
Resolution-Based Reasoning for Ontologies

Boris Motik

School of Computer Science,
University of Manchester,
Manchester, UK
bmotik@cs.man.ac.uk

Summary. We overview the algorithms for reasoning with description logic (DL) ontolo-
gies based on resolution. These algorithms often have worst-case optimal complexity, and, by
relying on vast experience in building resolution theorem provers, they can be implemented
efficiently. Furthermore, we present a resolution-based algorithm that reduces a DL knowl-
edge base into a disjunctive datalog program, while preserving the set of entailed facts. This
reduction enables the application of optimization techniques from deductive databases, such
as magic sets, to reasoning in DLs. This approach has proven itself in practice on ontologies
with relatively small and simple TBoxes, but large ABoxes.

1 Introduction

Tableau algorithms, introduced in Chapter 23, are nowadaysthe state-of-the-art for
reasoning with description logic (DL) ontologies. This is mainly due to optimiza-
tions of the original algorithm that heuristically guide the search for a model. DLs
such as the ones underlying the Web Ontology Language (OWL) (see Chapter 4)
are, however, complex logics, so no one reasoning method canbe identified as the
best. Rather, comparing different methods and identifyingwhich ones are suitable
for which types of problems can give us crucial insights intobuilding practical rea-
soning systems. Therefore, alternatives to tableau calculi have been explored in the
past.

Resolution and its refinements [4] are nowadays the most widely used calculi
for general-purpose first-order theorem proving. They havebeen implemented in a
number of practical systems, of which Vampire [28] is one of the most successful
one. The general applicability of resolution is partly due to the powerfulredundancy
elimination rules, which can drastically reduce the search space.

Since resolution has been quite successful as a general theorem proving tech-
nique, it is natural to apply it to ontology reasoning. Decision procedures for various
DLs have been developed in the past. It turns out that, even for relatively complex
DLs, resolution-based algorithms can be derived easily andare quite elegant. While
tableau algorithms need sophisticated blocking techniques to ensure termination [8],

2 Boris Motik

resolution-based algorithms terminate automatically as aside-effect of the resolu-
tion calculus. Furthermore, many resolution-based procedures are worst-case opti-
mal [25, 13].

In this chapter, we outline the principles underlying most known resolution-based
procedures for DLs. After introducing the basic notions in Section 2, we present
a decision procedure for the DLALCHI in Section 3. This DL provides many
features characteristic of the DL languages, such as full Boolean connectives, (re-
stricted) existential and universal quantification, inverse roles, and role hierarchies.
Furthermore, the resolution decision procedure for this DLconveys the basic prin-
ciples without overloading the presentation with technical detail. We also overview
the problems involved in extending the algorithm to more expressive DLs.

Deductive databases have been successfully applied to answering queries over
large data sets, so it is natural to apply them to DL reasoningwith large ABoxes. To
enable this, in Section 4 we present a technique that reducesanALCHI knowledge
base to a disjunctive datalog program without affecting theset of entailed ground
facts. Thus, one can answer DL queries using the resulting disjunctive program, and,
in doing so, one can apply known optimization techniques such as magic sets [6].
This transformation can be derived easily from the basic resolution-based decision
algorithm.

The techniques presented in this chapter have been implemented in the DL rea-
soner KAON2.1 Practical experience has shown that the reduction-based techniques
work quite well for ontologies with relatively small and simple TBoxes, but large
and complex ABoxes [23].

2 Preliminaries

2.1 The Description LogicALCHI

Description logics have been introduced in detail in Chapter 1, but, to make this
chapter self-contained, we present the definition of the DLALCHI . For a set of
role namesNR, arole is either someR ∈ NR or aninverse roleR− forR ∈ NR. An
RBoxR is a finite set of role inclusion axiomsR ⊑ S. For a set ofconcept names
NC , the set ofconceptsis the smallest set containing⊤,⊥, A, ¬C, C ⊓D, C ⊔D,
∃R.C, ∀R.C, whereA is a concept name,C andD are concepts, andR is a role.
A TBox T is a finite set ofconcept inclusion axiomsC ⊑ D, whereC andD are
concepts. For a set ofindividualsNI , an ABoxA is a finite set of assertions of the
form C(a), R(a, b), and¬R(a, b), whereC is a concept,R is a role, anda andb
are individuals. AnALCHI knowledge baseK is a triple(R, T ,A). With |K| we
denote the number of symbols needed to encodeK. We say thatK is extensionally
reducedif, in all ABox assertionsC(a), the conceptC is a concept name or the
negation of a concept name. AnyK can be made extensionally reduced by replacing
each assertionC(a) whereC is not of the appropriate form with an assertionAC(a)
and an axiomAC ⊑ C, forAC a new concept name.

1 http://kaon2.semanticweb.org/

Resolution-Based Reasoning for Ontologies 3

Table 1.Semantics ofALCHI by Mapping to FOL

Mapping Roles to FOL
πxy(R) = R(x, y) πyx(R) = R(y, x)

πxy(R−) = R(y, x) πyx(R−) = R(x, y)

Mapping Concepts to FOL
πx(⊤) = ⊤ πy(⊤) = ⊤
πx(⊥) = ⊥ πy(⊥) = ⊥
πx(A) = A(x) πy(A) = A(y)

πx(¬C) = ¬πx(C) πy(¬C) = ¬πy(C)
πx(C ⊓ D) = πx(C) ∧ πx(D) πy(C ⊓ D) = πy(C) ∧ πy(D)
πx(C ⊔ D) = πx(C) ∨ πx(D) πy(C ⊔ D) = πy(C) ∨ πy(D)
πx(∃R.C) = ∃y : πxy(R) ∧ πy(C) πy(∃R.C) = ∃x : πyx(R) ∧ πx(C)
πx(∀R.C) = ∀y : πxy(R) → πy(C) πy(∀R.C) = ∀x : πyx(R) → πx(C)

Mapping Axioms to FOL
π(C ⊑ D) = ∀x : πx(C) → πx(D)
π(R ⊑ S) = ∀x, y : πxy(R) → πxy(S)

π(C(a)) = πx(C){x 7→ a}
π((¬)R(a, b)) = (¬)πxy(R){x 7→ a, y 7→ b}

π(K) =
∧

α∈T ∪R∪A π(α)

In Chapter 1, DLs are given a direct model-theoretic semantics. In this chapter,
however, we use an equivalent semantics based on translation into first-order logic.
In particular, we translate anALCHI knowledge baseK into a first-order formula
π(K), whereπ is the operator defined in Table 1. It is well-known that thesetwo
semantics are equivalent [7].

The basic inference problem forALCHI is checking satisfiabilityof K—that is,
checking whetherπ(K) is a satisfiable first-order formula. As discussed in Chapter
1, other inference problems can be reduced to knowledge basesatisfiability.

