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Abstract

We relate notions of complementarity in three layers of quantum mechanics: (i)
von Neumann algebras, (ii) Hilbert spaces, and (iii) orthomodular lattices. Taking a
more general categorical perspective of which the above are instances, we consider
dagger monoidal kernel categories for (ii), so that (i) become (sub)endohomsets and
(iii) become subobject lattices. By developing a ‘point-free’ definition of copyability
we link (i) commutative von Neumann subalgebras, (ii) classical structures, and (iii)
Boolean subalgebras.

1 Introduction

Complementarity is a supporting pillar of the Copenhagen interpretation of quantum me-
chanics. Unfortunately, Bohr’s own formulation of the principle remained imprecise and
flexible [19], and to date there is no consensus on a clear mathematical definition. Here, we
understand it, roughly, to mean that complete knowledge of a quantum system can only be
attained through examining all of its possible classical subsystems [8]. Notice that, perhaps
unlike Bohr’s own, this interpretation concerns all classical contexts, leading to a weaker
notion of binary complementarity than usual. To avoid clashes with the various existing ter-
minologies and their connotations, and to emphasize the distinction between talking about
two (totally) incompatible classical contexts (as Bohr typically did), and mentioning all of
them, we will speak of partially complementary classical contexts only when considering
two of them. Only taken all together, (pairwise partially complementary) classical contexts
give complete information, and we call them completely complementary. This paper con-
siders instances of this interpretation of complementarity with regard to three aspects of
quantum mechanics.

(i) The observables of a quantum system form a von Neumann algebra. In this setting,
complete complementarity is customarily taken to mean that one has to look at all
commutative von Neumann subalgebras [14, 20, 3].
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(ii) The states of a quantum system are unit vectors in a Hilbert space, which can be
coordinatized by choosing any orthonormal basis. Here, complete complementarity
may be interpreted as saying that it takes measurements in all possible orthonormal
bases (of many identical copies of a system) to determine its state (perfectly) [22], as
in quantum state tomography [15].

(iii) The measurable properties of a quantum system form an orthomodular lattice. Com-
plete complementarity translates to this perspective as stating that the lattice structure
is determined by all Boolean sublattices [17, 11].

In fact, we will take a more general perspective, as all three layers, separately, have
recently been studied categorically.

(i) The set of commutative von Neumann subalgebras of a von Neumann algebra gives
rise to a topos of set-valued functors, whose intuitionistic internal logic sheds light
on the the original noncommutative algebra in so far as complete complementarity is
concerned [10, 7].

(ii) The category of Hilbert spaces can be abstracted to a dagger monoidal category, in
which much of quantum mechanics can still be formulated [1]. In this framework,
orthonormal bases are characterized as so-called classical structures [5, 6, 2].

(iii) Orthomodular lattices can be obtained as kernel subobjects in a so-called dagger
kernel category [9]. This paper considers Boolean sublattices systematically, in the
tradition of e.g. [12].

We will take the view that of these three layers, (ii) is the primitive one, which the oth-
ers derive from. Indeed, our main results are in categories that are simultaneously dagger
monoidal categories and dagger kernel categories. We give definitions of partial and com-
plete complementarity for (i) commutative von Neumann subalgebras, (ii) classical struc-
tures, and (iii) Boolean sublattices of the orthomodular lattice of kernels. By developing
a notion of copyability, we obtain a bijective correspondence between partially comple-
mentary classical structures and partially complementary Boolean sublattices. Also, we
characterize categorically what partially complementary commutative von Neumann sub-
algebras correspond to in terms of classical structures in the category of Hilbert spaces. The
plan of the paper is as follows: Sections 2, 3 and 4 study layers (ii), (iii) and (i) respectively.
Conclusions are then drawn in Section 5. The author is grateful to Samson Abramsky, Ross
Duncan, Klaas Landsman, and Jamie Vicary for useful pointers and discussions.

