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Abstract

The paper provides a quantitative algebraic analysis of a BB’84-type quantum key
distribution protocol. The analysis is done in an algebraic setting, where classical and
quantum variables form a module for the quantale formed from the communication
and quantum actions. The module-quantale pair is endowed with sup-maps that encode
uncertainties of agents involved in the protocol, about the variables and about the ac-
tions. The right adjoint to the action of the quantale on the module provides a dynamic
modality, read as “after”. The right adjoints to the uncertainty maps provide epistemic
modalities, read as “belief” of agents. Using these and the axioms of the algebra, we
can express and verify whether the agents share a secret after running the protocol. The
need for probabilities is felt, since in the presence of an intruder, agents cannot fully
share their secret. We enter quantities into the analysis via degrees/probabilities of be-
lief. These probabilities are derived from the number of choices that an agent has about
actions and propositions involved in the protocol, these include actions of an intruder.
For simplicity, we have assumed that the choices have a uniform chance of happening,
hence as if assuming that the entropies of agents’ choice sets are maximal. Using these
probabilities, we show how the purpose of the actions in the protocol is to increase the
agents’ degrees of belief and to decrease the intruder’s degree of belief. We show how
a classical version of the protocol, in which the intruder can copy the passing qbit, is
less efficient, since the intruder is able to obtain a higher degree of belief there. We also
show howsecurity amplification’s role is to decrease the intruder’s degree of belief.

Introduction

In the world of logic, given any protocol, one aims to write down its properties in the form
of a logical formula or algebraic term and prove its correctness using the axioms or rules
of the logic or algebra. Quantum key distribution (QKD) protocols are no exception. A
protocol is a sequence of events that change the values of the quantum and classical bits
involved, hence the logic needs to be a dynamic one. If the protocol is correct, the agents
involved in it will share a secret after running it, this means that they will acquire exclusive
access to a piece information, e.g. the value of a bit. So a dynamic epistemic logic or
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algebra seems to provide an appropriate setting. Examples of such logics are DEL of [1]
and its more general algebraic version of [2]. In both articles simple examples of reasoning
about security protocols have been presented. In fact, these examples constitute (alongside
epistemic puzzles) the most appropriate motivation behind development and raison-d’etre
of creation of such logics.

Indeed reasoning about quantum phenomena needs extra care because of the sophisti-
cated nature of the rules thereof and only experts of the field have the eligibility to attempt to
formalize it. But the subject is very attractive and its challenges are too tempting, so many
non-experts have also taken their hinges, especially in the field of quantum information.
Various less complex fragments of the theory have been isolated and different axiomatics
and rule-based process calculi and logical systems have been developed for these simpler
fragments, examples of such are the measurement calculus of [5] and a distributed version
of it [4].

The dynamic epistemic logic approach has a nice axiomatics, based on adjoint modali-
ties, to unfold correctness properties of any protocol. The distributed measurement calculus
approach has the rules of a simple universal family of quantum measurements. In a contri-
bution to a previous QPL in Iceland [3], the forces of these two systems were joined and
a decision procedure to reason about QKD protocols was developed. The effectiveness of
the procedure was demonstrated by modeling and reasoning about simple bi-partite secret
sharing protocols in the style of Ekert’91 and BB’84, but also newer more complicated
protocols on multi-agent secret sharing, based on graph states [6]. The need for probabili-
ties were felt and their absence promptly criticized by the referees. Here, I do not claim to
have overcome that problem but am trying to discuss some rough ideas on how one might
go about to do so, by solely considering the dynamic epistemic part. This abstract is work
in progress and perhaps should only be considered as a short contribution; it is based on a
poster presented in [7].

A snapshot of the formalism

We model the correctness properties of a protocol as inequalities of an atomic sup-lattice
M of propositionsm ∈ M . The atoms ofM are classical and quantum variablessj

i andqi,
and the tensor product of quantum variablesql⊗ qw. The sup-latticeM is the right module
of an atomic quantaleQ, whose atoms areNA,γ,i

l for γ ∈ {X, Z} denoting preparation
of qbit l by agentA in basisX or Z for classical valuei ∈ {0, 1}, or PA,γ,i

l denoting
measurement (or projection) of qbitl by agentA in baseX or Z and observing classical
result i, or EA

l,k an entanglement of qbitsl andk by agentA. The atoms also include
communication actions such as public announcement of a propositionm!?, or a private
announcementm!?β to a subgroupβ of agents, or a more refined separate sendm!A→B

and receivem?B←A action. The pair(M,Q) is moreover required to satisfy the rules of
distributed measurement calculus, as described in [3]. The action ofQ on M is denoted
by − · − : M × Q → M , preserves all the joins ofM , so has a right adjoint in its first
argument[q]−, standing for the dynamic modality which is read as ”after running protocol
q, propositionm becomes true”. These modalities yield weakest preconditions of program
verification logics such as Hoare logic and PDL.

