
Foundations for Decision Problems in Separation
Logic with General Inductive Predicates

Timos Antonopoulos1, Nikos Gorogiannis2, Christoph Haase3∗,
Max Kanovich4, and Joël Ouaknine1

1 Department of Computer Science, University of Oxford, UK
2 Department of Computer Science, Middlesex University London, UK
3 LSV, CNRS & École Normale Supérieure (ENS) de Cachan, France

4 Department of Computer Science, Queen Mary University of London, UK

Abstract. We establish foundational results on the computational com-
plexity of deciding entailment in Separation Logic with general induc-
tive predicates whose underlying base language allows for pure formulas,
pointers and existentially quantified variables. We show that entailment
is in general undecidable, and ExpTime-hard in a fragment recently
shown to be decidable by Iosif et al. Moreover, entailment in the base
language is ΠP

2 -complete, the upper bound even holds in the presence of
list predicates. We additionally show that entailment in essentially any
fragment of Separation Logic allowing for general inductive predicates is
intractable even when strong syntactic restrictions are imposed.

1 Introduction

Separation Logic (SL) is an extension of Hoare logic for reasoning about pro-
grams which manipulate heap data structures. Introduced in the early 2000s by
O’Hearn, Ishtiaq, Reynolds and Yang [18, 20], it has been the starting point of
a line of research that has led to a large body of theoretical and practical work.

In the early days, the potential of Separation Logic was recognised by prov-
ing the (partial) correctness of the Schorr-Waite graph marking algorithm [22]
and Cheney’s copying garbage collector [6]. Those proofs were essentially carried
out in a pen-and-paper fashion and demonstrated the strength of the paradigm
underlying Separation Logic: local reasoning. The latter means that correctness
proofs for heap-manipulating code should only depend on the portions of the
heap accessed by the code and not the entire memory. Motivated by these pos-
itive results, research has been conducted on automating such proofs. On the
one hand, support for Separation Logic has been integrated into proof assistants
such as Coq, enabling semi-automated verification of program code, see e.g. [2].
On the other hand, a number of fully-automatic tools such as SmallFoot,
SLAyer, Space Invader or SLAD have been developed and successfully used
to show absence of memory errors in low-level real-world code, see e.g. [11, 7, 5].

∗ Supported by the French ANR, ReacHard (grant ANR-11-BS02-001).

2

A crucial requirement for any of these tools is the ability to check applications
of the consequence rule in Hoare logic, as it is this rule that underpins most meth-
ods of proof based on Separation Logic. The consequence rule, in turn, requires
the ability to check entailment between Separation Logic formulas. However, en-
tailment checking in full Separation Logic is undecidable [12, 10], thus these tools
have to work with restricted, decidable fragments. Decidability, though, comes at
the cost of reduced expressive power and, often, reduced generality. For instance,
the fragment used by SmallFoot allows for reasoning about memory shapes
built upon the hard-coded primitives of pointers and linked lists, essentially lim-
iting its applicability to programs only involving those data structures; some
efforts have been made in order to allow for reasoning about more generic list
data structures, see e.g. [3]. The limitations of hard-coded inductive predicates
have been realised by the community, and recent research has been conducted
to enable automated reasoning about generic user-defined inductive predicates,
inside the framework of Separation Logic, see e.g. [13, 9], or in related frame-
works such as forest automata [16]. Notable recent progress has been made by
Iosif et al. who showed decidability of satisfiability and entailment for a syntactic
fragment of Separation Logic with general recursively defined predicates by es-
tablishing a reduction to Monadic Second Order Logic on graphs with bounded
tree width [17]. Finally, Brotherston et al. have developed an ExpTime-complete
decision procedure for satisfiability of Separation Logic with general inductively
defined predicates [8]. In the same paper it is shown that the problem becomes
NP-complete if the arity of all predicates is bounded by a constant.

The goal of this paper is to contribute to this line of research and to estab-
lish foundational results on the inherent computational complexity of reasoning
problems in Separation Logic with general inductively defined predicates. In or-
der to obtain meaningful lower bounds, we restrict our analysis to the most basic
syntactic fragment of Separation Logic comprising (positive) Boolean combina-
tions of judgments on stack variables, both fixed and existentially quantified, and
pointers. This fragment also forms the basis of the decidable fragments of Separa-
tion Logic from [17, 8]. Standard inductive data types are inductively expressible
in this fragment, for instance singly-linked lists as used by SmallFoot [4] can
be defined as follows:

ls(a, b) := emp ∧ a = b | ∃c. pt(a, c) ∗ ls(c, b) ∧ a 6= b (1)

Informally speaking, supposing that ls(x, y) holds in a memory model, this def-
inition states that there is a singly-linked list segment from the memory cell
labeled with the stack variable x to the memory cell labeled with y if either the
heap is empty and x is equal to y, or x is not equal to y and the heap can be
split into two disjoint parts, indicated by the ∗-conjunction, such that on the
first part x is allocated and points to some cell a and heap cell a is the starting
point of a singly-linked list segment ending in y in the other part.

The main results of our paper are as follows. In the first part, we consider
entailment in Separation Logic with general inductive predicates. Given two as-
sertions α, α′ and a finite set of inductive predicates P referred to by α and α′,

3

entailment is to decide whether the set of memory models of α is contained in
the set of memory models of α′ with respect to P . We show that this problem
is undecidable in general and ExpTime-hard when restricted to the decidable
syntactic fragment defined by Iosif et al. In the second part, we take a closer look
at entailment in the basic fragment of Separation Logic in the absence of induc-
tive predicates, i.e., Separation Logic with positive pure formulas, existentially
quantified variables and pointers. We show that this problem is complete for ΠP

2 ,
the second level of the polynomial hierarchy. The upper bound also holds when
allowing for the above list predicate hard-coded in the syntax. Subsequently, we
analyse the ΠP

2 lower bound and define a natural syntactic fragment for which
entailment is decidable in polynomial time, yet NP-hard in the presence of a list
predicate, i.e., one of the simplest possible inductive predicates. We discuss the
results obtained in the conclusion at the end of the paper.

Some proofs have been omitted due to lack of space, but are included in a
longer, online version of the paper, obtainable from the authors’ webpages.

2 Preliminaries

Let X and Y be sets, and let R ⊆ X × Y . We say that R is functional if for
every x ∈ X there is at most one y ∈ Y with (x, y) ∈ R. Let Y be a countable,
possibly infinite, set. We write X ⊂fin Y if X is a finite subset of Y . Moreover,
given countable sets X,Y , we write f : X ⇀fin Y if f is a function whose domain
is a finite subset of X and its co-domain is Y . Given f : X → Y , x ∈ X, y ∈ Y ,

we write f [x 7→ y] to denote the function f ′ such that f ′(z)
def
= y if z = x, and

f ′(z)
def
= f(z) otherwise. Finally, given i ≤ j ∈ N, we write [i, j] to denote the

set {i, . . . , j} ⊆ N and [i] as an abbreviation for [1, i].

Graphs. Let L be a countable set of labels. We define directed labeled graphs
(just graphs in the following) as tuples G = (V,E, `), where V denotes the set of
nodes or vertices, E is a subset of V ×V , and ` : L ⇀fin V is a labeling function.
If L is empty we omit ` and just write G = (V,E). A graph G = (V,E, `) is
undirected if E is symmetric. If G is a graph, we also denote its set of nodes by

V (G) and its set of edges by E(G). The size of G is defined as |G| def
= |V (G)|.

For interpretations below, we require a slightly more general class of graphs
which we call selector graphs, inspired by [17]. A selector graph is a tuple G =
(V,E, `, s), where V and ` are as above, s : V → N assigns an arity to each
vertex, and E : V ×N→ V is a partial function such that E is defined precisely
for every pair (v, i) with v ∈ V and i ∈ [s(v)]. If s(v) ∈ {0, 1} for all v ∈ V , we
obtain partial functional graphs.

