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Abstract

The common practice of slightly rewording the first paragraph or two of the intro-
duction and calling it an abstract has always seemed a colossal waste of space to the
author. Here, we will try to be as brief and to the point as possible. In this paper we
prove the space of unital qubit channels is a Scott domain. We also provide a simple
protocol to achieve Holevo capacity for these channels.

1 Intro

Domain theoretic techniques have been put to surprising use by Keye Martin in quantum
information theory, showing how to find the optimal time to measure in Grover’s algorithm
[11], and deriving entropy as the least fixed point of a Scott continuous operator [12]. The
discovery of the spectral order by Coecke and Martin [3] showed that the connection with
domain theory is even deeper, by proving that the space of quantum states actually forms
a domain. In [13] Martin analyzes qubit channels as self-maps on Ω2, the domain of two-
level quantum states, and proves that Holevo capacity can be calculated from the informatic
derivative.

In this paper, we more thoroughly examine the space of qubit channels. We completely
characterize the Scott continuous qubit channels, complementing a result of Martin’s [13].
We then explore the order on qubit channels given pointwise by the spectral order on Ω2.
We prove that the unital qubit channels in this order form a Scott domain on their own right.
Holevo capacity turns out to be a domain theoretic measurement, and we find the natural
measurement, which allows us to calculate the unique channel with greatest capacity above
any non-trivial unital channel.

In order to do this, we start by explicitly defining the decomposition of channels de-
scribed by King and Ruskai in [9], based on the singular value decomposition. Along the
way, we use it to provide a simple and experimentally realizable protocol that achieves
Holevo capacity for any unital channel.

The proofs, which are in the final version, are omitted in this short version.
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2 Qubit Channels and the Bloch Representation

First we make sure we are all on the same page with terminology. Let H2 be a two-
dimensional complex Hilbert space. We denote the inner product by 〈·|·〉, and denote the
trace of a matrix ρ by Trρ.

Definition 2.1. A quantum state is a self-adjoint, positive semidefinite operator ρ : H2 →
H2 with Trρ = 1. If the eigenvalues of ρ are {0, 1} we call ρ a pure state, or a qubit. We
denote the set of all quantum states as Ω2.

Definition 2.2. Let ρ ∈ Ω2, and suppose
∑

piρi = ρ for a finite collection of ρi ∈ Ω2,
where pi ∈ [0, 1] and

∑

pi = 1. Then we call
∑

i piρi an ensemble for ρ.

Definition 2.3. A qubit channel is a completely positive, trace preserving map ε : Ω2 →
Ω2. If ε(I/2) = I/2, then ε is unital.

The qubit channels are closed under composition and convex sum, that is, if ε1, ε2 are
channels, then so are ε1 ◦ ε2 and pε1 + (1 − p)ε2 for any p ∈ [0, 1].

Throughout the paper, we will be using the Bloch representation of quantum states and
qubit channels. This representation comes from the fact that every quantum state can be
written uniquely as

ρ =
1

2
I +

1

2
(rxσx + ryσy + rzσz)

where r2
x + r2

y + r2
z ≤ 1 and σx, σy, σz are the Pauli spin matrices. The vector (rx, ry, rz)

in the unit ball B
3 is called the Bloch vector associated with ρ. Conversely, every vector in

the unit ball maps in this way to a quantum state. We call B
3 the Bloch ball.

Every qubit channel ε : Ω2 → Ω2 induces a map fε : B
3 → B

3, which is called the
Bloch representation of ε. The following is proven in [14].

Proposition 2.4. Let fε be the map induced on the Bloch ball by a qubit channel ε. Then

(1) fε is convex linear, i.e. fε(px1+(1−p)x2) = pfε(x1)+(1−p)fε(x2) for p ∈ [0, 1],
x1, x2 ∈ B

3.

(2) fε1◦ε2
= fε1

◦ fε2
.

