
AFFINE EXTENSIONS OF INTEGER VECTOR ADDITION SYSTEMS

WITH STATES

MICHAEL BLONDIN, CHRISTOPH HAASE, FILIP MAZOWIECKI, AND MIKHAIL RASKIN

Université de Sherbrooke, Canada
e-mail address: michael.blondin@usherbrooke.ca

University of Oxford, United Kingdom
e-mail address: christoph.haase@cs.ox.ac.uk

Max Planck Institute for Software Systems, Germany
e-mail address: filipm@mpi-sws.org

Technische Universität München, Germany
e-mail address: raskin@in.tum.de

Abstract. We study the reachability problem for affine Z-VASS, which are integer vector
addition systems with states in which transitions perform affine transformations on the
counters. This problem is easily seen to be undecidable in general, and we therefore restrict
ourselves to affine Z-VASS with the finite-monoid property (afmp-Z-VASS). The latter have
the property that the monoid generated by the matrices appearing in their affine transfor-
mations is finite. The class of afmp-Z-VASS encompasses classical operations of counter
machines such as resets, permutations, transfers and copies. We show that reachability in
an afmp-Z-VASS reduces to reachability in a Z-VASS whose control-states grow linearly
in the size of the matrix monoid. Our construction shows that reachability relations of
afmp-Z-VASS are semilinear, and in particular enables us to show that reachability in
Z-VASS with transfers and Z-VASS with copies is PSPACE-complete. We then focus on the
reachability problem for affine Z-VASS with monogenic monoids: (possibly infinite) matrix
monoids generated by a single matrix. We show that, in a particular case, the reachability
problem is decidable for this class, disproving a conjecture about affine Z-VASS with infinite
matrix monoids we raised in a preliminary version of this paper. We complement this
result by presenting an affine Z-VASS with monogenic matrix monoid and undecidable
reachability relation.

∗ A preliminary version of this paper appeared in the proceedings of the 29th International Conference on
Concurrency Theory (CONCUR), 2018 [9].

M. Blondin was supported by a Discovery Grant from the Natural Sciences and Engineering Research
Council of Canada (NSERC), and by a Quebec–Bavaria project and a start-up grant funded by the Fonds de
recherche du Québec – Nature et technologies (FRQNT).

F. Mazowiecki’s research has been carried out with financial support from the French State, managed by
the French National Research Agency (ANR) in the frame of the “Investments for the future” Programme
IdEx Bordeaux (ANR-10-IDEX-03-02).

M. Raskin was supported by funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme under grant agreement No 787367 (PaVeS).

Preprint submitted to
Logical Methods in Computer Science

© M. Blondin, C. Haase, F. Mazowiecki, and M. Raskin
CC© Creative Commons

http://creativecommons.org/about/licenses

2 M. BLONDIN, C. HAASE, F. MAZOWIECKI, AND M. RASKIN

1. Introduction

Vector addition systems with states (VASS) are a fundamental model of computation com-
prising a finite-state controller with a finite number of counters ranging over the natural
numbers. When a transition is taken, a counter can be incremented or decremented provided
that the resulting counter value is greater than or equal to zero. Since the counters of a
VASS are unbounded, a VASS gives rise to an infinite transition system. One of the biggest
advantages of VASS is that most of the standard decision problems such as configuration
reachability and coverability are decidable [29, 35, 30, 32]. Those properties make VASS and
their extensions a prime choice for reasoning about and modelling concurrent, distributed
and parametrised systems, see e.g. the recent surveys by Abdulla and Delzanno [2, 16].

In order to increase their modelling power, numerous extensions of plain VASS have
been proposed and studied in the literature over the last 25 years. Due to the infinite-state
nature of VASS, even minor extensions often cross the undecidability frontier. For example,
while in the extension of VASS with hierarchical zero-tests on counters both reachability and
coverability remain decidable [40, 11], all important decision problems for VASS with two
counters which can arbitrarily be tested for zero are undecidable [36]. Another example is
the extension of VASS with reset and transfer operations. In a reset VASS, transitions may
set a counter to zero, whereas transfer VASS generalize reset VASS and allow transitions
to move the contents of a counter onto another. While it was initially widely believed that
any extension of VASS either renders both reachability and coverability undecidable, reset
and transfer VASS have provided an example of an extension which leads to an undecidable
reachability [5] yet decidable coverability problem [17]. Nevertheless, the computational costs
for those extensions are high: while coverability is EXPSPACE-complete for VASS [33, 38],
it becomes Ackermann-complete in the presence of resets and transfers [41, 21]. For practical
purposes, the extension of VASS with transfers is particularly useful since transfer VASS allow
for reasoning about broadcast protocols and multithreaded non-recursive C programs [18, 28].
It was already observed in [18] that transfer VASS can be viewed as an instance of so-called
affine VASS. An affine VASS is a generalization of VASS with transitions labelled by pairs
(A, b), where A is a d × d matrix over the integers and b ∈ Zd is an integer vector. A
transition switches the control-state while updating the configuration of the counters v ∈ Nd
to A ·v + b, provided that A ·v + b ≥ 0; otherwise, the transition is blocked. Transfer VASS
can be viewed as affine VASS in which the columns of all matrices are d-dimensional unit
vectors [18].

