equivalence between certain cluster state
and quantum circuit computations.

In [1, 2, 8, 11–13] steps were taken towards a dia-
grammatic formalism to reason about quantum systems.
There are several motivations for this development: low
level matrix computations are replaced by intuitive topo-
logical manipulations of pictures [2]; the algebraic coun-
terpart to these pictures, certain kinds of monoidal cat-
egories, support logical reasoning and hence automation
[8]; the axiomatic analysis provides insights in which as-
pects of the quantum mechanical formalism are key to
enabling particular quantum phenomena and quantum
informatic tasks [1, 11, 13]. In this work we extend such
approaches with an archetypal quantum feature: the in-
teraction of incompatible observables.

ONE OBSERVABLE

Let Q be a two-dimensional Hilbert space. Our start-
ing point is the observation in [11] that the linear maps

∆Z : Q → Q⊗Q :: |i〉 7→ |ii〉 εZ : Q → C :: |i〉 7→ 1,

which respectively copy and delete the computational
base vectors, form a special †-Frobenius algebra. The
precise definition of this term is not required here: its
essential content is contained in Theorem 1. The map
∆Z captures the computational base in the following
manner: the states |0〉 and |1〉 are the only solutions
to ∆Z ◦ |ψ〉 = |ψ〉 ⊗ |ψ〉. We will identify the triple
(Q,∆Z , εZ) with the spin observable Z, whose eigenvec-
tors form this basis. Theorem 1 also involves

∆†
Z : Q⊗Q → Q :: |ij〉 7→ δij |i〉 ε†Z : C → Q :: 1 7→

√
2|+〉

where ∆†
Z is known as fusion in the quantum computa-

tion literature [14, 15]. The maps ∆Z , ∆†
Z , εZ and ε†Z

can be represented graphically as [12]

∆Z = ∆†
Z = εZ = ε†Z =

Reading from the top down, it is immediate that ∆Z

takes one qubit as input and has two as output; like-
wise εZ has no inputs and one output; the adjoint is
represented by flipping a diagram upside down. Com-
position of maps can be represented by identifying the
edges e.g. the Frobenius identity [27]

(1Q ⊗∆†
Z) ◦ (∆Z ⊗ 1Q) = ∆Z ◦∆†

Z

is depicted:

=

The following holds for any special †-Frobenius algebra
[12], hence in particular for the triple (Q,∆Z , εZ).

Theorem 1. Any linear map obtained by composing and
tensoring ∆(Z), ∆†

(Z), ε(Z), ε
†
(Z) and 1(Q), and of which

the graphical representation is connected, is determined
uniquely by the number of inputs and outputs.

As a consequence, any connected diagram may be rep-
resented by a single vertex, keeping the number of inputs
and outputs the same, hence the name “spider”:

The spider with one input and one output is simply the
identity – a line without any vertex. Since we have

∆Z ◦ ε†Z : C → Q⊗Q :: 1 7→ |00〉+ |11〉 ,

we derive the graphical representation of the Bell state :

TWO OBSERVABLES

The basis {|+〉, |−〉} of Q (and in fact any bases for a
Hilbert space [11]) can also be represented by a special
†-Frobenius algebra, with

∆X : Q → Q⊗Q :: |±〉 7→ |±±〉 εX : Q → C :: |±〉 7→ 1,

and is also subject to Theorem 1. The mutually unbiased
bases [18] (Q,∆Z , εZ) and (Q,∆X , εX) stand in a very
particular realtionship to each other.

Proposition 2. The quintuple (Q,∆Z , εZ ,∆X , εX) con-
stitutes a “scaled bialgebra” [28], that is, explicitly,

εZ ◦ ε†X =
√

2 (1)
√

2 ∆Z ◦ ε†X = ε†X ⊗ ε†X
√

2 ∆X ◦ ε†Z = ε†Z ⊗ ε†Z (2)
√

2 (∆†
Z ⊗∆†

Z) ◦ σ ◦ (∆X ⊗∆X) = ∆†
X ◦∆Y (3)

where σ(|ijkl〉) = |ikjl〉.

Note that eq. (2) states that the state determined by ε†Z
is clonable up to a scalar by ∆X and vice versa. All these
equations are easier to understand in graphical form. We
use red dots, and , for the X structure and retain
green for the Z. Notice that composing εX ◦ ε†Z is simply
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the inner product between the corresponding vectors, i.e.√
2; since this scalar quantity will be frequently required,

we introduce a special shorthand symbol:

The laws in Prop. 2 can be written as:
(1)
(2)

(3)

where the circle in Eq.(1) denotes the trace [2] of the
identity, which is the dimension of the underlying space.
From these we can derive [25]:

In the interests of clarity the scalar factors will be ne-
glected for the rest of this presentation.

