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Abstract

Monads are by now well-established as programming construct in functional lan-
guages. Recently, the notion of “Arrow” was introduced by Hughes as an extension,
not with one, but with two type parameters. At first, these Arrows may look some-
what arbitrary. Here we show that they are categorically fairly civilised, by showing
that they correspond to monoids in suitable subcategories of bifunctors Cop×C→ C.
This shows that, at a suitable level of abstraction, arrows are like monads — which
are monoids in categories of functors C→ C.

Freyd categories have been introduced by Power and Robinson to model computa-
tional effects, well before Hughes’ Arrows appeared. It is often claimed (informally)
that Arrows are simply Freyd categories. We shall make this claim precise by show-
ing how monoids in categories of bifunctors exactly correspond to Freyd categories.
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1 Introduction

The main result of this article can be expressed in one sentence: Hughes’
Arrows are monoids in categories of bifunctors Cop × C → C. In fact, this
entire paper is just an explanation of this one-line summary.

There are several reasons why this result might appeal.

• Arrows have been introduced by Hughes [11,19] in the context of functional
programming, to the rather applied end of fitting certain parsers into a
general interface (see [10] for more applications). The notion comes without
much motivation, and looks somewhat arbitrary. It is then reassuring —
and maybe even surprising — that this notion appears as very natural in a
completely different (categorical) setting.

1 Also part-time at Technical University Eindhoven, the Netherlands.
This paper is electronically published in
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• Arrows are meant as extensions of Monads — which are well-established
in functional programming [18,30]. Indeed, for a monad M , the mapping
(X,Y ) 7→ M(Y )X is a well-known instance of an Arrow. But the intended
analogy between Monads and Arrows has not yet been further substantiated.

It is a standard category theory textbook result [17, VII.3] that a monad
is an example of a “monoid in a category”, namely in a category C → C
of endofunctors on a category C (see below for more details). Our main
observation is that Arrows are also monoids, also in a category of functors,
not of the form C→ C, but Cop × C→ C.

• When we make the minor change of considering monoids in categories of
bifunctors Cop × C → Sets — with Sets instead of C as codomain — we
can establish a one-to-one correspondence with Freyd categories from [23].
Hence the monoid description gives a different view on the subject, namely
one in which the emphasis lies on the fact that an Arrow is a mapping
from both input and output types to a type of computations, with suitable
composition operations. The perspective of Freyd categories puts more
emphasis on the (slightly tricky) premonoidal aspects involved.

After introducing Arrows in Section 2, their structure is analysed categor-
ically in Section 3. It turns out that the elaboration of the main result does
require some work. The most technical part is the construction of suitable
monoidal (tensor) infrastructure in categories of functors Cop×C→ C, which
is described in Subsection 3.2. This finally gives rise to our model of Arrows
as monoids in Section 4.

We start with a gradual introduction of the various notions involved. In
doing so we assume a basic level of familiarity with categorical notions and
techniques.

Let us first recall that the Monad construct in functional programming
languages corresponds directly with a strong monad in category theory [30].
To fix notation, we shortly recall that a monad on a category C consists
of an endofunctor M : C → C, a unit natural transformation η : 1

•→M ,
and a multiplication natural transformation µ : M2 •→M satisfying familiar
equations [17].

Usually, a monoid is described as a set M together with an associative bi-
nary operation m : M×M →M with a unit e ∈M . Category theory provides
an abstract framework to work in different “universes”. A basic illustration of
this abstraction is that the notion of monoid can also be formulated in an arbi-
trary category with suitable structure: for instance a monoid in a category C
with Cartesian products (×, 1) is an object M of C, together with morphisms
m : M ×M →M and e : 1→M that make certain diagrams commute, corre-
sponding to the monoid equations. The unit equations m(x, e) = x = m(e, x),
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for instance, are:

M ×M
m ��

M × 1
id×eoo M

∼=oo ∼= //

gggggggggggggggggg

gggggggggggggggggg

WWWWWWWWWWWWWWWWWW

WWWWWWWWWWWWWWWWWW 1×M
e×id // M ×M

m��
M M

This formulation leads to monoids in universes of for instance topological
spaces or dcpo’s. The carrier M then has suitable structure, that is preserved
by the operations.