(3) fpε1+(1−p)ε2
= pfε1

+ (1 − p)fε2
.

From this, we see the Bloch representations of qubit channels are also closed under
composition and convex sum. Further, since fε is convex linear it can be written as fε(x) =
Mx+ b for some real 3× 3 matrix M ∈ M3(R) and b ∈ B

3. Since the state I/2 has Bloch
vector 0, we see ε is unital iff fε(0) = 0, i.e. if b = 0. We denote the set of Bloch
representations of qubit channels by Q and of unital channels by U .
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3 Diagonalization of Unital Qubit Channels

It is known that the singular value decomposition can be used to diagonalize the Bloch
representation of a unital qubit channel [2] [9]. First we describe this diagonalization pre-
cisely, and then we will use it throughout the next several sections to prove some interesting
results.

For a given 3× 3 real matrix M , the singular value decomposition allows us to decom-
pose M as

M = Θ1ΣΘ2

where Θ1, Θ2 ∈ O(3), i.e. are 3 × 3 orthogonal matrices, and

Σ =





σ1 0 0
0 σ2 0
0 0 σ3





where σ1, σ2, σ3 are the positive square roots of the eigenvalues of M tM , called the sin-
gular values of M.

This representation is not unique. The reader interested in the full characterization of
different singular value decompositions can consult Theorem 3.1.1′ of [8]. It is standard
practice when using the singular value decomposition to assume the entries on the diagonal
are in decreasing order, because if they are not we can simply swap rows of Θ1 and columns
of Θ2 until they are. We will make this assumption on Σ.

Since the only members of O(3) which are qubit channels are those in SO(3) we would
like to modify Θ1, Θ2 to be in SO(3). We do this by checking the determinants and multi-
plying by −1 when necessary. If det Θ1 = −1, then we multiply Θ1 and Σ by −1, and if
det Θ2 = −1, then we multiply Θ2 and Σ by −1. Let

R1 = det(Θ1)Θ1, R2 = det(Θ2)Θ2, D = det(Θ1) det(Θ2)Σ

to get
M = R1DR2.

Now it is easy to see the following:

Proposition 3.1. Let M be a 3 × 3 real matrix. Then M can be decomposed as M =
R1DR2, where R1, R2 ∈ SO(3) and D is a diagonal matrix with either all nonnegative
entries in decreasing order or all nonpositive entries in increasing order. Furthermore, M
is a qubit channel iff D is a qubit channel.

We can do the same thing with the Bloch representation of an arbitrary qubit channel.

Corollary 3.2. Let M be a 3 × 3 real matrix and b ∈ R
3, and let fx = Mx + b. Then

f = R1 ◦∆ ◦R2, where ∆x = Dx + R−1
1 b, with M = R1DR2 as in Proposition 3.1. We

call f = R1 ◦ ∆ ◦ R2 a spin diagonalization of f . Furthermore, f is a qubit channel iff
∆ is a qubit channel.

Now, given an arbitrary 3 × 3 matrix M we would like to be able to identify when it
is the Bloch representation of a channel. Conditions are known for when M is a diagonal
matrix [9], a clear and elementary proof of which is given in [14].
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Proposition 3.3. A diagonal matrix

D =





d1 0 0
0 d2 0
0 0 d3





is the Bloch representation of a unital qubit channel iff the following four inequalities are
satisfied:

(1) 1 + d1 + d2 + d3 ≥ 0

(2) 1 + d1 − d2 − d3 ≥ 0

(3) 1 − d1 + d2 − d3 ≥ 0

(4) 1 − d1 − d2 + d3 ≥ 0

This allows us to test if an arbitrary matrix is a channel.

Corollary 3.4. Let M be a 3 × 3 real matrix, and let M = R1DR2,

D =





d1 0 0
0 d2 0
0 0 d3





be a spin diagonalization of M . Then M is the Bloch representation of a unital channel iff

min{1 − d1 − d2 + d3, 1 + d1 + d2 + d3} ≥ 0.