As established and elaborated on in previous work [2, 3], the pair(M,Q) of module-



A quantitative algebraic analysis of BB’84 with maximal entropy 135

quantale, are endowed by sup-mapsfA = (fM
A , fQ

A ) wherefM
A : M → M andfQ

A : Q →
Q, stand for uncertainties or possible choices of agents about the propositions or actions.
For instancefM

A (m) is the uncertainty of agentA about propositionm, i.e. all the propo-
sitions that appear to agentA as true while in realitym holds. SimilarlyfQ

A (q) is all the
actions that appear to agentA as happening when in realityq is happening. We ask the
tuple (M,Q, fA) to satisfy threefA axioms offM

A (m · q) ≤ fM
A (m) · fQ

A (q), also that
fQ

A (q) ≤ fQ
A (q) • fQ

A (q′) and1 ≤ fQ
A (1). Since each suchfA preserves all the joins, it

has a Galois right adjoint, we focus on the one forfM
A , denote it by2Am and read it as the

belief modality, i.e. as ”agentA believes in propositionm”.
A uniform probability distribution is literally sitting in the setting. Since bothM andQ

are atomic, each element therein can be written as the join of atoms below it, i.e.fA(x) =∨n
i=1 αi for αi ∈ At(M). Now if k out of n of the atoms infA(x) are less than or equal

to a certainx′, we say that with probability (at least)kn the uncertainty of agents aboutx
satisfiesx′, that is (at least)k out of n of A’s possible choices aboutx satisfyx′. We use
this idea to introduce a new modality2A, k

n
m′, read as ”with probability (at least)kn agent

A believes inm′”. We define this modality via the following rule

m ≤ 2A, k
n
m′ iff fA(m)k ≤ m′

where there isn atoms infA(m) and k of them are≤ m′, hence their join is, that is
fA(m)k =

∨k≤n
i=1 αi ≤ m′. This modality is used alongside the dynamic one: given the

sequence of actions of a protocolπ, and the initial situation that holds before itInit, we
aim to prove

Init ≤ [π]2A, k
n
m

That is, after running protocolπ on the initial situation expressed in propositionInit, with
probability (at least)kn an agentA believes that propositionm holds. By unfolding the
dynamic adjunction and applying the above probability rule, this is iffk out of n of A’s
choices about the update of the initial property are≤ m, i.e. fA(Init · π)k ≤ m . To solve
this inequality, one should first unfoldfA(Init · π), exactly as in the non-probabilistic set-
ting, and obtain a join ofn updated disjuncts which now constitute of atomic propositions
and actions. One then goes on to check ifk of them are≤ m, if so, the conclusion is that
the original inequality holds. This easily yields a decision procedure, enhancing that of
previous work.

The above treatment assumes a uniform distribution on atoms, as we are assuming
that each atom infA(x) has the same chance of happening. It is as if we are defining a
measureµ(fA(m)) on M and set it to ben iff fA(m) =

∨n
i=1 αi, which is the same as

saying that each atomαi of a choice clusterfA(m) has probability distribution 1
µ(fA(m)) .

Toying with known concepts such as entropy, we recall that in some way entropy provides
a measure for the distribution of choice and maximal entropy is when this distribution
is uniform. So one can do a literal analogy and define thatA’s maximal entropy of his
uncertainty aboutm to be equivalent to−log(µ(fA(m))). One can elaborate on this a bit
and defineA’s maximal entropy ofm shaded bym′ to be k

n × −log(µ(fA(m))) wherek
is µ(fA(m)∧m′) andn is µ(fA(m)). Now our above definition of probabilistic belief can
be restated asm ≤ 2A, k

n
m′ iff A’s maximal entropy ofm shaded bym′ is ( k

n )× 1
−log(n) .
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A lot more care needs to be taken for these probabilities or measures, but as we shall
see below, these rough and simple-minded probabilities provide us with preliminary means
to analyze QKD protocols in a nice numeric way, yet in a symbolic logical setting. They
are also helpful in establishing a way to distinguish the effectiveness of quantum protocols
versus that of their classical versions.

Example

Consider a simplified version of the BB’84 protocol where the measurements are restricted
to X or Z. Alice prepares qbitq1 and sends it to Bob, who upon receipt measures it. Then
Alice publicly announces his preparation basis, if this is the same as Bob’s measurement
bases, then (in an ideal world, when there is no intruder) they share a secret, namely the
classical result of the measurement. An ideal run of this protocol where the chosen basis
of both agents isX would be as follow:

π = NA,X,1
1 ; q1!A→B ; q1?B←A;PA,X,1

1 ;X!?A→B

Takesi
l for i ∈ {0, 1}, l ∈ {1, 2} to stand for the classical valuei of measuring qbitl. If

there was no intruder, we would have had the following right hand side for the correctness
property of this protocol

[π]
(
2A,1s

1
1 ∧2B,1s

1
1 ∧2B,12A,1s

1
1

)
But the real world has intruders. Let’s assume that we have only one of them called Eve,
and that she is only intercepting the quantum channel and can measureA’s sent qbit, then
prepare another qbit according to the basis he chose for measurement and the result he
saw, then send that to Bob, pretending it is from Alice. In this world, the above run of the
protocol changes to the following one:

