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Abstract

Recently, several inequalities involving sequences of measurements have been pro-
posed which hold for non-contextual models but which are violated in quantum me-
chanics. They also have been found to be violated in experiments and the violation is
independent of the prepared quantum state. A typical contextual model explaining this
violation uses a classical memory. We investigate the required memory size and show
that in order to simulate certain effects of quantum contextuality for two qubits, more
than two classical bits are required.

1 Noncontextuality inequalities

Let us start with explaining the noncontextuality inequalities, which are consequences
of the Kochen-Specker theorem [1]. For that, we take the one introduced in Ref. [2],
see also Ref. [3] for more discussion. Consider a single system with nine observables,
A, B, C, a, b, c, α, β andγ, and then the mean value

〈χKS〉 =〈ABC〉 + 〈abc〉 + 〈αβγ〉 + 〈Aaα〉 + 〈Bbβ〉 − 〈Ccγ〉. (1)
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Here, the expressions〈ABC〉 etc. denote the mean value of the product of the three mea-
surement values, ifA, B, C are measured simultaneously or in a sequence. If the measure-
ments in each expectation value are compatible it does not matter whether one measures
them simultaneously or in a sequence. Then, any noncontextual hidden variable model
has to assign fixed values to each of the nine occurring measurements, independent of the
column or row that is used as a measurement context. In this case one can see that

〈χKS〉 ≤ 4, (2)

as one cannot get rid of one minus sign in one term. However, ina two-qubit system, one
may choose the observables of the Mermin-Peres square [4],

A = σz ⊗ 1l , B = 1l ⊗ σz , C = σz ⊗ σz ,

a = 1l ⊗ σx, b = σx ⊗ 1l , c = σx ⊗ σx,

α = σz ⊗ σx, β = σx ⊗ σz , γ = σy ⊗ σy .

(3)

The observables in any row or column commute and are therefore compatible. Moreover,
the product of the observables in any row or column equals1l , apart from the last column,
where it equals−1l . Hence, forany quantum state,

〈χKS〉 = 6 (4)

holds. The remarkable fact is that this result shows that anyquantum state reveals non-
classical properties if the measurements are chosen appropriately. This inequality has been
tested in three recent experiments [5] and also the state independence of the violation has
been confirmed.

2 Possible contextual models

In the experiments mentioned above, the observables are measured sequentially. This al-
lows for a simple explanation of the violation: One could imagine that the quantum system
“remembers” the measurements made before and flips the values of the later measurements
accordingly. This is similar to an explanation of a Bell inequality violation by communica-
tion between the parties. Of course, such a model with memoryis contextual.

The question arises: How many memory bits are needed in orderto reproduce the vi-
olation of the noncontextuality inequality? More precisely, one could formulate this as a
game: The first player Alice asks the second player Bob a sequenceQ1Q2Q3... of arbitrary
length of questionsQi. The single questions are always out of a set of nine possibleques-
tionsQi ∈ {A, B, C, a, b, c, α, β, γ}. The second player has to give an answer±1 directly
to each of the questions and the answers have to fulfill two conditions: First, if at any point
in the sequence one of the rows or columns of the Mermin-Peressquare is measured (in an
arbitrary permutation), then the answers have to fulfill theperfect correlations predicted by
quantum mechanics (e.g.〈Ccγ〉 = −1) for these six contexts. Second, if a subsequence
consists only of mutually compatible observables (e.g. from the set{A, a, α}) then the
values of these observables do not change during this subsequence.

Note that these conditions do not include all quantum mechanical predictions (e.g. the
statistical predictions of quantum mechanics are neglected), Bob has only to reproduce
some cases, where quantum mechanics predicts perfect correlations.
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If Bob can use quantum mechanics, he can simply measure the corresponding observ-
ables of the Mermin-Peres square on an arbitrary two-qubit state and will fulfill the rules.
However, if Bob has only access to classical resources, he needs some memory. How large
does it have to be?

To formalize Bob’s possible classical strategies, we consider that his memory consists
of K internal states. For each of the memory states he has some table Ti in which the
answers to all nine possible questions are given. Moreover,to any memory state he has an
update ruleUi which tells him how to update the memory state depending on the question
asked. In information theory, such a scheme corresponds to aMealy machine [6]. The
question remains, how many tablesTi andUi are needed to avoid any contradictions with
the rules.