Due to the symbolic state-explosion problem and Ackermann-hardness of coverability,
standard decision procedures for transfer VASS such as the backward algorithm [1] do not
per se scale to real-world instances. In recent years, numerous authors have proposed the
use of over-approximations in order to attenuate the symbolic state-explosion problem for
VASS and some of their extensions (see, e.g., [20, 6, 8]). Most commonly, the basic idea
is to relax the integrality or non-negativity condition on the counters and to allow them
to take values from the non-negative rational numbers or the integers. The latter class is
usually referred to as Z-VASS, see e.g. [24]. It is easily seen that if a configuration is not
reachable under the relaxed semantics, then the configuration is also not reachable under
the standard semantics. Hence, those state-space over-approximations can, for instance,
be used to prune search spaces and empirically drastically speedup classical algorithms for
VASS such as the backward-algorithm. In this paper, we investigate reachability in integer
over-approximations of affine VASS, i.e., affine VASS in which a configuration of the counters

AFFINE EXTENSIONS OF INTEGER VECTOR ADDITION SYSTEMS WITH STATES 3

is a point in Zd, and in which all transitions are non-blocking. Subsequently, we refer to
such VASS as affine Z-VASS.

Main contributions. We focus on affine Z-VASS with the finite-monoid property (afmp-Z-
VASS), i.e. where the matrix monoid generated by all matrices occurring along transitions in
the affine Z-VASS is finite. By a reduction to reachability in Z-VASS, we obtain decidability
of reachability for the whole class of afmp-Z-VASS and semilinearity of their reachability
relations.

In more detail, we show that reachability in an afmp-Z-VASS can be reduced to
reachability in a Z-VASS whose size is polynomial in the size of the original afmp-Z-VASS
and in the norm of the finite monoidM generated by the matrices occurring along transitions,
denoted by ‖M‖. For a vast number of classes of affine transformations considered in the
literature, ‖M‖ is bounded exponentially in the dimension of the matrices. This enables us
to deduce a general PSPACE upper bound for extensions of Z-VASS such as transfer Z-VASS
and copy Z-VASS. By a slightly more elaborated analysis of this construction, we are also
able to provide a short proof of the already known NP upper bound for reset Z-VASS [24].
We also show that a PSPACE lower bound of the reachability problem already holds for the
extension of Z-VASS that only use permutation matrices in their transition updates. This
in turn gives PSPACE-completeness of interesting classes such as transfer Z-VASS and copy
Z-VASS.

Finally, we show that an affine Z-VASS that has both transfers and copies may not
have the finite-monoid property, and that the reachability problem for this class becomes
undecidable. We complement this result by investigating the case of monogenic classes, i.e.
classes of monoids with a single generator. We show that although reachability can still be
undecidable for an affine Z-VASS with a monogenic matrix monoid, there exists a monogenic
class without the finite-monoid property for which reachability is decidable.

All complexity results obtained in this paper are summarized in Figure 1, except for the
undecidability of general monogenic classes as it is a family of classes rather than one class.

Related work. Our work is primarily related to the work of Finkel and Leroux [23], Iosif
and Sangnier [27], Haase and Halfon [24], and Cadilhac, Finkel and McKenzie [12, 13]. In [23],
Finkel and Leroux consider a model more general than affine Z-VASS in which transitions
are additionally equipped with guards which are Presburger formulas defining admissible
sets of vectors in which a transition does not block. Given a sequence of transitions σ, Finkel
and Leroux show that the reachability set obtained from repeatedly iterating σ, i.e., the
acceleration of σ, is definable in Presburger arithmetic. Note that the model of Finkel and
Leroux does not allow for control-states and the usual tricks of encoding each control-state by
a counter or all control-states into three counters [25] do not work over Z since transitions are
non-blocking. Iosif and Sangnier [27] investigated the complexity of model checking problems
for a variant of the model of Finkel and Leroux with guards defined by convex polyhedra
and with control-states over a flat structure. Haase and Halfon [24] studied the complexity
of the reachability, coverability and inclusion problems for Z-VASS and reset Z-VASS, two
submodels of the affine Z-VASS that we study in this paper. In [12, 13], Cadilhac, Finkel
and McKenzie consider an extension of Parikh automata to affine Parikh automata with
the finite-monoid restriction like in our paper. These are automata recognizing boolean
languages, but the finite-monoid restriction was exploited in a similar way to obtain some
decidability results in that context. We finally remark that our models capture variants of
cost register automata that have only one + operation [4, 3].

4 M. BLONDIN, C. HAASE, F. MAZOWIECKI, AND M. RASKIN

Structure of the paper. We introduce general notations and affine Z-VASS in Section 2.
In Section 3, we give the reduction from afmp-Z-VASS to Z-VASS. Subsequently, in Section 4
we show that afmp-Z-VASS have semilinear reachability relations and discuss semilinearity
of affine Z-VASS in general. In Section 5, we show PSPACE and NP upper bounds of the
reachability problem for some classes of afmp-Z-VASS; and in Section 6 we show PSPACE-
hardness and undecidability results for some classes of affine Z-VASS. In Section 7, we show
that reachability is undecidable for monogenic affine Z-VASS and remains decidable for a
specific class of infinite monoids. Some concluding remarks will be made in Section 8.

Z-VASS

Reset Z-VASS

Permutation Z-VASS

Transfer Z-VASS Copy Z-VASS

Transfer + copy Z-VASS

Affine Z-VASS

CJ-Z-VASS

NP-complete

PSPACE-complete

F
in

it
e

m
o
n

o
id

s
In

fi
n

it
e

m
o
n

o
id

s

Decidable

Undecidable

Figure 1. Classification of the complexity of reachability in affine Z-VASS
in terms of classes of matrices. The rectangular regions below and above the
horizontal dashed line correspond to classes of matrices with finite and infinite
monoids respectively. The rectangular green dotted region and the elliptical
red striped region correspond to the classes where reachability is decidable
and undecidable, respectively. The elliptical blue region and the orange
elliptical region correspond to the classes where reachability is NP-complete
and PSPACE-complete respectively. The term “CJ-Z-VASS” refers to the
specific monogenic class of infinite monoids that will be defined in Section 7.1.