Even stronger, we do not even need Cartesian products (×, 1) for this
formulation: monoidal structure (tensors) (⊗, I) suffices, because we don’t
need productions or diagonals. Section VII.3 of [17] lists several examples of
familiar notions (such as groups and rings) that appear in this way as monoid
in a category.

One example is a monad (M, η, µ) on a category C. The category C→ C of
endofunctors (functors from C to itself, with natural transformations between
them) carries a rather trivial monoidal structure given by functor composition:
F ⊗G = F ◦ G, with identity functor I as obvious unit. Indeed, a monad can
be described as a pair of maps (M⊗M)

µ−→M
η←− I satisfying (precisely) the

monoid equations. A forteriori, a strong monad on C is (precisely) a monoid
in the category of strong functors C → C, with natural transformations that
commute with strength.

Likewise, we will argue that monoids in suitable subcategories of bifunctors
Cop×C→ C model Arrows. The most technical part is the construction of a
tensor in this category that has exponentiation as unit. In doing so we shall
give a simplification of one of the Arrow operations (namely first) introduced
by Hughes, see Proposition 3.4.

Arrows have been studied categorically before: [26] use Freyd categories
(from [23]) as models of Arrows. We shall elaborate on the relation with our
work in Section 5. The occurrence of the name Freyd is also very appropri-
ate in our setting, because we encounter several issues, like dinaturality and
small completeness, on which he has worked [8,2,9]. Our view of Arrows as
monoids also provides another approach to Freyd categories. Section 5 con-
cludes by proving that both models, monoids and Freyd categories, coincide
in the relevant case.

2 Arrows in functional languages

This section introduces Arrows and their use in functional programming lan-
guages. We briefly consider monads first, since this construction from category
theory historically paved the way for Arrows.
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2.1 Monads

A major reason for the initial reluctance in the adoption of functional pro-
gramming languages is the need to pass state data around explicitly, even
through functions that do even not use it. Monadic programming [30] pro-
vides an answer to this inconvenience. Through the use of a monad one can
encapsulate the changes to the state data, the “side-effects”, without explicitly
carrying states around. Monads can efficiently structure functional programs
while improving genericity. This mechanism is even deemed important enough
to be incorporated into Haskell syntax [21]. A monad in Haskell is defined as
a type class:

class Monad M where

return :: X → M X
(>>=) :: M X → (X → M Y ) → M Y

To ensure the desired behaviour, the programmer herself should prove certain
monad laws about the operations return and >>=. These boil down to the
axioms that M be a strong monad, in the categorical sense.

In effect, monads are functional combinators. They enable the combina-
tion of functions very generally, without many assumptions on the precise
functions to combine. However, these restrictions are strict enough to exclude
certain classes of libraries from implementation with a monadic interface, most
notably efficient parser combinators [27,14].

2.2 Arrows

Arrows [11,20] are even more general functional combinators, and can be seen
as a generalisation of monads, as we will see in example 2.2. An Arrow in
Haskell is a type constructor class of the form:

class Arrow A where

arr :: (X → Y ) → A X Y
(>>>) :: A X Y → A Y Z → A X Z
first :: A X Y → A (X, Z) (Y , Z)

Analogous to monads, an Arrow must furthermore satisfy the following arrow
laws, the proof of which is up to the programmer:

(a >>> b) >>> c = a >>> (b >>> c), (1)

arr (g ◦ f) = arr f >>> arr g, (2)

arr id >>> a = a = a >>> arr id, (3)

first a >>> arr π1 = arr π1 >>> a, (4)

first a >>> arr (id × f) = arr (id × f) >>> first a, (5)

first a >>> arr α = arr α >>> first (first a), (6)

first (arr f) = arr (f × id), (7)

first (a >>> b) = first a >>> first b, (8)
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In these equations we use:

X1 X1 ×X2
π1oo π2 //X2, X × (Y × Z) α //(X × Y )× Z,

for the familiar product maps fst, snd and assoc. Also, arr (id × f) is
sometimes written as second (arr f), where

second a = arr γ >>> first a >>> arr γ,

and γ : X × Y
∼=→Y ×X is the well-known swap-map.