4 A Protocol to Achieve Holevo Capacity

One of the remarkable things about unital channels is that very hard problems, such as
calculating capacity and devising methods to send information at capacity, can be solved.

The Holevo capacity of a channel tells us how much classical information we can trans-
mit through a quantum channel. If the signal states are not entangled across multiple uses
of the channel, we have the following theorem, proven in [7]

Theorem 4.1. The Holevo capacity of a channel f ∈ Q is given by

C(f) = max
pi,ρi

{

H(f(ρ)) −
∑

i

piH(f(ρi))

}

over all ensembles
∑

i piρi = ρ, where H(ρ) = −Trρ log ρ is Von Neumann entropy.

It is known that for unital qubit channels that there is a simple formula for the Holevo
capacity [5][9][13].

Theorem 4.2. The Holevo capacity of a unital qubit channel f ∈ U is given by

C(f) = log 2 − h

(

1 + ‖f‖

2

)

where ‖f‖ is the spectral norm and h(x) = −x log x − (1 − x) log(1 − x) is Shannon
entropy.
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A serious drawback in the proofs of Theorem 4.2 is that they are non-constructive,
hence even though we know there is some optimal input ensemble, we do not in general
know what that ensemble is. To make things worse, even if we are given an ensemble
that achieves capacity, we still have no idea what measurement to use to communicate at
capacity. In the case of unital channels, however, the spin diagonalization shows us exactly
what we should do.

1. Calculate a spin diagonalization of the channel, f = R1DR2. Note that R−1
2 e1 and

−R−1
2 e1 correspond to an orthogonal basis {|Ψ0〉, |Ψ1〉}, while R1e1 and −R1e1

correspond another orthogonal basis {|Φ0〉, |Φ1〉}.

2. Alice encodes ”0” and ”1” as |Ψ0〉 and |Ψ1〉 to send them through the channel.

3. Bob measures in the {|Φ0〉, |Φ1〉} basis for each state received.

It is easy to show that this protocol describes a classical channel whose classical capac-
ity is equal to the Holevo capacity.

5 Domain Theory

We review the basic definitions from domain theory [1] [6].

Definition 5.1. Let (P,v) be a partially ordered set. A subset C ⊆ P is directed if
∀ x, y ∈ C ∃z ∈ C such that x, y v z. If the least upper bound for C exists, it is called the
supremum of C and is denoted by sup C. If every directed subset C ⊆ P has a supremum,
then P is called a dcpo.

We think of the order as an information order: x v y if the information in x is carried
by y. Directed sets can intuitively be thought of as steps along a computation, and the
supremum as the answer to which the computation converges. The definition of approx-
imation we are about to make can be read as: x approximates y if any computation that
gives us y has to compute x at some point along the way. Continuity means any piece of
information can be completely recovered from the things that approximate it.

Definition 5.2. Let (D,v) be a dcpo, and let x, y ∈ D. If for every directed set C ⊆ D
where y v sup C, we have x v c for some c ∈ C, then we say x approximates y, and
we write x � y. For a point x ∈ D, if {y ∈ D|y � x} is a directed set with supremum
x we say D is continuous at x. If D is continuous for all x ∈ D we call D a domain. If,
in addition, any two elements with an upper bound have a supremum, we call D a Scott
domain.

Example 5.3. One of the most basic examples of a domain is the closed interval [0, 1]
with the usual ≤ order. All subsets of [0, 1] are directed, and approximation is given by
x � y ⇔ x < y. Given any two x, y ∈ [0, 1], x, y v max{x, y}, so it is in fact a Scott
domain.

There are many ways to construct new domains from given ones, and we will be making
use of one of these.
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Definition 5.4. Let Di be a collection of domains, where each Di has a least element
⊥i. Then their coalesced sum

∐

{Di} is the disjoint union of the Di with the equivalence
relation identifying all ⊥i’s.

