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Abstract

We introduce a graphical framework for Bayesian inference that is sufficiently gen-
eral to accommodate not just the standard case but also recent proposals for a theory
of quantum Bayesian inference wherein one considers mixed quantum states rather
than probability distributions as representative of degrees of belief. The diagrammatic
framework is stated in the graphical language of symmetric monoidal categories and of
compact structures and Frobenius structures therein, in which Bayesian inversion boils
down to transposition with respect to an appropriate compact structure. In the case of
quantum-like calculi, the latter will be non-commutative. We identify a graphical prop-
erty that characterizes classical Bayesian inference. The abstract classical Bayesian
graphical calculi also allow to model relations among classical entropies, and reason
about these. We generalize conditional independence to this very general setting.

1 Introduction

In this paper we introduce a graphical calculus and corresponding axiomatics in terms of
monoidal categories for a very general notion of Bayesian inference. It enables one to
reason at a highly abstract level, about theories more general than ‘classical’ Bayesian in-
ference, including earlier proposals for quantum Bayesian inference by Leifer [9] and by
Leifer and Poulin [10]. The graphical language exploits the two-dimensional diagrammatic
representation to distinguish givens and conclusions. Bayesian inversion is diagrammatic
transposition in terms of thecompact structures[7]. Frobenius structures[3] will be our
vehicle for expressing notions such asconditionalizationand relations ofconditional in-
dependence. ‘Classical’ Bayesian inference is characterized in terms of a condition of
commutativity for the Frobenius structure and therefore this structure is key to expressing
Bayesian updatingin the specific case of classical Bayesian inference.

An abstract representation of Bayesian inference allows one to identify which aspects
of the standard probability calculus are merely conventional. For instance, in the context
of R. T. Cox’s derivation of the rules of classical Bayesian inference [6], the standard
assumption that one’s degree of belief about a propositiona ought to be represented by
a numberp(a) between 0 and 1 and that onemultipliesa conditional probability with a
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marginal to get the joint probability, i.e.p(a, b) = p(a|b)p(b) is seen to be a consequence
of a choice of convention. One could equally well represent this degree of belief by any
bijective function ofp(a such ass(a) = − log p(a), in which cases(a, b) = s(a|b) + s(b)
and one replaces the standard form of Bayes’ rule,p(a|b) = p(b|a)p(a)/p(b), with its
“entropic” form s(a|b) = s(b|a) + s(a) − s(b). The abstract approach taken in this work
finds a similar result and thereby contributes to the project of extracting the elements of
Bayesian inference that are independent of convention.

Our graphical representation of Bayesian inference is also likely to have a close con-
nection with the theory of Bayesian networks, and therefore may shed light on quantum
analogues of these [10]. This has practical interest in the field of quantum information the-
ory as quantum analogues of belief propagation algorithms are a natural avenue to quantum
error correction schemes. As an example of this, the quantum analogue of Bayes’ rule has
the same form as the approximate reversal channel of Barnum and Knill [2].

2 Background: dagger Frobenius and compact structures

In this paper we work within the graphical language of symmetric monoidal categories
(SMCs) [5, 14]. General morphisms (or operations)f : A → B, which we interpret as
‘processes’, points (or elements)e : I → A, which we interpret as ‘states’, and composition
and tensoring are respectively represented as:

f e
f

g
gf (1)

A compact structureon an objectA consists of another objectA∗ together with a pair of
morphisms:ηA = : I → A∗ ⊗ A andεA = : A⊗ A∗ → I, sometimes referred
to as ‘cups’ and ‘caps’, which satisfy the ‘yanking’ equations:

= = . (2)

When we moreover have thatA∗∗ = A then the direction of arrows clearly distin-
guishes between ‘no∗’ and ‘∗’. In this case, coherence requires us to set

ηA∗ = = = σA∗,A ◦ ηA εA∗ = = = εA ◦ σA∗,A , (3)

whereσA,B : A⊗B → B ⊗A is the morphism that simply swaps the objectsA andB.
In any CC each morphismf : A → B has atranspose

fT := (1A∗ ⊗ εB) ◦ (1A∗ ⊗ f ⊗ 1B∗) ◦ (ηA ⊗ 1B∗) = f : B∗ → A∗ . (4)

A dagger Frobenius structureon an objectA consists of an (internal) multiplication
m = : A ⊗ A → A and a unitu = : I → A which satisfies the dagger Frobenius
law. Diagrammatically these are, respectively,

= = = == (5)
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The morphismδ := m† : A → A⊗A is called acomultiplicationandε := u† : A → I its
counit. A dagger Frobenius structure iscommutativewhen we have

m = = = m ◦ σA,A . (6)

A dagger Frobenius structure admits an elegant diagrammatic calculus in terms of ‘spider
normal forms’ [8] which we will use here extensively; e.g. see [4].