Throughout this article we use a, b, c for arrows, f, g for functions, and
X, Y, Z for types, wherever possible.

The arrow laws might appear arbitrary, and [11] does not derive them
systematically. However, we shall show they are quite natural from a suitable
categorical perspective.

It turns out that the Arrow interface is general enough to allow most
known libraries that are incompatible with a monadic interface. Applications
can be found on the website [10], for example in the aforementioned parser
combinators, in reactive programming [15] and in user interfaces [6].

Example 2.1 (Pure functions) The first example of Arrows that comes to
mind is, naturally, ordinary functions. In Haskell this is written as follows.

instance Arrow (→) where

arr f = f
f >>> g = g ◦ f
first f = f × id

One sees at a glance that this satisfies the arrow laws (1)–(8).

To distinguish between normal functions and functions as Arrows, we also
call the former pure functions.

Example 2.2 (Kleisli Arrows from monads) In category theory, given a
monad one can construct the Kleisli category of free algebras. Likewise, given
a monad in a functional programming language, we can cast it as an Arrow.
This standard example of an Arrow is already present in [11].

newtype Kleisli M X Y = K (X → M Y )

instance Monad M ⇒ Arrow (Kleisli M) where

arr f = K (return ◦ f)
K f >>> K g = K (λX. f X >>= g)
first (K f) = K (λ(X, Z). f X >>= λY. return (Y , Z))

The arrow laws (1)–(8) (for K) follow readily from the monad laws (for M).
Intuitively we can think of a Kleisli Arrow as a computation that allows for
monadic behaviour in its codomain (i.e. in its output).
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Further examples of Arrows will appear in Section 4, in categorical lan-
guage.

3 Analysing Arrows

In this section we shall formulate several results to make the underlying cate-
gorical structure of Arrows in Haskell explicit. We also provide an alternative
for the ‘first’ operations in terms of what we call ‘internal strength’ (in Propo-
sition 3.4). The main outcome of this section is a reformulation of an Arrow
as a monoid.

We fix a category T with types as objects and terms as morphisms, such as
for example the category Hask of Haskell types and functions. We assume that
T is Cartesian closed, and carries a binary operation A(−,−) on objects/types
that satisfies the arrow laws (1)–(8) for given collections of maps arr, >>> and
first. We shall identify the categorical structure involved in a series of results.

Lemma 3.1 The operation A(−,−) extends to a functor Top × T→ T, with
action on maps f : X ′ → X and g : Y → Y ′ given by:

A(f, g)
defn
= λh. arr(f) >>> h >>> arr(g) : A(X, Y )→ A(X ′, Y ′).

This functor is strong in its second argument, and costrong in its first, via

st2 = λ(z, h). arr(λx. 〈z, x〉) >>> second(h)

: Z × A(X, Y )→ A(X, Z × Y ),

cost2 = λ(z, h). arr(λf. f(z)) >>> h

: Z × A(X, Y )→ A(XZ , Y ).

Proof. It is easy to check that A preserves identities and composition, and
also that the strength and costrength maps are natural. These maps further-
more satisfy the following equations, which will come in useful:

A(id, π2) ◦ st2 = π2,

A(id, α) ◦ st2 ◦ (id × st2) = st2 ◦ α,

cost2 ◦ λh. 〈z, h〉 = A(λf. f(z), id),

A(β, id) ◦ cost2 ◦ (id × cost2) = cost2 ◦ α,

where β : X(Y×Z)
∼=−→(XY )Z is the familiar canonical isomorphism. 2

Notice that we could just as well have used st1 = A(id, γ) ◦ st2 ◦ γ :
A(X, Y ) × Z → A(X, Y × Z), which then satisfies similar equations, like
π1 = st1 ◦ A(id, π1).
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Lemma 3.2 The maps arr : Y X → A(X, Y ) form a natural transformation

(+)(−) •→A(−, +) from exponents to arrows.

