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Abstract

This paper compares partitioned and monolithic solution procedures for the numerical
simulation of fluid-structure interactions. Their different stability properties are illustrated
and the role of structural prediction for a partitioned method is discussed. A grid refinement
study has been carried out to assess the temporal accuracy of these methods. Moreover,
their computational cost as well as their computational efficiency is compared. Numerical
experiments are presented for a one-dimensional model problem of a piston interacting
with a fluid.
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1 Introduction

Numerical simulation of fluid-structure interactions has often been done using par-
titioning. In a partitioned method, the fluid and the structure equations are alternat-
ingly integrated in time and the interface conditions are enforced asynchronously;
see, e.g., Refs. [1,2,3]. Partitioned methods are typically energy increasing and,
hence, numerically unstable; see, e.g., Refs. [2,4].

The deficiencies of partitioned methods have motivated the investigation of mono-
lithic methods, which treat the interaction of the fluid and the structure at the inter-
face synchronously. The discretized equations are then typically solved by multiple
fluid-structure iterations; see, e.g., Refs. [5,6,7,8].

In this work we compare partitioned and monolithic solution procedures in terms
of stability, accuracy and computational cost. Numerical results are presented for a
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one-dimensional model problem of a piston interacting with a fluid. This prototyp-
ical fluid-structure interaction problem suffices for the above mentioned purpose of
our investigation. It is anticipated that the main conclusions extend in abstracto to
more complicated fluid-structure interaction problems.

The contents of this paper are organized as follows : Sec. 2 describes the governing
equations of the piston problem. Sec. 3 presents the discretization methods em-
ployed for fluid and structure. Sec. 4 addresses partitioned and monolithic methods
and prediction techniques. In Sec. 5 we present numerical experiments and results.
Sec. 6 contains concluding remarks.

2 Governing equations

2.1 Fluid

The fluid is described by the one-dimensional Euler equations for compressible
flow :

∂U

∂t
+
∂F

∂x
= 0, (1)

where U = (ρ, ρu, ρe) is the state vector of conservative variables, and F =
(ρu, ρu2 + pf , ρue + pfu) is the flux vector. ρ denotes the density, u is the ve-
locity, pf is the fluid pressure and e is the total energy density, respectively. The
equation system is closed by the state equation for a perfect gas :

pf = (γ − 1)
(
ρe− 1

2
ρu2

)
, (2)

where γ denotes the ratio of specific heats (assumed to be 1.4 for the numerical
experiments presented here).

2.2 Structure

The structure is represented by a one-degree-of-freedom model (Fig. 1) which is
described by the following differential equation :

mz̈ + kz = ps − p0, (3)

where z denotes the structural displacement, m the mass and k the spring-stiffness
of the piston model, ps is the fluid pressure applied to the structure and p0 is the
atmospheric pressure. A superimposed dot denotes differentiation with respect to
time. The surface of the piston is assumed to have a unit area.
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Figure 1. The piston problem (Interface region expanded for clarity).

2.3 Interface conditions

The interface conditions for the fluid-structure system can be expressed as a dy-
namic condition and two kinematic conditions. Dynamic equilibrium at the inter-
face requires the pressure to be equal at either side of the interface :

ps = pf . (4)

The first kinematic compatibility condition requires that the position of the fluid
boundary, l, is equal to its initial position, l0, plus the structural displacement. The
second requires that the fluid velocity at the boundary is equal to the velocity of the
moving boundary. This can be expressed as follows :

l = l0 + z, (5a)

u = l̇. (5b)

3 Discrete form of the equations

3.1 Fluid discretization: time-discontinuous Galerkin method

The fluid equations are formulated in space-time, in which moving meshes are ac-
counted for inherently, as part of the formulation. A time-discontinuous Galerkin
least-squares discretization with linear isoparametric elements is employed, which
is described in detail in Refs. [9,10]. The discretization is done in primitive vari-
ables (pf , u, T ), which makes boundary condition implementation and coupling to
the structure straightforward.
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3.2 Structural time integration: trapezoidal method

The time integration of the structure employs the trapezoidal method; see, e.g.,
Ref. [11]. Trapezoidal time integration corresponds to a Newmark method with the
parameter choice β = 1

4
and γ = 1

2
.