Thenegation-normal formnnf(C) of a conceptC is the concept equivalent toC
in which negation occurs only in front of concept names. The conceptnnf(C) can be
computed in time polynomial in the size ofC by well-known transformations [2].

2.2 The Ordered Resolution Calculus

We use the well-known definitions of constants, variables, function symbols, terms,
predicates, and formulae of first-order logic [4]. AnatomA is a formula of the form
P (t1, . . . , tn), whereP is a predicate andti are terms. Aliteral L is a positive
atomA or a negative atom¬A. A clauseis a multiset of literals and is written as
L1 ∨ . . . ∨ Ln. Theempty clauseis written as�. Terms and formulae that do not
contain variables are calledground. We say that formulaeϕ andψ areequisatisfiable
if ϕ is satisfiable if and only ifψ is satisfiable.

A substitutionis mapping of variables to terms that is not identity on a finite
number of variables; we often write it as{x1 7→ t1, . . . , xn 7→ tn}. An application
of a substitutionσ to a termt (formulaϕ) is written tσ (ϕσ) and it is the term

4 Boris Motik

(formula) obtained by replacing each free occurrence of a variable x with xσ. A
substitutionσ is aunifierof termss andt if sσ = tσ. A unifierσ of s andt is called
amost general unifierif, for each unifierη of s andt, a substitutionξ exists such that
xη = (xσ)ξ for every variablex. If a most general unifierσ of s andt exists, it is
unique up to variable renaming [3], so we writeσ = MGU(s, t).

Theskolemizationof a formulaϕ, written sk(ϕ), is obtained fromϕ by succes-
sively replacing each subformula∃x : ψ occurring positively or a subormula∀x : ψ
occurring negatively inϕ with a formulaψ{x 7→ f(x1, . . . , xn)}, wheref is a new
function symbol andx1, . . . , xn are the free variables ofψ different fromx. It is
well-known thatϕ and sk(ϕ) are equisatisfiable [26]. Finally,Cls(ϕ) is the set of
clauses that is equisatisfiable withϕ and is obtained by transformingsk(ϕ) into con-
junctive normal form using the well-known transformations.

Ordered resolution[4] is a calculus that can be used to prove that a formulaϕ

is unsatisfiable. Ordered resolution is a clausal calculus,so it cannot be applied toϕ
directly. First, one must computeCls(ϕ). Next, one must fix the calculus’ parameters.
The first parameter is anadmissibleordering on literals≻—that is, an ordering that is
(i) well-founded, stable under substitutions (i.e.,L1 ≻ L2 impliesL1σ ≻ L2σ for all
literalsL1 andL2 and each substitutionσ), and total on ground literals; (ii) ¬A ≻ A
for all ground atomsA; and (iii) B ≻ A impliesB ≻ ¬A for all atomsA andB. A
literal L is maximal w.r.t. a clauseC if there is no literalL′ ∈ C such thatL′ ≻ L,
andL is strictly maximal w.r.t.C if there is noL′ ∈ C such thatL′ � L. The second
parameter is aselection function, which assigns to each clauseC a possibly empty
subset of negative literals ofC.

An inference ruleis a template that specifies how a conclusion is derived given
a set of premises; aninferenceis an application of an inference rule to concrete
premises. WithR we denote the ordered resolution calculus, consisting of the fol-
lowing inference rules, where the clausesC ∨A ∨B andD ∨ ¬B are called the
main premises, C ∨A is called theside premise, andCσ ∨Aσ andCσ ∨Dσ are
calledconclusions(as usual in resolution theorem proving, we make a technicalas-
sumption that the premises do not have variables in common):

Positive factoring:
C ∨A ∨B

Cσ ∨Aσ

where (i) σ = MGU(A,B), (ii) Aσ is maximal with respect toCσ ∨ Bσ and no
literal is selected inCσ ∨Aσ ∨Bσ.

Ordered resolution:
C ∨A D ∨ ¬B

Cσ ∨Dσ

where (i) σ = MGU(A,B), (ii) Aσ is strictly maximal with respect toCσ and no
literal is selected inCσ ∨ Aσ, (iii) ¬Bσ is either selected inDσ ∨ ¬Bσ, or it is
maximal with respect toDσ and no literal is selected inDσ ∨ ¬Bσ.

Ordered resolution is compatible with powerfulredundancy elimination tech-
niques, which allow deleting certain clauses during the theorem proving process

Resolution-Based Reasoning for Ontologies 5

without loss of completeness [4]. If a clauseC is redundant in some set of clauses
N , thenC can be safely removed fromN .

If a clauseC is a tautology, then it is redundant in any set of clausesN . A sound
and complete tautology check would itself require theorem proving, and would there-
fore be difficult to realize. Therefore, one usually only checks forsyntactic tautolo-
gies—that is, clauses containing the literalsA and¬A. A clauseC subsumesa clause
D if there is a substitutionσ such thatCσ ⊆ D and|C| < |D|. If a clauseC is sub-
sumed by a clause from a set of clausesN , thenC is redundant inN .

A derivation by R from a set of clausesN is a sequence of sets of clauses
N0, N1, . . . such thatN0 = N and, fori ≥ 0, either (i) Ni+1 = Ni ∪ {C} whereC
is the conclusion of an inference byR from premises inNi, or (ii)Ni+1 = Ni \ {C}
whereC is redundant inNi. Each derivation must befair [4]; intuitively, this means
that each applicable inference is performed after a finite number of steps. Ordered
resolution is sound and complete [4]: if� ∈ Ni whereNi is derived byR from a set
of clausesN0, thenN0 is unsatisfiable; conversely, ifN0 is unsatisfiable, then, for
each fair derivation byR fromN0, an integeri exists such that� ∈ Ni. The process
of computing a derivation byR fromN0 is called asaturationof N0 byR.

2.3 Disjunctive Datalog

We recapitulate the basic notions of disjunctive datalog [11]. A datalog termis a
constant or a variable, and adatalog atomhas the formA(t1, . . . , tn) or t1 ≈ t2,
whereti are datalog terms. Adisjunctive datalog program with equalityP is a finite
set of rules of the formA1 ∨ ... ∨An ← B1, ..., Bm whereAi andBj are datalog
atoms. The literalsAi are calledhead literals, whereas the literalsBi are calledbody
literals. Each rule is required to besafe—that is, each variable occurring in the rule
must occur in at least one body atom. Afact is a rule withm = 0. For the semantics,
we take a rule to be equivalent to a clauseA1 ∨ ... ∨An ∨ ¬B1 ∨ ... ∨ ¬Bm. We
consider only Herbrand models, and say that a modelM of P is minimal if there is
no modelM ′ of P such thatM ′ (M . A ground literalA is acautious answerof
P (writtenP |=c A) if A is true in all minimal models ofP . First-order entailment
coincides with cautious entailment for positive ground atoms.