Formulas of Separation Logic. The subsequent definitions are partly adapted
or inspired from [17]. Let Vars be a totally ordered countably infinite set of
variable names, which is partitioned into disjoint infinite sets EVars and FVars
representing sets of existential variables and fixed stack variables, respectively.
We will usually use a, b, c for elements from EVars, and x, y, z will usually be
elements from Vars. Variables in FVars will be used to represent fixed stack

4

variables. The purpose of the distinction between EVars and FVars is to help
the reader to easily identify in which context a variable occurs. Let PNames
be a finite set of predicate names, where each predicate has an associated arity
k ∈ N, and is written as pred(a1, . . . , ak) with ai ∈ EVars for i ∈ [k]. The syntax
of SL-assertions or SL-formulas over PNames is given by the following grammar,
where x, x1, . . . , xm, y, y1, . . . , yk ∈ Vars, a1, . . . , an ∈ EVars, m ≥ 1 and n ≥ 0:

ϕ ::= > | ⊥ | x = y | ¬ϕ | ϕ ∧ ϕ (pure formulas)
σ ::= emp | tt | pt(x, (x1, . . . , xm)) | pred(y1, . . . , yk) | σ ∗ σ | α (spatial formulas)
α ::= ∃a1, . . . , an.σ ∧ ϕ (SL-assertions)

Here, pt(x, y) is the points-to or pointer predicate of an arbitrary arity m, and the
∗-conjunction is commutative, i.e., SL-assertions are considered equivalent up
to permutations of ∗-connected subformulas. We say that the SL-assertion α =
∃a1, . . . , an.σ ∧ ϕ is flat if σ contains no SL-assertion α′ as a subformula. Given
an SL-assertion α = ∃a1, . . . , am.(σ ∗ ∃b1, . . . , bn.(σ

′ ∧ ϕ′)) ∧ ϕ, and supposing
without loss of generality that {ai : i ∈ [m]} ∩ {bj : j ∈ [n]} = ∅, we can
exhaustively rewrite the formula α as ∃a1, . . . , am, b1, . . . , bn.(σ ∗ σ′) ∧ ϕ ∧ ϕ′.
Thus we may assume with no loss of generality that an SL-assertion is flat.

Remark 1. We have imposed flatness and ∗-commutativity as syntactic prop-
erties. This is merely for presentational convenience in order to save space, as
these properties follow from the semantics definition below.

We call ϕ positive if ϕ is a conjunction of literals x = y and x 6= y. Moreover, we
say that α is positive if ϕ is positive, and that α is reduced if no pred(y1, . . . , yk)
occurs in σ. By vars(α) ⊆ Vars we denote the set of all variables occurring in α.
The size of α, denoted by |α|, is defined to be the number of symbols in α.

A set P of inductive predicates over PNames is a finite set of definitions

pred(a1, . . . , ak) := α1 | · · · | αm

such that each ai ∈ EVars, αi is a flat SL-assertion αi = ∃b1, . . . , bn.σ ∧ ϕ over
PNames such that {ai : i ∈ [m]} ∩ {bj : j ∈ [n]} = ∅, and each predicate
name pred(a1, . . . , ak) occurs exactly once on the left-hand side of a definition
in P . Moreover, we require that each αi has no unbounded existential variables,
i.e., for each αm as above, vars(αm) ⊆ FVars ∪ {ai, bj : i ∈ [k], j ∈ [n]}.5 Given

x1, . . . , xk ∈ Vars, define pred[x1/a1, . . . , xk/ak]
def
= {αi[x1/a1, . . . , xk/ak] : i ∈ [k]},

where αi[x1/a1, . . . , xk/ak] is obtained from αi by replacing each occurrence of
aj with xj for j ∈ [k]. Given a flat assertion α = ∃c1, . . . cp.σ ∧ ϕ, an unraveling
of α with respect to P is obtained by replacing each pred(x1, . . . , xk) occurring
as a subformula in σ with some α′ ∈ pred[x1/a1, . . . , xk/ak]. We write α →P β
if β is an unraveling of α with respect to P , and denote the reflexive transitive
closure of →P by →∗P . An unraveling α→∗P β is complete if no pred(x1, . . . , xk)
occurs in β.

5 In a slight departure from convention, for presentational convenience we allow free
variables to appear in the body of definitions; such predicates can always be trans-
formed to equivalent ones where the previously free variables are parameters, w.l.o.g.

5

Example 2. Taking P to be the singleton set consisting of the definition of ls(a, b)
from Equation (1), we have

ls(x, y)→∗P ∃c1, c2.pt(x, c1) ∗ pt(c1, c2) ∗ ls(c2, y) ∧ x 6= y ∧ c1 6= y

with respect to P , which is not a complete unraveling. A complete unraveling is
ls(x, y)→∗P ∃c.pt(x, c) ∗ emp ∧ x 6= y ∧ c = y.

For convenience, we sometimes use a generalised ∗-conjunction and, given
spatial formulas σ1, . . . , σn, write ∗1≤i≤n σi for σ1 ∗ · · · ∗ σn. Likewise, we write
pred(a1, . . . , ak) := ‖i∈[n]αi for pred(a1, . . . , ak) := α1 | · · · | αn. Moreover,
∃a1, . . . , an.σ abbreviates ∃a1, . . . , an.σ ∧ >; we may also write e.g. pt(x, (, y))
as a shorthand for ∃a.pt(x, (a, y)), where a ∈ EVars is a fresh existential variable.
Furthermore, ∃i∈[n]ai.σ∧ϕ abbreviates ∃a1, . . . , an.σ∧ϕ. If PNames is clear from
the context we will omit stating it explicitly.

Interpretations. As stated above, interpretations are given in terms of selector
graphs. This diversion from the more commonly found “heap-and-stack model”
found in the literature is for technical convenience only, and it is easy to translate
between the two interpretation domains.

An SL-interpretation, or simply interpretation, I is a selector graph I =
(V I , EI , `I , sI) such that `I : FVars ⇀fin V . For x1, . . . , xn ∈ FVars and for
v1, . . . , vn ∈ V I , we denote by I[x1 7→ v1; . . . ; xn 7→ vn] the SL-interpretation

Î = (V I , EI , ˆ̀̂I , sI), where ˆ̀̂I def
= `I [x1 7→ v1; . . . ; xn 7→ vn], and we call such an

interpretation an extension of I.
In our interpretations, nodes with arity greater than zero are the equivalent

to allocated heap cells in the “heap-and-stack model”, while record fields are
represented by the different selectors. We define the ∗-decomposition of I as
follows: I = I1 ∗ I2 iff I1 = (V I1 , EI1 , `I1 , sI1) and I2 = (V I2 , EI2 , `I2 , sI2)
such that V I = V I1 = V I2 ; `I , `I1 and `I2 coincide; for i ∈ {1, 2}, either
sIi(v) = 0 or sIi(v) = sI(v), and sI(v) = sI1(v) + sI2(v) for all v ∈ V I ; for
i ∈ {1, 2}, if sIi(v) > 0 then EIi(v, j) = EI(v, j) for all v ∈ V I and j ∈ [sIi(v)].

Semantics of SL-assertions. The semantics of flat reduced SL-assertions is
defined by structural induction. Let I = (V I , EI , `I , sI) be an SL-interpretation
and ϕ a pure formula only over variable names from FVars, the satisfaction
relation I |= ϕ is defined such that I |= > holds always, I |= ⊥ never holds,
I |= x = y iff `I(x) = `I(y), I |= ¬ϕ iff I 6|= ϕ, and I |= ϕ1 ∧ ϕ2 iff I |= ϕ1 and
I |= ϕ2.

For reduced flat spatial formulas σ such that vars(σ) ⊆ FVars, we define
I |= emp iff sI(v) = 0 for all v ∈ V I and I |= tt holds always. Moreover,
I |= σ1 ∗ σ2 iff I = I1 ∗ I2 such that I1 |= σ1 and I2 |= σ2, and finally,
I |= pt(x, (x1, . . . , xm)) iff

• v = `I(x), sI(v) = m, sI(v′) = 0 for all v′ ∈ V I \ v; and
• EI(v, i) = `I(xi) for all i ∈ [m].

For a flat reduced SL-assertion α = ∃a1, . . . , an.σ∧ϕ, we define I |= α iff there
is an extension Î = I[x1 7→ v1, . . . , xn 7→ vn] for fresh variables x1, . . . , xn ∈ FVars

6

such that Î |= σ[x1/a1, . . . , xn/an] and Î |= ϕ[x1/a1, . . . , xn/an]. We call I a
model of α if I |= α. Given α and a set of inductive predicates P , we write
I |=P α if I |= α′ for some α′ obtained from a complete unraveling α →∗P α′.
Given α and α′ over a set of inductive predicates P , we write α |=P α′ iff
whenever I |=P α then I |=P α′. Given α over a set of inductive predicates P ,
satisfiability is to decide whether there is an interpretation I such that I |=P α.
Given I, model checking is to decide I |=P α. The main decision problem of
interest in this paper is entailment, defined as follows.