3 Bayesian graphical calculus

Consider a dSMCC in which each object comes with a dagger Frobenius structure.

BC1 For every objectA ∈ |C|, we assume the existence of anormalized state, that is,
a point which when composed with the counit yields the morphism1I : I → I (the
identity morphism on the trivial object), which we depict by the ‘empty picture’

=
A : I → I. A normalized state for a composite objectA⊗B ∈ |C|,

A B : I → A⊗B such that A B
=

: I → I , (7)

will be called ajoint state. Note that the composition of a joint state onA⊗ B with
the counit onB is a state onA, which we call themarginal stateonA,

A A B
=:

: I → A . (8)

BC2 For every objectA ∈ |C|, we assume the existence of amodifier, that is, a self-

transposed endomorphismA : A → A which is such that A
=A .

These modifiers are calculus-specific. We give concrete examples below of modifiers con-
structed in terms of marginal states and the Frobenius multiplication.

Proposition 3.1. Since modifiers are self-transposed they can move along cups and caps:

=A A =
A A . (9)

BC3 We assume that each state admits of a Frobenius inverse ‘relative to its support’ and
each modifier admits an ordinary inverse relative to its support such that the latter is

the modifier associated with the former: A
=A1-

1- .
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Definition 3.2. For every joint state on a pair of objects, theconditional stateis

A B

=:
A|B

B1-
: I → A⊗B . (10)

We call a graphical calculus with ingredientsBC1, BC2, BC3 a Bayesian graphical cal-
culus. This definition is motivated by the fact that with notions of joint states, marginal
states, conditional states, modifiers and inverses, we have the minimal amount of structure
required to describe basic concepts of Bayesian inference.

For example, Bayes’ rule depicts as:

B|A

=
A|B AB1-

. (11)

Many important concepts can now be defined at this high level of generality, most notably,
conditional independence, and many results can be derived graphically, e.g. pooling.

Definition 3.3. A Bayesian graphical calculus is calledclassicalif it satisfies the following
equivalent conditions:

(a) modifiers can move through the Frobenius structure:

=A

=
A

= A

=
A

A A . (12)

(b) modifiers are of the form:

=
A A

=
A , (13)

The two conditions are related as follows:

=
A

=
AA

=
A

=
A

A

A ==
A

.

So in classical Bayesian graphical calculi, in addition to moving along cups and caps
(cf. Proposition 3.1), modifiers can move through the Frobenius structure, and hence, by
the spider theorem, in a classical Bayesian graphical calculus modifiers can move through
arbitrary spiders. It is useful to consider some of the features of such a calculus.

Proposition 3.4. In a classical Bayesian graphical calculus, the Frobenius multiplication
always acts commutatively on states and composition of modifiers is commutative.
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For a classical Bayesian calculus, conditional states have the form:

AB
=

A|B B1-
, (14)

and Bayes’ theorem, Eq. (11), has the form

B|A
=

A|B AB1-
. (15)

By virtue of the multiplicative commutativity, the order in which the states are ‘Frobenius-
multiplied’ doesn’t matter (unlike the quantum generalization, as we will see).

This is an abstract characterization of classical Bayesian inference. We now present
a couple of concrete realizations of this calculus. We shall thereby see how the abstract
characterization avoids the conventional elements of the concrete realizations.

Example 3.5. Standard probability theory. Standard probability theory constitutes a
special case of a classical Bayesian calculus. The objects are natural numbers and the mor-
phisms fromn to m are them × n positive-valued matrices (consequently the points are
column vectors and their daggers are row vectors). Composition is matrix product, and the
tensor product is the matrix tensor product. The Bayes’ rule for classical Bayesian graphi-
cal calculi as in Eq. (15), takes the formp(A|B) = p(B|A)p(A)

p(B) , where this is understood to
be an equality that holds component by component.