3 Deciding Satisfiability ofALCHI by Resolution

The fundamental principles for deciding a first-order fragmentL by resolution have
been established by Joyner [17]. First, one selects a sound and complete clausal
calculusC. Second, one identifies the set of clausesNL such that (i)NL is finite for
a finite signature and (ii) the translation of each formulaϕ ∈ L into clauses produces
only clauses fromNL. Third, one demonstrates thatNL is closedunderC; that is,
one shows that applying an inference ofC to clauses fromNL produces a clause
in NL. This is sufficient to obtain a refutation decision procedure forL: given any
formulaϕ ∈ L, a saturation byC of the clauses corresponding toϕ will, in the worst
case, derive all clauses ofNL. In this section, we apply these principles to obtain a
procedure for checking satisfiability of anALCHI knowledge baseK.

6 Boris Motik

Table 2.Structural Transformation ofK

Θ(K) =
⋃

α∈R∪A Θ(α) ∪
⋃

C1⊑C2∈T Θ(⊤ ⊑ nnf(¬C1 ⊔ C2))

Θ(A ⊑ B) = {A ⊑ B}
Θ(A ⊑ ¬B) = {A ⊑ ¬B}

Θ(A ⊑ C1 ⊓ C2) = Θ(A ⊑ C1) ∪ Θ(A ⊑ C2)
Θ(A ⊑ C1 ⊔ C2) = {A ⊑ QC1

⊔ QC2
} ∪ Θ(QC1

⊑ C1) ∪ Θ(QC2
⊑ C2)

Θ(A ⊑ ∃R.C) = {A ⊑ ∃R.QC} ∪ Θ(QC ⊑ C)
Θ(A ⊑ ∀R.C) = {A ⊑ ∀R.QC} ∪ Θ(QC ⊑ C)

Θ(R ⊑ S) = {R ⊑ S}
Θ(C(a)) = {QC(a)} ∪ Θ(QC ⊑ C)

Θ((¬)R(a, b)) = {(¬)R(a, b)}

Note: A andB are concept names or⊤; C, C1, andC2 are arbitrary concepts;R and
S are roles; andQX is a new concept name not occurring inK that is unique forX.

3.1 Translating the Knowledge Base into Clauses

The first step in deciding satisfiability ofK is to transformK into an equisatisfiable
set of clausesΞ(K). A straightforward way of doing so is to computeCls(π(K)).
Such an approach, however, has two important drawbacks. First, the size of the re-
sulting clause set could be exponential in the size ofπ(K), due to nesting of⊓ and
⊔. Second, we should exploit the structure of the formulaπ(K) in our algorithm, but
Cls(π(K)) does not reflect this structure. To avoid these problems, we preprocessK
using thestructural transformation[26, 27].

Definition 1. For anALCHI knowledge baseK, the knowledge baseΘ(K) is com-
puted as shown in Table 2.

Intuitively, this transformation replaces complex concepts with simpler ones. The
knowledge baseΘ(K) does not contain⊓, so it can be translated into clauses without
an exponential blowup.

Lemma 1. AnALCHI knowledge baseK andΘ(K) are equisatisfiable.

Proof. Consider a single application ofΘ. It is obvious that the axioms obtained after
the transformation imply the axiom before the transformation, which proves the (⇐)
direction. For the (⇒) direction, simply observe that each interpretationI of K can
be extended to an interpretationI ′ of Θ(K) by interpreting each newly introduced
conceptQX asX . ⊓⊔

To obtain a set of clauses corresponding toK, we translateΘ(K) into first-order
logic using the operatorπ from Table 1, skolemize it, and transform the result into
conjunctive normal form. This is captured by the following definition:

Definition 2. For anALCHI knowledge baseK, letΞ(K) = Cls(π(Θ(K))).

We now show that clausification does not affect the satisfiability of a knowledge
base, and that it produces clauses of a certain syntactic structure:

Resolution-Based Reasoning for Ontologies 7

Table 3.Clause Types after Clausification

Axiom Clause
R ⊑ S ¬R(x, y) ∨ S(x, y)

R− ⊑ S− ¬R(y, x) ∨ S(y, x)

R ⊑ S− ¬R(x, y) ∨ S(y, x)

R− ⊑ S ¬R(y, x) ∨ S(x, y)

A ⊑
⊔

(¬)Bi ¬A(x) ∨
∨

(¬)Bi(x)

A ⊑ ∃R.B ¬A(x) ∨ R(x, f(x))
¬A(x) ∨ B(f(x))

A ⊑ ∃R−.B ¬A(x) ∨ R(f(x), x)
¬A(x) ∨ B(f(x))

A ⊑ ∀R.B ¬A(x) ∨ ¬R(x, y) ∨ B(y)

A ⊑ ∀R−.B ¬A(x) ∨ ¬R(y, x) ∨ B(y)

A(c) A(c)

(¬)R(c, d) (¬)R(c, d)

(¬)R−(c, d) (¬)R(d, c)

Note: The function symbolf is different for each axiom.

Lemma 2. The following claims hold for eachALCHI knowledge baseK:

1.K is satisfiable if and only ifΞ(K) is satisfiable.
2.Ξ(K) can be computed in time polynomial in|K|.
3. Each clause inΞ(K) is of the form as shown in Table 3.

Proof. (1) Equisatisfiability ofK andΞ(K) is a direct consequence of Lemma 1.
(2) The number of recursive invocations ofΘ and the number of new conceptsQX

are linear in|K|. Hence,|Θ(K)| is linear in|K|, so|Ξ(K)| is polynomial in|K|. (3) It
is easy to see thatΘ(K) contains only axioms from the left-hand side of Table 3,
which are translated into clauses as shown on the right-handside of the table. ⊓⊔

3.2 Saturation by Ordered Resolution

Since ordered resolution (R) is a sound and complete calculus, we can use it to
check satisfiability ofΞ(K). To obtain a decision procedure, we just need to ensure
that each saturation ofΞ(K) byR terminates; that is, we must ensure that we can
derive only finitely many clauses fromΞ(K) by applying the rules ofR. There are
two main reasons why we might derive an infinite number of clauses.

First, we might derive clauses with ever deeper terms. This is shown by the fol-
lowing example, in which the selected literals are underlined:

C(a) ¬C(x) ∨C(f(x))

C(f(a)) ¬C(x) ∨ C(f(x))

C(f(f(a)))

8 Boris Motik

Second, we might derive clauses with an unbounded number of variables. For
example, the following inference increases the number of variables by one, and re-
peating it for the conclusion produces clauses with an arbitrary number of variables:

¬C(x) ∨ ¬R(x, y) ∨ C(y) ¬C(y) ∨ ¬R(y, z) ∨ C(z)

¬C(x) ∨ ¬R(x, y) ∨ ¬R(y, z) ∨ C(z)

The inferences that ordered resolution performs on a given set of premises are
determined by the parameters of the calculus—the literal ordering and the selection
function. By choosing these parameters appropriately, we can restrict the resolution
inferences in a way that allows us to establish a bound on the term depth and on
the number of variables. In the first example, if we ensure that C(f(x)) ≻ ¬C(x),
then the second premise can participate in an inference onlyon literal C(f(x));
sinceC(f(x)) andC(a) do not unify, no inference ofR is applicable toC(a) and
¬C(x) ∨ C(f(x)). In the second example, the undesirable inference can be pre-
vented if we select¬R(x, y).