π = NA,X,1
1 ; q1!A→B ; q2?B←A;PA,X,1

1︸ ︷︷ ︸
σ

;X!A→B

where Alice’s sent qbit isq1, but Bob’s received one isq2, which may or may not have been
tampered with byE. The correctness properties of the protocol change accordingly, it is no
more the case that the belief modalities have probability 1. In fact, our probabilities can be
used to demonstrate how belief degrees increment as a result of the protocol actions. For
instance, takeσ to be the sequence of actions just beforeA publicly announces her basis.
Then we have the following property:

[σ]
(
2A,7/12 s1

1 ∧2B,7/12 s1
1 ∧2A,7/122B,7/12s

1
1

)
We also obtain the following properties regarding Eve’s belief

[σ]
(
2E,5/9 s1

1 ∧2A,9/122E,5/9 s1
1 ∧2B,9/122E,5/9 s1

1

)
The purpose of Alice’s classical communication action at the end of the protocol is to
increase the belief probability of Bob, which unfortunately will also increase that of Eve
with exactly the same amount. This is demonstrated by verifying the following properties

[π]
(
2B,4/6s

1
1 ∧2E,2/3s

1
1

)
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However if the classical communication only happens as a private announcement between
A andB, Eve’s belief degree will stay5/9 where as Bob’s will change to4/6. These prop-
erties are verified, by counting the possibilities of the agents and checking that in which one
of themsi

1 hasi = 1. Here the non-identity uncertainties are those of each agent about the
actions of the others. For example when Alice does anNA,X,1

1 preparation and Bob does a
PB,X,1

2 measurement, Bob thinks that Alice might have done either ofNX,1
1 , NZ,0

1 , NZ,1
1 ,

i.e. we havefB(NA,X,1
1 ) = NX,1

1 ∨NZ,0
1 ∨NZ,1

1 . The uncertainties of a sequential com-
position of actions, break down to uncertainties of atoms by join preservation of sequential
composition inQ and the axioms offA’s. At this stage of the protocol, the choices of Eve
are exactly the same. We have enumerated these choices of the actions in the runσ in the
trees below:

We see that for example, the total number of Bob’s choices are 12 and in 7 of themsi
1

hasi = 1, hence afterσ Bob will believe that with probability7/12 the value of Alice’s
prepared bit was 1. Similarly, Eve has 9 choices in total and in 5 of themsi

1 hasi = 1.
After the classical public announcement ofX by Alice, the axiomatics makes sure that
the branches of the trees that have aZ measurement will be eliminated, hence the total
possibilities of, e.g. Bob will now become 6, out of which 4 haves1

1.
Exactly because of the possible presence of intruders, quantum protocols do not run in

just one round. As we have seen above, were this the case, Alice and Bob could not be sure
that they share a secret. So these protocols are ran in many rounds, after which Alice and
Bob try to deduce which runs were tampered with by the intruder, throw those runs away,
and take a function, likexor of the classical bits of the resulting runs and make that their
secret. This process is referred to assecurity Amplification.

We think of security amplification as being useful, since it increases the probability of
Alice and Bob’s beliefs and decreases that of Eve. Verifying this involves the tedious task
of forming the above tree for each run of the protocol and put the trees side by side. Assume
Alice and Bob run the protocol twice and form thexor of the results, then one can verify
that if Eve is lucky, i.e. restrict her choices to those of the top tree demonstrated above,
then his degree of belief decrease from5/9 to 4/9. Working a bit harder and running the
protocol four times, then making Alice and Bob take thexor’s of the results of the first two
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rounds and the second two rounds separately, then taking the conjunction of these, one can
show that Eve’s belief probability decreases to6/27.

Finally, let us imagine a classical version of the protocol and show that it is less ef-
fective, by for example showing that it increases Eve’s degree of belief. One way to go
classical is to suppose that Eve can actually copy the qbit that he is intercepting, i.e. action
CE,X,1

2 . In this case his tree of possibilities will be as follows:

Here after runningσ, Eve’s degree of belief increases from5/9 to 6/9, hence the classical
version is less efficient than the quantum one.

Addendum and Acknowledgement

Just a final note, that here we have introduced a very naive notion of probabilistic belief in
an algebraic setting, which probably suffers from very many shortcomings. But developing
a full blown logic with these modalities has not been the aim of this abstract. We have tried
to keep things simple and to demonstrate that even with these simplistic assumptions, a
great deal can be said about quantum protocols just by deriving the degrees of beliefs of the
agents involved in them. In preliminary discussions with P. Panangaden, he pointed out that
these can be organized and generalized, by for example assigning a measure to each atom
externally, as opposed to computing it internally by counting. Such a generalization, also
investigating the derivation power of the probabilistic modalities is of course a necessity
and hopefully will constitute the subject of joint future work. Support by EPSRC (grant
EP/F042728/1) is gratefully acknowledged.
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