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Abstract

In this dissertation we examine commitment protocols in the graphical

language for the foundations of quantum mechanics.

The previous sentence sums up the background material in Part I. Chapter

1 begins with an introduction to classical algorithms and classical cryp-

tography, extending these to the quantum case, which – at least ordinarily

– is formulated in terms of Hilbert spaces. Chapter 2 presents the cat-

egorical formulation of quantum mechanics: the graphical language for

concurrent processes and its semantics in terms of †-compact categories.

In particular, it examines the interpretation in the “toy” category Rel of

sets and relations.

In Part II we move to more original work. We begin in Chapter 3 with

a review of classical bit commentment, and present an abstract definition

of a commitment protocol in a general †-compact category. We inter-

pret it first in the usual category FHilb of Hilbert spaces and continuous

linear maps, and reproduce the impossibility proof of Mayers (and, inde-

pendently Lo and Chau). In doing so, we note the additional hypotheses

used beyond those of a †-compact category, and suggest how to formulate

some of them categorically. We prove in particular that one of them does

not hold in Rel, so that the proof fails – indeed, we show that bit commit-

ment according to our definition is possible there. In Chapter 4 we discuss

the tension this causes with Clifton et al.’s characterisation theorem, and

suggest how to remedy it.

We conclude with some potential extensions of this work.
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Chapter 0

Introduction

The modern study of quantum theory is not restricted to the von Neumann formal-

ism: much work has been done in exploring generalisations of quantum mechanics

and the physical features which uniquely pin it down. In the field of categorical quan-

tum mechanics, a large proportion of the usual theory of quantum mechanics has

been reformulated in terms of †-compact categories. In that language, we shift the

focus of our analyses from states to processes acting on quantum systems, and study

algorithms in terms of the interacting processes from which they are built.

Reformulation of quantum mechanics, however, is not limited to category theo-

rists. Clifton, Bub, and Halvorson [2003] consider a physical theory to be specified

by its algebra of observables, and investigate in particular the class of theories whose

observables form a C∗-algebra. They locate quantum mechanics in this space of

theories first through a set of “quantum” axioms, and then present an equivalent

axiomatisation in terms of its information-theoretic properties.

One of these axioms states the non-existence of a particular type of cryptographic

algorithm, known as bit commitment. It is easy to show that such an algorithm

does not exist using only classical computers; within the last twenty years it has also

been proved impossible even if quantum computers are available to us. The reason

is roughly that although transmitting quantum systems can avoid the obstacles to

commitment in classical mechanics, in permitting the use of quantum phenomena we

open the doors to entanglement. By carefully entangling the quantum systems which

they send, a dishonest party to a commitment protocol can unfairly manipulate the

results. The existence of entangled states was in fact shown by Clifton et al. to be

equivalent to the impossibility of bit commitment, using an argument from the world

of C∗-algebras.

The CBH theorem demonstrates the relevance of bit commitment schemata to

theories of quantum mechanics. It is natural, therefore, to ask about such schemata in
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CHAPTER 0. INTRODUCTION

categorical quantum mechanics, and to investigate whether the known impossibility

results also hold there. In this dissertation, we present an axiomatisation of bit

commitment in a †-compact category and explore its interpretations. We’ll see that

although the usual impossibility proof is certainly valid in FHilb, it uses properties

which are not captured by the †-compact structure, and hence does not lift to a proof

in a general †-compact category.

This fact raises the question of whether bit commitment is indeed impossible in a

†-compact category. Since we already know it is not possible in FHilb, we turn to our

other example: the category Rel of sets and relations between them. To interpret bit

commitment there we first need to give the semantics of our standard tools: states,

classical structures, unitary morphisms, and so on. Once we do this, we demonstrate

that in fact there do exist secure bit commitment protocols in Rel, and thus that

they are not proved impossible by categorical quantum mechanics.

0.0.1 Plan of attack

This dissertation is split into two parts. We first review some of the background

material that we’ll use later, both from ordinary quantum mechanics and from the

category-theoretic formulation. This is not meant to comprise a full introduction to

the subject, and, in general, we expect readers to have come across the basic concepts

of the field before. Nevertheless, we have tried to remain as self-contained as possible.

A reader acquainted with the basic concepts of quantum mechanics can safely skip

Chapter 1, and with those of categorical quantum mechanics Chapter 2 – although

readers may wish to glance through §2.5 for the semantics of the graphical calculus

in Rel.

0.0.2 Novel Work

The main novel section of this thesis is the axiomatisation of bit commitment, and its

interpretation in the standard models. Although the author has read many informal

definitions, to the best of his knowledge none of them use a rigorous framework for

the definition of a protocol.

Some new work was also needed in the interpretation of categorical quantum

mechanics in CPM(Rel): Heunen and Boixo [2011] worked out classical structures

but completely positive unitaries were new to the author, and many of the simple

results about Rel needed some working out.
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Chapter 1

Classical and Quantum Algorithms

This chapter – an introduction to quantum mechanics as used in computer science

– is based on Nielsen and Chuang [2000], the lecture notes [Coecke] and the Oxford

University course Quantum Computer Science, among others. It describes the subset

of quantum mechanics used in quantum information theory, in terms of states of

Hilbert spaces and linear transformations between them.

1.1 Quantum Mechanics

As the components in modern computers shrink, quantum mechanics begins to take

effect. If we accept this as a feature of computers then new abilities open up: just

as a classical computer operates on bits using bit operations, a quantum computer

operates on qubits using unitary operations.

Qubits are quantum systems that can be used to encode information. Just as with

ordinary, classical data, a qubit may be placed in a state |0〉 or |1〉 to indicate the

value of a bit. Unlike classical data, however, there are many pairs of states which

can be so used, and some of these pairs are mutually exclusive: receiving a qubit does

not convey useful information unless the choice of encoding scheme is also known.

Moreover, any linear combination of states is also a state, called their superposi-

tion. We think of a qubit in a superposition state as being in some sense in all of the

states at the same time. This is distinct from being in some state with an associated

probability, although that too is possible. A probability distribution over states (or,

equivalently, a state with some probabilistic degree of uncertainty) is known as a

mixed state.

Mixed states are particularly useful for cryptographic protocols, because there are

distinct probability distributions over states that lead to the same mixed state. These
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can be used to provide a certain amount of information to one party without revealing

too much.

1.1.1 The Von Neumann formalism

The usual axiomatisation of quantum mechanics is known as the von Neumann for-

malism. Using it, we take the states of a quantum system to lie in a Hilbert space,

and state-transforming operations to be unitary linear maps of Hilbert spaces.

1.1.1 Definition. A Hilbert space is a complex vector space equipped with a positive-

definite conjugate-symmetric sesquilinear form 〈− |−〉 inducing a complete norm.

We adopt the bra-ket notation, writing states of a Hilbert space within angle brackets.

At the very least, we would like the maps between Hilbert spaces to be linear ; that

is, to preserve the vector space structure. A function X : H1 → H2 is called a linear

operator if X
(
aφ+ bψ

)
= aXφ+ bXψ for all a, b ∈ C and φ, ψ ∈ H1.

Every Hilbert space H has a dual H∗ := {linear operators H → C}. It is not hard

to verify that the dual of a Hilbert space is a Hilbert space, and that Hilbert spaces

are canonically isomorphic to their double duals. In fact, this isomorphism arises just

from the vector space structure: from the inner product we can do even better.

1.1.2 Proposition. The operator x 7→ 〈− |x〉 is an isometric anti-isomorphism be-

tween a Hilbert space H and its dual H∗.

1.1.3 Corollary. Every linear operator X : H1 → H2 between Hilbert spaces has a

unique adjoint linear operator X† : H2 → H1 such that

〈X†ψ |φ〉 = 〈ψ |Xφ〉.

We normally write 〈ψ|X|φ〉 for the common value.

Proofs. Standard functional analysis. The Proposition is [Bollobás, 1990, §9, Corol-

lary 10] and the Corollary is treated in Chapter 11, ibid.

Now, we may regard states ψ ∈ H as linear operators C→ H :: 1 7→ ψ, so that states

of H∗, being linear maps H → C, are adjoints of states of H. We then see that the

composite φ ◦ψ is exactly the inner product 〈φ |ψ〉, justifying the Dirac notation |ψ〉
for elements of H and 〈ψ| for elements of H∗.

Some special linear operators will be of particular interest to us.
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1.1.4 Definition. A linear operator X is

• unitary if its adjoint is its inverse; equivalently, if it is surjective and preserves

the inner product

• self-adjoint if it is equal to its adjoint

• idempotent if X2 = X

• a projector if it is self-adjoint and idempotent

1.1.5 Proposition. Every self-adjoint operator X admits a unique spectral decom-

position

X =
∑
i

aiPi,

where ai ∈ R, Pi are projectors and PiPj = 0 for all i 6= j.

Proof. Again, standard functional analysis, simplified by the fact that all operators

are compact in finite dimensions. See [Bollobás, 1990, §14].

Von Neumann’s approach to quantum mechanics is then summarised by

1.1.6 Postulate. The states of a quantum system are given by rays in some Hilbert

space, and transformations of the system are given by unitary operations on that

Hilbert space.

The physical interpretation of a measurement on some quantum system is not entirely

clear. Nevertheless, it is easy to give a purely mathematical explanation.

1.1.7 Definition. A measurement on some quantum system is given by some self-

adjoint operator H. If the spectral decomposition of H is
∑

i aiPi then the outcomes

of the measurement are the ai. When the measurement is performed, one of the ai

is returned to the observer as an indication of the outcome, and the corresponding

projector Pi is applied to the system. Each Pi occurs on measuring the (normalised)

state ψ with probability 〈ψ|Pi|ψ〉.

Since projectors are idempotent, repeating a measurement will always give the same

value.
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1.1.2 Compound Systems

We define the direct sum of Hilbert space H1 and H2 as

H1 ⊕H2 :=
{

(ψ1, ψ2) : ψ1 ∈ H1, ψ2 ∈ H2

}
.

It is easy to show that H1⊕H2 is a Hilbert space of dimension n+m, since bases of

H1 and H2 induce a canonical choice of basis on their direct sum.