The following definition fixes the parameters forR that, as we shall see shortly,
restrict the inferences onΞ(K) in a way which ensures termination.

Definition 3. LetRDL denote the calculusR parameterized as follows:

• The literal ordering is any admissible ordering≻ such that, for all function
symbolsf and predicatesR, C, andD, we haveR(x, f(x)) ≻ ¬C(x) and
D(f(x)) ≻ ¬C(x).

• The selection function selects every negative binary literal in each clause.

An ordering compatible with Definition 3 can be obtained by instantiating alex-
icographic path ordering[10]; see [22, Section 4.4] for details.

It is easy to see that an application ofRDL to clauses from Table 3 can pro-
duce clauses of the form not shown in the table. Therefore, wegeneralize Table 3
to ALCHI-clauses, shown in Table 4. It is easy to see thatΞ(K) contains only
ALCHI-clauses. As we show next, when applied toALCHI-clauses, eachRDL

inference produces anALCHI-clause.

Lemma 3. EachRDL inference, when applied toALCHI-clauses, produces an
ALCHI-clause.

Proof. We summarize all possibleRDL inferences on all types ofALCHI-clauses
in Table 5. For the sake of brevity, we omit inferences in which participating literals
are complemented. The notationn + m = k above each inference means that the
inference premises are of typesn andm, and the conclusion is of typek. Due to the
requirement on the literal ordering≻, a literal of the form(¬)A(x) occurring in a
clauseC can participate in an inference only ifC does not contain a literal of the
form (¬)B(f(x)) orR(x, f(x)). Furthermore, a ground literalA(a) does not unify
with a literalA(f(x)), andR(a, b) does not unify withR(x, f(x)). Hence, ground
clauses can participate only in inferences with clauses notcontaining terms of the
form f(x). One can easily see that the conclusion is always anALCHI clause. ⊓⊔

Resolution-Based Reasoning for Ontologies 9

Table 4.Types ofALCHI-Clauses

1 ¬R(x, y) ∨ S(x, y)
2 ¬R(x, y) ∨ S(y, x)
3 P(x) ∨ R(x, f(x))
4 P(x) ∨ R(f(x), x)
5 P1(x) ∨ P2(f(x))
6 P1(x) ∨ ¬R(x, y) ∨ P2(y)
7 P(a)
8 (¬)R(a, b)

Note: P(t) is a possibly empty disjunction of the form(¬)P1(t) ∨ . . . ∨ (¬)Pn(t)
for t a term of the formx, f(x), or a; P(a) is a possibly empty disjunction of the
form P1(a1) ∨ . . . ∨ Pm(am); and the empty clause� is of type 5.

The following lemma shows that the number ofALCHI-clauses is finite for a
finite knowledge baseK. In fact, the bound on the number of derivable clauses can
be used to estimate the complexity of the algorithm.

Lemma 4. For anALCHI knowledge baseK, the longestALCHI-clause over the
signature ofΞ(K) is polynomial in|K|, and the number of such clauses different up
to variable renaming is exponential in|K|.

Proof. The numberc of unary predicates in the signature ofΞ(K) is linear in|K|,
since each concept introduced byΘ corresponds to one nonliteral subconcept ofC.
Similarly, the numberf of unary function symbols in the signature ofΞ(K) is linear
in |K|, since each function symbol is introduced by skolemizing one concept of the
form ∃R.C. Consider now the longestALCHI-clauseCl6 of type 6. Such a clause
contains a possibly negated literalA(x) for each unary predicateA, and a possibly
negated literalA(f(x)) for each pair of unary predicate and function symbols, yield-
ing at mostℓ = 2c+ 2cf literals, which is polynomial in|K|. EachALCHI-clause
of type 2 is a subset ofCl6, so there are2ℓ such clauses; that is, the number of clauses
is exponential in|K|. For otherALCHI-clause types, the bounds on the length and
on the number of clauses can be derived in an analogous way.⊓⊔

We now state the main result of this section:

Theorem 1.For anALCHI knowledge baseK, saturatingΞ(K) byRDL decides
satisfiability ofK and runs in time that is at most exponential in|K|.

Proof. By Lemma 4, the number of clauses derivable byRDL from Ξ(K) is ex-
ponential in|K|. Each inference can be performed in time polynomial in the size
of clauses. Hence, the saturation terminates after performing at most an exponential
number of steps. SinceRDL is sound and complete, it decides satisfiability ofΞ(K),
and by Lemma 2 ofK as well, in time that is exponential in|K|. ⊓⊔

10 Boris Motik

Table 5.Possible Inferences byRDL onALCHI-Clauses

1+3=3:

¬R(x, y) ∨ S(x, y) P(x) ∨ R(x, f(x))

P(x) ∨ S(x, f(x))

2+3=4:

¬R(x, y) ∨ S(y, x) P(x) ∨ R(x, f(x))

P(x) ∨ S(f(x), x)

1+4=4:

¬R(x, y) ∨ S(x, y) P(x) ∨ R(f(x), x)

P(x) ∨ S(f(x), x)

2+4=3:

¬R(x, y) ∨ S(y, x) P(x) ∨ R(f(x), x)

P(x) ∨ S(x, f(x))

6+3=5:

P1(x) ∨ ¬R(x, y) ∨ P2(y) P(x) ∨ R(x, f(x))

P(x) ∨ P1(x) ∨ P2(f(x))

6+4=5:

P1(x) ∨ ¬R(x, y) ∨ P2(y) P(x) ∨ R(f(x), x)

P(x) ∨ P1(f(x)) ∨ P2(x)

5+5=5:

P1(x) ∨ P2(f(x)) ∨ ¬A(f(x)) A(x) ∨ P3(x)

P1(x) ∨ P2(f(x)) ∨ P3(f(x))

5+5=5:

P1(x) ∨ ¬A(x) A(x) ∨ P2(x)

P1(x) ∨ P2(x)

5+5=5:

P1(x) ∨ P2(f(x)) ∨ ¬A(f(x)) A(f(x)) ∨ P3(f(x)) ∨ P4(x)

P1(x) ∨ P2(f(x)) ∨ P3(f(x)) ∨ P4(x)

7+5=7:

P1(a) ∨ ¬A(b) A(x)∨ P2(x)

P1(a) ∨ P2(b)

7+7=7:

P1(a) ∨ ¬A(b) A(b) ∨ P2(c)

P1(a) ∨ P2(c)

8+1=8:

R(a, b) ¬R(x, y) ∨ S(x, y)

S(a, b)

8+2=8:

R(a, b) ¬R(x, y) ∨ S(y, x)

S(b, a)

8+6=7:

R(a, b) P1(x) ∨ ¬R(x, y) ∨ P2(y)

P1(a) ∨ P2(b)

8+8=5:

R(a, b) ¬R(a, b)

�

Resolution-Based Reasoning for Ontologies 11

3.3 An Example

We now present a simple example. LetK be the following knowledge base:

∃S.A ⊑ ∃R.B(1)

B ⊑ C(2)

∃R.C ⊑ D(3)

S(a, b)(4)

A(b)(5)

Let us assume that we want to check whetherK |= D(a); as shown in Chapter 1, this
so if and only ifK ∪ {¬D(a)} is unsatisfiable. Hence, letK′ be the knowledge base
K extended with the assertion¬D(a).