AFFINE EXTENSIONS OF INTEGER VECTOR ADDITION SYSTEMS WITH STATES 5

2. Preliminaries

General notation. For n ∈ N, we write [n] for the set {1, 2, . . . , n}. For every x =

(x1, x2, . . . , xd) ∈ Zd and every i ∈ [d], we define x(i) def
= xi. We denote the identity matrix

and the zero-vector by I and 0 in every dimension, as there will be no ambiguity. For x ∈ Zd
and A ∈ Zd×d, we define the max-norm of x and A as ‖x‖ def

= max{|x(i)| : i ∈ [d]} and

‖A‖ def
= max{‖Ai‖ : i ∈ [d]} where Ai denotes the ith column of A. We naturally extend this

notation to finite sets, i.e. ‖G‖ def
= max{‖A‖ : A ∈ G} for every G ⊆fin Zd×d. We assume

that numbers are represented in binary, hence the entries of vectors and matrices can be
exponential in the size of their encodings.

Affine Integer VASS. An affine integer vector addition system with states (affine Z-VASS)
is a tuple V = (d,Q, T) where d ∈ N, Q is a finite set and T ⊆ Q× Zd×d × Zd ×Q is finite.
Let us fix such a V . We call d the dimension of V and the elements of Q and T respectively

control-states and transitions. For every transition t = (p,A, b, q), we define src(t) def
= p,

tgt(t) def
= q, M(t) def

= A and ∆(t) def
= b, and let ft : Zd → Zd be the affine transformation

defined by ft(x) = A · x + b. The size of V, denoted |V|, is the number of bits used to
represent d, Q and T with coefficients written in binary. For our purposes, we formally

define it in a crude way as |V| def= d+ |Q|+ (d2 + d) · |T | ·max(1, dlog(‖T‖+ 1)e) where

‖T‖ def
= max(max{‖∆(t)‖ : t ∈ T},max{‖M(t)‖ : t ∈ T}).

A configuration of V is a pair (q,v) ∈ Q×Zd which we write as q(v). For every t ∈ T and

p(u), q(v) ∈ Q× Zd, we write p(u)
t−→ q(v) whenever p = src(t), q = tgt(t) and v = ft(u).

We naturally extend −→ to sequences of transitions as follows. For every w = w1 · · ·wk ∈ T k
and p(u), q(v) ∈ Q × Zd, we write p(u)

w−→ q(v) if either k = 0 (denoted w = ε) and
p(u) = q(v), or k > 0 and there exist p0(u0), p1(u1), . . . , pk(uk) ∈ Q× Zd such that

p(u) = p0(u0)
w1−→ p1(u1)

w2−→ · · · wk−−→ pk(uk) = q(v).

We write p(u)
∗−→ q(v) if there exists some w ∈ T ∗ such that p(u)

w−→ q(v). The relation
∗−→

is called the reachability relation of V. If p(u)
w−→ q(v), then we say that w is a run from

p(u) to q(v), or simply a run if the source and target configurations are irrelevant. We also
say that w is a path from p to q, and if p = q then we say that w is a cycle.

Let M(V) def
= {M(t) : t ∈ T} and ∆(V) def

= {∆(t) : t ∈ T}. If V is clear from the context,
we sometimes simply write M and ∆. The monoid of V, denoted MV or sometimes simply
M, is the monoid generated by M(V), i.e. it is the smallest set that contains M(V), is
closed under matrix multiplication, and contains the identity matrix. We say that a matrix
A ∈ Nd×d is respectively a (i) reset, (ii) permutation, (iii) transfer, (iv) copyless, or (v) copy
matrix if A ∈ {0, 1}d×d and

(i) A does not contain any 1 outside of its diagonal;
(ii) A has exactly one 1 in each row and each column;
(iii) A has exactly one 1 in each column;
(iv) A has at most one 1 in each column;
(v) A has exactly one 1 in each row.

Analogously, we say that V is respectively a reset, permutation, transfer, copyless, or
copy Z-VASS if all matrices of M(V) are reset, permutation, transfer, copyless, or copy
matrices. The monoids of such affine Z-VASS are finite and respectively of size at most 2d,

6 M. BLONDIN, C. HAASE, F. MAZOWIECKI, AND M. RASKIN

d!, dd, (d+ 1)d and dd. Copyless Z-VASS correspond to a model of copyless cost-register
automata studied in [3] (see the remark below). If M(V) only contains the identity matrix,
then V is simply called a Z-VASS.

A class of matrices C is a union
⋃
d≥1 Cd where Cd is a finitely generated, but possibly

infinite, submonoid of Nd×d for every d ≥ 1. We say that V belongs to a class C of Z-VASS
if MV ⊆ C. If each Cd is finite, then we say that this class of affine Z-VASS has the
finite-monoid property (afmp-Z-VASS). For two classes C and C′ we write C + C′ to denote
the smallest set D =

⋃
d≥1Dd such that Dd is a monoid that contains both Cd and C′d for

every d ≥ 1. Note that this operation does not preserve finiteness. For example if C and C′
are the classes of transfer and copy matrices, respectively, then C+C′ is infinite (see Figure 2
and Section 6). We say that a class C =

⋃
d≥1 Cd is nonnegative if Cd ⊆ Nd×d for every d ≥ 1.

We say that an affine Z-VASS V is nonnegative if MV belongs to some nonnegative class of
matrices. Note that the classes of reset, permutation, transfer, copyless and copy matrices
are all nonnegative, respectively.

p q

(
1 0
1 0

)
,0

(
1 1
0 0

)
,0

Figure 2. Example of a transfer + copy Z-VASS V which does not have
the finite-monoid property.