The direct sum of Hilbert spaces represents the system of pairs of states – but,

according to quantum mechanics, this is not the same as the compound system repre-

senting the states of both systems at the same time. Instead, the states of a compound

system lie in the tensor product space

H1 ⊗H2 :=


c11 . . . c1m

...
. . .

...
cn1 . . . cnm

∣∣∣∣∣ cij ∈ C, n = dimH1,m = dimH2

 .

Intuitively, whereas the basis of the direct sum is given by the disjoint union of the

bases of its components, the tensor product basis is given by the cartesian product of

its component bases.

Note that we have given a basis-dependent construction of the tensor product

space. This is not necessary: we can define the tensor product as the free Hilbert

space on the direct sum, modulo bilinearity of⊗. Alternatively, it can be characterised

(up to isomorphism) as the universal space of bilinear maps; that is, the space through

which any bilinear map from the direct sum factors.

The passage from the direct sum to the tensor product has far-reaching conse-

quences. For example, it is easy to show that there are state of the tensor product

space which are not products of states of the components – for example, if we write

{e1, e2} for a basis of C2, the Bell state e1⊗e1 +e2⊗e2 ∈ C2⊗C2 is not ei⊗ej for any

i, j. We call such states entangled ; their existence can be summed up by the slogan

“the whole is more than the sum of its parts”, since they mean that the joint state

of a compound system cannot necessarily be given in terms of the marginal states of

each of its component systems.

1.1.3 Density matrices

Sometimes we have quantum systems about whose state we only have partial infor-

mation. Suppose we know that such a system is in state |ψ1〉 with probability p1,

7



1.1. QUANTUM MECHANICS CHAPTER 1. ALGORITHMS

|ψ2〉 with probability p2, and so on (which is not the same as certainly being in the

linear superposition state
∑
pi|ψi〉). We say that this system has density matrix

ρ :=
∑
i

pi|ψi〉〈ψi|.

By linear extension from the pure-state case, the expectation of a measurement is

given by EA = tr(ρA) =
∑

i pi〈ψi|A|ψi〉. The basic postulates of quantum mechanics

can then be rephrased to work not with state vectors |ψ〉 but “one level up”, with

density matrices. These we call mixed states. Note that any “true” state |ψ〉 can be

regarded as the mixed state |ψ〉〈ψ| – ψ with probability 1 – and hence states as we

defined them embed into the space of mixed states via the map Pure : |ψ〉 7→ |ψ〉〈ψ|.
We say that a mixed state ρ is pure if it lies in the image of Pure.

It is important to note that the mixed state |e0〉〈e0| + |e1〉〈e1| is not the same as

the pure, entangled (non-normalised) state |+〉 := |e0〉+ |e1〉. To see this, consider

|ψ〉 :=

(
1 1
1 −1

)(
1
1

)
=

(
2
0

)
which equals |e0〉 up to normalisation – so measuring |ψ〉 gives 0 with certainty. But

the mixed state |e0〉〈e0|+ |e1〉〈e1| represents state |e0〉 with 50% probability, and state

|e1〉 with 50% probability, so that ( 1 1
1 −1 ) (|e0〉〈e0| + |e1〉〈e1|) represents either |+〉 or

|−〉 := |e0〉 − |e1〉 – thus measuring gives 0 or 1 with even odds.

Density matrices are of course themselves linear operators. We can characterise

them as precisely the positive operators with unit trace. Evolution operators apply

to density operators by conjugation, and the density matrix of a compound system is

the tensor product of the density matrices of its components. It is easy to show that

a density matrix ρ represents a pure state iff tr(ρ2) = 1.

An important property of density matrices is that they do not uniquely determine

an ensemble of pure states – although the ensemble given by the eigensystem of a

density operator ρ is certainly a possible decomposition of ρ, it need not be the only

one. However, since they provide all the information necessary to determine a mea-

surement, systems with the same density matrix cannot be physically distinguished.

This property is key to the security analysis of some quantum algorithms.

Completely positive maps Since density matrices are of course matrices, they lie

in the Hilbert space Cn×n. We say that a self-adjoint matrix is positive (semidefinite)

if all of its eigenvalues are positive, and that a linear map Φ : Cn×n → Cm×m is

positive if it takes positivite matrices to positive matrices.
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Positivity of linear maps between density matrices is insufficient for us, because it

does not entail positivity when regarded as part of a larger system. That is, any such

Φ naturally induces a map Ik ⊗ Φ : Ck×k ⊗ Cn×n → Ck×k ⊗ Cm×m, and positivity of

Φ does not entail positivity of Ik ⊗ Φ for all k. (For example, the matrix transpose

T is a positive map, but I2 ⊗ T is not.) If each Ik ⊗ Φ is positive, we say that Φ is a

completely positive linear map. The intuition is that a completely positive operator

takes mixed states to mixed states, even when regarded as part of an operation on a

larger system. There is a well-known characterisation theorem for such maps.

1.1.8 Theorem (Choi [1975]). A linear map Φ is completely positive iff the map

(In ⊗ Φ)

(∑
ij

Eij ⊗ Eij

)
=
∑
ij

Eij ⊗ Φ(Eij)

is positive, where Eij is the matrix with 1 in the ij-th entry and 0 elsewhere.

1.2 Quantum Information

In quantum informatics we (almost) always limit ourselves to finite-dimensional

Hilbert spaces; that is, we are only interested in measuring properties which can take

finitely many distinct values. Indeed, we normally work with qubits – two-dimensional

Hilbert spaces – and combinations thereof.

1.2.1 Definition. The qubit is the two-dimensional Hilbert space C2 (with the usual

inner product), together with a chosen basis |0〉, |1〉 which we call the computational

basis.

We use the computational basis to represent classical data: if a qubit is in state

|i〉 then we consider it to represent the classical bit i. Unlike the space of classical

states, however, the qubit admits all linear combinations of these states as well. For

example, we may define the (non-normalised) states

|+〉 := (|0〉+ |1〉)/2 |−〉 := (|0〉 − |1〉)/2

A qubit in state |+〉 then represents a superposition of |0〉 and |1〉: it is in “both” states

simultaneously. If we measure this state in the computational basis, by symmetry the

result is either |0〉 or |1〉 with equal probabilities. So the density matrix representing

the state of a qubit prepared in |+〉 and measured in the computational basis is

1
2
|0〉〈0|+ 1

2
|1〉〈1|.

Unitary maps are often known as gates in quantum information theory, to high-

light the analogy with classical logic gates.

9
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1.2.1 Quantum Data

Quantum data – information encoded in the state space of quantum systems – bears

many similarities to classical data. But the two are by no means the same: many

things which are possible with classical data are simply not possible with quantum.

For instance, there is no way in general to copy an unknown quantum system; that

is, there is no unitary transformation which acts as |ψ〉 ⊗ |e〉 7→ |ψ〉 ⊗ |ψ〉 for all |ψ〉
and fixed |e〉. Similarly, there is no way to delete a quantum system. The proofs are

easy and follow from linearity.

1.3 The Theory of Information

We consider for a moment at the characterisation theorem of Clifton, Bub, and

Halvorson [2003], and its relevance to bit commitment. Clifton et al. consider a

physical theory to be specified by its algebra of observables, and restrict this to com-

prise a C∗-algebra. (They also argue that this is not a major restriction, in light, for

instance, of the fact that it suffices for “all physical theories [not necessarily quantum]

that have been found to be empiricially successful to date”.)

One first has to define what is meant by quantum mechanics! In other words,

to prove that certain axioms entail the use of quantum mechanics we have to give a

set of conditions which pin down what we consider to be quantum mechanics. Their

axioms are:

(a) observables corresponding to distinct physical systems commute,

(b) not all observables commute, and

(c) there exists a physically realisable entangled state.

The final axiom is a little delicate, because the formal existence of entangled states

follows from the C∗-algebraic structure itself. The point of the axiom is that the

theoretical existence of entangled states does not necessarily guarantee that they can

be physically prepared. Bub [2004] gives as an example Schrödinger’s (now disproved)

conjecture that entangled states might decay in practice as soon as their systems were

physically separated, and thus that they could never occur in nature.

The main theorem of the paper gives three different (information-theoretic) ax-

ioms for quantum mechanics, and (almost) proves them in turn equivalent to their

correspondents above.
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1.3.1 Theorem. In a C∗-algebraic theory:

(α) “no FTL information transfer” is equivalent to (a),

(β) “no broadcasting” is equivalent to (b), and

(γ) in the presence of (a) and (b), the impossibility of a secure bit commitment

protocol is equivalent to (c)

The idea of condition (α) is that if Alice and Bob each have a quantum system,

then Alice, by performing some local measurement, cannot transfer any information

to Bob – thus their measurement operators do not affect each other i.e. they commute.

Broadcasting – condition (β) – is a sort of generalisation of cloning to mixed

states. Clifton et al. show that it implies cloning, that if any two pure states of a

C∗-algebra can be cloned then they must be orthogonal, and finally that any algebra

in which all pure states are orthogonal is commutative.

Finally, the intuition behind (γ) is that there are quantum commitment protocols

which “nearly work”: if we can trust Alice not to transmit entangled states, then a

modification of the protocol given by Bennett and Brassard [1984] is easily proved

secure. If no entangled states are available – but the other tools of quantum mechanics

are – then secure bit commitment is possible. Conversely, if entangled states existed

then Alice could use them to attack any commitment protocol.

The converse implication of (γ) – that physical nonlocality entails impossibility of

bit commitment – was proved by Halvorson [2003], completing the proof of the CBH

theorem. The issue was one that we’ll face as well: the main tool used in the proof in

Hilbert spaces is a particular decomposition demonstrated by Hughston et al. [1993],

which required generalisation to arbitrary C∗-algebras.
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Chapter 2

Categorical Quantum Mechanics

This section serves as a (necessarily brief) introduction to the field of categorical

quantum mechanics as pioneered by Abramsky and Coecke [2004]. We have drawn

concepts from the Oxford University course Categorical Quantum Mechanics (and

its associated course notes), [Coecke, 2005] and many discussions with members of

the Quantum Group. Although we aim for mathematical correctness everywhere, we

have not tried to give an exhaustive account of the subject, restricting ourselves to

the tools that we use later. In particular, we do not mention the formalisation of

diagrams (in terms of digraphs), scalars, or any of the forms of complementarity. We

refer the reader to any of the above-mentioned texts for more detail.