Similarly, the maps first : A(X, Y )→ A(X×Z, Y ×Z) are natural in X, Y .
This may be formulated as: first yields a natural transformation 〈first〉 from
A to the functor A× given by (X, Y ) 7→

∏
Z A(X × Z, Y × Z).

Proof. This follows from easy calculations: for maps f : X ′ → X, g : Y → Y ′

in T and h : Y X we have:(
A(f, g) ◦ arr

)
(h) = arr(f) >>> arr(h) >>> arr(g)

(2)
= arr(g ◦ h ◦ f)

= arr(gf (h))

=
(
arr ◦ gf

)
(h),

and (
A× (f, g) ◦ 〈first〉)(h) = 〈A(f × id, g × id) ◦ πZ〉Z(〈first(h)〉)

= 〈A(f × id, g × id)(first(h))〉
= 〈arr(f × id) >>> first(h) >>> arr(g × id)〉
(7)
=〈first(arr(f)) >>> first(h) >>> first(arr(g))〉
(8)
=〈first(arr(f) >>> h >>> arr(g))〉
= 〈first(A(f, g)(h))〉
=
(
〈first〉 ◦ A(f, g)

)
(h). 2

Lemma 3.3 The maps >>> : A(X, P ) × A(P, Y ) → A(X, Y ) are natural in
X, Y , and dinatural in P . The latter means (see [17, IX.4] or [2]) that for
each map f : P → Q the following diagram commutes.

A(X, P )× A(P, Y ) >>> // A(X, Y )
RRRRRRR
RRRRRRR

A(X, P )× A(Q, Y )

id×A(f,id) 33fffffffffff

A(id,f)×id ++XXXXXXXXXXX A(X, Y )

A(X, Q)× A(Q, Y ) >>>
// A(X, Y )

lllllll
lllllll

Proof. We shall only do dinaturality: for a : A(X, P ) and b : A(Q, Y ),(
>>> ◦ id × A(f, id)

)
(a, b) = a >>> A(f, id)(b)

= a >>> arr(f) >>> b

= A(id, f)(a) >>> b

=
(
>>> ◦ A(id, f)× id

)
(a, b). 2

Intuitively, dinaturality in P signifies that this middle parameter ‘is not
really important’; it could just have well been another one, as long as it is the
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same across the second argument of the first factor, and the first argument of
the second. This suggests that >>> should really be seen as an operation from
a tensor product. This will be elaborated in Section 3.2.

3.1 The operation first

We now prove that the maps ‘first’ satisfying (4)-(8) can be simplified into
maps called ‘ist’, for internal strength.

Proposition 3.4 The maps first : A(X, Y ) → A(X × Z, Y × Z) satisfying
equations (4)–(8) correspond to “internal strength” maps ist : A(X, Y ) →
A(X, Y ×X) which are natural in Y and dinatural in X, and satisfy

ist(arr(f)) = arr(〈f, id〉), (9)

ist(a) >>> arr(π1) = a, (10)

ist(a >>> b) = ist(a) >>> ist(arr(π1) >>> b) >>> arr(id × π2), (11)

ist(ist(a)) = ist(a) >>> arr(〈id, π2〉). (12)

The alternative formulation in terms of internal strength ‘ist’ in this result
is convenient because it has only two parameters – instead of three for ‘first’
– and its (di)naturality is clearly described. The proof of the equivalence of
‘first’ and ‘ist’ involves many basic calculations, of which we only present a
few exemplaric cases.

Proof. Given the maps ‘first’ satisfying (4)–(8), we define internal strength
on a : A(X, Y ) as:

ist(a) = arr(∆) >>> first(a),

where ∆ = 〈id, id〉. One then checks naturality in Y , dinaturality in X,
and (9)–(12). The (di)naturality equations can be formulated as:

ist(a) >>> arr(g × id) = ist(a >>> arr(g)) (13)

arr(f) >>> ist(a) = ist(arr(f) >>> a) >>> arr(id × f). (14)

As illustration we check equation (10):

ist(a) >>> arr(π1) = arr(∆) >>> first(a) >>> arr(π1)
(4)
= arr(∆) >>> arr(π1) >>> a
(2)
= arr(π1 ◦ ∆) >>> a

= arr(id) >>> a
(3)
= a.