2 Classical structures

Definition 1 A classical structure in a dagger symmetric monoidal category D is a com-
mutative semigroup δ : X → X ⊗ X that satisfies δ† ◦ δ = id and the following so-called
H*-axiom: there is an involution ∗ : D(I, X)op → D(I, X) such that δ† ◦ (x∗ ⊗ id) =
(x† ⊗ id) ◦ δ.
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This terse definition suffices for this paper, because we will not explicitly use much of a
classical structure except its type and the fact that it is dagger monic; for more information
we refer to a forthcoming article [2].

The goal of this section is to find out when kernels k : K → X are ‘compatible’ with
a given classical structure. To do so, we develop a notion of copyability that has to be
‘point-free’ because K is typically not the monoidal unit I .

2.1 Kernels and tensor products

Fix a category D, and assume it to be a dagger symmetric monoidal category [1] and a
dagger kernel category [9] simultaneously, which additionally satisfies

ker(f) ⊗ ker(g) = ker(f ⊗ id) ∧ ker(id ⊗ g)

for all morphisms f and g.The categories Hilb and Rel both satisfy the above relationship
between tensor products and kernels. Some coherence properties follow easily from the
assumptions:

ker(f) ⊗ 0 = 0, 0 ⊗ ker(g) = 0,

ker(f) ⊗ id = ker(f ⊗ id), id ⊗ ker(g) = ker(id ⊗ g),

ker(f) ⊗ id = 0 ⇔ ker(f) = 0, id ⊗ ker(g) = 0 ⇔ ker(g) = 0.

Notice that requiring ker(f ⊗ g) = ker(f) ⊗ ker(g) would have been too strong, for
then ker(f)⊗ id = ker(f)⊗ ker(0) = ker(f ⊗ 0) = ker(0) = id for any f . Nevertheless,
one does always have ker(f ⊗ f) = ker(f) ⊗ ker(f); we leave the proof to the reader
because of space restrictions.

2.2 Copyability

Throughout this section we fix a classical structure δ : X → X ⊗ X .

Definition 2 A morphism k : K → X is called copyable (along δ) when

δ ◦ P (k) = P (k ⊗ k) ◦ δ,

where we write P (k) = k ◦ k†.

This definition of copyability relates to copyability of vectors as used in [4] as follows.
For a unit vector x in H ∈ Hilb, the following are equivalent:

• the morphism C → H defined by 1 7→ x is copyable;

• there is a phase z ∈ C with |z| = 1 such that δ(x) = z · (x ⊗ x);

• there is a unit vector x′ ∈ H with P (x) = P (x′) and δ(x′) = x′ ⊗ x′.

Example 3 In any dagger kernel category with tensor products satisfying the coherence
set out in Section 2.1, zero morphisms and identity morphisms are always copyable. These
two kernels are called the trivial kernels.
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Example 4 In the category Hilb of Hilbert spaces, a classical structure δ corresponds to
the choice of an orthonormal basis (ei) [2], whereas a kernel corresponds to a (closed)
linear subspace [9]. A kernel is copyable if and only if it is the linear span of a subset of
the orthonormal basis.

Example 5 In the category Rel of sets and relations, a classical structure δ on X corre-
sponds to (a disjoint union of) Abelian group structure(s) on X [16], and a kernel corre-
sponds to a subset K ⊆ X [9]. Unfolding definitions, we find that a kernel is copyable if
and only if x ∈ K ∧ y ∈ K ⇔ x · y ∈ K. One direction of this equivalence implies that
K is a subsemigroup. Fixing k ∈ K, we see that for any x ∈ X there is y = x−1 · k such
that x · y ∈ K. Therefore, the other direction implies that x ∈ K. That is, K = X . We
conclude that the only copyable kernels in Rel are the trivial ones.

As it turns out, copyability is an algebraic formulation for the existence of classical
substructure, as follows.

Proposition 6 A dagger monic k is copyable if and only if there is a (unique) morphism δk

making the following diagram commute:

X
��

δ

��

k†

// // K

δk

���
�

�
// k // X

��
δ

��
X ⊗ X

k†⊗k†

// // K ⊗ K //
k⊗k

// X ⊗ X.

If k is a copyable dagger monic, δk is a classical structure.