2.1 Graphical Calculus

A monoidal category is a universe of processes, that can be composed sequentially or

in parallel. It admits a natural graphical calculus, in which we draw a process f with

inputs A1, . . . , An and outputs B1, . . . , Bn as

f

Bn
. . .

B1

A1

. . .

An

and sequential and parallel composition respectively as

12



2.2. ADDITIONAL STRUCTURE CHAPTER 2. CQM

f

g

f g

Joyal and Street [1991] proved that the graphical calculus is sound and complete

for monoidal categories: an equation between morphisms in monoidal categories is

true iff it holds in the graphical language up to planar isotopy.

There is a host of soundness and completeness results for graphical languages

which we shall henceforth ignore, comforted by the knowledge of their existence.

Selinger [2011] provides a recent and thorough survey.

2.2 Additional Structure

Monoidal categories are very general universes in which to perform mathematics.

They can be used to interpret physical systems and their evolution through time,

data types and algorithms operating on them, algebraic structures and structure-

preserving functions, or even logical propositions and proofs. We shall use them as

a model for quantum mechanics. To do so, we’ll need to add some more structures,

which we describe below.

For the sake of brevity, we shall only mention the interpretations in passing. The

reader may assume that any structure with a name lifted from Hilbert spaces is indeed

a generalisation of the usual concept.

2.2.1 Symmetry

We should be able to swap the sides of diagrams; that is, for each X and Y there

should be a process

σXY :=

YX

XY

with the properties that

13
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YX

Y X

=

YX

Y X

YX

f g

Y ′ X ′

=

YX

g f

X ′Y ′

for each process f : X → X ′ and g : Y → Y ′.

2.2.2 The †-functor

The adjoint functor in Hilbert spaces generalises to a †-functor: a way to reverse

morphisms. There is only one sensible way to represent this graphically: the diagram

for f † should be the diagram for f , reflected in a horizontal axis.

f † = †

 f

 =: f

We’ve deliberately broken the symmetry of the boxes, so that f and f † are distinct.

In formalising these diagrams, extra conditions on some of the “implementation

details” in our categories are required. These manifest as further axioms on the

category – but they are not drawn in the graphical language, so we don’t have to

worry about them here.

Sometimes the †-functor is called the adjoint.

2.2.3 Classical Structures

Coecke and Pavlovic [2006] introduced the notion of commutative Frobenius algebras

as a way to model classical data. The axioms for a ‘classical’ object X are that it

should be copyable

X

XX

in a (co)commutative, (co)associative fashion:

14
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X

X X

=

X

XX

X

X XX

=

X

XXX

(Note that this is not a new piece of graphical notation: • is just a more concise way

to write a box with no label.) It should also be deletable

X

so that deletion is a unit for copying:

X

X

=

X

X

=

X

X

The adjoint of copying is comparing, and the adjoint of deletion is a unit.

Finally, there are two ways we may copy and compare data, and we would like

them to be equal as well:

X

X

X

X

=

X

X

X

X

(This is called the Frobenius law.) We call an object X equipped with copying and

comparing maps in this fashion a classical structure, since it represents an object

holding classical data.

Using just the properties of the dots, we can prove the remarkable theorem

2.2.1 Theorem (Spider). Any morphism built from the above dots (copying, deleting,

comparing, unit) is determined by its type X⊗n → X⊗m.

Proof idea. Any diagram built from • can be brought into a normal form by a partic-

ular (algorithmic) sequence of applications of the axioms. The theorem is well-known;

details and further references can be found in Coecke and Duncan [2011].

The spider theorem permits us considerable laxity in how we draw the dots of the

classical structure.

15
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2.2.4 Duals

An interesting morphism that can be built out of a classical structure is

X X

:=

X X

It is easy to show (from the axioms) that

X

X

=

X

X

=

X

X

In general, any pair of morphisms η : I → A∗ ⊗ A and ε : A ⊗ A∗ → I is called

a duality if it satisfies the above “yank” laws. Dualities are again powerful because

they allow us to ignore some specifics of the diagrams, namely, where the inputs and

the outputs go. For instance, to specify a morphism f we can equivalently specify its

name pfq or coname xfy, defined as

pfq :=
f

and xfy := f

respectively, since yanking either of these gives back f . (The difference between f

and pfq is akin to the difference between an operator A and its matrix [A].) We say

the duality is a †-duality if η = ε†.

It is important in general to distinguish between objects A and their duals A∗. To

do so we can direct the wires of the calculus, adopting the convention that following

a wire in reverse indicates the dual object. However, we only ever use the compact

structure of the category implicitly – in the construction of CPM(C) – in contexts

where it is clear in which direction the wires should go. For clarity, therefore, we elect

not to indicate these directions explicitly, since we feel they clutter the diagrams with

no additional benefit.

16
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2.2.4.1 Duality as a Functor

Given a morphism f : A→ B and its adjoint f †

f and f

we can form the two morphisms

f := f and f := f

known as f ∗ and f∗ respectively. In particular, there are functors −∗ and −∗ acting

by A 7→ A∗ on objects and f 7→ f ∗ and f∗ respectively. Note, though, that duals are

only unique up to isomorphism, and that we must therefore fix a particular choice of

duals upon choosing our category. Following convention, we’ll take duals to “reverse

the tensor product”, so that (A⊗B)∗ = B∗ ⊗A∗. This is permissible since the swap

is an isomorphism, and will make some diagrams neater.

2.2.5 A Slogan

We are beginning to see a general principle when working with diagrams:

Only the topology matters!

Indeed, many of the axioms we take precisely fulfill the function of equating

topologically-equal but diagrammatically-distinct diagrams: the Frobenius law al-

lows us to exchange multiplication and comultiplication; the duality axioms mean

lines may bend freely, and so on. Each of these trivial graphical manipulations corre-

sponds to a non-trivial application of one of the algebraic axioms. The fact that we

can perform such manipulations without having to hold all the axioms in our heads is

one of the reasons that the graphical calculus is easier to work with than the algebraic

formulation.

2.3 Semantics

We have now introduced enough graphical structure to do quantum mechanics. Be-

fore we proceed, we should briefly mention the interpretation of the language. The

17
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semantics are well-known, and a detailed explanation can be found, for example, in

the course notes.

The usual interpretation is in the †-compact category FHilb, with objects the

finite-dimensional Hilbert spaces and morphisms the continuous linear maps. The

tensor product becomes the usual tensor product of Hilbert spaces, the †-functor is

given by adjunction of linear maps, and every object is dual to itself via the map

ηH : C→ H⊗H :: 1 7→
∑
i

|i〉 ⊗ |i〉

(where the |i〉 comprise a basis of H). Classical structures correspond bijectively to

orthonormal bases [Coecke et al., 2008].

Algebraically, this generalises to the category of finitely-generated projective mod-

ules over any commutative ring.

The category Rel of sets and relations is another †-compact category, and one

that turns out to be very useful as a toy model of quantum mechanics. There, the

tensor product is the cartesian product, the †-functor is given by relational converse,

and every object is dual to itself via the relation

ηA : I → A× A :: ∗ A∼ (a, a) for all a ∈ A.

Classical structures on A correspond bijectively to abelian groupoids whose morphism

set is A [Heunen et al., to appear]. We can think of the morphisms of Rel as given

by boolean matrices, just as the morphisms of FHilb are given by complex matrices,

so that Rel is in some sense a “possibilistic” quantum theory.

The category Set of sets and functions is neither a †-category nor a compact

category. (The function ∅ : ∅ → {∗} admits no adjoint, and since the tensor unit is

terminal in Set, the existence of duals would imply that all conames, and hence all

functions, were equal.) Since we intuitively do maths in Set, this is one reason that

quantum mechanics can often seem counterintuitive.

2.4 Mixed States

After defining the von Neumann formalism in §1.1.1, we proceeded to “move up a

level” to work not with states of Hilbert spaces but with density matrices: positive

unit-trace operators representing partial information about a system. This we can

also do in the graphical formalism, using a construction due to Selinger [2007] which

expands a †-compact category (of “pure states”) into a †-compact supercategory (of

“mixed states”).

18
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Just as before, instead of considering states as (normalised) elements of Hilbert

spaces we move up to their induced density operators:

φ becomes

φ

φ

The normalisation condition says that

φ

φ

= = idI

i.e. that ψ† is a retraction of ψ. Note that ψ ◦ψ† is by definition positive, so it makes

sense to abstract away to the following definition.

2.4.1 Definition. A mixed state of A is a positive morphism ρ : A→ A.

Just as a unitary operator is a process which takes pure states to pure states, a

completely positive operator will be one taking mixed states to mixed states. We

can use the following theorem to lift this to a definition, since by Choi’s theorem on

completely positive maps, the first criterion is equivalent to the usual definition of

complete positivity in Hilbert spaces.

2.4.2 Theorem (Stinespring Dilation). The following are equivalent:

• the morphism

f

A

B

B

A

is positive

• there is a morphism g : A→ C ⊗B such that

f

BB∗

A∗ A

= g g

CB∗ B

A∗ A

19
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Proof. See for example Selinger [2007].

We call such morphisms completely positive.

2.4.1 Selinger’s CPM construction

The completely positive morphism in fact form a †-compact category.

2.4.3 Definition. Let C be a †-compact category. The category CPM(C) has

• objects the objects of C, and

• arrows A→ B the completely positive C-arrows A∗ ⊗ A→ B∗ ⊗B.

2.4.4 Theorem. CPM(C) is a †-compact category, with

• composition, † and ⊗ on objects as in C,

• ⊗ on morphisms given by f f

 ⊗

 g g



=

 g f f g


• σAB : A⊗B → B ⊗ A given by

B∗ A∗ A B

B∗A∗ AB

• εA : A∗ ⊗ A→ I given by

A A∗ A∗ A

2.4.5 Proposition (Heunen and Boixo [2011]). WP : C → CPM(C) :: f 7→ f∗ ⊗ f is

a symmetric strict monoidal functor that preserves †.

20
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The functor WP is nearly faithful: if WP(f) = WP(g) then f = φ • g for some scalar

φ : I → I. For this reason we often say that WP “kills phases”.