Conversely, given internal strength ‘ist’ satisfying (9)–(12), we define:

first(a) = ist(arr(π1) >>> a) >>> arr(id × π2),

8
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where π1 : X × Z → X and id × π2 : Y × (X × Z) → Y × Z. This yields a
natural operation, in the sense that:

arr(f × id) >>> first(a) >>> arr(g × id) = first(f >>> a >>> g).

We shall prove equation (8) in detail, and leave the rest to the interested
reader.

first a >>> first b

= ist(arr(π1) >>> a) >>> arr(id × π2) >>> ist(arr(π1) >>> b)

>>>arr(id × π2)
(dinat)

= ist(arr(π1) >>> a) >>> ist(arr(id × π2) >>> arr(π1) >>> b)

>>>arr(id × (id × π2)) >>> arr(id × π2)
(2)
= ist(arr(π1) >>> a) >>> ist(arr(π1) >>> b)

>>>arr(id × π2) >>> arr(id × π2)
(11)
= ist(arr(π1) >>> a >>> b) >>> arr(id × π2)

= first (a >>> b). 2

3.2 Monoidal structure

Recall from the introduction that describing an Arrow (A, arr, >>>) as a monoid
in a category of bifunctors Cop ×C→ C requires a monoidal structure (⊗, I)
on such bifunctors, so that the Arrow A appears as monoid of the form:

A⊗ A
>>> // A I

arroo

The naturality arr : (+)(−) •→A observed in lemma 3.2 suggests to take expo-
nentiation as unit I = (+)(−) of the intended monoidal structure. The big
question then is: what is ⊗?

We now sketch the main idea, still in the category T of types and terms.
Composition >>> is given by a collection of maps:

A(X, P )× A(P, Y ) >>> // A(X, Y )

which can be combined by a coproduct on the left-hand-side:(∐
P∈T

A(X, P )× A(P, Y )

)
>>> // A(X, Y )

This is a coproduct over all objects/types in T, and thus size aspects become
relevant. But such coproducts (or sums) can be taken in polymorphic type
theories, so for the time being we simply proceed and postpone issues of size
until the next section.
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Once we have this (big) coproduct, it becomes “natural” to take the dinat-
urality observed in lemma 3.3 into account. This is done by using a suitable
coequaliser c to form the required tensor ⊗ as in:( ∐

P1,P2∈T

A(X, P1)× P P1
2 × A(P2, Y )

)
d1 //

d2

//

(∐
P∈T

A(X, P )× A(P, Y )

)
//

))TTTTTTTTTTT
c

))

A(X, Y )

(A⊗ A)(X, Y )

OO�
�
�
�
>>>

The composition map >>> then appears as a map (A⊗A)→ A by construction.
The two maps d1, d2 capture dinaturality via the composites:

A(X, P1)× P P1
2

st1 // A(X, P1 × P P1
2 )

A(id,ev◦γ) // A(X, P2),

P P1
2 × A(P2, Y )

cost2 //
A(P

(P
P1
2 )

2 , Y )
A(Λ(ev◦γ),id) // A(P1, Y ).

in which strength and costrength play a crucial role.

Let us make sure that exponentiation I = (−)(−) is indeed a unit for this

tensor. We concentrate on the required isomorphism ρ : A
∼=→A ⊗ I. It is

obtained for each pair X, Y of objects as a composite

A(X, Y )
λa. κY (a,idY ) //

(∐
P∈T

A(X, P )× Y P

)
//c // (A⊗ I)(X, Y ),

where κY is the Y -injection into the coproduct. The inverse of ρ is obtained
in:

•
d1 //

d2

//

(∐
P∈T

A(X, P )× Y P

)
//c //

e ((QQQQQQQQQ

(A⊗ I)(X, Y )

xxp p p p p p p

ρ−1

A(X, Y )

where e is the cotuple of maps A(X, P ) × Y P → A(X,P × Y P ) → A(X, Y )
given as A(id, ev ◦ γ) ◦ st1. One can then check that ρ and ρ−1 are indeed
each other’s inverses.