PROOF The first claim is a matter of unfolding definitions. For the second claim, we say
that f is a dagger retract of g if there are dagger monics a and b with b ◦ f = g ◦ a and
b† ◦ g = f ◦ a†. Notice that if f and f ′ are both dagger retracts of g (along the same a and
b), then f = b† ◦ b ◦ f = b† ◦ g ◦ a = f ′ ◦ a† ◦ a = f ′.

Now, if k is a copyable dagger monic, then it follows from Proposition 6 that δk

is a dagger retract of δ, and δ
†
k is a dagger retract of δ†. Therefore, δk is associative,

commutative, and is dagger monic. For example, to verify commutativity, notice that
γk : K ⊗ K → K ⊗ K is a dagger retract of γ : X ⊗ X → X ⊗ X . Since dagger re-
tracts compose, this means that γk ◦ δk and δk are both dagger retracts (along the same
morphisms) of γ ◦ δ = δ. Hence γk ◦ δk = δk. The other algebraic properties are ver-
ified similarly (including the Frobenius equation). We are left to check the H*-axiom.
Let x : I → K. Since δ satisfies the H*-axiom, there is (k ◦ x)∗ : I → X such that
δ† ◦ ((k ◦ x)∗ ⊗ id) = ((k ◦ x)† ⊗ id) ◦ δ. Now put x∗ = k† ◦ (k ◦ x)∗ : I → K. Then:

δ
†
k ◦ (x∗ ⊗ id) = δ

†
k ◦ (k† ⊗ k†) ◦ ((k ◦ x)∗ ⊗ id) ◦ k

= k† ◦ δ† ◦ ((k ◦ x)∗ ⊗ id) ◦ k

= k† ◦ ((k ◦ x)† ⊗ id) ◦ δ ◦ k

= (x† ⊗ id) ◦ δk.

Hence δk satisfies the H*-axiom, too. �
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As a corollary, we find that a dagger monic k is copyable if and only if its domain carries
a classical structure δk and k is simultaneously a (non-unital) monoid homomorphism and a
(non-unital) comonoid homomorphism. It stands to reason to define categories of classical
structures to have such morphisms; this also matches [13, 2.4.4]. We end this section with
our first definition of partial complementarity.

Definition 7 Two classical structures are partially complementary if no nontrivial kernel
is simultaneously copyable along both.

3 Boolean subalgebras of orthomodular lattices

This section concerns level (iii) of the Introduction. We will prove that kernels that are
copyable along δ form a Boolean subalgebra of the orthomodular lattice of all kernel sub-
objects of X .

Lemma 8 The copyable kernels form a sub-meetsemilattice of KSub(X).

PROOF The bottom element 0 is always copyable by Example 3. So we have to prove that
if k and l are copyable kernels, then so is k ∧ l. Recall that k ∧ l is defined as the pullback.
Together with the assumption that k and l are copyable, this means that the top, back, right
and bottom face of the following cube commute:

K
k // X

K ∧ L

q 66mmmmmmm p // L

l
77oooooooo

K ⊗ K

δ
†

k

OO

k⊗k
// X ⊗ X.

δ†

OO

(K ∧ L)⊗2

ϕ

OO�
�

�

�
q⊗q 77nnnnn

p⊗p
// L ⊗ L

l⊗l

88qqqqq

δ
†

l

OO

Hence l◦δ†l ◦(p⊗p) = k◦δ†k◦(q⊗q). Therefore, by the universal property of pullbacks, there
exists a dashed morphism ϕ making the left and front sides of the above cube commute.
Using the fact that p and q are dagger monic, we deduce ϕ = (k∧l)†◦δ†◦((k∧l)⊗(k∧l)).
This means that the left square in the following diagram commutes:

X
(k∧l)† //

δ

��

K ∧ L

ϕ†

��

k∧l // X

δ

��
X ⊗ X

(k∧l)†⊗(k∧l)†
// (K ∧ L) ⊗ (K ∧ L)

(k∧l)⊗(k∧l)
// X ⊗ X.

The right square is seen to commute analogously—take daggers of all the vertical mor-
phisms in the cube. Therefore the whole rectangle commutes. In other words, δ◦P (k∧l) =
(P (k ∧ l) ⊗ P (k ∧ l)) ◦ δ, that is, k ∧ l is copyable. �
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Lemma 9 The copyable kernels form an orthocomplemented sublattice of the orthomodu-
lar lattice KSub(X).