Entailment

INPUT: SL assertions α, α′ with respect to a set P of inductive predicates.
QUESTION: Does α |=P α

′?

3 Entailment in the Presence of Inductive Predicates.

In this section, we show that entailment with general inductive predicates is un-
decidable when no restrictions are imposed. Subsequently, we give an ExpTime
lower bound for the fragment introduced by Iosif et al. [17].

General undecidability. We show undecidability via a reduction from the
undecidable Post Correspondence Problem [19].

Post Correspondence Problem (PCP)

INPUT: A finite set of tiles (v1, w1), . . . , (vk, wk), vi, wi ∈ {0, 1}∗.
QUESTION: Does there exist a sequence s1s2 · · · s` ∈ {1, . . . , k}`, ` > 0 such

that vs1vs2 · · · vs` = ws1ws2 · · ·ws`?
For any u ∈ {0, 1}∗, denote by |u| the length of each tile, and by u(i) the i-th
symbol of u, for 1 ≤ i ≤ |u|. For example, if u = 01101, we have |u| = 5 and
u(3) = 1. Let (v1, w1), . . . , (vk, wk) be an instance of PCP. The set of predicates
P in Figure 1 establishes a reduction such that this instance has a solution iff
PCP(x, y) ∧ x0 6= x1 6|=P PCP(x, y). The intuition behind these definitions is as
follows. For x, y ∈ FVars, PCP(x, y) generates the set of all possible tilings for
a given instance: in any model the vi-tilings begin at x and the wi-tilings at y.
The fixed stack variables x0, x1 ∈ FVars are used to represent the corresponding
symbols 0 and 1. Likewise, PCP(x, y) generates all tilings which are incorrect.
This is the case if the model is empty, there are two symbols at the same position
which are different (cf. NEqualPair(x, y)), or the length of the strings encoded in
a model is different (cf. NEqualLen(x, y)).

Theorem 3. Entailment in Separation Logic with general inductive predicates
is undecidable.

Remark 4. An anonymous referee remarked that our reduction can also be ap-
plied for showing that satisfiability in the presence of conjunction over spatial
formulas and general inductive predicates is undecidable. The models of the
subsequent predicate encode all pairs of equal strings:

EqPairs(a, b) = emp | ‖i∈{0,1}∃p, r.pt(x, (xi, p)) ∗ pt(y, (xi, r)) ∗ EqPairs(p, r).

7

PCP(a, b) := emp | Tile1(a, b) | · · · | Tilek(a, b)

Tilei(a, b), i ∈ [k] := ∃p0, . . . p|vi|, r0, . . . r|wi|. ∗
0≤j<|vi|

pt(pj , (xvi(j+1), pj+1)) ∗

∗ ∗
0≤j<|wi|

pt(rj , (xwi(j+1), rj+1)) ∗ PCP(p|vi|, r|wi|) ∧ a = p0 ∧ b = r0

NEqualPair(a, b) := ∃p, r.pt(a, (, p)) ∗ pt(b, (, r)) ∗ NEqualPair(p, r)
| ∃c, d. pt(a, (c,)) ∗ pt(b, (d,)) ∗ tt ∧ c 6= d

Tail(a) := emp | ∃b.pt(a, (, b)) ∗ Tail(b)

NEqualLen(a, b) := ∃x, p, r.pt(a, (x, p)) ∗ pt(b, (x, r)) ∗ NEqualLen(p, r)

| ∃p.pt(a, (, p)) ∗ Tail(p) | ∃r.pt(b, (, r)) ∗ Tail(r)

PCP(a, b) := emp | NEqualPair(a, b) | NEqualLen(a, b)

Fig. 1: The set P of inductive predicates for the reduction from PCP.

It is then easy to conjoin EqPairs(x, y) with PCP(x, y) such that a model exists
if, and only if, the given PCP instance has a solution.

Inductive Predicates with Bounded Tree Width. Iosif et al. define in [17]
a fragment of Separation Logic by syntactically restricting the definitions of in-
ductive predicates such that all models have bounded tree width. In particular,
their fragment requires that there is exactly one points-to predicate in any defini-
tion, which is clearly not the case in the reduction from PCP. Moreover, briefly
speaking, further restrictions require that in each predicate definition, if a predi-
cate name occurs in the body of a predicate definition then a points-to predicate
occurs in the definition as well, that every existentially quantified variable is
eventually allocated, and some further subtle technical conditions. We omit fur-
ther details for space reason and show that entailment is ExpTime-hard in this
fragment. The reader can easily verify that our reduction fulfils the requirements
defined in [17].

Our reduction is from the language inclusion problem for non-deterministic
top-down binary finite tree automata. A prefix closed set of strings over {0, 1}
is a set of strings S such that for each s ∈ S and any prefix sp of s, sp is also in
S. A binary ordered tree t over a finite alphabet Σ is a tuple (N,Σ, `), where N
is a prefix closed set of strings over {0, 1} denoting the nodes of the tree, where
for each s ∈ N , s · 1 ∈ N , if and only if s · 0 ∈ N , and ` : N → Σ is a function
assigning labels to nodes of the tree. The root of a tree is the empty string ε,
and for any two nodes s and s · i, for i ∈ {0, 1}, s · i is a child node of s. We say
that a node s ∈ N is a leaf node if it has no child nodes, and a node is internal
otherwise.

Recall that a finite non-deterministic top-down tree automaton (NFTA) A
is a tuple (Σ,Q, δ, I), where Σ is a finite alphabet, Q is a finite set of states
with a designated state qleaf , I ⊆ Q is the set of initial or accepting states,
and δ : Q×Σ → 2Q×Q is the transition function such that for all σ ∈ Σ,

8

δ(qleaf , σ) = ∅. A run of A on a tree t = (N,Σ, `) is a function ρ : N → Q
assigning states to the nodes of t such that for each internal node s ∈ N ,
(ρ(s · 0), ρ(s · 1)) ∈ δ(ρ(s), `(s)) and for each leaf node s ∈ N , ρ(s) = qleaf .
A run is accepting if ρ(ε) ∈ I, and the language L(A) accepted by a NFTA A is
the set of trees t for which there is an accepting run of A on t.

NFTA Language Inclusion Problem

INPUT: Two NFTA A1 and A2.
QUESTION: Does L(A1) ⊆ L(A2) hold?

A classical result states that the language inclusion problem for non-deterministic
tree automata is complete for ExpTime [21]. Let A = (Σ,Q, δ, I) be an NFTA.
We define the subsequent set P of inductive predicates, where Treeq,σ(a) is de-
fined for every σ ∈ Σ and q ∈ Q for which δ(q, σ) is non-empty:

Treeq,σ(a) := ‖ (q1,q2)∈δ(q,σ)
σ1,σ2∈Σ

δ(q1,σ1)6=∅∨q1=qleaf
δ(q2,σ2)6=∅∨q2=qleaf

∃l, r. pt(a, (sσ, l, r)) ∗ Treeq1,σ1
(l) ∗ Treeq2,σ2

(r)

Treeqleaf ,σ(a) := pt(a, sσ)

TreesA(a) := ‖ q∈I
σ∈Σ
∃b. pt(a, b) ∗ Treeq,σ(b)

In any model, the predicate TreesA(x) encodes all trees in L(A): apart from
the node labeled with x, each allocated vertex represents a node of the tree,
the first selector represents the label of the node, and the subsequent selectors
represent respectively the left and right descendants, if the node is an internal
node. The additional pointer at x is for technical reasons in order to comply with
the restrictions defined in [17]. It is now easily checked that given two NFTA A1

and A2 over some alphabet Σ = {σ1, . . . , σn},

TreesA1
(x) ∧

∧
1≤i6=j≤n

sσi
6= sσj

|=P TreesA2
(x)

is a valid entailment if, and only if, L(A1) ⊆ L(A2).

Theorem 5. Deciding entailment in Separation Logic with inductive predicates
with bounded tree width as defined in [17] is ExpTime-hard.

It is worth emphasizing that hardness already holds if the arity of the pointer
predicates is fixed to three. Also note that the ExpTime-hardness proof for
satisfiability provided in [8] does not trivially establish that entailment in the
fragment defined in [17] is ExpTime-hard since the definitions given in [8] are
not in the fragment of [17].