We discuss the Z-VASS V in Figure 2 to give some intuition behind the names transfer
and copy Z-VASS. The transition from p to q is a copy transition and the transition from q to
p is a transfer transition. Notice that for every vector (x, y) ∈ Z2, we have p(x, y) −→ q(x, x),
i.e. the value of the first counter is copied to the second counter. Similarly, for the other
transition we have q(x, y) −→ p(x+ y, 0), that is the value of the second counter is transferred
to the first counter (resetting its own value to 0). Let A and B be the two matrices used in
V . Note that (A ·B)n is the matrix with all entries equal to 2n−1, and hence MV is infinite.

Remark 2.1. The variants of affine Z-VASS that we consider are related to cost register
automata (CRA) with only the + operation [4, 3] and without an output function. These
are deterministic models with states and registers that upon reading an input, update their
registers in the form x← y+c, where x, y are registers and c is an integer. An affine Z-VASS
does not read any input, but is nondeterministic. Thus, one can identify an affine Z-VASS
with a CRA that reads sequences of transitions as words. In particular, the restrictions
imposed on the studied CRAs correspond to copy Z-VASS [4] and copyless Z-VASS [3].

Decision problems. We consider the reachability and the coverability problems parame-
terized by classes of matrices C:

ReachC (reachability problem)

AFFINE EXTENSIONS OF INTEGER VECTOR ADDITION SYSTEMS WITH STATES 7

Given: an affine Z-VASS V = (d,Q, T) and configurations p(u), q(v) s.t. MV ⊆ C.
Decide: whether p(u)

∗−→ q(v).

CoverC (coverability problem)

Given: an affine Z-VASS V = (d,Q, T) and configurations p(u), q(v) s.t. MV ⊆ C.
Decide: whether there exists v′ ∈ Zd such that p(u)

∗−→ q(v′) and v′ ≥ v.

For standard VASS (where configurations cannot hold negative values), the coverability
problem is much simpler than the reachability problem. However, for affine Z-VASS, these
two problems coincide as observed in [24, Lemma 2]: the two problems are inter-reducible in
logarithmic space at the cost of doubling the number of counters. Therefore we will only
study the reachability problem in this paper.

3. From affine Z-VASS with the finite-monoid property to Z-VASS

The main result of this section is that every affine Z-VASS V with the finite monoid property
can be simulated by a Z-VASS with twice the number of counters whose size is polynomial
in ‖MV‖ and |V|. More formally, we show the following:

Theorem 3.1. For every afmp-Z-VASS V = (d,Q, T) and p, q ∈ Q there exist a Z-VASS
V ′ = (d′, Q′, T ′) and p′, q′ ∈ Q′ such that

• d′ = 2 · d,
• |Q′| ≤ 3 · |MV | · |Q|,
• |T ′| ≤ 4d · |MV | · (|Q|+ |T |),
• ‖T ′‖ ≤ ‖MV‖ · ‖T‖,
• p(u)

∗−→ q(v) in V if and only if p′(u,0)
∗−→ q′(0,v) in V ′.

Moreover, V ′, p′ and q′ are effectively computable from V.

Corollary 3.2. The reachability problem for afmp-Z-VASS is decidable.

Proof. By Theorem 3.1, it suffices to construct, for a given afmp-Z-VASS V , the Z-VASS V ′
and to test for reachability in V ′. It is known that reachability for Z-VASS is in NP [24]. To
effectively compute V ′ it suffices to provide a bound for ‖MV‖. It is known that if |MV |
is finite then it is bounded by a computable function (see [34]), and hence ‖MV‖ is also
computable.

For the remainder of this section, let us fix some affine Z-VASS V such thatMV is finite.
We proceed as follows to prove Theorem 3.1. First, we introduce some notations and inter-
mediary lemmas characterizing reachability in affine Z-VASS. Next, we give a construction
that essentially proves the special case of Theorem 3.1 where the initial configuration is of
the form p(0). Finally, we prove Theorem 3.1 by extending this construction to the general
case.

It is worth noting that proving the general case is not necessary if one is only interested
in deciding reachability. Indeed, an initial configuration p(v) can be turned into one of the
form p′(0) by adding a transition that adds v. The reason for proving the general case is
that it establishes a stronger relation that allows us to prove semilinearity of afmp-Z-VASS
reachability relations in Section 4.

8 M. BLONDIN, C. HAASE, F. MAZOWIECKI, AND M. RASKIN

3.1. A characterization of reachability. For every w ∈ T ∗, t ∈ T and u ∈ Zd, let

M(ε) def
= I, ε(u) def

= u,

M(wt) def
= M(t) ·M(w), wt(u) def

= M(t) · w(u) + ∆(t).

Intuitively, for any sequence w ∈ T ∗, w(u) is the effect of w on u, regardless of whether
w is an actual path of the underlying graph. A simple induction yields the following
characterization:

Lemma 3.3. For every w ∈ T ∗ and p(u), q(v) ∈ Q×Zd, it is the case that p(u)
w−→ q(v) if

and only if

(a) w is a path from p to q in the underlying graph of V, and
(b) v = w(u).

Testing for reachability with Lemma 3.3 requires evaluating w(u). This value can be
evaluated conveniently as follows:

Lemma 3.4. For every w = w1w2 · · ·wk ∈ T k and u ∈ Zd, the following holds:

w(u) = M(w) · u +

k∑
i=1

M(wi+1wi+2 · · ·wk) ·∆(wi). (3.1)

Moreover, w(u) = M(w) · u + w(0).

