Classical simulation of quantum contextuality
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Abstract

Recently, several inequalities involving sequences ofsmeaments have been pro-
posed which hold for non-contextual models but which ardatéal in quantum me-
chanics. They also have been found to be violated in expetsrend the violation is
independent of the prepared quantum state. A typical carderodel explaining this
violation uses a classical memory. We investigate the requnemory size and show
that in order to simulate certain effects of quantum conigitl for two qubits, more
than two classical bits are required.

1 Noncontextuality inequalities

Let us start with explaining the noncontextuality ineqtiedi, which are consequences
of the Kochen-Specker theorem [1]. For that, we take the atreduced in Ref. [2],
see also Ref. [3] for more discussion. Consider a singleegystith nine observables,
A, B,C,a,b,c,a, 3 andvy, and then the mean value

(xxs) =(ABC) + (abc) + (aBv) + (Aaa) + (BbB) — (Ccy). 1)
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Here, the expressionsl BC) etc. denote the mean value of the product of the three mea-
surement values, ifl, B, C' are measured simultaneously or in a sequence. If the measure
ments in each expectation value are compatible it does ntiemahether one measures
them simultaneously or in a sequence. Then, any noncomteigden variable model
has to assign fixed values to each of the nine occurring measunts, independent of the
column or row that is used as a measurement context. In thesa@e can see that

(xxs) < 4, (2

as one cannot get rid of one minus sign in one term. Howeverivo-qubit system, one
may choose the observables of the Mermin-Peres square [4],

A=0.,®1, B=1®o,, C=0,®0,,
a=100, b=0,01, c=0,00, ®)
a=0,Q oy, ﬁ:UI@)O’Z, /YZO-y@O'y'

The observables in any row or column commute and are therefonpatible. Moreover,
the product of the observables in any row or column eqlialapart from the last column,
where it equals-1 . Hence, forany quantum state,

(xKs) =6 (4)

holds. The remarkable fact is that this result shows thatqarantum state reveals non-
classical properties if the measurements are chosen ajgtedp. This inequality has been
tested in three recent experiments [5] and also the stagpemtience of the violation has
been confirmed.

2 Possible contextual models

In the experiments mentioned above, the observables arsumsebsequentially. This al-
lows for a simple explanation of the violation: One could gime that the quantum system
“remembers” the measurements made before and flips thesvaltiee later measurements
accordingly. This is similar to an explanation of a Bell inetjty violation by communica-
tion between the parties. Of course, such a model with memargntextual.

The question arises: How many memory bits are needed in twdeproduce the vi-
olation of the noncontextuality inequality? More precys@ne could formulate this as a
game: The first player Alice asks the second player Bob a segd® Q-Qs... of arbitrary
length of questiong);. The single questions are always out of a set of nine posgil#s-
tions@,; € {A, B,C,a,b,c,«, 3,7}. The second player has to give an answérdirectly
to each of the questions and the answers have to fulfill twalitions: First, if at any point
in the sequence one of the rows or columns of the Mermin-Repegre is measured (in an
arbitrary permutation), then the answers have to fulfillgbefect correlations predicted by
qguantum mechanics (e.gCcy) = —1) for these six contexts. Second, if a subsequence
consists only of mutually compatible observables (e.gmftbe set{ A, a, «}) then the
values of these observables do not change during this suésee.

Note that these conditions do not include all quantum meichbpredictions (e.g. the
statistical predictions of quantum mechanics are negl¢ctob has only to reproduce
some cases, where quantum mechanics predicts perfediatioms.
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If Bob can use quantum mechanics, he can simply measure tresponding observ-
ables of the Mermin-Peres square on an arbitrary two-qtati¢ sand will fulfill the rules.
However, if Bob has only access to classical resources, édsrsome memory. How large
does it have to be?

To formalize Bob’s possible classical strategies, we amrsihat his memory consists
of K internal states. For each of the memory states he has soteeltaim which the
answers to all nine possible questions are given. Moretwvany memory state he has an
update ruld/; which tells him how to update the memory state depending emtlestion
asked. In information theory, such a scheme correspondsMeady machine [6]. The
guestion remains, how many tablEsandU; are needed to avoid any contradictions with
the rules.