Example 3.6. The negative logarithm of probability representation. Here everything is
defined as it was before except that the underlying notions of scalar addition and multipli-
cation are modified. The new operations, denoted by� and� respectively, can be defined
for an arbitrary pairs, t of scalars as follows. For any functionf that is bijective and hence
invertible on the positive reals, they are

s � t = f(f−1(s) + f−1(t)), s � t = f(f−1(s)f−1(t)). (16)

Consider the case where the monotonic functionf(s) = − ln s andf−1(s) = e−s so that

s � t = − ln(e−s + e−t), s � t = s + t. (17)

In this new calculus, an impossible value ofk (one for whichpk = 0) is represented by
sk = ∞, while a certain value (one for whichpk = 1) is represented bysk = 0. Now
s(A|B) = s(A,B)− s(B) and the Bayes’ rule takes the form

s(A|B) = s(B|A) + s(A)− s(B). (18)

One has a choice in representing degrees of belief. It can be done with probabilities,
but it can also be accomplished with negative logarithms of probabilities, or indeed any
monotonic function of probabilities. It is a matter of convention only which is chosen. An
argument to this effect was already made by R. T. Cox [6].
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Example 3.7. Entropy. Taking the usual inner product ofs(A) := (s1, s2, . . . , sn) of
negative logarithms of probabilities withp(A) := (p1, p2, . . . , pn) of probabilities, one ob-
tains theShannon entropyof p(A), S(A) :=

∑
k pksk = −

∑
k pk ln pk, and similarly the

joint entropyS(A,B) :=
∑

i,j pi,jsi,j = −
∑

i,j pi,j ln pi,j and the conditional entropy
S(A|B) :=

∑
i,j pi,jsi|j = −

∑
i,j pi,j ln pi|j . Noting the the marginal entropy can also

be obtained by averaging over the joint distribution,
∑

i,j pi,jsi =
∑

i pisi = S(A), it
follows that any expression that holds among joints, marginals and conditionals for neg-
ative logarithms of distributions (i.e. amongsi,j , si, si|j etcetera) also holds among the
joint, marginal and conditionalentropies.For instance, Bayes’ rule in terms of negative
logarithms of probabilities, Eq. (18), implies the analogous relation among entropies

S(A|B) = S(B|A) + S(A)− S(B). (19)

Definition 3.8. A Bayesian graphical calculus is aQ1/2-calculuswhen modifiers are:

A

=
A

A . (20)

For Q1/2-calculi the Bayesian update law Eq. (11) becomes:

B|A

=
A|B

A AB1- B1-

B|AA AB 1- B1-

= . (21)

In the final expression of Eq. (21), the order of the two small triangles on the left could be
reversed because they are not connected to each other by a spider. The same is true of the
two small triangles on the right.

Example 3.9. The conditional density operator calculus. We take the point A to

be a density operatorρ(A) : A → A and the point A B to be the joint density

operatorρ(A,B) : A⊗ B → A⊗ B. We take the Frobenius multiplication to be
the (non-commutative) operator product−◦− of density operators, and hence the identity

operator1A is its unit . Hence, A1- is the inverse density operatorρ(A)−1, A is the

square-root density operator
√

ρ(A), and the modifier A

=
A

A is the completely

positive map
√

ρ(A) ◦ − ◦
√

ρ(A). The trace is (which is indeed the adjoint to the unit

when taken in a suitable manner [13]) so marginals arise by tracing out a system on a joint

density operator. The point A|B is Leifer’s conditional density operator [9, 10],
that is, a positive operatorρ(A|B) : A⊗B → A⊗B such thatTrA[ρ(A|B)] = 1B .

Remark 3.10 (logical broadcasting).By a broadcasting operation we mean any operation
δ : A → A⊗A acting on a space of density operators and satisfying

(trA ⊗ 1A) ◦ δ = 1A = (1A ⊗ trA) ◦ δ . (22)
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A Frobenius comultiplication on density operators for which the operator tracetrA : A → I
is its counit satisfies Eq. (22) by counitality:

= = (23)

By the no-broadcasting theorem [1] it then also follows that such a Frobenius comultipli-
cation is necessarily non-physical, i.e. it cannot be a completely positive map.