PROOF We have to prove that if k is a copyable kernel, then so is k⊥ = ker(k†).

K
� ,2 k // X

(k⊥)† � ,2K⊥ � ,2 k⊥

// X
k†

� ,2K

K ⊗ K

δ
†

k

OOOO

//
k⊗k

// X ⊗ X

δ†

OOOO

(k⊥)†⊗(k⊥)†
// // K⊥ ⊗ K⊥

f

OO�
�

�
g

OO�
�

�

//
k⊥⊗k⊥

// X ⊗ X

δ†

OOOO

k†⊗k†

// // K ⊗ K

δ
†

k

OOOO

Since k is copyable, we have k†◦δ†◦(k⊥⊗k⊥) = δ
†
k◦(k

†⊗k†)◦(k⊥⊗k⊥) = δ
†
k◦(0⊗0) =

0, so that the dashed arrow f in the above diagram exists, making the square to its right
commute. Since k⊥ is dagger monic, f must equal coker(k) ◦ δ† ◦ (ker(k†) ⊗ ker(k†)).

Similarly, it follows from copyability of k that (k⊥)† ◦ δ
†
k ◦ (k ⊗ k) = 0, so that the

dashed arrow g exists. Since g must be coker(k) ◦ δ† ◦ (coker(k)† ⊗ coker(k)†), we see
that f and g coincide. Hence the rectangle composed of the middle two squares commutes.
Taking its dagger yields a commutative diagram showing that k⊥ is copyable. �

Notice that if the classical structure had a unit ε, the previous result would have been
impossible if we had additionally demanded ε ◦ P (k) = ε for k to be copyable, since then
ε = ε ◦ P (k⊥) = ε ◦ P (k) ◦ P (k⊥) = ε ◦ P (k ∧ k⊥) = ε ◦ 0 = 0. Compare [2].

Lemma 10 [9, Theorem 1] An orthocomplemented sublattice L of KSub(X) is Boolean
if and only if k ∧ l = 0 implies l† ◦ k = 0 for all k, l ∈ L. �

Theorem 11 The copyable kernels form a Boolean subalgebra of the orthomodular lattice
KSub(X).

PROOF By the previous lemmas, it suffices to prove that if k ∧ l = 0 for copyable kernels
k and l, then l† ◦ k = 0 . So let k and l be copyable kernels and suppose k ∧ l = 0. Say
k = ker(f) and l = ker(g). Then (f ⊗ id) ◦ (k ⊗ l) = (f ◦ k) ⊗ l = 0 ⊗ l = 0, so that
k ⊗ l ≤ ker(f ⊗ id) = k ⊗ id ≤ (k ⊗ id) ∧ (id ⊗ k) = k ⊗ k. Similarly, k ⊗ l ≤ l ⊗ l.
Therefore the bottom, top, back and right faces of the following cube commute:

K
k // X

0

0
77oooooooooo 0 // L

l
77oooooooooo

K ⊗ K

δ
†

k

OO

k⊗k // X ⊗ X.

δ†

OO

K ⊗ L

ϕ

OO�
�

�

�

� id⊗(k†◦l)
pp

77pp

(l†◦k)⊗id

//
k⊗leeeeeeeeeeee

eeee

22eeeeeee

L ⊗ L
l⊗l

77ppppppp

δ
†

l

OO

The universal property of the pullback formed by the top face yields the dashed morphism
ϕ making the left and front faces commute. Hence δ

†
l ◦ ((l† ◦ k) ⊗ id) = 0. But then, as k
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and l are copyable:

l† ◦ k = l† ◦ δ† ◦ (k ⊗ k) ◦ δk

= δ
†
l ◦ (l† ⊗ l†) ◦ (k ⊗ k) ◦ δk

= δ
†
l ◦ ((l† ◦ k) ⊗ id) ◦ (id ⊗ (l† ◦ k)) ◦ δk = 0. �

The following definition expresses the standard view in (order-theoretic) quantum logic
that Boolean subalgebras of orthomodular lattices are regarded as embodying complete
complementarity. It is precisely what is needed to make Theorem 13 true.