In fact, there is a functor CPM(C)→ C, given by interpreting the CPM-diagrams

in C. That is, G sends the object XCPM of CPM(C) to the object X∗ ⊗X of C, and

the morphism (1 ⊗ ε ⊗ 1) ◦ (g∗ ⊗ g) of CPM(C) to the same morphism in C. It is

not too hard [Heunen and Boixo, 2011] to show that this functor is in fact symmetric

strong monoidal and preserves †.

2.4.2 Environment Structures

In this section we paraphrase Coecke and Perdrix [2010].

The graphical calculus for mixed states is a little irritating because we have to

draw all of the morphisms twice (precisely as we have to write ψ twice in |ψ〉〈ψ|). It

turns out that adding a partial trace to a category is roughly equivalent to working

with its category of completely positive maps. More formally, let Ĉ be a †-compact

category and Cpure a †-compact subcategory with the same objects and inheriting the

monoidal †-structure. (We think of Cpure as the image of C in CPM(C) under WP.)

2.4.6 Definition (Coecke and Perdrix). An environment structure for 〈Cpure, Ĉ〉 is a

chosen costate >A of each object A, denoted

>A := A

such that

f

f

=
g

g

⇐⇒ f =
g

(2.1)

A⊗B = A B (2.2)

A

=
A

(2.3)

>A is read as “tracing out”.

If, in addition, every morphism in Ĉ can be constructed by tracing out part of the

codomain of a morphism in Cpure, we say the environment structure has purification.
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Working with an environment structure is equivalent to applying the CPM con-

struction in the following sense:

2.4.7 Theorem. Let C be a †-compact category.

(i) If C has an environment structure then there is an invertible fully-faithful

identity-on-objects monoidal functor ξ : Ĉ → CPM(C).

(ii) The image of C ↪→ CPM(C) has an environment structure induced by the cap ε.

Proof. See e.g., Coecke [2008].

2.4.3 Lifting Structure to CPM

If we wish to work with mixed states and density operators – that is, if we wish to

work in CPM(C) for some †-compact category C – then we must first lift the structures

that we used in C to CPM(C).
We have already seen that †-compactness lifts through CPM. The next theorem

follows from the fact that WP is strict monoidal, but we write it out explicitly anyway.

2.4.8 Theorem. Classical structures in C induce classical structures in CPM(C).

Proof. Via the map

7→

7→

It is easy to check that this forms a classical structure in CPM(C).

2.4.9 Corollary. Copyable states in C induce copyable states in CPM(C).

We say that such a classical structure in CPM(C) is canonical. It is not a priori

clear that every classical structure must be canonical; that is, that the only classical

structures in a category CPM(C) are induced by classical structures in C. We shall

see in §2.5.5 that every classical structure in CPM(Rel) is canonical, and Heunen

and Boixo conjecture that this is also the case in FHilb.
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In a similar vein, it is easy to see that a unitary morphism U in C induces a unitary

morphism WP(U) = U∗ ⊗ U in CPM(C):

U U

U U

= =

U U

U U

As before, let us say that a unitary morphism in CPM(C) is canonical if it arises as

f∗ ⊗ f for some unitary f in C.

2.4.3.1 Non-canonical Structures in CPM(C)

The fact that C and CPM(C) are distinct categories opens up the possibility of quan-

tum structures existing in the latter which did not originate from the former. It is

not clear how to interpret such non-canonical features physically; this is a topic of

current research.

We’ll see in §2.5 that all classical structures and all unitaries in CPM(Rel) are

canonical. It follows from the work of Nayak and Sen [2007] that all trace-preserving

unitaries in CPM(FHilb) are canonical, and Heunen and Boixo [2011] conjecture

that all classical structures are as well.

We shall consider physical measurements to be induced by classical structures in

the base category C – not arbitrary classical structures in CPM(C). Since our prime

example is taken from Rel, this point is moot – but it is important to make the

distinction if we want to interpret the definition in a general †-compact category.

2.4.4 Classical Channels

We can consider the partial trace operation as “entangling with the environment”, or

“broadcasting”. A quantum channel which we entangle with the environment is then

just a classical channel.

2.4.10 Definition (Coecke and Perdrix). LetX be a classical structure. The classical

channel of type X is the morphism CX : X → X defined by

CX :=
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We say a copyable state ψ is normalised if

ψ
= = idI

Classical channels are so called because they transmit normalised copyable states,

called (pure) classical states :

ψ

=
ψ ψ

= ψ

More generally, a (mixed) classical state of a classical channel C is a state transmitted

by C.

A measurement takes a quantum channel as input and provides a quantum channel

and a classical channel as output:

If in addition we trace out the quantum system, we get a destructive measurement :

But applying the spider theorem lets us rewrite this to just the classical channel,

so that passing quantum data through a classical channel is precisely performing a

measurement.

It is easy to check that ⊥ := >† is a mixed classical point of any classical structure.

Following Coecke [2008], we call it the maximally-mixed state.

2.5 A Diversion into Rel

One of the benefits of abstracting away from Hilbert spaces to †-compact categories

is that we can now interpret all of the “quantum” structures we know and love

in different contexts. Rel is a particularly interesting toy category, because of its
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similarity to Set: although it is not too challenging to grasp relations intuitively,

they still provide a model for such structures.

We have seen a few examples of graphical structures in Rel already. A convenient

feature is that the †-functor is relational converse, which can be explicitly constructed

in a way that the adjoint of Hilbert spaces cannot.

2.5.1 Classical Structures

Classical structures are given by abelian groupoids [Pavlovic, 2009, Heunen et al., to

appear]. These are strange beasts – commutativity of composition is not a common

property. But it is clear that it must follow from symmetry of m:

σ ◦m† = {〈(h, g), (g, h)〉 : g, h ∈ G} ◦ {〈gh, (g, h)〉}

= {〈gh, (h, g)〉 : g, h ∈ G}

= m† = {〈gh, (g, h)〉 : g, h ∈ G}

In particular, if x
h−→ y

g−→ z then

〈gh, (h, g) ∈ σ ◦m†

=⇒ 〈gh, (h, g) ∈ m† (m† = σ ◦m†)

=⇒ h ◦ g exists and h ◦ g = g ◦ h

=⇒ x = y = z

The inducing groupoids therefore look like

•

...

•

...
· · ·

•

...

i.e. like disjoint unions of groups, with group structures chosen independently on the

sets of some partition of X.

As a concrete example, consider the two-element set II := {0, 1}. We can consider

this as the morphism set of the trivial abelian groupoid

• •

0 1
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The composition rule is defined in the only possible way: 0 ◦ 0 = 0 and 1 ◦ 1 = 1; this

yields the “copying” classical structure

δ : II→ II⊗ II ::

{
0 ∼ (0, 0)

1 ∼ (1, 1)
and ε : II→ I ::

{
0 ∼ ∗
1 ∼ ∗

(Indeed, any object X of Rel has a classical structure given by the trivial abelian

groupoid
⊔

x∈X{∗}, whose multiplication is given by copying x ∼ (x, x) and for which

every element is a unit.)

There is another abelian groupoid with two morphisms, namely Z2:

•

0

1

This gives rise to a different – ‘switching’ – classical structure on II:

δ : II→ II⊗ II ::

{
0 ∼ {(0, 0), (1, 1)}
1 ∼ {(0, 1), (1, 0)}

and ε : II→ I :: 0 ∼ ∗

2.5.2 Classical points

The abelian groupoid structure on a set induces a partition, by compatibility with

respect to composition. We can write down the copyable and unbiased states of a

classical structure with respect to this partition.

2.5.1 Lemma. Let (X,m, u) be a classical structure in which X is partitioned by

composability with respect to m into disjoint abelian groups as

{x11, x12, . . . , x1n}
⊔

{x21, x22, . . . , x2n}
⊔

...

{xn1, xn2, . . . , xnn}
⊔

Then the classical points for X are exactly the rows Xi, and the unbiased points are

the sets containing precisely one element from each Xi.

Proof. See Evans, Duncan, Lang, and Panangaden [2009].
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2.5.3 Complete Positivity

A relation R is positive iff it is S† ◦S for some S. Let R be positive and aRb, so that

there is some c with aScS†b. Then bScS†a, so R is symmetric. Similarly, R must be

semi-reflexive: if aRb then aScS†b, so aScS†a, so aRa. In fact:

2.5.2 Proposition. Positive morphisms in Rel are precisely semi-reflexive, symmet-

ric relations.

Proof. One direction is done. Conversely, let R : X → X be semi-reflexive and

symmetric, and – remembering that R itself is a set of pairs – define S : X → R by

x
S∼ (x, y) and x

S∼ (y, x) ∀x, y ∈ R.

It is clear that S is a relation, and S† = {
(
(x, y), x

)
: (x, y) ∈ R} so that

S† ◦ S =
{

(x, y) : ∃(z, w) ∈ R : xS(z, w)S†y
}
.

We prove that this relation is in fact equal to R.

• If x(S† ◦ S)y, there is (z, w) ∈ R with xS(z, w)S†y. Since xS(z, w) we have

either x = z or x = w; since R is symmetric we may take wlog x = z. Since

yS(z, w) we have either y = z or y = w. If y = w then (x, y) = (z, w) ∈ R and

we are done. Otherwise, by semi-symmetry (z, w) ∈ R =⇒ (z, z) ∈ R, and

(x, y) = (z, z) ∈ R. Either way, xRy.

• If xRy then (x, y) ∈ R, so xS(x, y)S†y.

This demonstrates containment in both directions, so R = S† ◦ S is positive.

2.5.3 Corollary. A relation R : A⊗ A→ B ⊗B in CPM(Rel) is completely positive

just when for all a, b, c, d

(a, b)R(c, d) ⇐⇒ (b, a)R(d, c) and

(a, b)R(c, d) =⇒ (b, b)R(d, d)

Given a relation R, we form the associated morphism in CPM(Rel) by simply dou-

bling R 7→ R⊗R. So the partial trace

R

C

A

=
R R

C

A

C

A

=
{(

(a, a), (c, c)
)

: (∃b)a R∼ (b, c)
}
,

27



2.5. A DIVERSION INTO REL CHAPTER 2. CQM

as we might hope, just “forgets” one of the coordinates of the output tuple: it is

(related to1) the canonical projection π1 arising from the product structure of ⊗.

2.5.4 Classical Channels

The explicit definition of the partial trace lets us work out classical channels in Rel.