Finally, we have to check that the monoid equations hold for the span

(A⊗ A)
>>>−→A

arr←− I. We shall do one of the equations, namely

A
ρ //

YYYYYYYYYYYYYYYYYYYYYYYY

YYYYYYYYYYYYYYYYYYYYYYYY A⊗ I
id⊗arr // A⊗ A

>>>��
A,
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which for a : A(X, Y ) becomes

a � // (a, id) � // (a, arr(id))
_
��

a >>> arr(id).

Hence commutation of this diagram amounts to arrow law (3), which states
a >>> arr(id) = a.

Likewise, the associativity isomorphism α : (A ⊗ B)⊗ C → A ⊗ (B ⊗ C)
is given by associativity (A × B) × C → A × (B × C) via the coproduct.
The required coherence properties, like α ◦ α = (id ⊗ α) ◦ α ◦ (α ⊗ id), are
proven by using the arrow laws, notably (6). Strength, costrength en internal
strength on A ⊗ A are inherited from A, again via the coproduct and the
equaliser.

Summarising, in a type theoretic setting we have sketched that an Arrow
is the same thing as a monoid in the category of bifunctors Top×T→ T with
strength, costrength, and internal strength.

4 Arrows, categorically

In the previous section we have reformulated an Arrow A in Haskell as a
monoid A ⊗ A → A ← I in a category of bifunctors acting on types and
terms. The most complicated ingredient was the tensor product ⊗. It was
constructed like the tensor product of profunctors (or distributors) generalising
relation composition [16], see also [4].

One other complication involves size. The big coproduct in the previous
section uses all objects of the category T as indices. This requires T to be both
small and (co)complete. At this stage it is important to recall the basic result
of Freyd [8, Chapter 3, Exercise D] that there are no categories that are both
small and complete, except preorders (see also [13, 8.3.2]). However, small
complete internal categories do exist [12], and can indeed be used as models
for polymorphic type theory. Working in such a universe is very similar to
working in a polymorphic type theory as we have done in the previous section.

Thus it becomes natural to consider the more general setting of bifunctors
Cop × C → B, where C is B-enriched, so that size issues are separated. So
far we have considered B = C, for C Cartesian closed (and thus enriched
over itself). Another obvious case is to take B = Sets and C small. The
situation then reduces to profunctors, the monoidal structure of which is well-
known, see [4, Section 7.8] or [22, Section 6.5]. In the remainder of this
paper we shall focus on this (profunctor) situation, and take the following as
categorical formalisation of the notion of Arrow, as originally formulated [11]
in the language of Haskell.

Definition 4.1 Let C be a small category. An Arrow over C is a monoid in
the category of profunctors Cop×C→ Sets, with its usual monoidal structure,
that carry an internal strength. 11
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The restriction to small categories is maybe a bit too strong. It is needed
to construct the usual tensor ⊗, via a big coproduct over objects of C in
the category Sets, like in the previous section. We can also formulate the
composition operation >>> of an Arrow A via collections of maps A(X, P )×
A(P, Y ) → A(X, Y ) — which are natural in X, Y and dinatural in P — and
satisfy the equations (1)–(8). In this manner we can relax the restriction to
locally small categories.

In the remainder of this section we shall sketch how to understand the
earlier examples 2.1 and 2.2 in this setting, and extend them a bit. We therefor
fix a locally small category C.

The Hom-bifunctor Cop × C → Sets given by (X, Y ) 7→ HomC(X, Y ) is
perhaps the most obvious example of an Arrow — like the pure functions of
example 2.1.

If M : C→ C is a strong monad, then the mapping (X,Y ) 7→ HomC(X, MY )
is also an Arrow — namely the Kleisli Arrow as described in example 2.2.