Also, note that in [21] it is shown that for two NFTA that accept finite
languages, the language inclusion problem is PSpace-complete, and therefore
the proof of Theorem 5 can be adapted to show PSpace-hardness of entailment
with inductive predicates not involving cyclic definitions.

9

4 Entailment for Fixed Fragments

The primary goal of this section is to first study the complexity of entailment
in the base language defined in Section 2, and subsequently in the base lan-
guage equipped with a fixed list predicate as defined in (1), which is a fragment
commonly found in the program verifiers discussed in the introduction.

We first show that entailment in the base language is ΠP
2 -complete. Moreover,

we additionally outline that the upper bound even holds in the presence of the
aforementioned list predicate. This result complements the previous section in
that it indicates that for specific and fixed natural decidable fragments involving
cyclic definitions of small arity the ExpTime lower bound can be avoided.

In the second part we analyse the lower bound from the first part and consider
natural syntactic fragments defined in terms of structural properties of graphs
representing SL-assertions. It has been shown that such restrictions can lead to
polynomial-time decision procedures for entailment when dropping existentially
quantified variables [14] and also decidability results for more expressive exten-
sions of our base assertion language [7]. We show that basically there is no hope of
achieving polynomial-time decision procedures in the presence of list predicates
and existentially quantified variables, even when strong syntactic restrictions on
the assertions are imposed.

Entailment in the General Case. We begin with the lower bound and show
hardness for the base language, i.e. the language having only points-to predi-
cates, via a reduction from a generalisation of graph three-colorability that has
been defined in [1]. Recall that given an undirected graph G = (V,E), graph
three-colorability is to decide whether there is a three-coloring f : V → {1, 2, 3}
such that f(v) 6= f(w) for all {v, w} ∈ E. A leaf coloring of G is a function
f : Vl → {1, 2, 3}, where Vl is the set of vertices of G with degree one, i.e.,
those nodes that have exactly one incident edge. The generalisation of graph
three-colorability is given as follows.

2-Round 3-Colorability

INPUT: Undirected graph G = (V,E).
QUESTION: For every fixed leaf coloring f of G, can f be extended to a

three-coloring of G?

It has been shown in [1] that 2-Round 3-Colorability is ΠP
2 -complete. We

now show hardness of entailment for SL-formulas via a reduction from 2-Round
3-Colorability. To this end, we construct flat reduced SL-assertions α, α′ such
that the graph G = (V,E) is a valid instance of 2-Round 3-Colorability iff
α |= α′. We partition V into disjoint sets V ′ = {v1, . . . , vn} of nodes with degree
greater than one and V ′′ = {vn+1, . . . , vm} of nodes with degree equal to one,
and define α and α′ such that

α
def
= ∗
i∈[3]
j∈[n]

pt(xi,j , yi) ∗ ∗
n<j≤m

pt(xj , zj) ∧
∧

n<i≤m

∨
j∈[3]

zi = yj ∧
∧

1≤i6=j≤3

yi 6= yj

α′
def
= ∃i∈[n]ai.∃j∈[m]bj .∗

i∈[n]
pt(ai, bi) ∗ ∗

n<j≤m
pt(xj , bj) ∗ tt ∧

∧
(vi,vj)∈E

bi 6= bj .

10

Intuitively speaking, the pointers pt(xj , zj) in α can choose in any model I of
α a coloring of the leaves of G, represented by the variables yi, i ∈ [3]. The
xi,j are allocated in order to enable α′ to choose a coloring of the nodes which
are not leaves. Consequently in a model I of α, an extension of I determining
the existentially quantified variables bi of α′ determines a three-coloring of G.
Conversely, if α 6|= α′ then the counter-model I encodes a coloring of the leaves
which cannot be extended to a three-coloring.

It is not difficult to see that ΠP
2 -hardness of entailment can already be es-

tablished for SL-assertions without disjunction, by only requiring yi 6= yj for
all 1 ≤ i 6= j ≤ 3 in the pure part of α: if α |= α′ then, in particular, any
leaf coloring can be extended to a three-coloring since a subset of the models
of α will encode all possible leaf colorings. The converse direction then follows
as above. In addition, by introducing additional existentially quantified slack
variables, the hardness proof can also be tightened in a way such that no “tt” is
required in spatial formulas, i.e., hardness holds in non-intuitionistic fragments.
Finally, this reduction can be reused in order to show NP-hardness of the model
checking problem via a reduction from 3-Colorability.

Since the size of all relevant models is a priori fixed by the size of the formulas
under consideration, a ΠP

2 upper bound follows trivially.

Theorem 6. Entailment for flat reduced SL-assertions is ΠP
2 -complete.

For the remainder of this section, we turn towards entailment in the base
language equipped with an additional fixed list predicate as defined in (1) and
restrict our attention to pointer predicates of arity one, and consequently to
interpretations which are functional graphs.

First, we can also establish a ΠP
2 upper bound for entailment in this fragment

by showing a small-model property. The main idea is that for a sufficiently large
I such that I |= α and I 6|= α′, we can find an instantiation of an ls(x, y)
predicate in I such that the path between x and y is long enough that we can
obtain a new I ′ by removing a vertex occurring on this path while ensuring that
the newly obtained I ′ is still a counter-model witnessing α 6|= α′.

Lemma 7. Let α, α′ be SL-assertions, let n = |vars(α)|+ |vars(α′)| and sup-
pose that α 6|= α′. Then there exists an I witnessing α 6|= α′ with |V I | ∈ O(n2).

This lemma immediately yields a ΠP
2 upper bound: in order to show α 6|= α′, we

can guess a small model I of α and then verify with an NP oracle that I 6|= α′.

Theorem 8. Entailment for flat reduced SL-assertions with a fixed list predicate
is ΠP

2 -complete.

Entailment under Structural Restrictions. The goal of this section is to
argue that entailment in essentially any useful fragment is intractable in the
presence of existential quantification and list predicates, even under severe syn-
tactic restrictions. In the following, we will only consider positive SL-assertions,
since otherwise non-entailment is trivially coNP-hard.

11

In order to identify syntactic fragments with potentially polynomial-time
entailment problems, we look at properties of graphs representing SL-formulas.
Let G = (V,E) be a directed graph and v ∈ V a vertex of G. Then, define

functions pred(v)
def
= {v′ ∈ V : (v′, v) ∈ E} and succ(v)

def
= {v′ ∈ V : (v, v′) ∈ E}.

A node v ∈ V is a source node if pred(v) = ∅, and v is a sink node if succ(v) = ∅.
Let α = σ∧ϕ be an SL-assertion, and x ∈ vars(α) be a variable of α. Then define
the set Eq(ϕ, x) = {y ∈ vars(α) : for all I, if I |= ϕ then I |= x = y}. Next, we
define the graph G(α) corresponding to α as G(α) = (Vα, Eα, `α), where the

set of vertices is defined as Vα
def
= {Eq(ϕ, x) : x ∈ vars(α)}, and the set of edges

as Eα
def
= {(Eq(ϕ, x),Eq(ϕ, y)) : pt(x, y) or ls(x, y) occurs in σ}. Finally, `α is such

that `α(x) = Eq(ϕ, x) for all x ∈ vars(α). A node v ∈ Vα is fixed if there is
x ∈ FVars such that `α(x) = v.

Inspecting the ΠP
2 -hardness proof above, we see that one fundamental source

of complexity comes from having pointers pt(a, b) with a, b ∈ EVars, i.e., the
graph corresponding to α′ above has source and sink nodes which are not fixed.
On the one hand, when not allowing for list predicates, if all source nodes of
an SL-assertion were to be fixed, entailment between formulas in such a suit-
ably defined fragment would trivially become polynomial-time decidable. The
main reason for this is that in any model I of ∃a.pt(x, a), a would have to be
instantiated with the unique successor of the vertex labeled with x. However,
such a fragment would only allow for reasoning about models whose size is a
priori fixed by the size of the antecedent, which limits its usefulness. On the
other hand, when allowing for list predicates, the proof of NP-hardness of ab-
duction (given in [15]) can be easily adapted to show that entailment becomes
intractable even if source nodes are required to be fixed.

This leaves us with an interesting case, which we introduce by considering
an example of an instance of entailment:

ls(x, y) ∧ x 6= y |= ∃a.pt(x, a) ∗ ls(a, y).