To check satisfiability ofK′ using resolution, we first apply structural transfor-
mation. For (1), we obtain the following:

Θ(⊤ ⊑ ∀S.¬A ⊔ ∃R.B)= {⊤ ⊑ Q1 ⊔Q2} ∪Θ(Q1 ⊑ ∀S.¬A) ∪Θ(Q2 ⊑ ∃R.B)

By Definition (1), we should introduce a new name for the concepts¬A andB;
however, bothQ1 ⊑ ∀S.¬A andQ2 ⊑ ∃R.B can be translated intoALCHI-clauses
in a straightforward way. Hence, we do not further applyΘ, and neither we do so for
(2) and (3). We obtain the setΞ(K′) as follows (the meaning of underlining will be
explained shortly):

⊤ ⊑ Q1 ⊔Q2 Q1(x) ∨Q2(x)(6)

Q1 ⊑ ∀S.¬A ¬Q1(x) ∨ ¬S(x, y) ∨ ¬A(y)(7)

Q2 ⊑ ∃R.B ¬Q2(x) ∨R(x, f(x))(8)

Q2 ⊑ ∃R.B ¬Q2(x) ∨B(f(x))(9)

B ⊑ C ¬B(x) ∨ C(x)(10)

∃R.C ⊑ D D(x) ∨ ¬R(x, y) ∨ ¬C(y)(11)

S(a, b) S(a, b)(12)

A(b) A(b)(13)

¬D(a) ¬D(a)(14)

To saturateΞ(K′) byRDL, we use a literal ordering≻ compatible with Defini-
tion 3, where we break ties by comparing predicates alphabetically. The literals that
are either selected or maximal are underlined. We now saturate Ξ(K′); R(xx+yy)
means that a clause was obtained by resolving (xx) and (yy).

D(x) ∨ ¬Q2(x) ∨ ¬C(f(x)) R(8+11)(15)

D(x) ∨ ¬Q2(x) ∨ ¬B(f(x)) R(15+10)(16)

D(x) ∨ ¬Q2(x) R(16+9)(17)

D(x) ∨Q1(x) R(17+6)(18)

12 Boris Motik

¬Q1(a) ∨ ¬A(b) R(7+12)(19)

D(a) ∨ ¬A(b) R(18+19)(20)

¬A(b) R(14+20)(21)

� R(13+21)(22)

We derived the empty clause, so the set of clausesΞ(K′) is unsatisfiable, and so
isK′, which impliesK |= D(a).

3.4 Extending the Algorithm to the More Expressive DLs

We now overview the problems encountered in extending this basic algorithm to
more expressive DLs and point to the relevant literature forthe solutions.

Boolean Role Expressions

The DLALB [25] is obtained fromALCHI by allowing for concepts∀E.C and
∃E.C and axiomsE1 ⊑ E2, whereE(i) are Boolean role expressionsR, ¬E,
E1 ⊔ E2, andE1 ⊓ E2. As shown in [25],ALB can easily be decided by extend-
ing the algorithm from this section. The main difference is that translating anALB
knowledge base to clauses can produce clauses of the following form:

¬R1(x, y) ∨ . . . ∨ ¬Rn(x, y) ∨ S1(x, y) ∨ . . . ∨ Sm(x, y)(23)

If n = 0, such clauses can cause termination problems. For example,resolving the
clauses (24) and (25) produces the clause (26):

R(x, y)(24)

A(x) ∨ ¬R(x, y) ∨B(y)(25)

A(x) ∨B(y)(26)

The clause (26) contains two clauses of type 6 that do not share a variable. Resolv-
ing such clauses with other clauses of that form can easily produce clauses with an
arbitrary number of variables. For example, resolving (26)with (27) produces (28),
which contains more variables than either of the premises:

¬B(y) ∨ C(y) ∨D(z)(27)

A(x) ∨ C(y) ∨D(z)(28)

This problem, however, can be solved in a simple way: sinceA(x) andB(y) are
variable-disjoint, similarly as in the DPLL procedure [9],we cansplit the clause (26)
intoA(x) orB(y)—that is, we can guess which subclause is true. This reduces (26)
to a clause of type 6, which does not cause termination problems. Splitting makes the
procedure nondeterministic: deriving the empty clause under one of the guesses does
not mean that the original clause set is unsatisfiable; rather, we must derive the empty
clause under all possible guesses. Hence, such an algorithmruns in NEXPTIME. This
is worst-case optimal, sinceALB is an NEXPTIME-complete logic [21].

Resolution-Based Reasoning for Ontologies 13

Transitivity Axioms

Many DLs allow roles to be declared as transitive [12]. Translation of transitivity
axioms produces clauses of the following form:

¬R(x, y) ∨ ¬R(y, z) ∨R(x, z)(29)

Such clauses are difficult for resolution. For example, if wealso have the clause (30),
then it can be resolved with (29) to produce (31):

A(x′) ∨R(x′, f(x′))(30)

¬R(x, x′) ∨A(x′) ∨R(x, f(x′))(31)

Clause (31) is similar to (30), but it contains two variables; hence, further resolution
inferences with (31) might produce clauses with even more variables.

To prevent the increase in the number of variables, one mightselect the negative
literal in (31). While this prevents the introduction of arbitrarily many variables, it
allows the derivation of arbitrarily deep terms; for example, a resolution of (30) and
(31) produces the following clause:

A(x) ∨R(x, f(f(x)))(32)

There are several ways to address this problem. In [18], resolution has been ex-
tended with simplification rules that transform clauses of the form (31) and (32) into
simpler clauses without affecting satisfiability.

Another solution is to replace transitivity axioms with newconcept inclusion
axioms that capture the effects of the transitivity axioms.Roughly speaking, a transi-
tivity axiom Trans(S) is replaced with axioms∀R.C ⊑ ∀S.(∀S.C), for eachR with
S ⊑∗ R andC a “relevant” concept fromK; for more details, please see [22, Section
5.2]. Similar encodings have been considered in modal logic[29] and in DLs with
role conjunctions [30].