Recall that • divides the underlying set into partitions by composability.

x

f
g

= {(x, f) : (∃g) fg = x}

= {(x, f) : x and f are in the same partition}

Indeed, every f in the same partition as x admits a g with fg = x (namely, g := f−1x);

moreover, if fg = x then by definition f is in the same partition as x.

The copyable states of a classical structure are exactly the sets of its partition. We

now see that the mixed classical states – the states transmitted by C – are precisely

disjoint unions (or coproducts) thereof. The maximally-mixed state ⊥A = {(∗, a) :

a ∈ A} is certainly one of these, as are all of the copyable states.

2.5.5 CPM(Rel)

Mixed states in Rel – states in the category CPM(Rel) – are particularly pleasant

to work with, due in part to the two following propositions.

2.5.4 Proposition. In CPM(Rel), every classical structure is canonical.

Proof [Heunen and Boixo, 2011]. Since classical structures in Rel are given by mul-

tiplication of abelian groupoids, the condition for complete positivity in Rel becomes

(a, b) · (c, d) = (e, f) ⇐⇒ (c, d) · (a, b) = (f, e)

(a, b) · (c, d) = (e, f) =⇒ (c, d) · (c, d) = (f, f)

Taking (a, b) = 0 implies that (e, f) = (c, d) = (c, d) · (a, b) = (f, e), so that e = f

– that is, the classical structure is the diagonal copy of a classical structure in Rel.

This is precisely the condition that it be canonical.

1Of course, it is not π1 “on the nose”: we must include the left unitor to remove the extra tensor

unit, and take into account the doubling action of CPM. Here we mean that B⊗C >⊗1−−−→ I⊗C λ−1
c−−→ C

is the image of B ⊗ C π1−→ C under CPM.
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2.5.5 Proposition. In CPM(Rel), every unitary is canonical.

Proof. Recall from Theorem 2.4.2 that a completely positive morphism R : A∗⊗A→
B∗ ⊗B is a morphism

R

BB∗

A∗ A

such that (ε ⊗ 1 ⊗ 1) ◦ (1 ⊗ R ⊗ 1) ◦ (1 ⊗ 1 ⊗ η) is positive. In particular, since

the †-functors of CPM(Rel) and Rel coincide, a unitary morphism in CPM is also

unitary in Rel. Unitary relations are precisely bijections, so that R is a bijection

satisfying for all a, b, c, d

R(a, b) = (c, d) ⇐⇒ R(b, a) = (d, c) (2.4)

R(a, b) = (c, d) =⇒ R(b, b) = (d, d) (2.5)

For any b, let (x, y) = R(b, b). Then (y, x) = R(b, b) = (x, y) by 2.4, so x = y. Writing

π1 : (x, y) 7→ x and π2 : (x, y) 7→ y, define S(x) to be the common value of π1◦R(x, x)

and π2 ◦R(x, x).

We claim R(a, b) =
(
S(a), S(b)

)
; that is, R = S × S. Indeed, suppose R(a, b) =

(c, d). Then
(
S(b), S(b)

)
= R(b, b) = (d, d) by definition and 2.5, so d = S(b). By

2.4 R(b, a) = (d, c), so that
(
S(a), S(a)

)
= R(a, a) = (c, c) and c = S(a). Thus

R(a, b) = (c, d) =
(
S(a), S(b)

)
, proving the claim.

Finally, we must show that S is a bijection i.e. a unitary of Rel. It is clear

that it is a function. Given a and b such that S(a) = S(b), we have that R(a, a) =(
S(a), (S, a)

)
=
(
S(b), S(b)

)
= R(b, b), so (a, a) = (b, b) and a = b; hence S is

injective. Given a, since R is surjective there is (x, y) such that (a, a) = R(x, y) =(
S(x), S(y)

)
, so x = y and S(x) = a; hence S is surjective.

Since S is an injective, surjective function with R = S × S, the proposition is

proved.
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2.5.6 CPM(FHilb)

Similar results seem to hold for FHilb, though we shan’t need them.

2.5.6 Theorem. All trace-preserving unitaries in CPM(FHilb) are canonical.

Proof. Nayak and Sen [2007] show that every completely-positive trace-preserving

(CPTP) map with CPTP inverse is of the form U(−⊗ ω)U † for some unitary U and

ancilla ω; the ancilla is used to introduce the necessary extra dimensions. Since a

unitary map must be between spaces of the same dimension2, their result specialises

to state that every completely positive, trace preserving, unitary map is given by

conjugation by some unitary: ρ 7→ UρU †. By map-state duality, this says that every

CPTP unitary in CPM(FHilb) is of the form U∗⊗U for some U ; that is, that every

unitary is canonical.

Nayak and Sen use the operator-sum representation of a quantum operation

E(ρ) =
∑

k E
†
kρEk, which requires that

∑
k E
†
kEk = I; that is, that E preserves

trace. The proof therefore does not directly lift to the case
∑

k E
†
kEk ≤ I of non-

trace-preserving unitaries. It would be interesting to investigate whether the claim is

indeed true in that case.

It is not yet known whether an analogue of the result on classical structures holds,

although Heunen and Boixo conjecture it to be the case.

2.5.7 Conjecture. All classical structures in FHilb are canonical.

We have now prepared all of the background and tools that we shall need in order to

formulate and prove results about commitment protocols. Without further ado, we

move on.

2U is invertible, so has trivial kernel i.e full rank and the rank-nullity theorem applies.
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Chapter 3

Commitment Algorithms

Commitment algorithms are a cryptographic primitive akin to a “delayed transfer”,

motivated by the following scenario.

Alice is a financial speculator with a secret trading algorithm. She

wishes to sell Bob market predictions, but Bob is unconvinced as to her

reliability. Alice presents her prediction history as evidence of her accu-

racy, but Bob points out that since those predictions are not useful since

she could have invented them ex post facto. He suggests instead that Al-

ice make him a new prediction about tomorrow’s market data, but Alice

refuses to reveal that information for free.

Alice and Bob consult the Guru, who tells Alice to buy a safe, lock

some predictions for tomorrow inside and give it to Bob. The next day,

Alice gives Bob the combination to the safe, proving that her prediction

was reliable. Alice and Bob go on to establish a profitable contract and

begin the next housing bubble.

What has the Guru invented? Using the safe, Alice can send a message to Bob which

he cannot read until Alice later sends him a key to open it. In other words, Alice can

generate from any message a pair of tokens 〈safe, key〉 such that

(i) knowing safe and key reveals message,

(ii) knowing safe without key provides no information about message, and

(iii) the only message safe unlocks to is the original message.

A protocol is sound if it satisfies (i), concealing if (ii) and binding if (iii).

Such safes (are believed to) exist as classical cryptographic algorithms. But the

analogy to physical safes holds further: Alice’s data is only secure as long as we
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assume Bob cannot open the safe, and this assumption is based on a raft of heuristics

about the hardness of steel, the availability of large drills, and so on. Indeed, if Bob

had enough time he could simply try every combination and we can certainly not

guard against this! We say that a protocol is conditionally secure if it is secure under

assumptions on the computational power of an adversary.

Bennett and Brassard [1984], among others, showed that quantum mechanical

systems can give rise to cryptographic algorithms that are secure even without the

assumptions on Bob’s resources. Indeed, the protocol for quantum key distribution

(and hence secure communication) was provably secure using only the laws of physics.

Communicating using such a protocol means that we do not have to worry about the

computational tractability of our algorithms, or the abilities of an unknown adversary.

One might hope that a similar algorithm exists for bit commitment. Sadly, it

was shown by Mayers [1997] (and independently by Lo and Chau [1997]) that it does

not: although the same technique as key distribution does give rise to a potential bit

commitment algorithm, it is vulnerable to an attack based on entanglement. Clifton

et al. [2003] then demonstrated that – under some assumptions – the impossibility of

secure bit commitment is equivalent to the physical existence of entangled states.

We will investigate unconditionally secure bit commitment in the context of †-
compact categories. Remember that for unconditional security we have to assume that

Bob knows all the details of the algorithm and that he has unlimited computational

power available to him. In particular, we assume that he can implement any unitary

transformation on any quantum system.

3.1 A First Try

It is worth considering a few initial ideas to see whether they work.

• Alice could simply send Bob her bit as the message.

This is certainly sound and binding. But it is obviously not concealing.

• Alice could send Bob gibberish, and then send her bit as the key.

This is again sound, and clearly concealing. It is not binding: Alice can invent

whatever she likes to send to Bob and he cannot confirm that it was her original

data.

• Alice could encrypt her bit with an information-theoretically secure cipher, and

send that as the safe. The key would be the decryption key.
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Shannon [1949] proved that the ⊕ cipher which simply takes the bitwise XOR

of the message and the key is concealing: knowing the message provides no

information about the key. It is not binding, though: Alice can easily invent

a new key that will decrypt an arbitrary ciphertext to an arbitrary plaintext.

(Indeed, this is the foundation of its security: since any ciphertext could have

come from any plaintext with equal probability, there can be no reason to prefer

any particular decryption.)

• Alice could encrypt her bit with an asymmetric cipher such as RSA, and send

that as the safe. Again, the key would be the decryption key.

This time we are getting somewhere: binding asymmetric ciphers do exist, in

the sense that finding a key that decrypts a ciphertext to a given plaintext

is as hard as breaking the cipher. Unfortunately, the problem here is that the

security is no longer information-theoretic, just conditional: Bob could certainly

decrypt the message given enough time, and hence reveal Alice’s commitment

prematurely.

• Alice can choose a number 0 ≤ x ≤ p− 1 as her commitment, pick a generator

g of Zp and send c := gx as the safe. The key is x.

This is another conditionally-secure protocol, this time relying on the in-

tractability of the discrete logarithm problem. It is sound and binding but

only conditionally concealing.

• Alice could encode her bit as the basis of a qubit storing a random bit, and

send that to Bob. The key will be her bit.

The data stored by the qubit must be random: since we assume that Bob knows

all the details of the protocol, it cannot be fixed in advance.

This protocol is certainly sound, and can be verified to be concealing. To do

so, we compute the density matrices of the ensembles caused by Alice’s random

choice, and note that they are independent of her choice of bit. It certainly

appears to be binding: if Alice sends a single qubit to Bob she has no way to

access it later. But the existence of entanglement means that we must examine

this claim more carefully!