The coalesced sum simply joins domains together by their least elements. The coa-
lesced sum of (Scott) domains is a (Scott) domain.

Example 5.5. The coalesced sum of arbitrarily many copies of [0, 1] is a Scott domain.

Definition 5.6. Let f : D → E be a function between domains. f is called monotone if
for every x, y ∈ D, if x v y then f(x) v f(y). f preserves directed suprema if for every
directed C ⊆ D, f(supC) = sup f(C). If f is both monotone and preserves directed
suprema, we say f is Scott continuous.

An important type of Scott continuous function is a measurement. The order tells us
qualitatively when y is ”better information” than x, but a measurement provides a quanti-
tative idea of how much better [10].

Definition 5.7. Let µ : D → E be a Scott continuous function between domains. For
ε ∈ E, the set µε(x) = {y v x|ε � µy} are called the ε-approximations of x. For a
point x ∈ D, if given any y � x we can find some ε such that y approximates everything
in µε(x), we say µ measures the content of x. If µ measures the content of kerµ = {x ∈
D|µx ∈ maxE}, then we say µ is a measurement.

6 The Spectral Order

In [3] Bob Coecke and Keye Martin describe an order on quantum states called the spectral
order, which makes the space of quantum states a Scott domain. This order extends to a
pointwise order on quantum channels, which we will also call the spectral order. First, we
define the Bayesian order on classical states.

Definition 6.1. Let ∆2 = {(p1, p2) ∈ [0, 1]2 | p1 +p2 = 1} be the classical 2-states. Then
for x, y ∈ ∆2,

x vb y ≡ (y1 ≤ x1 ≤ 1/2) or (1/2 ≤ x1 ≤ y1).

This is called the Bayesian order on ∆2.

Definition 6.2. A quantum observable is a self-adjoint linear operator e : H2 → H2.

Given a quantum observable e, let λ1, λ2 be its eigenvalues, with corresponding eigen-
vectors e1, e2, and let π1, π2 be the projection operators onto their respective eigenspaces.
Then quantum mechanics tells us that an experiment to measure the observable e on a sys-
tem whose state is given by ρ will give the value λ1 with probability Tr(π1(ρ)) and value
λ2 with probability Tr(π2(ρ)). We write

spec(ρ|e) = (Tr(π1(ρ)), Tr(π2(ρ)))

and notice that if e has two distinct eigenspaces, spec(ρ|e) ∈ ∆2. If the eigenspaces are
distinct, then since spec(ρ|e) is independent of the eigenvalues, we relabel the eigenvalues
as {1, 2}. Conversely, if the eigenvalues of e are {1, 2}, then e has two distinct eigenspaces.
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Definition 6.3. For ρ, σ ∈ Ω2,

ρ v σ ≡ ∃ an observable e such that spec(ρ|e) vb spec(σ|e)

where the eigenvalues of e are {1, 2} and e commutes with ρ, σ. This is called the spectral
order on Ω2.

Theorem 6.4. Ω2 with the spectral order is a Scott domain.

This was proven in [3]. As noted in [13], and can be shown as a corollary to Theorem
4.5 in [3], the order has a much nicer description in the Bloch formalism.

Proposition 6.5. For x, y ∈ B
3

x v y ⇔ ∃ p ∈ [0, 1] such that x = py

where the order on B
3 is the order induced by the spectral order on Ω2.

7 Scott Continuous Channels

In [13] Martin proves that the unital channels are exactly the Scott continuous channels
with a lower set of fixed points. Here we characterize all Scott continuous channels.

Theorem 7.1. f ∈ Q is Scott continuous iff it is unital or constant.