Proof of Lemma 3.4. We prove (3.1) by induction on k. The base case follows from ε(u) =
u = I · u + 0 = M(ε) · u + 0. Assume that k > 0 and that the claim holds for sequences of

length k − 1. For simplicity we denote σ def
= w1 · · ·wk−1. We have:

w(u) = σwk(u)

= M(wk) · σ(u) + ∆(wk) (3.2)

= M(wk) ·

(
M(σ) · u +

k−1∑
i=1

M(wi+1wi+2 · · ·wk−1) ·∆(wi)

)
+ ∆(wk) (3.3)

= M(wk) ·M(σ) · u +

k−1∑
i=1

M(wk) ·M(wi+1wi+2 · · ·wk−1) ·∆(wi) + ∆(wk)

= M(σwk) · u +

k−1∑
i=1

M(wi+1wi+2 · · ·wk) ·∆(wi) + ∆(wk) (3.4)

= M(w) · u +

k∑
i=1

M(wi+1wi+2 · · ·wk) ·∆(wi)

where (3.2), (3.3) and (3.4) follow respectively by definition of σwk(u), by induction hypoth-
esis and by definition of M(σwk).

The last part of the lemma follows from applying (3.1) to w(0) and w(u), and observing
that subtracting them results in w(u)− w(0) = M(w) · u.

Observe that Lemma 3.4 is trivial for the particular case of Z-VASS. Indeed, we obtain

w(u) = u +
∑k

i=1 ∆(wi), which is the sum of transition vectors as expected for a Z-VASS.

AFFINE EXTENSIONS OF INTEGER VECTOR ADDITION SYSTEMS WITH STATES 9

3.2. Reachability from the origin. We make use of Lemmas 3.3 and 3.4 to construct a
Z-VASS V ′ = (d,Q′, T ′) for the special case of Theorem 3.1 where the initial configuration
is of the form p(0). The states and transitions of V ′ are defined as:

Q′ def= Q×M,

T ′ def= {((tgt(t),A), I,A ·∆(t), (src(t),A ·M(t))) : A ∈M, t ∈ T}.
The idea behind V ′ is to simulate a path w of V backwards and to evaluate w(0) as the

sum identified in Lemma 3.4. More formally, V ′ and V are related as follows:

Proposition 3.5.

(a) For every w ∈ T ∗, if p(0)
w−→ q(v) in V, then q′(0)

∗−→ p′(v) in V ′, where q′ def= (q, I) and

p′ def= (p,M(w)).

(b) If q′(0)
∗−→ p′(v) in V ′, where q′ def= (q, I) and p′ def= (p,A), then there exists w ∈ T ∗ such

that M(w) = A and p(0)
w−→ q(v) in V.

Proof. (a) By Lemma 3.3, V has a path w ∈ T ∗ such that w(0) = v. Let k def
= |w|. Let

A0
def
= I, and for every i ∈ [k] let

Ai
def
= M(wk−i+1 · · ·wk−1wk),

bi
def
= Ai−1 ·∆(wk−i+1),

w′i
def
= ((tgt(wk−i+1),Ai−1), I, bi, (src(wk−i+1),Ai)).

We claim that w′ def= w′1w
′
2 · · ·w′k is such that (q,A0)

w′−→ (p,Ak) in V ′. Note that the validity
of the claim completes the proof since A0 = I and Ak = M(w).

It follows immediately from the definition of T ′ that w′i ∈ T ′ for every i ∈ [k] and hence
that w′ is a path from (q,A0) to (p,Ak). By Lemma 3.3, it remains to show that w′(0) = v:

w′(0) =
k∑
i=1

M(w′i+1w
′
i+2 · · ·w′k) ·∆(w′i) (by Lemma 3.4 applied to w′(0))

=

k∑
i=1

∆(w′i) (by M(w′i) = I for every i ∈ [k])

=

k∑
i=1

Ai−1 ·∆(wk−i+1) (by definition of ∆(w′i))

=
k∑
i=1

M(wk−i+2wk−i+1 · · ·wk) ·∆(wk−i+1) (by definition of Ai−1)

=
k∑
i=1

M(wi+1wi+2 · · ·wk) ·∆(wi) (by inspection of the sum)

= w(0) (by Lemma 3.4 applied to w(0)).

(b) Similarly, by Lemma 3.3, there exists a path w′ of V ′ such that w′(0) = v, and it
suffices to exhibit a path w ∈ T ∗ from p to q in V such that w(0) = v and M(w) = A.

Let k def
= |w′|. For every i ∈ [k], let w′i = ((pi,Ai), I, bi, (qi,Bi)). By definition of T ′, for

every i ∈ [k], there exists a (possibly non unique) transition ti ∈ T such that tgt(t) = pi,

10 M. BLONDIN, C. HAASE, F. MAZOWIECKI, AND M. RASKIN

src(t) = qi, bi = Ai ·∆(t) and Bi = Ai ·M(t). We set w def
= t1t2 · · · tk. It is readily seen that

w is a path from p to q. To prove w(0) = v and M(w) = A, Lemma 3.4 can be applied as
in the previous implication.

3.3. Reachability from an arbitrary configuration. We now construct the Z-VASS
V ′′ = (2d,Q′′, T ′′) of Theorem 3.1 which is obtained mostly from V ′. The states of V ′′ are
defined as:

Q′′ def= Q ∪Q′ ∪Q′ where Q′ def= {(q,A) : (q,A) ∈ Q′}.