Two facts are important to note: firstly, the protocol takes random input as well

as the committed bit, and secondly, this means that its success is probabilistic.
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We can therefore not achieve unconditional security according to our definition,

although we can come arbitrarily close by iterating the protocol.

3.1.1 Classical Bit Commitment

It is intuitive that unconditionally secure classical bit commitment is impossible,

essentially because Alice can send (encrypted) information to Bob that

guarantees the truth of an exclusive classical disjunction (equivalent to

her commitment to a 0 or a 1) only if the information is biased towards

one of the alternative disjuncts (because a classical exclusive disjunction

is true if and only if one of the disjuncts is true and the other false).

No principle of classical mechanics precludes Bob from extracting this

information. So the security of the protocol cannot be unconditional and

can only depend on issues of computational complexity. (Bub [2004])

To formalise this intuition would require us set up a framework for classical cryptog-

raphy, with communication channels, messages and so forth. This would take us on

rather a tangent from the main body of the dissertation.

Conditionally secure classical bit commitment is certainly possible – we’ve given

some examples above – and is used as a cryptographic primitive in various algorithms.

For example, it can be used in zero-knowledge proofs to allow the prover to submit

all her information upfront, and only choose what to reveal later.

3.1.2 BB84

The latter protocol mentioned above was first proposed by Bennett and Brassard

[1984]. They pointed out a flaw: if we allow Alice to cheat, we may not assume that

she honestly sends as her message a qubit encoded in a basis state. If she instead

sends part of an entangled system, then she can “access” Bob’s qubit even after she

has sent it to him, since by applying a local unitary to her ancilla she changes the

joint state of the system. Although this does not inherently allow her to change the

state of Bob’s qubit directly – that would entail faster-than-light information transfer!

– it does mean that the protocol is not obviously binding.

In this case, Alice can indeed cheat. To do so, suppose the two bases she might

use are {|0〉, |1〉} and {|+〉, |−〉}. Then she can prepare the joint state

|Φ〉 := |00〉+ |11〉 = |+ +〉+ | − −〉
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and send one of its component systems as her commitment. When she later wishes to

unveil it, Alice can measure her ancilla system in either basis and produce the result

as an unveil token Bob will accept.

A priori this does not seem an insurmountable flaw with quantum protocols in

general – just with this particular simple one. In general, Alice cannot change the

state of Bob’s qubit in a controlled fashion, since this would amount to faster-than-

light information transfer; she can only cause the collapse of the state, and this is a

random process. The attack on BB84 therefore seems to rely on poor design of the

protocol, not an intrinsic property of quantum mechanics. Could there be a more

complicated scheme which avoids the entanglement attack Alice can use above?

3.2 Formalisation

Let’s formally define what we mean by a commitment scheme. We present what we

think is the right definition, and follow it with a discussion as to why.

3.2.1 Definition. A (bit) commitment scheme in a pair of †-compact categories

〈Cpure, C〉 forming part of an environment structure > (equivalently, the image under

CPM of a †-compact category) is specified by

• two joint pure states H,T : I → A⊗B in Cpure

H

BA

and
T

BA

• a unitary morphism unveil : A⊗B → A⊗B in C, and

• a classical structure on A⊗B with distinct named classical points Ĥ and T̂ .

It is sound if

H

unveil

BA

=

Ĥ

A⊗B

T

unveil

BA

=

T̂

A⊗B
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It is concealing if (∗), and binding if there is no unitary U for which (†).

H

B

=

T

B

(∗)

H

U

A B

=

T

BA

(†)

There are several things to explain here. First and foremost, such a structure

can of course be used to perform bit commitment in the usual sense. To do so,

Alice prepares |H〉 or |T 〉 depending on the value of her bit, giving her two (possibly

entangled) quantum systems. She sends the latter to Bob to perform the commitment,

and the former to Bob to allow him to verify it. Bob applies the unitary unveil and

measures in the basis of the specified classical structure; since we know that Ĥ and

T̂ are copyable states, Bob can identify them with certainty by measurement.

In FHilb Interpreting the definition in ordinary quantum mechanics is easy: the

graphical language was developed exactly for this reason! States correspond to states

and unitaries to unitaries, so that the axioms’ interpretations become exactly what

we would like. We’ll look at this in a little more detail in the next section.

CPM We have phrased the definition in terms of environment structures and pure

states, because we feel they are more intuitive to use. Note, however, that the use

of environment structures (partial traces) means that we are implicitly working in a

category CPM(C). For it to make sense there, we use the fact that the embedding

WP : C → CPM(C) is strict monoidal, and hence that classical points, classical

structures and unitary morphisms all lift directly. This is also why we require C to

be †-compact. (In the language of quantum mechanics, we use the fact that a pure

state |ψ〉 can be regarded as the mixed state |ψ〉〈ψ|, or “|ψ〉 with probability 1.”)

Termination There is a interesting subtlety, which is that we have required there to

be some point in time after the commitment has been completed but before the unveil

phase has begun. That is, we require the commitment process to terminate after some

finite time. It turns out [Kent, 1999] that there are in fact protocols – indeed, classical
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protocols – which do offer an unconditionally secure bit commitment, in the sense

that they are sound, binding and concealing; the two caveats are that a) they require

the use of special relativity, and b) they require an indefinitely-long sustain phase

in which messages are continually exchanged between the two parties. We shall not

consider such protocols to be bit commitment in the usual sense, mentioning them

only as an indication of other work in the area.

3.2.1 Binding

Do the categorical conditions correspond to our intuitions about the security of the

protocol? Our definition of binding can be shown equivalent to the intuitive one that

“Alice cannot change her commitment afterwards” – that there is no state she can

prepare that allows her, by means of a local unitary, to delay choosing her committed

bit until the unveil phase. For suppose there were a state cheat and unitaries RH and

RT with the desired property:

cheat

RH

unveil

=

H

unveil

cheat

RT

unveil

=

T

unveil

Since unveil is unitary it is monic, so

H

RH

RT

=

cheat

RT

=

T

But then RT ◦RH would be a unitary allowing Alice to change from H to T , contra-

dicting our definition of binding.
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The converse is trivial: if a protocol is not binding then there is some U contra-

vening the definition; then Alice may choose cheat := H, RH := id and RT := U to

cheat in the above manner. Hence the two concepts are equivalent.

3.2.2 Concealing

Concealment implies that Bob cannot extract any information from the quantum

system he is given that enables him to determine the value of Alice’s bit. For the only

way of extracting information from a quantum system is to perform a measurement,

and the density matrix determines the value of such. Since the density matrix does

not depend on Alice’s choice of bit, neither can any information Bob extracts.

We might ask whether this condition corresponds to our intuition about con-

cealment in the same way that binding does. Indeed, we could certainly formulate

an intuitive definition of concealment, along the lines of “if Bob measures the the

first system before receiving the second, he gets no information”. This would mean,

graphically, that

H

=

T

There are two problems with this condition, though. Firstly, this only considers mea-

surement in the basis of •, and we would like to prevent Bob from gaining information

regardless of in which basis he measures. We should thus permit him to perform an

arbitrary unitary transformation before taking the measurement.

More seriously, though, there is no reason that these two systems should be equal,

because we have not done anything with Alice’s unveil token. It is certainly not the

case that we should require the unveil token to be independent of the committed

state! We cannot delete it; there is no way to delete an arbitrary quantum system.

The point is that we wish to forget it; that is, sum over all of its possible values –

and this operation is precisely the partial trace >.

Note that the condition

H

U
=

T

U
for all U
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is implied by our definition. If • has enough nonzero-trace1 classical points (i.e. f = g

as soon as f ◦ x = g ◦ x for all classical points x with > ◦ x 6= 0) then this condition

is equivalent to ours: classical points are copied by •, so we may choose U = id to

deduce

H

x

x

=

T

x

x

for all x. Since >◦x 6= 0 it is invertible – all nonzero scalars are – and hence it can be

cancelled. It follows that 〈x| ◦ TrA |H〉 = 〈x| ◦ TrA |T 〉 for all nonzero-trace classical

points, and hence TrA |H〉 = TrA |T 〉.

3.2.2.1 Density matrices

To see that this really does correspond to the usual density-matrix formulation, let’s

expand out the definition of the environment structure. By the second axiom of

environment structures,

H =
T

iff

H H
=

T T

which is equivalent by a simple transposition to

H

H

=
T

T

Written horizontally, this says that trA |H〉〈H| = trA |T 〉〈T |, as we wanted.

1The usual definition of “all classical points” does not specifically exclude the case > ◦ x = 0. In
FHilb, however, 0 = > ◦ x = Tr |x〉〈x| =

∑
x2i iff |x〉 = 0, and 0 does not help to distinguish states.

Since the definition was abstracted from FHilb anyway, we take the liberty of excluding zero.
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3.2.3 Commitment to an arbitrary input

We have restricted to bit commitment here: that is, Alice can choose either H or T as

her message. It is certainly sensible to think about a commitment scheme which takes

arbitrary input or even quantum input. Such a scheme could perhaps be modelled

by replacing the states |H〉 and |T 〉 with a morphism

commit

A

CB

For such a scheme to be useful, Alice would need a way to encode classical data in

the input quantum system – otherwise it could not actually be used for commitment!

This means that we would require a classical structure on A. Moreover, the classical

structure should have at least two distinct copyable states |h〉 and |t〉, since otherwise

there is only one message to which Alice can commit.

In that case, defining |H〉 := commit ◦ |h〉 and |T 〉 := commit ◦ |t〉 reduces such

schemes to bit commitment schemes à la Definition 3.2.1. (Intuitively, if Alice can

commit to an arbitrary non-trivial quantum system then she can encode a bit in that

system, and hence commit to a bit.)

3.2.4 Commitment to a mixed state

Our definition of commitment is to a pure state. One could also consider the weaker

notion of commitment to a mixed state, in which the chosen states |H〉 and |T 〉 are

no longer pure classical. This would allow us to formulate, for instance, Bennett and

Brassard’s protocol in this framework, since we may regard a pure state chosen by

random coin flip as the mixed state comprising 50% of each.