Geometrically it is easy to see why this is true. Given any channel fx = Mx + b, the
image of M is symmetric about the origin, and so the image of f is symmetric about b. If
we require f to be monotone, since f(0) = b, then the image of f must be contained in
↑b. If b 6= 0 then this is simply the radial line segment going from b to the boundary of B

3,
and if b = 0 this is all of B

3. This, however, makes it impossible for the image of f to be
symmetric about b unless b = 0 or the image of f consists solely of b.

0

b

I

0

b

II

0

b

III

0

b

IV

Figure 1. I-III show the possible non-trivial images of f for b 6= 0, which are either
ellipsoids, ellipses, or line segments centered at b. IV shows the upper set of b.
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8 Domain of Unital Qubit Channels

Since a channel is a function over Ω2 the spectral order extends to a pointwise order on
channels. In the Bloch formulation, we define it as follows.

Definition 8.1. For f, g ∈ Q,

f v g ≡ ∀x ∈ B
3, fx v gx.

This is called the spectral order on Q.

First we make the simple observation that composition on the left or right by rotations
is order preserving.

Proposition 8.2. Let f , g ∈ Q, and R ∈ SO(3). If f v g then f ◦ R v g ◦ R and
R ◦ f v R ◦ g.

In order to understand what this order looks like on unital channels, we start by exam-
ining it when one of the channels has a diagonal Bloch representation.

Proposition 8.3. Let

M =





m11 m12 m13

m21 m22 m23

m31 m32 m33



 N =





n11 0 0
0 n22 0
0 0 n33





be 3 × 3 real matrices. If M v N then ∃p ∈ [0, 1] such that M = pN .

Now we are ready to characterize the order on all unital channels.

Corollary 8.4. Let f , g ∈ U . Then f v g ⇔ ∃p ∈ [0, 1] such that f = pg.

We will need to be able to identify the maximal elements of this order.

Proposition 8.5. Define the function µ : U → [0, 1] by

µf = min{1 − d1 − d2 + d3, 1 + d1 + d2 + d3}

where

f = R1





d1 0 0
0 d2 0
0 0 d3



R2

is any spin diagonalization of f . Then f ∈ max(U) iff µf = 0. Furthermore, if f 6= 0 then
(1/(1 − µf))f is the maximal unital channel above f .

At last, we can see the following:

Corollary 8.6. (U ,v), the set of unital qubit channels with the spectral order, is a Scott
domain.
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9 Scott Continuous Operators and Measurements on
Channels

A number of functions on channels turn out to be Scott Continuous on the domain of unital
channels.

Proposition 9.1. The following functions are Scott continuous on U .

(1) Φ(f) = f t

(2) Φ(f) = pf + (1 − p)f t for p ∈ [0, 1]

(3) Φ(f) = D, where R1DR2 is any spin diagonalization of f , with D ≥ 0 if det f = 0

(4) Φ(f) =

{

0 if f = 0;

(1/(1 − µf))f otherwise, with µ as defined in Proposition 8.5.

(5) Holevo capacity

(6) µf = min{1 − d1 − d2 + d3, 1 + d1 + d2 + d3}

In the case of (5) and (6), these are, in fact, both measurements. The reader might recall
that the function µ was used in Section 3 to characterize when a matrix represents a unital
channel, and in Section 8 to find the maximal channel over a given channel. It is, in fact,
the natural measurement on Ω2. In particular, kerµ = maxU .

We can restate the characterization in Section 3 as follows: if you extend µ to a function
from M3(R) → R, then µ−1([0, 1]) is the set of unital channels. So the space of unital
channels is exactly captured by µ, its natural measurement.

10 Outro

The day is short and there is still much to do. In this paper, we focused on the unital qubit
channels, a setting where a number of results work out very nicely. When we extend the
order to all qubit channels, however, things are not as nice. In fact, capacity fails to be
monotone in this order! [4]

There are many other orders that can be put on qubit channels, and this begs the question
of whether we can find one for which qubit channels form a domain with capacity its natural
measurement. In addition, the question of whether higher dimensional quantum channels
possess domain theoretic structure remains open.
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