Number Restrictions

As explained in Chapter 1, many DLs provide for number restrictions>nR.C and
6nR.C. The algorithm from this section can be extended to such concepts by using
the well-known translation of number restrictions into first-order logic:

>nR.C ∃y1, . . . , yn :
∧

1≤i≤n+1

[R(x, yi) ∧ C(yi)] ∧
∧

1≤i<j≤n

yi 6≈ yj

6nR.C ∀y1, . . . , yn+1 :
∧

1≤i≤n+1

[R(x, yi) ∧ C(yi)]→
∨

1≤i<j≤n+1

yi ≈ yj

These translations employs the equality predicate≈. Ordered resolution alone is
not an efficient calculus for theorem proving with equality.Therefore, deciding DLs
with number restrictions typically requires the application of a calculus optimized

14 Boris Motik

for theorem proving with equality.Basic superposition[5, 24] is one such calculus,
which introduces new rules that take into account the semantics of equality.

In [13], a decision procedure for the DLSHIQ− (a DL obtained fromSHIQ
by imposing certain restrictions on the usage of number restrictions) based on basic
superposition. In [14], this algorithm has been generalized to SHIQ by extending
basic superposition with adecompositioninference rule, which simplifies certain
clauses. All these procedures are worst-case optimal (i.e., they run in EXPTIME) for
unary coding of numbers. It is known thatSHIQ is EXPTIME-complete even for
binary coding of numbers [30]; however, the assumption of unary number coding is
standard in practical DL reasoning systems.

Nominals

Another common construct considered in DLs are nominals. Although such a result
has not been published, it would be straightforward to extend the algorithms from
[13, 14] to handle the DLSHOQ . The combination of inverse roles and nomi-
nals, however, is rather difficult to handle. Intuitively, such a logic does not have the
tree-model property. Still, in [19], basic superposition has been extended with de-
composition and novelnominal generationrule to obtain a decision procedure for
SHOIQ . The resulting decision procedure is, however, not optimal: it runs in triple
exponential time, whereasSHOIQ is NEXPTIME-complete [30].

4 Reasoning by Reduction to Logic Programming

We now present an algorithm for reducing anALCHI knowledge base to a disjunc-
tive datalog program that entails the same set of ground atoms. As discussed in [23],
such a reasoning technique is particularly suitable for knowledge bases that have a
rather small and simple TBox but a large ABox.

4.1 The Main Difficulty

For anALCHI knowledge baseK, our goal is to derive a disjunctive datalog pro-
gramDD(K) such thatK |= α if and only if DD(K) |= α for α of the formA(a)
orR(a, b). Thus, we can useDD(K) instead ofK for query answering, and in doing
so, we can apply all optimization techniques known from deductive databases, such
as magic sets [6] or join-order optimizations [1].

As shown in Table 1 and in [7], there is a close correspondencebetween descrip-
tion logics and first-order logic. Consider the following knowledge base:

K = {A ⊑ ∃R.A, ∃R.∃R.A ⊑ B,A(a)}(33)

A naı̈ve attempt to reduceK into disjunctive datalog is to translateK into a first-order
formulaπ(K), skolemize it, translate it into conjunctive normal form, and rewrite the

Resolution-Based Reasoning for Ontologies 15

obtained set of clauses into rules. ForK, such an approach produces the following
logic programLP(K):

R(x, f(x))← A(x)(34)

A(f(x))← A(x)(35)

B(x)← R(x, y), R(y, z), A(z)(36)

A(a)(37)

Clearly,K andLP(K) entail the same set of ground facts. The programLP(K),
however, contains a function symbol in a recursive rule (35). This raises the issue of
how to answer queries inLP(K). Namely, well-known query evaluation techniques
will not terminate onLP(K); for example, using bottom-up saturation, we shall de-
rive A(f(a)), R(a, f(a)), A(f(f(a))), R(f(a), f(f(a))), B(a), and so on. Obvi-
ously, such an algorithm will continue deriving ever deeperfacts, and will therefore
never terminate. Note that we need all previously derived facts to deriveB(a) from
LP(K), and that we do not know a priori when all relevant ground facts have been
derived, so that we might stop the saturation.

This problem could be solved by employing an appropriate cycle detection mech-
anism. In [16], such an approach has been used to derive a decision procedure for
the DL ALC based on hyperresolution. Using specialized algorithms for evaluat-
ing queries inLP(K) takes us, however, away from our original goal of applying
deductive database optimization techniques to description logics. In a way, such an
algorithm could be viewed as an alternative notation for thetableau calculus, for
which it is unclear how to apply optimization techniques such as magic sets.

To avoid potential problems with termination, our goal is toderive a true disjunc-
tive datalog programDD(K) without function symbols. For such a program, queries
can be evaluated using any standard technique; furthermore, all existing optimization
techniques known from deductive databases can be applied directly. Hence, the main
problem that we deal with is the elimination of function symbols fromLP(K).

4.2 The Translation Algorithm

From Table 5, we see that (i) a ground clause cannot participate in an inference with
a nonground clause containing a function symbol, and (ii) if one premise in an in-
ference byRDL is ground, the conclusion is ground as well. Hence, we can perform
all inferences among nonground clauses first, after which wecan simply delete all
nonground clauses containing function symbols. The remaining clause set consists
of clauses without function symbols, which can easily be translated into a disjunctive
datalog program, by moving positive literals into rule heads and negative literals into
rule bodies. A minor problem arises if the resulting rules contain unsafe variables.
We deal with such clauses using a simple trick: we introduce anew predicateHU

and add an assertionHU (a) for each individuala; next, we appendHU (x) to the
body of each rule in whichx is an unsafe variable.

Definition 4. LetK = (R, T ,A) be an extensionally reducedALCHI knowledge
base. Then,Γ (T ∪ R) is the set of clauses obtained by

16 Boris Motik

• saturatingΞ(T ∪ R) byRDL, and then
• deleting all clauses containing function symbols.

The disjunctive datalog programDD(K) is obtained fromΓ (T ∪ R) ∪ Ξ(A)
using the following transformations:

• each clause of the formA1 ∨ . . . ∨An ∨ ¬B1 ∨ . . . ∨ ¬Bm is rewritten into a
ruleA1 ∨ . . . ∨An ← B1, . . . , Bm;

• if a variablex occurs in some rule only in the head, then the literalHU (x) is
added to the rule body; and

• the factHU (a) is added to the program for each constanta occurring inK.

If K is not extensionally reduced, thenDD(K) = DD(K′), whereK′ is an exten-
sionally reduced knowledge base obtained fromK as explained in Section 2.1.

We now state the properties ofDD(K):

Theorem 2.The following claims hold for eachALCHI knowledge baseK:

1.K is satisfiable if and only ifDD(K) is satisfiable.
2.K |= α if and only ifDD(K) |=c α, whereα is of the formA(a) or R(a, b) for
A a concept name andR a role.

3.K |= C(a) for a complex conceptC if and only ifDD(K ∪ {C ⊑ Q}) |=c Q(a)
for Q a new concept name.