That Kleisli Arrows have monadic behaviour in their codomain leads us
to consider Arrows behaving monadically in their domain. In functional lan-
guage: Kleisli Arrows take care of bookkeeping in the output, so why not
build Arrows that take care of bookkeeping in the input [29,28]? Since an
Arrow Cop × C → Sets is contravariant in its ‘domain’, we must start from
a monad on Cop. That is, if N is a comonad, then we obtain an Arrow via
(X,Y ) 7→ HomC(NX, Y ).

Even more generally, as in [29], [24] or even [5], we can try to build Arrows
behaving monadically in both their domain and codomain at once. Given
a strong monad M , a comonad N , and a distributive law λ : NM

•→MN
between them we obtain an Arrow A via A(X, Y ) = HomC(NX, MY ). The
unit of the monoid A is readily defined using the (co)units of M and N ,
and the internal strength ist : HomC(NX, MY ) → HomC(NX, M(Y × X))
is easily given by ist(f) = stM

2 ◦ 〈ε, f〉, where ε is the counit of N . The
distributive law is needed to give the multiplication/composition a >>> b of
a ∈ HomC(NX, MY ) and b ∈ HomC(NY, MZ):

NX
δ // N2X

Na // NMY
λ // MNY

Mb // M2Z
µ // MZ.

5 Arrows as Freyd categories

One could question our approach to Arrows in the previous sections because of
the oft-heard statement “Arrows are Freyd categories” [19]: Freyd categories
are claimed to already provide categorical semantics for Arrows. However, this
claim has always remained very informal. We think our approach is closer to
the original functional intuitions underlying Arrows in Haskell, because:

• the description of Arrows as bifunctors emphasises that they are binary
operations on types;

12
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• the precise formulation of the premonoidal structure of Freyd categories is
rather delicate, and distracts from the essence of the structure of Arrows:
all this structure corresponds only to ‘first’.

But more interestingly, our alternative formalisation of Arrows as monoids
makes it possible to give precise mathematical meaning to the statement “Ar-
rows are Freyd categories”. That is the aim of the current section. We shall
compare this result with the situation for monads 2 .

Let us first recall what a Freyd category is. Therefor we need the notion of
a premonoidal category, which we intuitively think of as a monoidal category
in which the tensor need not be a bifunctor, though it is functorial in each
variable separately.

Definition 5.1 A binoidal category is a category D, with for every object X
two functors (−)nX : D→ D and Xo(−) : D→ D such that XnY = XoY .
Hence we write X � Y = X n Y = X o Y . A morphism f is called central if
for each g, both:

• (f n id) ◦ (id o g) = (id o g) ◦ (f n id), and

• (id o f) ◦ (g n id) = (g n id) ◦ (id o f).

For such a central f it makes sense to write f �g or g�f for these composites.

Definition 5.2 A symmetric premonoidal category is a binoidal category D
together with an object I ∈ D and natural isomorphisms with central compo-
nents α : (X � Y ) � Z → X � (Y � Z), λ : I � X → X, ρ : X � I → X and
γ : X � Y → Y � X that obey the familiar coherence properties for monoidal
categories.

The non-bifunctoriality reflects the order of side-effects when we think of
D as a category of ‘computations’. When we include a category C of ‘values’,
we arrive at the notion of a Freyd category [23,25,26].

Definition 5.3 A Freyd category consists of a symmetric premonoidal cate-
gory D together with a category C with finite products, and an identity-on-
objects functor J : C → D that preserves all structure: J(X × Y ) = X � Y ,
J(α) = α, J(λ) = λ, etc. A Freyd category C→ D is called (locally) small if
the category D is (locally) small.

The comparison between monoids and Freyd categories begins with the
well-known (and easily seen) fact that the following are in one-to-one corre-
spondence:

• Monoids in the category of functors C→ C,

• Monads M on C, and

• Identity-on-objects functors J : C→ D that have a right adjoint,

2 As suggested by John Power.
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The functor J arises from M by the Kleisli construction, while J gives a monad
M induced by the adjunction.