To simplify notation, given two vectors u,v ∈ Zd we write (u,v) for the vector of Z2d equal
to u on the first d components and equal to v on the last d components. The set T ′′ consists
of four disjoint subsets of transitions Tsimul ∪ Tend ∪ Tmult ∪ Tfinal working in four sequential
stages. Intuitively, these transitions allow (1) V ′′ to simulate a path w of V backwards in
order to compute w(0); (2) guess the end of this path; (3) compute M(w) ·u by using the fact
that M(w) is stored in its control-state; and (4) guess the end of this matrix multiplication.

The first set of transitions is defined as:

Tsimul
def
= {(src(t), I, (0,∆(t)), tgt(t)) : t ∈ T ′}.

Its purpose is to simulate T ′ on the last d counters. The second set is defined as:

Tend
def
= {((q,A), I, (0,0), (q,A)) : (q,A) ∈ Q′},

and its purpose is to nondeterministically guess the end of a run in V ′ by simply marking q.
The third set is defined as:

Tmult
def
= {((q,A), I, (−ei,A · ei), (q,A)) : (q,A) ∈ Q′, i ∈ [d]} ∪
{((q,A), I, (ei,−A · ei), (q,A)) : (q,A) ∈ Q′, i ∈ [d]},

where ei is the i-th unit vector such that ei(i) = 1 and ei(j) = 0 for all i 6= j. The purpose
of Tmult is to compute A ·u from the d first counters onto the d last counters. Finally, Tfinal

is defined as:

Tfinal
def
= {((q,A), I, (0,0), q) : (q,A) ∈ Q′},

and its purpose is to guess the end of the matrix multiplication performed with Tmult.
We may now prove Theorem 3.1:

Proof of Theorem 3.1. First, note that we obtain

|Q′′| = 2 · |Q′|+ |Q|
≤ 3 · |Q| · |M|,

|T ′′| = |T ′|+ |Q′|+ 2d · |Q′|+ |Q′|
= |T ′|+ 2(d+ 1) · |Q′|
= |T | · |M|+ 2(d+ 1) · |Q| · |M|
≤ 4d · |M| · (|T |+ |Q|).

AFFINE EXTENSIONS OF INTEGER VECTOR ADDITION SYSTEMS WITH STATES 11

Moreover, we have:

‖T ′′‖ = max(‖T ′‖, ‖M‖)
≤ max(‖M‖ · ‖T‖, ‖M‖)
= ‖M‖ · ‖T‖.

We conclude by proving that p(u)
∗−→ q(v) in V if and only if q′(u,0)

∗−→ p(0,v) in V ′′,
where q′ def= (q, I).
⇒) By Lemma 3.3, there exists a path w of V such that w(u) = v. By definition of

Tsimul and Tend, and by Proposition 3.5, it is the case that q′(u,0)
∗−→ p′(u, w(0)) where

p′ def= (p,M(w)). The transitions of Tmult allow to transform (u, w(0)) into (0, w(0)+M(w)·u).
Thus, using Tfinal, we can reach the configuration p(w(0) +M(w) · u). This concludes the
proof since w(u) = w(0) +M(w) · u by Lemma 3.4.
⇐) The converse implication follows the same steps as the previous one. It suffices to

observe that the first part of a run of V ′′ defines the value w(0), while the second part of
the run defines M(w) · u.

4. Semilinearity of affine Z-VASS

A subset of Zd is called semilinear if it is definable by a formula of Presburger arithmetic [37],
i.e. by a formula of FO(Z,+, <), the decidable first-order logic over Z with addition and order.
Semilinear sets capture precisely finite unions of sets of the form b+N ·p1 +N ·p2 + . . .+N ·pk
with each pi ∈ Zd, and are effectively closed under basic operations such as finite sums,
intersection and complement. Those properties make semilinear sets an important tool in
many areas of computer science and find use whenever infinite subsets of Zd need to be
manipulated.

The results of Section 3 enable us to show that any affine Z-VASS with the finite-monoid
property has a semilinear reachability relation:

Theorem 4.1. Given an afmp-Z-VASS V = (d,Q, T) and p, q ∈ Q, it is possible to compute
an existential Presburger formula ϕV,p,q of size at most O(poly(|V|, |MV |, log‖MV‖)) such

that ϕV,p,q(u,v) holds if and only if p(u)
∗−→ q(v) in V.

Proof. By Theorem 3.1, there exist an effectively computable Z-VASS V ′ = (d′, Q′, T ′) and
p′, q′ ∈ Q′ such that d′ = 2·d, |Q′| ≤ 3·|M|·|Q|, |T ′| ≤ 4d·|M|·(|Q|+|T |), ‖T ′‖ ≤ ‖M‖·‖T‖
and

p(u)
∗−→ q(v) in V if and only if p′(u,0)

∗−→ q′(0,v) in V ′. (4.1)

By [24, Sect. 3], we can compute an existential Presburger formula ψ of linear size in |V ′|
such that ψ(x,x′,y,y′) holds if and only if p′(x,x′)

∗−→ q′(y,y′) in V ′. By Equation (4.1),

the formula ϕV,p,q(x,y) def
= ψ(x,0,0,y) satisfies the theorem.

It was observed in [23, 10] that the reachability relation of a Z-VASS V = (d,Q, T), such
that |Q| = |M(V)| = 1, is semilinear if and only ifMV is finite. Theorem 4.1 shows that if we
do not bound the number of states and matrices, i.e. drop the assumption |Q| = |M(V)| = 1,
then (⇐) remains true. It is natural to ask whether (⇒) also remains true.