4. The number of literals in each rule inDD(K) is at most polynomial, the number
of rules inDD(K) is at most exponential, andDD(K) can be computed in time
exponential in|K|.

Proof. (1) Table 5 shows that each inference with at least one groundpremise (these
are the inferences below the dashed line) always produces a ground conclusion.
Hence, in saturatingΞ(K) byRDL, we can perform all inferences among nonground
clauses first. Furthermore, Table 5 also shows that ground clauses can participate in
inferences only with clauses not containing function symbols. Hence, after perform-
ing all inferences among nonground clauses ofΞ(K), we can delete all clauses with
terms of the formf(x).

By Definition 2,Ξ(T ∪R) is exactly the set of nonground clauses ofΞ(K), so
Γ (T ∪ R) is exactly the set of clauses obtained by saturating the nonground part
of Ξ(K) and deleting the clauses containing function symbols. Furthermore, it is
easy to see thatΓ (T ∪ R) ∪ Ξ(A) is satisfiable if and only ifDD(K) is satisfiable.
Namely, both clause sets are function-free and they differ only in that the unsafe
variables in the latter set are bound using the predicateHU which enumerates the
entire Herbrand universe.

(2) Simply observe thatK |= α if and only if K ∪ {¬α} is unsatisfiable. The
latter is the case if and only ifDD(K∪{← α}) = DD(K)∪{← α} is unsatisfiable,
which is the case if and only ifDD(K) |=c α.

(3) Follows in the same manner as (2).
(4) Follows immediately from Lemma 4.⊓⊔

Resolution-Based Reasoning for Ontologies 17

4.3 An Example

We now continue the example from Section 3.3 and compute a disjunctive datalog
programDD(K). The first step in the algorithm is to computeΞ(T ∪R); clearly, it
consists of the clauses (6)–(11).

The next step is to computeΓ (T ∪ R) by saturatingΞ(T ∪ R) byRDL. This
was already done in Section 3.3: the saturated set contains the clauses (6)–(11) and,
additionally, (15)–(18).

The next step is to remove all clauses containing function symbols. Therefore,
we remove the clauses (8), (9), (15), (16). The final step is tocomputeDD(K) by
moving all negative literals into the body and the positive literals into the head. The
clauses (6) and (18) are unsafe, so we additionally add the literalsHU (x) to the body
of the rules.

Q1(x) ∨Q2(x)← HU (x)(38)

← Q1(x), S(x, y), A(y)(39)

C(x)← B(x)(40)

D(x)← R(x, y), C(y)(41)

D(x)← Q2(x)(42)

D(x) ∨Q1(x)← HU (x)(43)

Finally, we add toDD(K) the ABox and the facts involvingHU :

S(a, b)(44)

A(b)(45)

HU (a)(46)

HU (b)(47)

It is straightforward to verify thatDD(K) |= D(a), in accordance with Theorem (2).
It is instructive to compare the algorithm from this sectionwith tableaux algo-

rithms from Chapter 23. Tableau algorithms introduce new individuals in order to
satisfy the existential quantifiers. In contrast, the programs obtained by the reduction
do not represent such individuals at all. In our example,DD(K) is function-free, so
the universe of the program is restricted to the constants explicitly mentioned in it.
Thus, the models ofK andDD(K) coincide only on positive ground facts, and are
unrelated for the facts involving unnamed objects.

To understand why the saturation of the TBox and RBox byRDL is necessary,
consider the role of each rule inDD(K). While the axiom (2) inK is applicable
to all individuals in a model, the rule (40) is applicable only to named individuals.
The relationship between (3) and (41) is analogous. To compensate for the fact that
(40) and (41) derive consequences only about named individuals,DD(K) contains
the rule (42), which is produced by the saturation ofΞ(T ∪ R) byRDL. This rule
acts as a shortcut: instead of introducing for eachx in Q2 anR-successory in B by
(8), propagatingy toC by (10), and then concluding thatx is inD by (11), the rule
(42) derives that all instances ofQ2 are instances ofD in one step. This ensures that
DD(K) andK entail the same set of ground facts.

18 Boris Motik

4.4 Discussion

By Theorem 2, the programDD(K) is independent of the query, as long as the query
is a concept name or a role. Hence,DD(K) can be computed once, and can be used
to answer any query involving only concept names. If the query involves a com-
plex conceptC (even ifC is a negated concept name), then query answering can
be reduced to entailment of positive ground facts, by introducing a new nameQ
and by adding the axiomC ⊑ Q to the TBox. Obviously,DD(K ∪ {C ⊑ Q}) may
depend onC. Namely, by saturatingΓ (T ∪ R), the reduction algorithm derives all
nonground consequences ofK, and a complex query concept can introduce new non-
ground consequences, which should be taken into account in the reduction.

Theorem 2 allows|DD(K)| to be exponential in|K|, which may seem discour-
aging. Note, however, that the number of rules depends on|T ∪ R| and not on|A|.
This is important fordata complexity[31]—the complexity under the assumption
that the TBox and RBox are fixed. Under such an assumption,|DD(K)| becomes
polynomial in|A|, which has been used in [15] to show that checking satisfiability
of SHIQ knowledge bases isNP-complete for data complexity. Also, aHorn frag-
mentof SHIQ has been identified that does not provide for disjunctive reasoning
but exhibits polynomial data complexity. To deal with the exponential blowup in the
number of rules, an optimization has been presented in [13, 22] that allows many
rules to be removed fromDD(K) without invalidating Theorem 2. Practical experi-
ence has shown that the number of remaining rules is typically twice the number of
axioms inK [23].

4.5 Adding Number Restrictions

The reduction algorithm presented in [13, 22] differs from this one mainly in that
it can handle knowledge bases with number restrictions. We now outline the differ-
ences between this algorithm and the one presented in this section. Namely, ifK is an
ALCHI knowledge base, all functional terms encountered in a saturation ofΞ(K)
byRDL are nonground (see Table 5). This is no longer the case ifK is anALCHIQ
knowledge base. Namely, the translation of number restrictions can produce clauses
such as (48). To see why such clauses case problems, let us assume that some other
axioms produce the clauses (49)–(50).

¬R(x, y1) ∨ ¬R(x, y2) ∨ y1 ≈ y2(48)

¬C(x) ∨R(x, f(x))(49)

R(a, b)(50)

By resolving (48) with (49) and (50), we obtain the followingclause:

¬C(a) ∨ f(a) ≈ b(51)

This clause differs from clauses of type 7 from Table 4 in thatit contains a ground
functional term. The functional terms from clauses such as (51) can participate in
further inferences, so we cannot just remove all clauses with function terms.