The validity of this entailment rests on the fact that x has a successor in any
model containing a non-empty list from x to y. In this example, the consequent is
a formula of the fragment of the assertion language which we are going to consider
in the remainder of this section: an SL-assertion α is in the fixed endpoints
fragment if all source and sink nodes of the graph G(α) corresponding to α are
fixed. We show coNP-hardness of entailment in this fragment via a reduction
from an NP-complete variant of the Hamiltonian path problem.

Fixed Vertex Hamiltonian Path (FVHP)

INPUT: A directed graph G = (V,E) and v ∈ V .
QUESTION: Does there exist a Hamiltonian path in G ending in v?

Given a graph G = (V,E), a vertex v ∈ V and an instance of FVHP such that
V = {v1, . . . , vN+1} and v = vN+1, we show how to compute in polynomial time
SL-formulas α, α′ in the fixed endpoints fragment such that α 6|= α′ if and only
if G is a valid instance of FVHP. For i ∈ [N + 1] and j ∈ [N], for the spatial

12

parts of α and α′ we define:

nodej
def
= ls(esj , a

0
j) ∗ ∗

k∈[0,N−1]
ls(akj , b

k+1
j) ∗ ∗

k∈[N−1]
ls(bkj , a

k
j) ∗ ls(bNj , efj)

order0i
def
= pt(s0i , f

0
i)

orderji
def
= ls(sji , d

j
i) ∗ ls(d

j
i , f

j
i)

σ
def
= ∗
j∈[N]

nodej ∗ ∗
i∈[N+1]
j∈[0,N]

orderji

A graphical illustration of the formulas nodej , order
j
i and order0i is given in Fig-

ure 2, where list predicates are represented as dashed arrows and pointer predi-
cates as full arrows. Consider the submodels of each of the formulas above. The
intuition behind these formulas, in conjunction with the inequalities introduced
below, is that there will be a model comprising a long concatenation, loosely
speaking, of such submodels, if and only if there is a hamiltonian path in the
given graph. The inequalities introduced below, will additionally ensure that
such a long concatenation can happen only in the models of α and not of α′,
and thus entailment will not hold in such a case. The variables akj and bkj are
essentially used in a way to count how long the concatenation is.

We now turn towards the pure parts of α and α′. For notational conve-
nience, given x ∈ vars(α) and S ⊆ vars(α), subsequently x ≈ S abbreviates∧

y∈vars(α)\(S∪{x}) x 6= y. In other words, in any model I of x ≈ S, if `I(x) = `I(y)

for some y ∈ vars(α) then y ∈ S or x ≡ y. We define Dvars to be the set
{d`k : k ∈ [N + 1], ` ∈ [0, N]}, and we define ϕ to be the conjunction of the
subsequent pure formulas:

s0i ≈ ∅ ∧ fNi ≈ Dvars ∧ d0
i = f0i , i ∈ [N + 1]

sji ≈
⋃

vp∈pred(vi),
N−j<k≤N−1

{akp, bkp, bNp , efp} ∪ Dvars, i ∈ [N + 1], j ∈ [N]

fji ≈ {e
s
i, a

0
i , b

N−j
i } ∪

⋃
k∈[N−j−1]

{aki , bki } ∪ Dvars, i ∈ [N], j ∈ [0, N − 1]

fjN+1 ≈ Dvars, j ∈ [0, N − 1]

efi 6= efj , 1 ≤ i 6= j ≤ N

dji 6= bN−ji , i ∈ [N], j ∈ [0, N − 1]∧
k∈[N]\{i}

dji 6= bN−j+1
k i ∈ [N + 1], j ∈ [N]

Finally, we define α and α′ using the set of variables V shown below:

V
def
= {a0

i , a
j
i , b

j
i , b

N
i : i ∈ [N], j ∈ [N − 1]} ∪ {dji : i ∈ [N + 1], j ∈ [0, N]}

α
def
= ∃x∈Vx.σ ∧ ϕ and α′

def
= ∃x∈Vx.σ ∧ ϕ ∧ dNN+1 6= fNN+1

13

nodej
def
=

esj a0j b1j a1j b2j
. . .

bN−1
j aN−1

j bNj efj

orderji
def
=

sji dji fji
order0i

def
=

s0i d0i , f
0
i

Fig. 2: Graphical representation of the formulas nodei and orderji .

Note that ϕ includes fNi ≈ Dvars for all i ∈ [N + 1]. Given the additional
disequality in α′, we now have fNN+1 ≈ Dvars \ {dNN+1} in the pure part of α′.

Also note that in order to simplify the presentation, we have defined α and
α′ such that we use the same existentially quantified variables both in α and α′.
It is important to note that given a model I of both α and α′, the extension
Î1 of I that witnesses the satisfaction of the formula α and the extension Î2

that witnesses the satisfaction of the formula α′ do not in general agree on the
mapping of those existentially quantified variables. The existentially quantified
variables in α could also be seen as fixed variables with names different from the
existentially quantified variables of α′. As these variables act in the same way
in both formulas, in order to avoid writing the above definitions twice and to
simplify our proof, we have decided to treat them as existentially quantified and
define them such that they have the same name in both formulas.

Lemma 9. G = (V,E) and v ∈ V is a valid instance of FVHP iff α 6|= α′.

Proof (sketch). First, a crucial observation is that for any I such that I |= α
and I 6|= α′, in any extension Î witnessing I |= α, we have that the instantiation
of dNN+1 coincides with fNN+1. Suppose this was not the case, then Î would also
witness I |= α′, contradicting our assumption. In this case we say that dNN+1 is
forced on fNN+1. We can show that forcing dNN+1 on fNN+1 is only possible if b1

p

is forced on sNN+1 for some unique predecessor vp ∈ pred(vN) of vN . In order to
force b1

p on sNN+1, it can then be shown that dN−1
p and therefore fN−1

p is forced
on a0

p. In summary, we can establish the following chain of inductive reasoning:

if dNi0 is forced on fNi0 then b1
i1

is forced on sNi0 for some vi1 ∈ pred(vi0)

if b1
i1

is forced on sNi0 then dN−1
i1

is forced on fN−1
i1

...
...

...
...

if dNiN−1
is forced on fNiN−1

then bNi1 is forced on s1
i0

for some viN ∈ pred(viN−1
)

if bNiN is forced on s1iN−1
then d0

iN
is forced on f0iN

Now considering the variable names bji in the implication chain, we obtain a
sequence b1

i1
, b2
i2
, . . . , bN−1

iN−1
, bNiN such that for all 1 ≤ j < N , vij is a successor of

vij+1
in G. Consequently, the sequence of nodes π = viN · · · vi2vi1vN+1 is a path

of length N + 1 in G ending in vN+1. Using the definition of ϕ, it follows that
any bji can only be “used” once, hence π does not contain duplicate nodes and
thus is a Hamiltonian path ending in vN+1. ut

14

It is readily checked that source and sink nodes in the graph corresponding
to the definition of α and α′ are fixed. Hence, we have established the following.

Theorem 10. Entailment in the fixed endpoints fragment is coNP-hard.

5 Conclusion

The results in this paper can be interpreted as follows: when considering frag-
ments of Separation Logic which allow for existential quantification and un-
bounded data structures, having tractable, polynomial-time decision procedures
will require severe syntactic restriction, since entailment is coNP-hard even in
the strongly constrained fixed endpoints fragment. In the presence of general
inductive predicates, although satisfiability is decidable [8], we have shown that
entailment becomes undecidable. This result complements the decidability re-
sult obtained by Iosif et al. [17] and shows that the syntactic restrictions defined
in [17] are not only natural but also crucial for decidability. However, we have
shown that entailment in this fragment is ExpTime-hard. On the more positive
side, we have shown that entailment is “only” ΠP

2 -complete in the presence of
existential quantification, pointers and linked lists. Since this is a fragment that
has been shown to be useful in program verifiers, this result may be seen as
an argument in favour of supporting the development of decision procedures for
domain-specific fragments of Separation Logic with a fixed set of predicates.

A number of problems remain open which we intend to investigate in the
future. For instance, an open issue is whether a restriction to a one-selector
fragment leads to decidable entailment. Also, although we have shown ExpTime-
hardness for the bounded-tree width fragment, we currently do not know whether
this is a tight bound. This is also true for the fixed endpoints fragment and
its coNP-hardness. Finally, of great interest would be decision procedures for
entailment in these fragments, since most tools use incomplete heuristics.