Let V1 and V2 be the affine Z-VASS illustrated in Figure 3 from left to right respectively.
Note that MV1 and MV2 are both infinite due to the matrix made only of 1s. Moreover,

12 M. BLONDIN, C. HAASE, F. MAZOWIECKI, AND M. RASKIN

p p q

(
1 1
1 1

)
,0

I,

(
1
0

)

I,

(
0
1

)
I,

(
−1
0

)

I,

(
0
−1

)

(
1 1
1 1

)
,0

(
0 0
0 0

)
,0

Figure 3. Examples of affine Z-VASS with infinite monoids and semilinear
reachability relations.

the reachability relations of V1 and V2 are semilinear since the former can reach any target
configuration from any initial configuration, and since the latter can only generate finitely
many vectors due to the zero matrix. Since V1 has a single control-state, |M(V1)| =
|M(V2)| = 2 and ∆(V2) = {0}, any simple natural extension of the characterization of
semilinearity in terms of the number of control-states, matrices and vectors fails.

It is worth noting that an affine Z-VASS with an infinite monoid may have a non
semilinear reachability relation. Indeed, Figure 2 depicts a transfer + copy Z-VASS with an

infinite monoid and such that {v : p(1, 1)
∗−→ q(v)} = {(2n, 2n) : n ∈ N}, which is known to

be non semilinear. Moreover, this proves that even the reachability set from p(1, 1) is not
semilinear.

5. Complexity of reachability for afmp-Z-VASS

In this section, we use the results of Section 3 to show that reachability belongs to PSPACE
for a large class of afmp-Z-VASS encompassing all variants discussed in Section 2. Moreover,
we give a novel proof to the known NP membership of reachability for reset Z-VASS.

For every finite set Gd ⊆ Zd×d, let 〈Gd〉 be the monoid generated by Gd. We have:

Theorem 5.1. Let C =
⋃
d≥1 Cd be a class of matrices such that Cd is finite for every

d ≥ 1. It is the case that ReachC ∈ PSPACE if there exists a polynomial poly such that
|〈Gd〉|+‖〈Gd〉‖ ≤ 2poly(d+log‖Gd‖) for every d ≥ 1 and every finite set Gd such that 〈Gd〉 ⊆ Cd.

Proof. Let V = (d,Q, T) be an affine Z-VASS from class C. Let V ′ = (d,Q′, T ′) be the

Z-VASS obtained from V in Theorem 3.1. Recall that, by Theorem 3.1, p(u)
∗−→ q(v) in V if

and only if p′(u,0)
∗−→ q′(0,v) in V ′. Therefore, it suffices to check the latter for determining

reachability in V.

We invoke a result of [7] on the flattability of Z-VASS. By [7, Prop. 3], p′(x)
∗−→ q′(y) in

V ′ if and only if there exist k ≤ |T ′|, α0, β1, α1, . . . , βk, αk ∈ (T ′)∗ and e ∈ Nk such that

(i) p′(x)
α0β

e(1)
1 α1···βe(k)

k−−−−−−−−−−→ q′(y) in V ′,
(ii) βi is a cycle for every i ∈ [k], and

(iii) α0β1α1 · · ·βkαk is a path from p′ to q′ of length at most 2 · |Q′| · |T ′|.
For every w ∈ (T ′)∗, let ∆(w) def

=
∑|w|

i=1 ∆(wi). By Lemma 3.4 (see the remark below the

proof of Lemma 3.4), we have w(u) = u + ∆(w) for every u ∈ Zd. Thus, by Lemma 3.3,

AFFINE EXTENSIONS OF INTEGER VECTOR ADDITION SYSTEMS WITH STATES 13

checking (i), assuming (iii), amounts to testing whether e is a solution of the following
system of linear Diophantine equations:

x +
k∑
i=0

∆(αi) +
(
∆(β1) ∆(β2) · · · ∆(βk)

)
· e = y. (5.1)

Let Gd
def
= M(V). Note that ‖Gd‖ ≤ ‖T‖ and that 〈Gd〉 =MV . Let m def

= 2 · |Q′| · |T ′|. By
Theorem 3.1, we have m ≤ 48d · |M|2 · |Q|2 · |T |. Thus, since 〈Gd〉 is a submonoid of Cd, and
by assumption on Cd, we have

m ≤ 48d ·
(

2poly(d+log‖T‖)
)2
· |Q|2 · |T |.

Thus, m is exponential in |V|.
We describe a polynomial-space non deterministic Turing machine A for testing whether

p′(x)
∗−→ q′(y) in V ′. The proof follows from NPSPACE = PSPACE. Machine A guesses

k ≤ |T ′|, a path π = α0β1α1 · · ·βkαk of length at most m from p′ to q′, and e ∈ Nk, and
tests whether (5.1) holds for π. Note that we are not given V ′, but V , so we must be careful
for the machine to work in polynomial space.

Instead of fully constructing V ′ and fully guessing π, we do both on the fly, and also
construct ∆(α0),∆(β1), . . . ,∆(βk),∆(αk) on the fly as partial sums as we guess π. Note
that to ensure that each βi is a cycle, we do not need to fully store βi but only its starting
control-state. Moreover, note that ‖∆(αi)‖, ‖∆(βi)‖ ≤ m · ‖T ′‖ for every i. By Theorem 3.1
and by assumption on Cd, we have

‖T ′‖ ≤ ‖〈Gd〉‖ · ‖T‖

≤ 2poly(d+log‖T‖) · ‖T‖.
Hence, each αi and βi has a binary representation of polynomial size in |V|.

By [14, Prop. 4], (5.1) has a solution if and only if it has a solution e ∈ Nk such that

‖e‖ ≤

(
(k + 1) ·max{‖∆(βi)‖ : i ∈ [k]}+ ‖x‖+ ‖y‖+

k∑
i=0

‖∆(αi)‖+ 1

)d′
.