This can be generalised to the following equivalence.

Theorem 5.4 For a locally small category C with finite products, there is a
one-to-one correspondence between

(i) Arrows A over C, that is (cf. definition 4.1), monoids A in the category
of profunctors Cop × C→ Set that are internally strong.

(ii) Locally small Freyd categories C→ D.

Proof. Suppose we are given a monoid A : Cop × C → Set with >>>, arr,
and ist, satisfying the by now familiar properties of an Arrow. Put D =
CA, the “Kleisli category” of A, 3 with objects X ∈ C and a ∈ A(X, Y )
as morphisms a : X → Y . Then D is symmetric premonoidal by defining
I = 1 ∈ D and X � Y = X × Y . The premonoidal tensor � extends to a
functor (on morphisms) by virtue of the provided ist (or equivalently first,
see proposition 3.4, and second), since every morphism a ∈ A(X, Y ) yields
a�Z = firstZ(a) : X �Z → Y �Z and Z �a = secondZ(a) : Z �X → Z �Y .
The implication (i) ⇒ (ii) is completed by defining J : C → D to act as the
identity on objects, and as arr on morphisms.

Conversely, suppose given a Freyd category J : C → D. We then define
A : Cop × C → Set by A(X, Y ) = HomD(X,Y ). This A is made into a
monoid in the category of profunctors Cop × C → Set by taking the unit
arr = J : HomC(X, Y ) → HomD(X, Y ), and taking as multiplication >>> the
composition A(X, P )×A(P, Y )→ A(X, Y ) in D. Furthermore we can define

istX,Y : A(X, Y )→ A(X, Y ×X) by istX,Y (f) = (f n X) ◦ J(〈id, id〉).

Naturality of ist in Y is obvious, dinaturality in X boils down to the fact that
the diagram

HomD(X, Y )
istX,Y // HomD(X,Y n X)

(Y nJ(g))◦(−)

**VVVVVVVVVVVVV

HomD(X ′, Y )

(−)◦J(g)
55kkkkkkkkkkk

SSSSSSSSSSS

SSSSSSSSSSS
HomD(X,Y n X ′)

HomD(X ′, Y )
istX′,Y

// HomD(X ′, Y n X ′)
(−)◦J(g)

44hhhhhhhhhhhhh

commutes for every morphism g : X → X ′ in C. The crux here is that it need
only commute for morphisms g of C, i.e. morphisms of D of the form J(g)
(cf. equations (13) and (14)), which are central. Since one also readily checks
(9)–(12), we see that (ii) implies (i). 2

Another, similar, equivalence that comes to mind is that of

3 The reason for calling CA the Kleisli category will be presented elsewhere.
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• Monoids in the category of strong functors C → C (and natural transfor-
mations commuting with strength),

• Strong monads on C, and

• Freyd categories C→ D with a right adjoint.

However, there seems to be no meaningful ‘Arrow-analogue’ of this correspon-
dence, because Arrows are automatically (co)strong (cf. lemma 3.1).

Conclusion and future work

This paper contains two reformulations of the notion of Arrow, introduced
in the context of functional programming by Hughes: one minor and one
major. The minor reformulation concerns an easier alternative to the ‘first’
operation. The major reformulation is the description of an Arrow as a monoid
in a category of bifunctors.

We have used the latter reformulation to justify the informal claim that
Arrows are Freyd categories. On Sets the two semantics, Freyd categories
and internally strong monoids, coincide. However, the monoid approach gen-
eralises in a different direction than the Freyd category approach.

A (minor) topic left open is how the monoidal structure on the category
of bifunctors Cop × C→ C relates to the monoidal structure on the category
of functors C→ C.

In the end the question comes up: does this help functional programmers
in any way? At this stage we have no such claim. But one does notice sev-
eral variations and extensions of Arrows appearing, such as Biarrows [1], or
a need for recursion schemes, and thus the need for a foundation, of mon-
ads/Arrows [7,3,19]. Our categorical reformulation as monoids might give
guidance for the proper formulation of such variations.
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