Acknowledgments. We would like to thank the referees for their helpful com-
ments. In particular, we wish to thank one referee who suggested the reduction
from the inclusion problem for tree automata for the proof of Theorem 5.

References

1. M. Ajtai, R. Fagin, and L. Stockmeyer. The closure of monadic NP. Journal of
Computer and System Sciences, 60(3):660–716, 2000.

2. J. Bengtson, J. Braband Jensen, and L. Birkedal. Charge! In L. Beringer and
A. Felty, editors, Interactive Theorem Proving, volume 7406 of LNCS, pages 315–
331. Springer, 2012.

3. J. Berdine, C. Calcagno, B. Cook, D. Distefano, P. W. O’Hearn, T. Wies, and
H. Yang. Shape analysis for composite data structures. In W. Damm and H. Her-
manns, editors, Computer Aided Verification, volume 4590 of LNCS, pages 178–
192. Springer, 2007.

4. J. Berdine, C. Calcagno, and P. O’Hearn. A decidable fragment of separation logic.
In Foundations of Software Technology and Theoretical Computer Science, volume
3328 of LNCS, pages 110–117. Springer, 2005.

15

5. J. Berdine, B. Cook, and S. Ishtiaq. SLAyer: Memory safety for systems-level code.
In G. Gopalakrishnan and S. Qadeer, editors, Computer Aided Verification, volume
6806 of LNCS, pages 178–183. Springer, 2011.

6. L. Birkedal, N. Torp-Smith, and J. C. Reynolds. Local reasoning about a copying
garbage collector. In Principles of Programming Languages, pages 220–231, New
York, NY, USA, 2004. ACM.

7. A. Bouajjani, C. Drăgoi, C. Enea, and M. Sighireanu. Accurate invariant check-
ing for programs manipulating lists and arrays with infinite data. In Automated
Technology for Verification and Analysis, LNCS, pages 167–182. Springer, 2012.

8. J. Brotherston, C. Fuhs, N. Gorogiannis, and J. Navarro Pérez. A decision pro-
cedure for satisfiability in separation logic with inductive predicates. Technical
Report RN/13/15, University College London, 2013.

9. J. Brotherston, N. Gorogiannis, and R.L. Petersen. A generic cyclic theorem prover.
In Asian Symposium on Programming Languages and Systems, pages 350–367.
Springer, 2012.

10. J. Brotherston and M. Kanovich. Undecidability of propositional separation logic
and its neighbours. In Logic in Computer Science, pages 137–146. IEEE Computer
Society, 2010.

11. C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang. Beyond reachability:
Shape abstraction in the presence of pointer arithmetic. In K. Yi, editor, Static
Analysis, volume 4134 of LNCS, pages 182–203. Springer, 2006.

12. C. Calcagno, H. Yang, and P.W. O’Hearn. Computability and complexity results
for a spatial assertion language for data structures. In Asian Symposium on Pro-
gramming Languages and Systems, pages 289–300, 2001.

13. W.-N. Chin, C. David, H. H. Nguyen, and S. Qin. Automated verification of shape,
size and bag properties via user-defined predicates in separation logic. Science of
Computer Programming, 77(9):1006 – 1036, 2012.

14. B. Cook, C. Haase, J. Ouaknine, M. Parkinson, and J. Worrell. Tractable reasoning
in a fragment of separation logic. In Concurrency Theory, volume 6901 of LNCS,
pages 235–249. Springer, 2011.

15. N. Gorogiannis, M. Kanovich, and P. O’Hearn. The complexity of abduction for
separated heap abstractions. In Static Analysis, volume 6887 of LNCS, pages 25–
42. Springer, 2011.

16. P. Habermehl, L. Hoĺık, A. Rogalewicz, J. Šimáček, and T. Vojnar. Forest automata
for verification of heap manipulation. In G. Gopalakrishnan and S. Qadeer, editors,
Computer Aided Verification, volume 6806 of LNCS, pages 424–440. Springer, 2011.

17. R. Iosif, A. Rogalewicz, and J. Šimáček. The tree width of separation logic with
recursive definitions. In M. P. Bonacina, editor, Automated Deduction – CADE,
volume 7898 of LNCS, pages 21–38. Springer, 2013.

18. S. Ishtiaq and P. O’Hearn. BI as an assertion language for mutable data structures.
In Principles of Programming Languages, pages 14–26. ACM, 2001.

19. E. L. Post. A variant of a recursively unsolvable problem. Bulletin of the American
Mathematical Society, 52(4):264–268, 1946.

20. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In
Logic in Computer Science. IEEE Computer Society, 2002.

21. H. Seidl. Deciding equivalence of finite tree automata. SIAM Journal on Comput-
ing, 19(3):424–437, June 1990.

22. H. Yang. Local Reasoning for Stateful Programs. PhD thesis, University of Illinois
at Urbana-Champaign, 2001. (Technical Report UIUCDCS-R-2001-2227).

16

A Missing Proof Details from Section 4

A.1 Entailment in the General Case

We first formally prove ΠP
2 -hardness. Recall the definitions of α and α′ from the

main text. Let G = (V,E) be graph α |= α′ whose vertex set V is decomposed
into disjoint sets V ′ = {v1, . . . , vn} of nodes with degree greater than one and
V ′′ = {vn+1, . . . , vm} of nodes with degree equal to one. We define

α
def
= ∗

i∈[3]
∗

j∈[n]
pt(xi,j , yi) ∗ ∗

n<i≤m
pt(xi, zi) ∧

∧
n<i≤m

∨
j∈[3]

zi = yj ∧
∧

1≤i 6=j≤3

yi 6= yj

α′
def
= ∃i∈[n]ai.∃i∈[m]bi. ∗

i∈[n]
pt(ai, bi) ∗ ∗

n<j≤m
pt(xj , bj) ∗ tt ∧

∧
(vi,vj)∈E

bi 6= bj .

Subsequently, the spatial part of α′ is called σ′ and the pure part ϕ′.

Lemma 11. G is a valid instance of 2-Round 3-Colorability iff α |= α′.

Proof. SupposeG = (V,E) is a valid instance of 2-Round 3-Colorability and
let I be such that I |= α. Define f : V ′′ → {1, 2, 3} to be a leaf coloring such that

for all n < i ≤ m, f(i)
def
= j iff `I(zi) = yj . By assumption, f can be extended to

a three coloring f̂ , so in particular f̂(vi) 6= f̂(vj) for all {vi, vj} ∈ E. Let Î be

an extension of I such that additionally `Î(bi) = `I(yf̂(vi)
) for all i ∈ [m] and

`Î(ai) = `I(xf̂(vi),i
) for all i ∈ [n]; here and in the next paragraph, for brevity

we abuse notation and treat the ai and bi in interpretation as if they come from
FVars. It is not difficult to verify that Î |= ϕ′ ∧ σ′ and hence I |= α′.

Conversely, suppose 2-Round 3-Colorability does not hold for G =
(V,E) and let f : V ′′ → {1, 2, 3} be the coloring of the leaves such that f cannot
be extended to a three-coloring. Let I be such that I |= α ∧

∧
vi∈V ′′ zi = yf(i)

and hence I |= α. We claim I 6|= α′. To the contrary, assume there is an exten-

sion Î such that Î |= σ′ ∧ ϕ′. Since `Î(bi) 6= `Î(bj) for all {vi, vj} ∈ E, defining

f̂ such that f̂(vi) = c iff `Î(bi) = yc yields an extension of f to a three coloring,
contradicting our assumption. ut

We now prove the ΠP
2 upper bound. Since we are only dealing with pointer

predicates with arity one, we can view interpretations I = (V I , EI , `I , sI) as
I = (V I , EI , `I), where EI ⊆ V I × V I is a functional relation. This allows us
to give a direct semantics definition of the ls predicate defined in Equation (1)
as follows: we have I |= ls(x, y) iff either

• EI = ∅ and `I(x) = `I(y); or
• V I ⊇ {v1, . . . , vm}, EI = {(vi, vi+1) : 1 ≤ i < m}, `I(x) = v1 6= vm = `I(y)

and vi 6= vj for all 1 ≤ i 6= j ≤ m.

In other words, either I has no edges (i.e. allocated variables) at all and x and y
coincide, or there is a non-empty chain of pointers from x to y with no duplicates.