3.3 Discrete interface conditions

The interface conditions, Eqs. (4)–(5), are enforced by identifying displacement,
velocity and pressure at the beginning and end of a time interval. Maintaining con-
servation at the interface is possible under the conditions stated in Refs. [12,13] and
has implications for stability and accuracy of the numerical method employed, see
Ref. [14]. The trapezoidal method does not generally conserve the energy trans-
ferred at the fluid-structure interface, see Ref. [15]. However, as the partitioning
error is dominant, a comparison between partitioned and monolithic schemes is
still possible.

4 Partitioned vs. monolithic solution methods

4.1 Partitioned solution methods

In a partitioned scheme, the fluid and the structure equations are alternatingly inte-
grated in time and the interface conditions are enforced asynchronously; see, e.g.,
Refs. [1,2,3]. Typically, partitioned methods are based on the following sequential
process :

(1) transfer the motion of the structural boundary to the fluid,
(2) update the position of the moving fluid mesh,
(3) advance the fluid system in time and compute the new pressure,
(4) convert the new fluid pressure into a structural load,
(5) advance the structural system in time under the fluid-induced load.

This sequential process allows for software modularity. Partitioned schemes re-
quire only one fluid and structure solution per time step, which can be considered
as a single fluid-structure iteration. On the other hand, due to the time lag between
the time integration of fluid and structure, the conservation properties of the con-
tinuum fluid-structure system are lost. Partitioned schemes are commonly energy-
increasing and therefore numerically unstable; see, e.g., Refs. [2,4]. In practice, this
introduces a restriction on the admissible time-step size. Moreover, partitioning has
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implications for accuracy, see Ref. [14]. The benefits and deficiencies of partitioned
methods are discussed in Ref. [1].

4.2 Monolithic solution methods

In a monolithic method, the interaction of the fluid and the structure at the mu-
tual interface is treated synchronously. The discretized equations are then typically
solved by multiple fluid-structure iterations; see, e.g., Refs. [5,6,7,8]. For mono-
lithic schemes, maintenance of the conservation properties at the interface is pos-
sible, see Refs. [12,13]. This guarantees unconditional stability. The admissible
time-step size therefore appears to be limited only by the required accuracy.

4.3 Prediction

The order of the partitioning error can be improved by prediction techniques; see,
e.g., Refs. [3,4]. Instead of integrating the fluid equations based on the position of
the structural boundary at tn, a prediction may be used for the position of the struc-
tural boundary at tn+1 based on an extrapolation of the solution from the current
time level. We use the following prediction for the structural displacement d and
velocity v :

d̃n+1 = dn +
∆t

2
(3vn − vn−1), (6)

ṽn+1 = vn + ∆tan. (7)

Prediction techniques improve the accuracy of the partitioned scheme and lead to
better stability; see also Refs. [3,4]. We demonstrate this effect by numerical exper-
iments in Sec. 5.1.

Prediction techniques can also be used to initialize the iterative solution of a mono-
lithic method, which results in a reduced number of iterations, as will be shown in
Sec. 5.3.

5 Numerical experiments

The parameters for the piston problem are given in Table 1, where ωfs denotes
the frequency of the fluid-structure system. They are similar to the settings used in
Ref. [16].

We denote the characteristic time-scales of fluid, structure and fluid-structure sys-
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Table 1
Parameters for the piston problem.

ρ 1.3 kg
m3

p 105 N
m2

length of the fluid domain L 1.0 m

ωfs 342 1
s

m 0.8 kg

k 7911 N
m

tem by :

Tf =
L

c
, Ts = 2π

√
m

k
, Tfs =

2π

ωfs
(8)

respectively, where c is the speed of sound. Introducing the following non-dimensional
time-scale ratios:

Tf
Tfs

= 0.17,
Ts
Tfs

= 3.44 (9)

and the non-dimensional mass ratio of fluid and structure :

µ =
ρL

m
= 1.63 (10)

allows to describe the problem in terms of non-dimensional quantities. For the cur-
rent parameters, the characteristic time-scale for the structure is much greater than
the fluid time-scale, which implies that the fluid behaviour can be considered as
quasi-steady. Moreover, the mass ratio of fluid and structure is of order one, which
implies that fluid and structure contribute equally to the dynamics of the system.