3 Resultsfor the Peres-Mermin square

In the simplest case, Bob aims only to reproduce the perfacelations of the Mermin-
Peres square. For that, consider the Mealy machine withatiles

T = ®)

+ + |
|+
|+ +

+__
To=|+ + +| Tz=
+ o+ +

+ + +

+ +
and the update tables
300 0 0 0 0 0 1
Ur=12 0 0 U=10 1 0 Us=10 0 0f. (6)
0 0 0 0 3 0 0 0 2

The tables should be understood as follows: Let us assurhéhthanemory is in state 1.
Then, if some observable (say,is measured one gives the corresponding value (kerg,
andafterwards the memory us updated according to the update table (heeguomps to
state 2). In the updating tables, a “0” means that the mentatg should not change. A
sequence of measurements may then also be written as,’eig.a; 35 b; etc. describing
the dynamics when the sequencéab is measured starting from memory state 1. One
can show that the above machine is optimal:

Theorem 1. If a classical machine should reproduce all six perfectatations for
compatible observables from the Mermin-Peres Square jtheguires at least three mem-
ory states, i.e.log,(3) bits of memory. One optimal solution is given by the tables in
Egs. (5, 6).

The proof of optimality goes along the following lines: Let assume that there are
only two memory states and consider the correspondinggdhlend7,. The tableT}
has at least one contradiction to the Mermin-Peres comdittmd we can assume without
loosing generality that it is in the third column. If we meesthe sequenc€'cy starting
from T} the overall product must bel. This means that at some point in this sequence
we have to jump tdl’»; for definiteness, we can assume that the automaton jumgs aft
measurement of. Moreover, there must be at least one observable in théGet, v}
where the assignments @f andT: differ. Let us assume that they differ @ and that
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T,(C) = +1 andT»(C) = —1. Then, we arrive at a contradiction: The results of the
sequence€); c;C; are a contradiction to the mutual compatibility@fandec.

While the previous automaton reproduces the six Mermire®eorrelations, it has the
following problem: Starting fron¥?, it is predicting: C;" A7 v4 C5 . This means thati
and~ change the value af, although both of them are compatible with(but note that
these three observables are not mutually compatible).

One can debate whether an automaton shall also fulfill thistiadal requirement.
On the one hand4, C, and~ cannot be measured simultaneously and the condition is
not directly required in the definition of compatibility [3]On the other hand, quantum
mechanics predicts with certainty that the valu€’afhould not change. Moreover, models
which violate this are in an obvious way contextual, as thegatly violate the condition
of non-contextuality [3]. In the following, we will assumbsdt thisgeneralized condition
on compatibility holds. In short, one may formulate this as the condition iftetjuestion
(say, A) is asked two times in the measurement sequence and all €stigps in between
are compatible with that (here, they would be frdi8, C, a, a}), then the value of the
original question 4) should not change.

Under this condition, we can formulate:

Theorem 2. For the Mermin-Peres square with the generalized com{figtibdondition,
guantum contextuality can be simulated with four tables, iwo bits of memory. The
optimal solution is given by:

- - + + - + - + + + + +
Th=1|- — + =1+ - - T3=|- — + Ty= |4+ — -
+ + + + + + + - - + - -
(7)
where the update tables are given by:
0 00 4 1 0 1 40 0 00
Uy=10 0 3 Uy=10 0 0 Us;=10 0 0 Uy=10 0 2 (8)
0 0 2 0 00 0 00 0 0 3

The fact that these tables fulfill the conditions can diseb# checked (preferably by
computer). Furthermore, one can show that no three-sthitmsoexists, which proves the
optimality. This optimality proof is, however, technical.

4 Extended Kochen-Specker inequality

In the previous example, two classical bits were sufficiersimulate quantum contextual-
ity for two qubits. This may not be surprising, as two-qulsisinot be used to store more
than two classical bits — a fact known from Holevo’s bound.

There is, however, an extended Kochen-Specker inequaldretwo qubits which re-
quires more than two bits of memory. This inequality has mégebeen introduced in
Ref. [7]. To motivate it, note that for the observable= o, @ 1 notonly B, C, a, o from
above are compatible, but also the observableso, ando. ® o,,. Using this for all ob-
servables from the Mermin-Peres square, one can consldersalible tensor products of
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Pauli matrices and write down an inequality with 15 termsewethe quantum mechanical
value is 15, but the classical bound is 9. For this inequalityhave:

Theorem 3. In order to simulate classically the extended Kochen-Sgeitiequality
from Ref. [7] with the generalized compatibility conditicone needs at least five memory
states, i.elog,(5) classical bits of memory.

In order to prove this, one shows that no four-state soluticthe extended inequality
exists. This time, the proof igery long and technical. The remarkable fact is, however,
that the classical simulation of two qubits requires moassical bits of memory than the
classical bits that can be stored in the system.
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