Resolution-Based Reasoning for Ontologies 19

The solution is to represent ground functional terms in clauses of the form (51)
using new constants. Thus, the clause (51) is encoded as the following clause, where
af is a new constant unique for a pair ofa andf :

¬C(a) ∨ af ≈ b(52)

After saturation of TBox and RBox, the nonground clauses from the saturated set
are transformed in a certain way that reflects such an encoding of the ground clauses.
It is important to understand that the constants such asaf have no deeper semantic
meaning; they are just a proof-theoretic aid that allows thesimulation of inferences
of basic superposition in disjunctive datalog.

5 Conclusion

This chapter overviews the algorithms for reasoning in description logics by resolu-
tion. These algorithms are interesting because they are worst-case optimal, but are
also suitable for practical implementation [23]. Furthermore, such algorithms can be
used to reduce a DL knowledge base to a disjunctive datalog program. This allows
the application of known reasoning algorithms from deductive databases to reason-
ing with large ABoxes. Practical experience has shown that such algorithms are quite
suitable for ontologies with relatively small and simple TBoxes but large ABoxes.

A challenge for future research is to obtain a more elegant and perhaps worst-case
optimal algorithm for reasoning with nominals. Namely, reasoning with nominals
requires reasoning about the cardinality of sets, which is known to be difficult for
resolution. Another challenge is to provide methods for dealing with transitivity and
general role inclusion axioms, such as the ones available inthe DLSROIQ [20].

References

1. S. Abiteboul, R. Hull, and V. Vianu.Foundations of Databases. Addison Wesley, 1995.
2. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F.Patel-Schneider, editors.

The Description Logic Handbook: Theory, Implementation and Applications. Cambridge
University Press, January 2003.

3. F. Baader and W. Snyder. Unification Theory. In A. Robinsonand A. Voronkov, editors,
Handbook of Automated Reasoning, volume I, chapter 8, pages 445–532. 2001.

4. L. Bachmair and H. Ganzinger. Resolution Theorem Proving. In A. Robinson and
A. Voronkov, editors,Handbook of Automated Reasoning, volume I, chapter 2, pages
19–99. 2001.

5. L. Bachmair, H. Ganzinger, C. Lynch, and W. Snyder. Basic Paramodulation.Information
and Computation, 121(2):172–192, 1995.

6. C. Beeri and R. Ramakrishnan. On the power of magic. InProc. PODS ’87, pages
269–283, San Diego, CA, USA, 1987.

7. A. Borgida. On the Relative Expressiveness of Description Logics and Predicate Logics.
Artificial Intelligence, 82(1–2):353–367, 1996.

20 Boris Motik

8. M. Buchheit, F. M. Donini, and A. Schaerf. Decidable Reasoning in Terminological
Knowledge Representation Systems.Journal of Artificial Intelligence Research, 1:109–
138, 1993.

9. M. Davis, G. Logemann, and D. Loveland. A Machine Program for Theorem-Proving.
Communications of the ACM, 5(7):394–397, 1962.

10. N. Dershowitz and D. A. Plaisted. Rewriting. In A. Robinson and A. Voronkov, editors,
Handbook of Automated Reasoning, volume I, chapter 9, pages 535–610. 2001.

11. T. Eiter, G. Gottlob, and H. Mannila. Disjunctive Datalog. ACM Transactions on
Database Systems, 22(3):364–418, 1997.

12. I. Horrocks and U. Sattler. A Description Logic with Transitive and Inverse Roles and
Role Hierarchies.Journal of Logic and Computation, 9(3):385–410, 1999.

13. U. Hustadt, B. Motik, and U. Sattler. ReducingSHIQ− Description Logic to Disjunctive
Datalog Programs. InProc. KR 2004, pages 152–162, Whistler, Canada, 2004.

14. U. Hustadt, B. Motik, and U. Sattler. A Decomposition Rule for Decision Procedures by
Resolution-based Calculi. InProc. LPAR 2004, pages 21–35, Uruguay, 2005.

15. U. Hustadt, B. Motik, and U. Sattler. Data Complexity of Reasoning in Very Expressive
Description Logics. InProc. IJCAI 2005, pages 466–471, Edinburgh, UK, 2005.

16. U. Hustadt and R. A. Schmidt. On the Relation of Resolution and Tableaux Proof Systems
for Description Logics. InProc. IJCAI ’99, pages 202–207, Stockhom, Sweden, 1999.

17. W. H. Joyner. Resolution Strategies as Decision Procedures. Journal of the ACM,
23(3):398–417, 1976.

18. Y. Kazakov and H. de Nivelle. A Resolution Decision Procedure for the Guarded Frag-
ment with Transitive Guards. InProc. IJCAR 2004, pages 122–136, Cork, Ireland, 2004.

19. Y. Kazakov and B. Motik. A Resolution-Based Decision Procedure forSHOIQ. In
Proc. IJCAR 2006, pages 662–667, Seattle, WA, USA, 2006.

20. O. Kutz, I. Horrocks, and U. Sattler. The Even More Irresistible SROIQ. InProc. KR
2006, pages 68–78, Lake District, UK, 2006.

21. C. Lutz and U. Sattler. The Complexity of Reasoning with Boolean Modal Logics. In
Proc. AiML 2000, pages 329–348, Leipzig, Germany, 2001.

22. B. Motik. Reasoning in Description Logics using Resolution and Deductive Databases.
PhD thesis, Univesität Karlsruhe (TH), Karlsruhe, Germany, January 2006.

23. B. Motik and U. Sattler. A Comparison of Reasoning Techniques for Querying Large
Description Logic ABoxes. InProc. LPAR 2006, pages 227–241, Cambodia, 2006.

24. R. Nieuwenhuis and A. Rubio. Theorem Proving with Ordering and Equality Constrained
Clauses.Journal of Symbolic Computation, 19(4):312–351, 1995.

25. H. De Nivelle, R. A. Schmidt, and U. Hustadt. Resolution-Based Methods for Modal
Logics. Logic Journal of the IGPL, 8(3):265–292, 2000.

26. A. Nonnengart and C. Weidenbach. Computing Small ClauseNormal Forms. In
A. Robinson and A. Voronkov, editors,Handbook of Automated Reasoning, volume I,
chapter 6, pages 335–367. 2001.

27. D. A. Plaisted and S. Greenbaum. A Structure-PreservingClause Form Translation.Jour-
nal of Symbolic Logic and Computation, 2(3):293–304, 1986.

28. A. Riazanov and A. Voronkov. The design and implementation of VAMPIRE. AI Com-
munications, 15(2–3):91–110, 2002.

29. R. A. Schmidt and U. Hustadt. A Principle for Incorporating Axioms into the First-Order
Translation of Modal Formulae. InProc. CADE-19, pages 412–426, USA, 2003.

30. S. Tobies.Complexity Results and Practical Algorithms for Logics in Knowledge Repre-
sentation. PhD thesis, RWTH Aachen, Germany, 2001.

31. M. Vardi. The Complexity of Relational Query Languages.In Proc. STOC ’82, pages
137–146, San Francisco, CA, USA, 1982.