3 Results for the Peres-Mermin square

In the simplest case, Bob aims only to reproduce the perfect correlations of the Mermin-
Peres square. For that, consider the Mealy machine with the tables

T1 =





− − +
+ + +
+ − −



 T2 =





+ − −
+ + +
+ + +



 T3 =





− − +
− − +
+ + +



 (5)

and the update tables

U1 =





3 0 0
2 0 0
0 0 0



 U2 =





0 0 0
0 1 0
0 3 0



 U3 =





0 0 1
0 0 0
0 0 2



 . (6)

The tables should be understood as follows: Let us assume that the memory is in state 1.
Then, if some observable (say,a) is measured one gives the corresponding value (here,+1)
andafterwards the memory us updated according to the update table (here, one jumps to
state 2). In the updating tables, a “0” means that the memory state should not change. A
sequence of measurements may then also be written as, e.g.a+

1 A+
2 α+

2 β+
2 b−3 etc. describing

the dynamics when the sequenceaAαβb is measured starting from memory state 1. One
can show that the above machine is optimal:

Theorem 1. If a classical machine should reproduce all six perfect correlations for
compatible observables from the Mermin-Peres Square, thenit requires at least three mem-
ory states, i.e.log2(3) bits of memory. One optimal solution is given by the tables in
Eqs. (5, 6).

The proof of optimality goes along the following lines: Let us assume that there are
only two memory states and consider the corresponding tables T1 andT2. The tableT1

has at least one contradiction to the Mermin-Peres conditions and we can assume without
loosing generality that it is in the third column. If we measure the sequenceCcγ starting
from T1 the overall product must be−1. This means that at some point in this sequence
we have to jump toT2; for definiteness, we can assume that the automaton jumps after
measurement ofc. Moreover, there must be at least one observable in the set{C, c, γ}
where the assignments ofT1 andT2 differ. Let us assume that they differ inC and that
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T1(C) = +1 andT2(C) = −1. Then, we arrive at a contradiction: The results of the
sequenceC+

1 c?
1C

−

2 are a contradiction to the mutual compatibility ofC andc.

While the previous automaton reproduces the six Mermin-Peres correlations, it has the
following problem: Starting fromT1, it is predicting: C+

1 A−

1 γ+
3 C−

2 . This means thatA
andγ change the value ofC, although both of them are compatible withC (but note that
these three observables are not mutually compatible).

One can debate whether an automaton shall also fulfill this additional requirement.
On the one hand,A, C, andγ cannot be measured simultaneously and the condition is
not directly required in the definition of compatibility [3]. On the other hand, quantum
mechanics predicts with certainty that the value ofC should not change. Moreover, models
which violate this are in an obvious way contextual, as they directly violate the condition
of non-contextuality [3]. In the following, we will assume that thisgeneralized condition
on compatibility holds. In short, one may formulate this as the condition thatif a question
(say,A) is asked two times in the measurement sequence and all the questions in between
are compatible with that (here, they would be from{B, C, a, α}), then the value of the
original question (A) should not change.

Under this condition, we can formulate:
Theorem 2. For the Mermin-Peres square with the generalized compatibility condition,

quantum contextuality can be simulated with four tables, i.e. two bits of memory. The
optimal solution is given by:

T1 =





− − +
− − +
+ + +



 T2 =





+ − +
+ − −
+ + +



 T3 =





− + +
− − +
+ − −



 T4 =





+ + +
+ − −
+ − −





(7)
where the update tables are given by:

U1 =





0 0 0
0 0 3
0 0 2



 U2 =





4 1 0
0 0 0
0 0 0



 U3 =





1 4 0
0 0 0
0 0 0



 U4 =





0 0 0
0 0 2
0 0 3



 . (8)

The fact that these tables fulfill the conditions can directly be checked (preferably by
computer). Furthermore, one can show that no three-state solution exists, which proves the
optimality. This optimality proof is, however, technical.

4 Extended Kochen-Specker inequality

In the previous example, two classical bits were sufficient to simulate quantum contextual-
ity for two qubits. This may not be surprising, as two-qubitscannot be used to store more
than two classical bits — a fact known from Holevo’s bound.

There is, however, an extended Kochen-Specker inequalities for two qubits which re-
quires more than two bits of memory. This inequality has recently been introduced in
Ref. [7]. To motivate it, note that for the observableA = σz ⊗ 1l not onlyB, C, a, α from
above are compatible, but also the observables1l ⊗ σy andσz ⊗ σy . Using this for all ob-
servables from the Mermin-Peres square, one can consider all possible tensor products of
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Pauli matrices and write down an inequality with 15 terms, where the quantum mechanical
value is 15, but the classical bound is 9. For this inequality, we have:

Theorem 3. In order to simulate classically the extended Kochen-Specker inequality
from Ref. [7] with the generalized compatibility condition, one needs at least five memory
states, i.e.log2(5) classical bits of memory.

In order to prove this, one shows that no four-state solutionof the extended inequality
exists. This time, the proof isvery long and technical. The remarkable fact is, however,
that the classical simulation of two qubits requires more classical bits of memory than the
classical bits that can be stored in the system.
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