The computation is started from initial conditions which are derived from the solu-
tion of the linearized problem with an initial structural displacement of z0 = 0.01.
The non-dimensional quantities are scaled such that one oscillation period is equal
to a unit time, if not stated otherwise.

5.1 Monolithic vs. partitioned schemes

Figs. 2 – 4 show a comparison between the monolithic and the partitioned scheme
with trapezoidal time integration. The structural displacement is plotted versus time
for five cycles of oscillation. In Fig. 2 the amplitude computed with the parti-
tioned scheme grows in time, whereas the amplitude computed with the mono-
lithic scheme remains constant. When using a structural predictor for the parti-
tioned scheme, the growth in amplitude is substantially reduced so that partitioned
and monolithic results visually coincide (Fig. 3 with the same number of time steps
per cycle as in Fig. 2). However, if the number of time steps per cycle is decreased,
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e.g. by a factor of ten (Fig. 4), the error in amplitude computed with the parti-
tioned scheme emerges again, in spite of using a structural predictor. The ampli-
fication of the solution obtained with the partitioned method can be attributed to
artificial energy production at the interface, which can induce numerical instability
of the combined fluid-structure system; see, e.g., Refs. [2,4]. In practice, this im-
poses a restriction on the admissible time-step size. The monolithic scheme, on the
other hand, does not become numerically unstable. It appears that for a monolithic
scheme, there does not exist a restriction on the admissible time-step size other than
the required accuracy.

We note that for a single-mode problem such as the one considered, stability and ac-
curacy are closely related. Only for multiple-mode problems stability and accuracy
can be distinguished clearly. For partitioned schemes, the stability of modes with
time-scales smaller than one actually wants to resolve can impose a severe restric-
tion on the admissible time-step size. On the other hand, for monolithic schemes
there is no such stability restriction, but the time-step size is restricted by accuracy
considerations only. This discussion is similar to the one about time-step restriction
for explicit vs. implicit time integration.
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Figure 2. Structural displacement computed with a monolithic and a partitioned scheme
without structural prediction, 100 time steps / cycle.
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Figure 3. Structural displacement computed with a monolithic and a partitioned scheme
with structural prediction, 100 time steps / cycle.
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Figure 4. Structural displacement computed with a monolithic and a partitioned scheme
with structural prediction, 10 time steps / cycle.

5.2 Mesh refinement study

The order of temporal accuracy of fluid-structure interaction calculations depends
on the fluid and structure discretizations separately as well as on their coupling. In
the following, the order of temporal accuracy for monolithic and partitioned fluid-
structure coupling is investigated. The time-discontinuous Galerkin discretization
for the fluid uses linear-in-time shape functions and is therefore second-order time
accurate. The trapezoidal method is also second-order time accurate, see Ref. [11].
Therefore the coupled system can be at most second-order time accurate.

We determine the observed order of temporal accuracy by calculating

p = ln

(
||d4τ − d2τ ||2
||d2τ − d1τ ||2

)
/ ln(2), (11)

where p denotes the observed order of temporal accuracy, d the computed structural
displacement on meshes of different time-step sizes (denoted by τ , 2τ and 4τ ), and
the differences are measured in the L2-norm.

As the fluid equations are formulated and discretized in space-time, refinement of
the temporal mesh width requires a corresponding refinement of the spatial mesh
width to obtain second-order convergence. If this is not done, the truncation error
retains a mixed term, ∆t∆x, which will produce only first-order convergence. For
the current computations, the non-dimensional spatial and temporal mesh widths in
the fluid are taken equal.

The computations were performed on mesh sequences of different time-step sizes
and for one period of oscillation equal to T = 4. Table 2 shows the observed
order of temporal accuracy for monolithic as well as for partitioned fluid-structure
coupling with and without structural prediction.
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Table 2
Observed order of temporal accuracy for different coupling methods.

mesh sequences partitioned partitioned monolithic

with time-step sizes without prediction with prediction

2−4, 2−5, 2−6 1.0906 1.9941 2.0016

2−5, 2−6, 2−7 1.0469 1.9972 2.0012

2−6, 2−7, 2−8 1.0238 1.9986 2.0008

2−7, 2−8, 2−9 1.0119 1.9993 2.0005

2−8, 2−9, 2−10 1.0060 1.9997 2.0000

The temporal accuracy shows the expected asymptotic behaviour, i.e., second-order
accuracy for the monolithic method and for the partitioned method with prediction,
and first-order accuracy for the partitioned method without prediction.