Example 3. A quick calculation shows that

(∆†
Z ⊗ 1Q) ◦ (1Q⊗∆X) = (1Q⊗∆†

X) ◦ (∆Z ⊗ 1Q) = ∧X,

hence the controlled-X gate can be represented as
where the red dot is acting on the target qubit. This
permits a simple graphical proof of a well known fact:

Our language can be augmented with an additional
graphical element for the Hadamard gate; H exchanges
the X and Z bases, so provides a colour change rule:

These equations, combined with the fact that H2 = 1Q,
allows not just the changing of one colour into another,
but a general transfer principle which states that any
“green” concept and its associated equations can be
transformed into an equivalent “red” concept obeying
the same equations with the colours exchanged. Recall
∧Z = (1⊗H)∧X(1⊗H); the graphical form shows that
this operation is symmetric:

Example 4. Cluster states [21], used in measurement-
based quantum computing, can be prepared in several
ways; the graphical calculus provides short proofs of their
equivalence. For example, the original scheme describes
a ∧Z intereaction between qubits initially prepared in
the state |+〉; a 1D cluster can be represented as:

where the boxes delineate the individual |+〉 preparations
and ∧Z operations. Alternatively, the cluster state can
be prepared by fusion of states of the form |0+〉 + |1−〉
[15]. Recalling that ∆†

Z is the fusion operation, this
method of preparation can be represented as [26]:

Again we use dashed lines to indicate the individual com-
ponents. Using the spider theorem, these are equivalent:

Programs for the one-way model can be verified by trans-
lation to an equivalent quantum circuit. E.g. the leftmost
diagram below is a post-selected [29] one-way program
implementing a ∧X operation upon its inputs [30]. By
the spider theorem this can be rewritten to a ∧X gate.

PHASES

The language we have introduced so far suffices to cap-
ture many features of interest in quantum computation,
but it cannot yet represent all unitary gates. The re-
maining necessary primitives are phases. Let

= Zα =
(

1 0
0 eiα

)
= Xα = HZαH.

Theorem 5. Any map formed by composition of εZ , ∆Z ,
Zα, and their adjoints, whose graphical representation is
connected, is uniquely determined by the number of inputs
and outputs and the sum, modulo 2π, of the αs which
occur on its vertices.

This generalised spider theorem follows from Zα◦Zβ =
Zα+β and ∆Z ◦ Zα = (Zα ⊗ 1Q) ◦ ∆Z . In consequence
any diagram consisting only of green vertices may be con-
tracted down to a single vertex,

which is labelled by the sum of all the phases occurring
in it. (Of course, the empty green dot corresponds to
α = 0.) The same holds equally well for the red dots.

Example 6. The diagram below shows an implementa-
tion of an arbitrary 1-qubit unitary, given as its Euler
decomposition ZγXβZα [31]; The input is shown at the
top left; this is then bound to the 1D cluster state with
a ∧Z interaction; the four projections are found at the
bottom, with the output on the lower right.
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FIG. 1: Graphical simulation of quantum Fourier transform on the input |10〉.

By simple rewriting steps the implementation is trans-
formed into its specification, i.e. performing an arbitrary
1-qubit unitary, thus proving the program’s correctness.

The preceding example uses just green dots because all
operations are in the X−Y plane; however there are sim-
ple equations governing some interactions between the
green (X − Y ) operations and the red (Z − Y ) opera-
tions. Two obvious facts:

Zα |0〉 = |0〉 Zα |1〉 = eiα |1〉 = |1〉
produce simple digrammatic equations:

As before, the same laws hold with the colours ex-
changed. We will use these laws below.

NEGATIONS

The Pauli X operator exchanges the Z-basis vectors
|0〉 and |1〉; hence X provides a boolean negation for the
classical structure induced by ∆Z . As a diagram this is
simply Xπ = . Since X is an operation on the classical
data fixed by ∆Z , we have the equation:

∆Z ◦X = (X ⊗X) ◦∆Z .

Furthermore, this logical negation induces an arithmetic
negation on the X-phases:

X(|0〉+ eiα |1〉) = |1〉+ eiα |0〉 = |0〉+ e−iα |1〉

The interplay between the logical operations in one basis
and the phase information is central to the behaviour of
several quantum logic gates.

Example 7. We can realise a controlled phase gate,
where the phase is an arbitrary angle α, as shown on
the left hand side below; the control qubit is on the left.

The quantum Fourier transform can be realised as a
quantum circuit containing only Hadamard and con-
trolled phase gates; the 2 qubit instantiation of this cir-
cuit is shown on the right above. Furthermore, the algo-
rithm can be simulated graphically, as shown in Figure 1.

DISCUSSION

Our graphical calculus is capable of far more than can
be covered in an article of this length. Classical control
has not been discussed, but study of control was a moti-
vation for the original axiomatisation of †-Frobenius alge-
bras in [11]. Such notions of control allow the branching
behaviour of quantum measurements to be represented.
As a consequence, this system subsumes the equational
theory of the measurement calculus [22], and can simu-
late other measurement-based schemes such as logic-gate
teleportation [23] and state transfer [24]. Ongoing work
aims toward a unified treatment of general measurement-
based quantum computing within our graphical setting.

As we have emphasised, the calculus we have described
is powerful enough to carry out many computations in
the domain of quantum mechanics. However it is known
to be algebraically incomplete; that is, not every true
equation in Hilbert space can be derived graphically. Ad-
ditional, as yet unknown, axioms will be required to make
all desirable equations derivable.

Due to its simple form – the equations are local trans-
formations of undirected graphs – the calculus we have
presented is amenable to automation, opening the door
to semi- or fully automatic derivation of protocols and
algorithms, and proofs of their correctness.
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