17

Before giving the proof of Lemma 7, we provide three further definitions.
A path π in I of length n is a sequence π = v1 · · · vn+1 of nodes such that

(vi, vi+1) ∈ E for all 1 ≤ i ≤ n. The set nodes(π) of nodes along π is nodes(π)
def
=

{v1, . . . , vn+1}. Given an interpretation I and v ∈ V I , we define varsI(v)
def
= {x ∈

Vars : `I(x) = v}.

Lemma 12 (Lemma 7 in the main text). Let α, α′ be SL-assertions such
that α 6|= α′, and let n = |vars(α)|+ |vars(α′)|. Then there exists an I witnessing
α 6|= α′ with |V I | ∈ O(n2).

Proof. Let α = σ∧ϕ and α′ = ∃a1 . . . ar. ϕ
′∧σ′. Furthermore, let J be a counter

model witnessing α 6|= α′, so in particular for any extension Ĵ of J , Ĵ 6|= σ′∧ϕ′,
and furthermore, let J be such an interpretation with the least number of nodes.
Suppose for contradiction that |V J | > n2, then in J there exists a v-w path
π = vv1 . . . vmw such that m ≥ n, varsJ (vi) = ∅ for all 1 ≤ i ≤ m, varsJ (v) 6= ∅,
and varsJ (w) 6= ∅. The latter fact implies that each vi has exactly one incoming
from vi−1, where v0 = v, since otherwise varsI(vi) would not be empty for some
i ∈ [m], c.f. the semantics of the ls predicate above.

Let I be obtained from J by removing vm from Va and the in- and outgoing
edges connected to it, and by adding an edge from vm−1 to w. We claim that I
witnesses α 6|= α′. To the contrary, assume I |= α′ and let Î be the extension
of I such that Î |= ϕ′ ∧ σ′. We are going to show how to obtain from Î an
extension Ĵ of J such that Ĵ |= ϕ′ ∧ σ′, which contradicts our assumption.

Let π′ = vv1 . . . vm−1w be the shortened v-w path in EÎ of length m. Since π′

consists of m+1 ≥ n+1 nodes, and since vars(v) 6= ∅ and vars(w) 6= ∅, we have
vars(v′j) = ∅ for some 1 ≤ j ≤ m− 1. In the following, let j be the smallest such

number. Let Ĵ be the extension of J such that

• varsĴ (v) = vars Î(v) for all v 6∈ nodesJ (π);

• varsĴ (v) = vars Î(v) and varsĴ (w) = vars Î(w);

• varsĴ (vi) = vars Î(v′i) for all 1 ≤ i < j;

• varsĴ (vj) = ∅; and

• varsĴ (vi) = vars Î(vi−1) for all j < i < m.

We have Ĵ |= ϕ′, since for all x, y ∈ vars(α′), `Ĵ (x) = `Ĵ (y) iff `Î(x) = `Î(y).
Moreover, it is easily checked that for any σ′′, Ĵ |= pt(x, y)∗σ′′ iff Î |= pt(x, y)∗σ′′,
and Ĵ |= ls(x, y) ∗ σ′′ iff Î |= ls(x, y) ∗ σ′′. Consequently, Ĵ |= ϕ′ ∧ σ′, which is
a contradiction. Therefore, I is an interpretation witnessing that α 6|= α′, which
is a contradiction to J being the smallest such interpretation. ut

A.2 Entailment in the Fixed Endpoints Fragment

We begin by introducing some terminology. Let P be an SL-interpretation, and
recall that since we are only considering interpretations in which all nodes have
arity at most one they can be viewed as partial functional graphs. We call P a

18

P0

P1

P2

P3

P4

Fig. 3: The connected weave (P0, P1, P2, P3, P4).

path SL-interpretation with endpoints (s, t) if there is n > 0 such that E(P) =
{(vi, vi+1) : i ∈ [n− 1], s = v1, t = vn}. Let (P0, . . . , Pn) be an ordered sequence
of path SL-interpretations with corresponding endpoints

((s0, f0), . . . , (sn, fn)).

We say that the sequence is a connected weave if it is an interpretation P0∗. . .∗Pn
and there are nodes v1, . . . , vn in V P1 , . . . , V Pn respectively, such that for all
i ∈ [n], fi−1 = vi. In other words, a connected weave is of the form shown in
Figure 3.

Furthermore, if α1 is a subformula of some formula α, and I is a model of α,
we denote with I(α1) the submodel of I corresponding to α1. Let I be a model
of an SL-assertion α, and let x ∈ Vars(α). We denote by mappedI(x) the set of all

v ∈ V I for which there is an extension Î of I, with Î |= α, such that `Î(x) = v.
For a node v ∈ V I , we say that x is forced on v in I if mappedI(x) = {v}. For
what follows, we identify the instantiation of an existentially quantified variable
by the same name.

Below, we reduce the Fixed Vertex Hamiltonian Path problem over
directed graphs to the problem of deciding whether an SL formula α entails an
SL formula α′.

Before we begin proving the construction from the main text correct, let us
recall the problem we are reducing from.

Fixed Vertex Hamiltonian Path (FVHP)

INPUT: A directed graph G = (V,E) and v ∈ V .
QUESTION: Does there exist a Hamiltonian path in G ending in v?

19

I(order0iN)

I(nodeiN)

I(order1iN−1
)

I(nodeiN−1)
...

I(nodei2)

I(orderN−1
i1

)

I(nodei1)

I(orderNi0)

d0iN , f
0
iN

bNiN , s
1
iN−1

d1iN−1
, f1iN−1

bN−1
iN−1

, s2iN−2

dN−2
i2

, fN−2
i2 b2i2 , s

N−1
i1

dN−1
i1

, fN−1
i1

b1i1 , s
N
i0

dNi0 , f
N
i0

Fig. 4: (I(order0iN), I(nodeiN), I(order1iN−1
), . . . , I(orderN−1

i1
), I(nodei1), I(orderNi0)).

Lemma 13. Given G = (V,E) and v ∈ V , FVHP is NP-complete. Hardness
even holds if G has no self-loops.

Proof. Membership in NP is trivial. For hardness we reduce from the well-known
NP-complete Hamiltonian Path Problem. Let G′ = (V ′, E′) be an instance
of this problem such that |V ′| = n. We define G = (V,E) as follows:

• V def
= V ′ ∪ {v∗} for some v∗ 6∈ V ′, and

• E def
= (E′ \ {(u, u) : u ∈ V ′}) ∪ {(u, v∗) : u ∈ V ′}.

We claim that G′ is a valid instance of the Hamiltonian Path Problem if,
and only if, G and v∗ is an instance of FHVP. Suppose there is a Hamiltonian
path π′ = v1 · · · vn in G′. There is no (vi, vi+1) occurring along π′ such that

vi = vi+1, hence π′ is a path in G, and π
def
= v1 · · · vnv∗ is a Hamiltonian path

in G ending in v∗. Conversely, if π = v1 · · · vnv∗ is a Hamiltonian path in G

ending in v∗, then π′
def
= v1 · · · vn is a path in G′ visiting every vertex once, i.e.,

a Hamiltonian path. ut

The following lemma now establishes coNP-hardness of entailment in the
fixed endnodes fragment of Separation Logic.

20

Lemma 14. G = (V,E) and v ∈ V is a valid instance of FVHP if, and only
if, α 6|= α′.

Proof. Let G = (V,E) be a directed graph with no self loops, and let |V | = N+1
and with no loss of generality v = vN+1. Let then α and α′ be defined as it is
described in Section 4 given the graph G and the vertex v = vN+1.

Suppose first that there is a model I of α that is not a model of α′, which by
definition implies that dNN+1 is forced on `(fNN+1). We proceed by showing that

for any j ∈ [0, N] and i ∈ [N + 1], if in some model I the variable dji is forced

on `(fji) then I there exists a sequence of path graphs

(I(order0π(1)), I(nodeπ(1)), I(order1π(2)), . . . ,

I(orderj−1
π(j)), I(nodeπ(j)), I(orderjπ(j+1)))

which is a connected weave in the model I, and where π is a mapping from
[N + 1] to [N + 1], where

• π(j + 1) = i,
• for all 1 ≤ i < k ≤ j, π(i) 6= π(k)
• for all ` ∈ [j], vπ(`) ∈ pred(vπ(`+1)).

Such a weave is shown in Figure 4 for j = N , where for all k ∈ [0, N],
π(k + 1) = iN−k. We proceed by induction on j ∈ [0, N]. For the base case, let
j = 0. Then, for all i ∈ [N + 1], in the subgraph I(order0i), the variable d0

i is
forced on `(f0i), and therefore, for any mapping π, the variable d0

π(1) is forced

on `(f0π(1)), as required. The function π that maps 1 to i satisfies the conditions
stated.