Physical measurements, however, only apply to pure states: the result of measur-

ing a mixed state is a random variable, even if it is guaranteed to be a mixture only of

basis states. Thus, to incorporate this style of commitment into the framework would

entail giving up determinism. Instead, our definitions of security – sound, binding,

and concealing – would have to be rephrased in terms of a parameter n indicating the

number of iterations of the protocol, and would require that by varying n we could

cause their probability of success to approach 1.
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Since we’ll see that even commitment to a pure state is possible in Rel, this

restriction is not important for the moment. Nevertheless, we mention it again in

§4.1 in the context of the CBH theorem.

3.2.5 Other communication frameworks

Our model of a cryptographic protocol is about as simple as it can be: Alice prepares

a joint state on two systems, sending one to commit and the other to unveil. There

are certainly other models to consider. For example, Lo and Chau [1997] have both

participants operate on a single system, exchanging it back and forth repeatedly.

3.3 Impossibility

It is a well known fact about quantum mechanics – in the von Neumann axiomatisa-

tion – that bit commitment is impossible. The usual proof is based on the following

facts about Hilbert spaces.

3.3.1 Theorem (Singular value decomposition). Let f : H1 → H2 ∈ Mor(FHilb).

Then f = H1
V−→ H1

Σ−→ H2
U−→ H2 for some diagonal Σ and unitary U and V .

3.3.2 Corollary (Schmidt decomposition). Let H1 and H2 be Hilbert spaces of dimen-

sions m > n respectively. For each |v〉 ∈ H1⊗H2 there exist bases {u1, . . . , un} ⊂ H1

and {v1, . . . , vm} ⊂ H2 such that

|v〉 =
∑
i

√
pi(|ui〉 ⊗ |vi〉)

3.3.3 Theorem (Uniqueness of spectral decompositions). The decomposition of an

operator into a sum of projectors onto eigenspaces is unique up to permutations of

the bases of said eigenspaces. In particular, if each projector has rank 1 then the

decomposition is unique.

Proofs. Theorem 3.3.1 is a standard result of matrix analysis; a proof can be found

in e.g., [Horn and Johnson, 1985, Theorem 7.3.5]. The Corollary can be deduced

graphically; we do so in §3.3.1. Theorem 3.3.3 was mentioned previously.

3.3.4 Theorem (Mayers, Lo and Chau). Bit commitment in FHilb is impossible.

Remark. We prove that no concealing protocol can be binding. If Alice wishes to

cheat, she sends Bob halves of entangled qubit pairs, and stores the other halves.

The concealment condition, together with singular value decomposition, allows us to

construct a unitary witnessing non-binding.
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Proof. This proof was put together by Mayers [1997], and Lo and Chau [1997], al-

though for the part we are interested in the main result is from [Hughston et al.,

1993, §3.3].

Let A ⊗ B be the protocol’s Hilbert space, containing Alice and Bob’s qubits

(and ancillas, if required). Let |H〉 and |T 〉 be the joint states of the entire system

corresponding to Alice’s choice of bit. Taking the Schmidt decomposition gives

|H〉 =
∑
i

√
σi|ai〉 ⊗ |bi〉 |T 〉 =

∑
i

√
τi|ci〉 ⊗ |di〉.

Tracing out over Alice’s system gives Bob’s density matrices

TrA |0〉〈0| =
∑
i

σi|bi〉〈bi| TrA |1〉〈1| =
∑
i

τi|di〉〈di|

For the protocol to be concealing, these density matrices must be equal.

We claim that we can choose |di〉 such that σi = τi and |bi〉 = |di〉. If the

decompositions are non-degenerate – that is, if each eigenvalue has multiplicity 1 –

then this follows from uniqueness of spectral decompositions. Otherwise, we note that

the eigenspaces have the same dimension and that for each σi, {|dj〉 : σj = σi} form

a basis for the corresponding eigenspace, so that there is a unitary transformation

Ui :: |dj〉 7→ |bj〉 for each dj of eigenvalue σi. Putting these unitaries together gives

a change of basis to an alternative Schmidt decomposition in which the |bi〉 and the

|di〉 are equal.

Having established the claim, the local unitary |ci〉〈ai| :: ai 7→ ci, applied to Alice’s

system, changes the global state from |H〉 to |T 〉. This contradicts our definition of

binding.

Remark. In the “real world” we need to consider the case that the given density

matrices are only approximately equal, and bound the probability of cheating. This

is possible, but a bit harder; see Mayers [1997] for details.

3.3.1 The Schmidt decomposition

This proof was phrased in the language of Hilbert spaces, though we can lift parts of

it to a general †-compact category.

3.3.5 Definition. Suppose A admits a classical structure •. We say a state φ : I →
A⊗ A is diagonal if there is σ such that
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φ
=

σ

(In FHilb, σ would be given by
∑

i σi|i〉 for a basis |i〉 of A, and hence φ = δ(σ) =∑
i σi|i〉⊗|i〉 corresponds to a matrix which is diagonal in the induced basis on A⊗A.)

3.3.6 Definition. We say a †-compact category C is has singular value decompositions

if every morphism f : A→ B can be written as

f =
U

V

σ

for some state σ and unitaries U and V .

3.3.7 Corollary (Schmidt decomposition). For any state φ : I → A⊗ A,

φ
= φ =

U

V

σ =

σ

V U

(In FHilb, this says that for every state |φ〉 of a compound system there are bases

U |i〉 and V |i〉 – given in terms of the basis |i〉 from our classical structure – such that

|φ〉 = (U ⊗ V )
∑
i

copy |i〉 =
∑
i

U |i〉 ⊗ V |i〉;

in other words, that |φ〉 is diagonal in those bases. So it really is the Schmidt decom-

position as stated above.)

The Schmidt decomposition is easily seen to be equivalent to the singular value

decomposition, since – following the above argument in reverse – an SVD of f is given

by the morphism whose name is a Schmidt decomposition of pfq.

The first part of the proof of Theorem 3.3.4 can now be done graphically. Suppose

|H〉 and |T 〉 form part of a commitment scheme in FHilb. Take their Schmidt

decompositions
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H

=

σ

A B

T
=

τ

C D

and apply the previously mentioned form of concealment

σ

σ

A B

A B

=
τ

τ

C D

C D

which rewrites to

σ

σ
B

B

=
τ

τ
D

D

From here we would apply the uniqueness of spectral decompositions to deduce

B = D and σ = τ .

The existence of singular value decompositions seems an awfully strong condition

to place on a category. A good way to investigate it, therefore, is in our favourite toy

quantum category.

3.4 Commitment in Rel

3.4.1 Singular Value Decompositions

Remember that classical structures in Rel are (the morphism sets of) abelian

groupoids, so that the multiplication relates pairs (f, g) to their product fg and

the comultiplication relates points h to factorisations h = fg. The tensor unit is the
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one-point set – since tensor and Cartesian products coincide – so a state of X is a

relation R : {∗} → X i.e. a subset of X. Hence diagonal states in Rel are factori-

sations of subsets ; that is, subsets S of X ⊗X together with some T ⊆ X such that

(x, y) ∈ S iff xy ∈ T .

A diagonal relation is of the form

y

x

T =

T

xy

y x

y

x

x

and hence is given by a subset T ⊆ X, relating x to y just if yx = xy ∈ T .

A singular value decomposition in Rel is then a decomposition of a relation into

a bijection (unitary), followed by a factorisation of a subset, followed by another

bijection (not necessarily the inverse of the former).

3.4.1 Proposition. The cardinality of a diagonal relation (i.e., the number of points

it relates) is |T |·|X|, where T is the subset inducing the relation and X is the classical

structure.

Proof. Intuitively because the map x 7→ xy is a group isomorphism.

To count the number of pairs (x, y) with xy ∈ T , first fix t ∈ T . Then each x ∈ X
yields precisely one element y such that xy = t; namely, x/t. Moreover, if xy = t then

y = t/x, so every such pair is of this form. Thus there are |X| of them for each t.

We must check that we do not double-count the pairs; that is, if two pairs arise

from distinct t then they are distinct. But this is clear: if x1y1 = t1 6= t2 = x2y2 then

we cannot have (x1, y1) = (x2, y2), since then t1 = t2. It follows that

|{(x, y) : xy ∈ T}| =
∑
t∈T

|{(x, y) : xy = t}| = |T | · |X|.

A Schmidt decomposition in Rel is a decomposition of a subset S ⊆ X ⊗ X as

a factorisation of T ⊆ X up to permutations of X. That is, we would like bijections

f, g : X → X such that
(
f(x), g(y)

)
∈ S precisely when x · y ∈ T , where by − · − we

mean the multiplication induced by the classical structure (abelian groupoid) on X.

It is now not hard to prove their non-existence.

3.4.2 Theorem. Rel does not have singular value decompositions.
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Proof. Unitaries in Rel preserve cardinality. Hence a singular value decomposition of

a morphism would imply that it had cardinality equal to that of a diagonal relation;

in particular, divisible by |X|. This is not true in general.

(For a specific counterexample, consider the classical structure Z2 on the set {0, 1}.
The relation {0, 1} → {0, 1} :: 0 ∼ 0 has cardinality 1, which is odd, and hence cannot

admit a singular value decomposition.)

3.4.3 Corollary. CPM(Rel) does not have singular value decompositions.

Proof. We’ve already seen that classical points, classical structures and unitaries in

CPM(Rel) are all canonical. Hence a singular value decomposition in CPM(Rel)

induces a corresponding singular value decomposition in Rel, and this has just been

proved impossible in general.

3.4.2 Commitment

Theorem 3.4.2 tells us that the impossibility proof of Mayers, Lo and Chau for bit

commitment fails in Rel. In fact, it is not too hard to see from the definition that

commitment schemata do exist:

3.4.4 Theorem. Bit commitment is possible in Rel.

Sketch of proof. By construction. In Rel (identifying states with subsets), let

A := {1, 2, 3} B := {a, b}

H := {(1, a), (2, b), (3, b)} ⊂ A×B T := {(1, b), (2, a), (3, a)} ⊂ A×B.