4 Inferential presentation of Bayesian graphical calculus

Above, we represented both joint and conditional states by the same triangles, only distin-
guishing them in terms of their labeling. We will now rely on the compact structure induced
by the Frobenius structure to clearly distinguish between givens (objects on the right of the
conditional bar “|” in our notation) and conclusions (objects on the left of the conditional)
by representing the first as inputs (appearing at the bottom of the diagram) and the latter as
outputs (appearing at the top). We define aconditional process:

A|B
=:

A|B . (24)

Proposition 4.1. In a classical Bayesian graphical calculus:

= A|C B|C
A|C B|C

(25)

We shall refer to the diagrammatic representation of an expression wherein every con-
ditional state is replaced by its isomorphic process as theinferential presentationbecause
by reading the diagram from bottom to top one follows a chain of inferences. Bayes’ rule
for a general Bayesian calculus, described in Eq. (11), becomes:

= AA|B B|AB 1- . (26)

This form can be simplified further. One easily verifies that the morphisms

=A A =
A A

A=: =:
A

1- 1- (27)

define another compact structure onA, which we will refer to as themodified compact

structure. Bayes’ rule is simply the statement thatA|B is themodified transposeof B|A :

=A|B B|A

A

B

. (28)
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A modified compact structure for a pair of objects is

AB=: = AB

(AB)
=: =1- (AB)1-

. (29)

5 Conditional independence

In classical probability theory, a set of random variablesX and another setY are said to be
conditionally independentgiven a third setZ if, equivalently:

(a) p(X|Y,Z) = p(X|Z) (b) p(Y |X, Z) = p(Y |Z) (c) p(X, Y |Z) = p(X|Z)p(Y |Z)

In the general Bayesian graphical calculus, there are analogues of each of these condi-
tions, but they are no longer equivalent. We therefore distinguish two pairs of notions of
conditional independence. The first pair are the analogues of Eqs. (a) and (b) respectively,
while the second pair constitute analogues of Eq. (c):

CI1 =
A|BC A|C CI2 =AB|C A|C B|C

Proposition 5.1. In a Bayesian graphical calculus, if any two ofCI1, CI2 andF hold then
the third one also holds, whereF stands for:

F CB
= A|C

C 1-

A|C B|C

Proposition 5.2. In a classical Bayesian graphical calculusCI1 andCI2 are equivalent.

Proof: The equality F always holds in a classical Bayesian graphical calculus:

A|C B|C
CB

= A|C= A|C
C B

C 1- = A|C C B

C 1-

A|C

C BC 1-

=
C 1- .

and hence by Proposition 5.1CI1 andCI2 are equivalent. 2

What is more difficult is to recover a quantum notion of conditional independence. An
open question is whether specifying that the form of the modifiers is as given in Eq. (20)
is sufficient to prove everything that can be proven within the conditional density operator
calculus. In particular, it is not clear how to derive thatCI1 andCI2 are equivalent.

A simple example of what one can derive from the notion of conditional independence,
we consider the problem of pooling. Here, one seeks to assign a conditional state toC
givenA,B and the question is whether this state can be expressed in terms of a conditional
state forC givenA and a conditional state forC givenB.
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Proposition 5.3. If A andB are conditionally independent relative toC as inCI2, then

=
C|AB AB|C

A

A|C B|C

A

=

A

=
C|A

A

B
C|B

A

B =
B
(BA) 1-

A
C|B C|A
C 1- C 1-

C

For Q1/2-calculi, when expressing this expression in terms of conditional states rather
than in the inferential form we obtain:

=
C|AB

=

C|BA BC|AC 1- (AB)1-B A(AB)1-

B
(BA) 1-

A
C|B C|A
C 1- C 1-

C

.

(30)
For density operators, it is equivalent to

ρ(C|AB) =
√

ρ(A,B)
−1√

ρ(A)
√

ρ(B)ρ(C|B)ρ(C)−1ρ(C|A)
√

ρ(B)
√

ρ(A)
√

ρ(A,B)
−1

and for classical probability distributions, we obtain

P (C|AB) =
P (A) P (B)
P (A,B)

· P (C|A) P (C|B)
P (C)

. (31)

This result is known as thepooling formulabecause ifA andB are conditionally indepen-
dent givenC, the posteriorP (C|AB) can be reconstructed from the posteriorsP (C|A) and
P (C|B) and the priorP (C) (the dependence onA andB is inferred from normalization).
As such, it is sufficient to “pool” the information contained in the two posteriors.
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