For the induction step, suppose the statement holds for all j < J for some
J ∈ [N], and consider the case for J . We will show that

• if dJi1 is forced on fJi1 for some i1, then there is i2 such that bN−J+1
i2

is forced

on sJi1 , where vi2 ∈ pred(vi1), and

• if bN−J+1
i2

is forced on sJi1 , then dJ−1
i2

is forced on fJ−1
i2

.

We can then use the inductive hypothesis to construct the mapping π.
Suppose then that I is a model of α such that there is an i1 ∈ [N + 1], such

that in I(orderJi1) the variable dJi1 is forced on `(fJi1).

Claim. There is i2 such that bN−J+1
i2

is forced on sJi1 , where vi2 ∈ pred(vi1)

For every other node of I(orderJi1) other than `(fJi1), and every extension Î of I,

either bN−Ji1
or bN−J+1

r for r 6= i1 is equal to that node on that extension. If

there was a node v in I(orderJi1) other than `(fJi1), and an extension Î where v

is labelled with neither bN−Ji1
nor bN−J+1

r , for r 6= i1, then v ∈ mappedI(dJi1),

where v 6= `(fJi1), and hence |mappedI(dJi1)| > 1, which is a contradiction. In

particular, this is also the case for the node `(sJi1) in every extension Î of I with

21

Î |= α. First, we argue that since `(sJi1) has an outgoing edge belonging to the

submodel I(orderJi1), it holds that for any variable bkp, if bkp is equal to `(sJi1) in

some extension Î of I, then efp will also have to be mapped to `(sJi1) in that

extension, as otherwise, `(sJi1) would have two outgoing edges, one belonging to

the submodel I(orderJi1), and one belonging to the submodel I(nodep).
But then, by definition of ϕ and σ, and the equalities and inequalities these

formulas impose on sJi1 , sJi1 is only allowed to be equal to a variable efr when

vr ∈ pred(vi1). Since G has no self loops, the variable bN−Ji1
cannot be mapped

to `(sJi1). Therefore, only the variables bN−J+1
r , for r 6= i1 where vr ∈ pred(vi1)

can be mapped to `(sJi1). Furthermore, if there are extensions Î1 and Î2 of I such

that the variable bN−J+1
k1

is mapped to `(sJi1) in Î1 and the variable bN−J+1
k2

is

mapped to `(sJi1) in Î2, with k1 6= k2, then, since efk1 and efk2 are fixed variables,

both of them have to be mapped to `(sJi1), in I, but this would contradict the set

of inequalities efk1 6= efk2 for distinct k1, k2. Therefore, there is a single i2 6= i1,

with vi2 ∈ pred(vi1), such that in all extensions Î of I, the variable bN−J+1
i2

is

equal to `(sJi1), and therefore, bN−J+1
i2

is forced on `(sJi1).

Claim. The variable dJ−1
i2

is forced on `(fJ−1
i2

).

Again, since sJi1 has an outgoing edge that belongs to the submodel I(orderJi1), it

has to be the case that all variables aki2 , and all variables bki2 , for k ≥ N − J + 1

are forced on `(efi2) in I(nodei2), and also forced on `(sJi1). But by definition,

sJi1 , allows exactly those variables from the subformula nodei2 , and no others, to
be equal to it, and furthermore, it allows such variables only for i2 such that
vi2 ∈ pred(vi1). Therefore, for all k < N − J + 1 (and most importantly for
k = N −J), the variable aki2 is forced to be not equal to the node `(efi2) = `(sJi1).

Notice that the length of the submodel I(nodei2) is at least 1. For each
extension Î of I, let then v̂ be the node of the submodel I(nodei2), on which
the variable aN−Ji2

is mapped, and notice that from what is shown above, this

node is different from the one on which the variable efi2 is mapped. Therefore
v̂ has an outgoing edge that belongs to the submodel I(nodei2). Notice that
the only variables that cannot be equal to bN−J+1

i2
are either some variables dpu

or some variables fpu or some variables spu, for appropriate p and u. Since v̂ has
an outgoing edge belonging to the submodel I(nodei2), no variable spu can be
mapped to v̂, as there would then be two outgoing edges from v̂, one belonging
to I(nodei2) and one to I(orderpu). Furthermore, there is no variable fpu that is
allowed to be equal to aN−Ji2

and not bN−J+1
i2

, and therefore a variable dpu for

some p and u is equal to v̂ in Î.
Furthermore, notice that the variable dpu is such that either p = N − (N −

J + 1) = J − 1 and u = i2, or p = N − (N − J + 1) + 1 = J and u 6= i2. Since
in every extension Î of I, the node v̂ has an outgoing edge that belongs to the
submodel I(nodei2), it holds that for all k and q, if dkq is equal to ˆ̀(aN−Ji2

) then

fkq will also be equal to ˆ̀(aN−Ji2
). Otherwise, v̂ would have two outgoing edges,

one belonging to the submodel I(nodei2) and one to the submodel I(orderkq).

22

By definition ϕ and σ and the inequality constraints they impose on fkq , for all

k and q, all variables apt with t 6= q are not allowed to be equal to fkq , and hence
u = i2. But then, according to the above, p = J − 1, and therefore only one of
the variables mentioned, namely the variable dJ−1

i2
can be equal to ˆ̀(aN−Ji2

) = v̂

for any extension Î . Hence for all extensions Î of I, dJ−1
i2

is equal to `(fJ−1
i2

) in

I(orderJ−1
i2

), and therefore dJ−1
i2

is forced on `(fJ−1
i2

).

By the inductive hypothesis then, there is a weave

(I(order0π(1)), I(nodeπ(1)), I(order1π(2)), . . . ,

I(orderJ−2
π(J−1)), I(nodeπ(J−1)), I(orderJ−1

π(J))),

with π(J) = i2 such that for all k ∈ [J − 1], vπ(k) ∈ pred(vπ(k+1)). Hence,
according to the above, there is a larger weave containing the two submodels
I(nodei2) and I(orderJi1), namely the sequence

(I(order0π(1)), I(nodeπ(1)), I(order1π(2)), . . . ,

I(orderJ−1
π(J)), I(nodeπ(J)), I(orderJπ(J+1))),

where π(J+1) = i1, and where additionally, vπ(J) ∈ pred(vπ(J+1)), since π(J) =
i2, π(J + 1) = i1 and vi2 ∈ pred(vi1).

Notice that all submodels I(orderji) in the weave are distinct, and further-
more, none of the I(nodei) can be used twice, as all of them have their sink
attached to a non-sink node of a non-empty submodel I(orderji), distinct from
all other ones. Therefore, π(J) 6= π(k), for all k ∈ [J−1], and therefore π satisfies
the conditions above.

Hence, if dNN+1, is forced on `(fNN+1), there is a connected weave

(I(order0π(1)), I(nodeπ(1)), I(order1π(2)), . . . ,

I(orderN−1
π(N)), I(nodeπ(N)), I(orderNπ(N+1))),

in the model I, where for all k ∈ [N], vπ(k) ∈ pred(vπ(k+1)), and π(N+1) = N+1.
Since the formulas nodei are not defined for i = N+1, π(N+1) 6= π(k), for all k ∈
[N]. From the conditions of π defined above, it follows that (vπ(1), . . . , vπ(N+1))
is a hamiltonian path in G ending in vN+1.

For the other direction, suppose there is a hamiltonian path p1 = (vi1 , . . . , viN , viN+1
)

in G with vN+1 the last vertex, and define π to be the mapping, where for all
k ∈ [N], π(k) = vik , and π(N + 1) = N + 1, and let W be the weave

(I(order0π(1)), I(nodeπ(1)), . . . , I(orderN−1
π(N)), I(nodeπ(N)), I(orderNπ(N+1))),

where each submodel in the weave is a single edge. Let all other submodels, not
in the weave stand disconnected from each other and the weave, and let this be
the model I. Then by the arguments presented for the previous direction α |= I

23

and α′ 6|= I. It follows, that there is a model I of α and not α′ if and only if there
is a fixed vertex hamiltonian path in G, and hence checking whether α |= α′ is
coNP-hard, since finding a hamiltonian path is NP-hard for directed graphs
with no self loops. ut