Since H and T are disjoint and partition A × B, the classical structure given by

disjointly endowing A with Z/3Z and B with Z/2Z has precisely H and T as its classical

points, so that choosing unveil = 1A×B makes |H〉 and |T 〉 part of a sound commit-

ment protocol. Concealment holds since the partial trace over A is {a, b} for both

commitments, and the protocol is binding because functions applied to a state only

change the first coordinate, and there is no function f such that

{(f(1), a), (f(2), b), (f(3), b)} = {(f(1), b), (f(2), a), (f(3), a)}.

To formalise this proof we must lift all of the structures in Rel to CPM(Rel). Without

further ado:
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Proof. In Rel, let

A := {1, 2, 3}

B := {a, b}

H := {(1, a), (2, b), (3, b)} ⊂ A×B

T := {(1, b), (2, a), (3, a)} ⊂ A×B,

lifting to

A∗ × A = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2),

(2, 3), (3, 1), (3, 2), (3, 3)}

B∗ ×B = {(a, a), (a, b), (b, a), (b, b)}

H∗ ×H =
{(

(a, 1), (1, a)
)
,
(
(a, 1), (2, b)

)
,
(
(a, 1), (3, b)

)(
(b, 2), (1, a)

)
,
(
(b, 2), (2, b)

)
,
(
(b, 2), (3, b)

)(
(b, 3), (1, a)

)
,
(
(b, 3), (2, b)

)
,
(
(b, 3), (3, b)

)}
T∗ × T =

{(
(b, 1), (1, b)

)
,
(
(b, 1), (2, a)

)
,
(
(b, 1), (3, a)

)(
(a, 2), (1, b)

)
,
(
(a, 2), (2, a)

)
,
(
(a, 2), (3, a)

)(
(a, 3), (1, b)

)
,
(
(a, 3), (2, a)

)
,
(
(a, 3), (3, a)

)}

in CPM(Rel). Then

H

B

=

H H

B B

= {(β, β′) ∈ B ×B : (∃α ∈ A)(β, α) ∈ H∗ ∧ (α, β′) ∈ H}

= {(a, a), (b, b)}

= . . .

=
T

Moreover, for any function f , note that

H

f
=
{(
f(1), a

)
,
(
f(2), b

)
,
(
f(3), b

)}
6=

T
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and the lift of this statement via WP hence certainly holds as well, since all unitaries

are canonical.

Finally, choose unveil to be WP(1). Let • be the classical structure given by

disjointly endowing A with Z/3Z and B with Z/2Z, and WP(•) its lift to CPM(Rel).

Then WP|H〉 and WP|T 〉 are classical points of WP(•), completing the definition of

a sound, binding, concealing commitment protocol.

Remark. The restriction to unitary operators and measurements is second nature

in quantum mechanics, but counterintuitive in Rel: we cannot interpret the above

protocol as “send {a, b} to commit and {1, 2, 3} to unveil”. Indeed, to do so would

be to interpret the diagrams not in Rel but in Set, which is not even a †-compact

category. To understand this as a commitment protocol we must have faith in the

abstract definition.

We have shown that Rel has bit commitment schemes. What does this mean for us?

The next chapter attempts to answer that question.
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Chapter 4

Where Now?

We see that bit commitment à la Definition 3.2.1, though impossible in the category

FHilb, can be implemented in Rel. This is not entirely an agreeable state of affairs,

in light of Clifton et al.’s characterisation theorem. If we would like to treat †-compact

categories as an axiomatisation of quantum mechanics, we must quibble with one of

our postulates.

(1) We could strengthen our definition of a bit commitment scheme.

This seems wrong for two reasons. First, the axioms we have given correspond well

with our intuition and with the usual classical definitions. But more importantly,

they are sufficient for the proof in FHilb as they stand, so it is hard to make a

case that they are not strong enough.

(2) We could strengthen the axioms for our categories. We’ve already seen the begin-

nings of one such strengthening; namely, that adding singular value decomposi-

tions gets us a long way1 towards proving impossibility. This axiom, though, does

not seem justified: singular value decompositions are a consequence of the linear

structure of Hilbert spaces, which is not part of the categorical formulation.

Moreover, †-compact categories are already widely used as a sufficient model for

quantum phenomena, so that strengthening them would be a major change.

Only one avenue remains to us.

(3) We could dispute the characterisation of quantum theories.

For Clifton et al., a physical theory is specified by its C∗-algebra of observables.

Their theorem then states that any such theory is quantum iff it satisfies three

1The other result that we’d need is uniqueness of spectral decompositions, which it is not clear
how to categorify.
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information-theoretic axioms, one of which is the impossibility of secure bit com-

mitment.

If we wish to apply their theorem, we must show two things: firstly, that our

definition of bit commitment includes their particular protocol, and secondly

that the “generalised” quantum theories given by †-compact categories fit into

this class of physical theories. In other words, for it to apply to the quantum

theory of a †-compact category, we would have to give a sensible definition of

the “space of observables” of a †-compact category, and show that it comprises a

C∗-algebra.

4.1 Weaker concepts of security

Let’s look at the CBH commitment algorithm in a little more detail, in order to see

how it could fit in our framework. They first use non-commutativity of the C∗-algebra

(which, by their theorem, is equivalent to no-broadcasting) to deduce the existence

of distinct pure states ω1,2 and ω± such that

1/2(ω1 + ω2) = 1/2(ω+ + ω−).

It follows that the mixed states

ρH := 1/2
(
|ω1〉 ⊗ |ω1〉+ |ω2〉 ⊗ |ω2〉

)
ρT := 1/2

(
|ω+〉 ⊗ |ω+〉+ |ω−〉 ⊗ |ω−〉

)
have identical traces over each subsystem.

To commit to H, Alice flips a fair coin and produces either ω0 ⊗ ω0 or ω1 ⊗ ω1

depending on the result; to commit to T she does the same with ω+⊗ω+ and ω−⊗ω−.

She sends one half of the system to Bob and stores the other half.

To unveil the commitment, Alice reveals b and Bob performs a measurement in the

ω0,1 or ω± bases depending on its value. Finally, Alice performs the same measurement

on her half of the system and sends the result to Bob, who verifies that they agree.

As stated this does not fit into our definition of a commitment protocol, since

Alice performs a measurement after unveiling to verify her honesty. We can modify

it slightly, by including Alice’s measurement into the unveil phase. In the modified

protocol, Alice simply sends her half of the system to Bob as well as the bit b. Bob

then measures both halves in the basis corresponding to b; if they differ then Alice

must have been cheating.

However, if Alice cheats – for example, by preparing ω1ω+ + ω2ω− – there is

still a chance that Bob’s measurement outcomes will coincide, since measuring ω+
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in the {1, 2} basis will yield ω1 half of the time. Thus Bob cannot be certain of

Alice’s honesty after concluding the protocol. We get around this problem by noting

that although in a single iteration Alice might be able to cheat, by conducting the

protocol repeatedly the chance of doing so successfully approaches zero. This is a

different notion of security from that which we stated before: it is (much) stronger

than conditional security, but not quite as strong as what we called unconditional.

Since we want all of the commit stages to be completed before any unveil stage

begins, to iterate the protocol in practise Alice prepares a long string of photons and

sends them all as her commitment.

Mayers [1997] distinguishes between perfectly and unconditionally secure proto-

cols. He defines perfect security to be what we have called unconditional, and calls

a protocol unconditionally secure if it has an implicit parameter n and can be made

secure with probability p(n) → 1 as n → ∞. The usual impossibility results in fact

generalise to the probabilistic case; intuitively, if the partial traces over Alice are far

apart from each other then Bob receives too much information, and if they are too

close together then Alice’s cheating strategy works with high probability. Clifton

et al.’s above protocol is unconditionally secure as defined by Mayers, but of course

not perfectly secure.

It is easy to modify our definition of commitment to allow |H〉 and |T 〉 to be mixed

states. However, since measurements of mixed states – even mixtures of classical

points – are inherently probabilistic, we can no longer expect our security conditions

to hold. In particular, we expect

• perfect soundness: if both Alice and Bob are honest then the measurements will

be correlated with certainty

• perfect concealment: trA(ρH) = 1/2(ω1 + ω2) = 1/2(ω+ + ω−) = trA(ρT )

• unconditional binding: Alice may attempt to cheat, but then her measurement

will differ from Bob’s with p ≥ 0.5 independently for each qubit

In order completely to characterise the type of commitment used in the CBH the-

orem, we would need to generalise our definition of security to allow for probabilistic

success as per Mayers’s definition. Having done so, we would hope to formalise the

antecedent of the third condition of CBH in terms of the “abstract C∗-algebra of

observables” of our category, and hence progress towards a categorical version of the

theorem.
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4.2 Conclusion

The search for the right language in which to conduct quantum mechanics is ongoing.

Part of this search involves deciding when a new formalism pins down quantum me-

chanics as we understand it, and bit commitment, via the CBH theorem, is one piece

of this. Categorical quantum mechanics is one such formalism, particularly conve-

nient for describing algorithms because they can be written in terms of the sequence

of operations from which they are built and omitting the ‘implementation details’.

But it is more than this: by abstracting away from Hilbert spaces to categories of

processes, we provide a true generalisation from ordinary quantum mechanics. After

this abstraction, we can still pin down some properties of quantum mechanics as we

know it, in the spirit of Clifton et al.. In this vein, we ask whether the impossibility

of bit commitment is a property specific to Hilbert spaces or whether it is true in any

†-compact category.

In this dissertation, I have argued the former, via a definition of bit commitment in

terms not of Hilbert spaces but of interacting processes. This definition reduces to the

usual notion of commitment in FHilb but something rather different in Rel. The fact

that commitment schemata exist there demonstrates that their impossibility requires

more than just †-compactness, and indeed we have seen that the usual impossibility

proof uses in addition the linear structure of Hilbert spaces.

We are led naturally to the question “what does forbid bit commitment in FHilb?”

In CBH’s C∗-algebraic formulation, the axiom they use is the physical realisability

of entangled states. The phrasing of this axiom is a little delicate, because the for-

mal existence of entangled states follows from the algebraic structure. Nevertheless,

carefully stated, it is equivalent to the impossibility of bit commitment.

A natural direction for future work, linking in with the CP∗ construction of Coecke,

Heunen and Kissinger, is to investigate this equivalence in terms of the abstract C∗-

algebras of a general †-compact category C. Success would lift it to a result about

commitment protocols in CP∗(C), of the same flavour as CBH’s but entirely at a

categorical level.
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