Definition 12 Two Boolean subalgebras of an orthomodular lattice are called partially
complementary when they have trivial intersection.

Theorem 13 Two classical structures are partially complementary if and only if their col-
lections of copyable kernels are partially complementary. �

Hence we have linked, fully abstractly, partial complementarity in the order-theoretic
sense to partial complementarity in the sense of classical structures.

4 Von Neumann algebras

Finally, this section advances to level (i) of the Introduction. We instantiate the dagger
monoidal kernel category D to be Hilb. For any object H ∈ Hilb, the endohomset
A = Hilb(H, H) is then a type I von Neumann algebra. At this level, the notion of
complete complementarity is formalized by considering all commutative von Neumann
subalgebras C of A. We denote the collection of all such subalgebras of A by C(A). Let us
recall some facts about this situation.

(a) The set Proj(A) = {p ∈ A | p† = p = p2} of projections is a complete, atomic,
atomistic orthomodular lattice [18, p85].

(b) There is an order isomorphism Proj(A) ∼= KSub(H) [9, Proposition 12].

(c) Any von Neumann algebra is generated by its projections [18, 6.3], so in particular
C = Proj(C)′′.

(d) Since C is a subalgebra of A, also Proj(C) is a sublattice of Proj(A).

(e) Because C is commutative, Proj(C) is a Boolean algebra [18, 4.16].

The following lemma draws a conclusion of interest from these facts.

Lemma 14 Commutative von Neumann subalgebras C of A = Hilb(H, H) are in bijec-
tive correspondence with Boolean subalgebras of KSub(H). �

We now set out to establish the relation between commutative subalgebras of A and
classical structures on H .
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Lemma 15 An orthocomplemented sublattice L of KSub(H) is Boolean if and only if the
following equivalent conditions hold:

• there exists a classical structure on the greatest element of L along which every
element of L is copyable;

• there exists a classical structure on H along which every element of L is copyable.

PROOF Necessity is established by Theorem 11. For sufficiency, let L be a Boolean sub-
lattice of KSub(H). Since KSub(H) is complete by (a) above,

∨
L exists. By atomicity

(a),
∨

L is completely determined by the set of atoms ai below it. By definition of atoms,
ai ∧ aj = 0 when i 6= j. Because L is Boolean, it follows from Lemma 10 that ai and aj

are orthogonal. Also, because Hilb is simply well-pointed, the kernels ai correspond to
one-dimensional subspaces [9, Lemma 11]. That is, the ai give an orthonormal basis for
(the domain of) the greatest element of L (which can be extended to an orthonormal basis
of H). This, in turn, induces a classical structure δ on L (or H) [2]. Finally, Example 4
shows that the kernels ai, and hence all l ∈ L, are copyable along δ. �

Theorem 16 For the von Neumann algebra A = Hilb(H, H):

C(A) ∼= {L ⊆ KSub(H) | L orthocomplemented sublattice,

∃δ : 1L→1L⊗1L
∀l∈L[l copyable along δ]}.

PROOF This is just a combination of Lemma 14 and Lemma 15. �

The previous theorem implies that for any classical structure δ on H , there is an induced
commutative von Neumann subalgebra C ∈ C(A) corresponding to the lattice L of all
copyable kernels. The following definition and corollary finish the connections of partial
complementarity across the three levels discussed in the Introduction.

Definition 17 Two commutative von Neumann subalgebras of Hilb(H, H) are partially
complementary when their intersection is the trivial subalgebra {z · id | z ∈ C}.

Corollary 18 Two classical structures on an object H in Hilb are partially complemen-
tary if and only if they induce partially complementary commutative von Neumann subal-
gebras of Hilb(H, H). �

Unlike Proj(A), the sublattice Proj(C) is not atomic for general C ∈ C(A); for a
counterexample, take H = L2([0, 1]) and C = L∞([0, 1]). If this does happen to be the
case, for example if we restrict the ambient category D to that of finite-dimensional Hilbert
spaces, we can strengthen the characterization of C(A) in Theorem 16.