Although the monolithic method and the partitioned method with prediction have
formally the same order of accuracy, the error is considerably larger for a parti-
tioned method than for a monolithic method for the same time-step size, as shown
in Fig. 5, which plots the error versus the time step for τ = 2−4 . . . 2−9. As a refer-
ence solution, we use the solution obtained with the monolithic scheme for a time
step τ = 2−10. As the only difference between the curves in Fig. 5 is the number
of fluid-structure iterations, it can be concluded that the interface error incurred
by partitioning is at least ten times larger than any other sources of error. The fig-
ure also indicates that the partitioned method requires smaller time steps than the
monolithic method for a specified error tolerance. Conversely, given a certain level
of accuracy, a monolithic method can afford larger time steps than a partitioned
method.
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Figure 5. Error for a monolithic and a partitioned method with structural prediction.
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5.3 Computational cost of a monolithic solution method

Fig. 6 shows the required number of fluid-structure iterations per time step for a
monolithic scheme with and without prediction during one cycle of oscillation. As
the area under the curves corresponds to the computational work, it is clear that
prediction techniques can reduce the computational cost of the monolithic solution
method.

Still, the computational cost of the monolithic procedure is three to four times the
one of a partitioned procedure, which requires only a single fluid-structure iteration
per time step. On the other hand, the monolithic scheme is more than ten times as
accurate, see Fig. 5. Preference of one method over the other depends on whether
the increased accuracy also warrants the additional computational cost. To elabo-
rate this statement let us employ the inverse of the error as a measure of accuracy
and the number of fluid-structure iterations as a measure of computational cost.
The ratio of accuracy to computational cost can be conceived as computational ef-
ficiency. As stated above, for a monolithic scheme the number of fluid-structure
iterations required is three to four times the one of a partitioned scheme, but the
error is also by a factor of about ten lower. Alternatively, if the time-step size of
the partitioned scheme is reduced by a factor of four, then its computational cost
increases by a factor of four and becomes comparable to the one of a monolithic
scheme. For a second-order accurate scheme, the error reduces then by a factor of
16 and, hence, is of the same order of magnitude as for the monolithic scheme. For
the considered test case, monolithic and partitioned schemes therefore have com-
parable computational efficiency. However, for multiple-mode problems we expect
that a monolithic scheme exhibits superior efficiency; cf. Sec. 5.1. Moreover, we
remark that there is still potential for reducing the computational cost of the mono-
lithic solution procedure.
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Figure 6. Number of iterations for the monolithic scheme with and without prediction, 100
time steps / cycle.
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6 Conclusions

This paper compares partitioned and monolithic solution procedures in terms of
stability, accuracy and computational cost. Numerical results were presented for a
one-dimensional non-linear fluid-structure interaction problem.

Partitioned schemes require only a single fluid-structure iteration per time step,
and therefore their computational cost per time step is lower than for monolithic
schemes. On the other hand, the time lag between the integration of the fluid and
the structure implies that the interface conditions cannot be satisfied exactly. This
induces an algorithmic energy production at the interface, which can cause numeri-
cal instability and restricts the admissible time-step size. Although stability and ac-
curacy of partitioned schemes can be improved by means of prediction techniques,
their error remains larger than for a monolithic solution method.

In contrast to partitioned schemes, monolithic schemes appear to be uncondition-
ally stable and considerably more accurate. As a consequence, larger time steps
can be used than for partitioned schemes for the same level of accuracy. The num-
ber of fluid-structure iterations required by a monolithic scheme can be reduced
by means of prediction techniques, but monolithic schemes remain computation-
ally more expensive per time step than partitioned schemes. For the considered
test case, partitioned and monolithic schemes have comparable computational effi-
ciency. However, for monolithic schemes, there is still potential for reducing their
computational cost.
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