Proposition 19 For a finite-dimensional Hilbert space H and the von Neumann algebra
A = fdHilb(H, H):

C(A) ∼= {(δi)i∈I | δi, δj classical structures, partially complementary when i 6= j,

∃δ : H→H⊗H∀i∃ki : δi→δ [ki morphism of classical structures]}.

Hence C(A) is isomorphic to the collection of cocones in the category of classical sub-
structures on H that are pairwise partially complementary. �

Notice that the characterization of Proposition 19 above has no need for the cumber-
some combinatorial symmetry considerations of [10, 1.4.5].
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5 Concluding remarks

Observing the similarities across the three levels of quantum mechanics considered, we
now propose the following precise formulation of complete complementarity.

A collection of classical structures is completely complementary when its mem-
bers are pairwise partially complementary and jointly epic.

Compare also [21]. Notice that this formulation is almost information-theoretic.
The view on C(A) provided by Section 4 holds several promises for the study of func-

tors on C(A) that we intend to explore further in future work:

• One can consider variations in the study of Set-valued functors on C(A) by choosing
different morphisms on C(A): e.g. inclusions [10], or reverse inclusions [7]. In
the above perspective, the natural direction that suggests itself is that of morphisms
between classical structures, i.e. inclusions. Moreover, a more interesting choice
of morphisms based on classical structures (see e.g. [5]) could make C(A) into a
category that is not just a partially ordered set.

• The topos of functors on C(A) can be abstracted away from Hilb to any dagger
monoidal kernel category that satisfies a suitable ‘spectral assumption’ linking com-
mutative submonoids of endohomsets to classical structures. For example, one could
lift Theorem 16 or even Proposition 19 to a definition, and study Set-valued functors
on these characterizations of C(A) in any dagger monoidal kernel category.

In fact, in this generalized setting, there is no need for the base category to be Set.
After all, the basic objects of study of e.g. [7] are really partial orders of subobjects
in a functor category. This just happens to be a Heyting algebra because the func-
tors take values in the topos Set, but in principle less structured partial orders of
subobjects are just as interesting, and perhaps are also justifiable physically.

• One of the weak points of the study of functors on C(A) to date is that there is no
obvious way to study compound systems. That is, there is no obvious (satisfactory)
relation between C(A ⊗ B) and C(A) and C(B). Considering A as (a submonoid
of) an endohomset opens the broader context of a fibred setting in which studying
entanglement is possible.

All in all, the above considerations strongly suggest studying fibrations of all classical
structures over all objects of a dagger (kernel) monoidal category.

Finally, we remark that we have not used the H*-axiom (or the Frobenius equation) at
all in this paper. Apparently, the combination of (copyable) kernels with the dagger monic
type X → X ⊗ X of classical structures suffices for these purposes.
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[7] Andreas Döring and Christopher J. Isham. ‘What is a thing?’: Topos theory in the foundations
of physics. In New Structures for Physics, Lecture Notes in Physics. Springer, 2009.

[8] Carsten Held. The meaning of complementarity. Studies in History and Philosophy of Science
Part A, 25:871–893, 1994.

[9] Chris Heunen and Bart Jacobs. Quantum logic in dagger kernel categories. Order, 2010.

[10] Chris Heunen, Nicolaas P. Landsman, and Bas Spitters. Bohrification. In Deep Beauty. Cam-
bridge University Press, 2009.

[11] Gudrun Kalmbach. Orthomodular Lattices. Academic Press, 1983.

[12] Simon Kochen and Ernst Specker. The problem of hidden variables in quantum mechanics.
Journal of Mathematics and Mechanics, 17:59–87, 1967.

[13] Joachim Kock. Frobenius algebras and 2-D Topological Quantum Field Theories. Number 59
in London Mathematical Society Student Texts. Cambridge University Press, 2003.

[14] Nicolaas P. Landsman. Handbook of the philosophy of science vol 2: Philosophy of Physics,
chapter Between classical and quantum, pages 417–554. North-Holland, 2007.

[15] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information.
Cambridge University Press, 2000.
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