Since d′ = 2 · d, this means that we can guess a vector e ∈ Nk whose binary representation
is of polynomial size, and that we can thus evaluate (5.1) in polynomial time.

Corollary 5.2. The reachability problem for nonnegative afmp-Z-VASS is in PSPACE, and
hence in particular for reset, permutation, transfer, copy and copyless Z-VASS.

Proof. Let C =
⋃
d≥1 Cd be a class of nonnegative matrices. Let d ≥ 1 and let Gd be a finite

set of matrices such that 〈Gd〉 ⊆ Cd. By [43, Theorem A.2], whose proof appears in [42]
written by one of the same authors, we have:

|〈Gd〉| ≤ ‖Gd‖d
2·(d−1) · 5d3/2 · dd3 · d2 = 2d

2·(d−1)·log‖Gd‖+(d3/2)·log 5+d3·log d+2·log d,

‖〈Gd〉‖ ≤ ‖Gd‖d−1 · 5d/2 · dd = 2(d−1)·log‖Gd‖+(d/2)·log 5+d·log d.

Thus, C satisfies the requirements of Theorem 5.1. To complete the proof, observe that
determining whether MV is finite can be done in time O(d6 · |T |), again by [43, Theorem
A.2] and [42].

Note that this proof applies to reset, permutation, transfer, copy and copyless classes,
respectively, as they are all nonnegative. However, there is a much simpler argument for

14 M. BLONDIN, C. HAASE, F. MAZOWIECKI, AND M. RASKIN

these specific classes. Indeed, their matrices all have a max-norm of a most 1 and thus their

monoids contain at most 2d
2

matrices.

Theorem 5.3 ([24]). The reachability problem for reset Z-VASS belongs to NP.

Proof. Let V = (d,Q, T) be a reset Z-VASS. The proof does not follow immediately from
Theorem 3.1 because MV can be of size up to 2d. We will analyze the construction used in
the proof of Theorem 3.1, where reachability in V is effectively reduced to reachability in a
Z-VASS V ′ = (d′, Q′, T ′). Recall that Q′ = (Q×MV) ∪ (Q×MV) ∪Q, and thus that the
size of V ′ depends only on the sizes of Q and MV .

It follows from the proof of Theorem 3.1 and Proposition 3.5 that for every run q′(u,0)
∗−→

p(0,v) in V ′ where q′ def
= (q, I), there is a corresponding run p(u)

w−→ q(v) in V for some
w ∈ T ∗ of length k ≥ 0. Moreover, the ith matrix occuring within the control-states of this
run are is the form Ai where Ai = Ai−1 ·B for some B ∈MV . Since MV consists of reset
matrices, it holds that A0,A1,A2, . . . ,Ak is monotonic, i.e. if Ai−1 has a 0 somewhere on
its diagonal, then Ai also contains 0 in that position. It follows that A0,A1, . . . ,Ak is made
of at most d+ 1 distinct matrices.

To prove the NP upper bound we proceed as follows. We guess at most d+ 1 matrices
of MV that could appear in sequence A0,A1, . . . ,Ak. We construct the Z-VASS V ′ as in
Theorem 3.1, but we discard each control-state of Q′ containing a matrix not drawn from
the guessed matrices. Since the constructed Z-VASS is of polynomial size, reachability can
be verified in NP [24].

Remark 5.4. Observe that the proof of Theorem 5.3 holds for any class of affine Z-VASS
with a finite monoid such that every path of its Cayley graph contains at most polynomially
many different vertices. For a reset Z-VASS of dimension d, the number of vertices on every
path of the Cayley graph is bounded by d+ 1.

6. Hardness results for reachability

It is known that the reachability problem for Z-VASS is already NP-hard [24], which means
that reachability is NP-hard for all classes of affine Z-VASS. In this section, we show that
PSPACE-hardness holds for some classes, matching the PSPACE upper bound derived in
Section 5. Moreover, we observe that reachability is undecidable for transfer + copy Z-VASS.

Theorem 6.1. The reachability problem for permutation Z-VASS is PSPACE-hard.

Proof. We give a reduction from the membership problem of linear bounded automata,
which is known to be PSPACE-complete (see, e.g., [26, Sect. 9.3 and 13]). Let A =
(P,Σ,Γ, δ, qini, qacc, qrej) be a linear bounded automaton, where:

• P is the set of states,
• Σ ⊆ Γ is the input alphabet,
• Γ is the tape alphabet,
• δ is the transition function, and
• qini, qacc, qrej are the initial, accepting and rejecting states respectively.

The transition function is a mapping δ : P ×Γ→ P ×Γ×{Left,Right}. The intended
meaning of a transition δ(p, a) = (q, b,D) is that whenever A is in state p and holds letter a
at the current position of its tape, then A overwrites a with b and moves to state q and to
the next tape position in direction D.

AFFINE EXTENSIONS OF INTEGER VECTOR ADDITION SYSTEMS WITH STATES 15

Let us fix a word w ∈ Σ∗ of length n that we will check for membership. We construct
a permutation Z-VASS V = (d,Q, T) and configurations r(u) and r′(0) such that A accepts

w if and only if r(u)
∗−→ r′(0).

We set d def
= n · |Γ|+ 1 and associate a counter to each position of w and each letter of

the tape alphabet Γ, plus one additional counter. For readability, we denote these counters
respectively as xi,a and y, where i ∈ [n] and a ∈ Γ. The idea is to maintain, for every i ∈ [n],
a single non zero counter among {xi,a : a ∈ Γ} in order to represent the current letter in the

ith tape cell of A. The initial vector is u ∈ {0, 1}d such that u(y) = n and u(xi,a) = 1 if
and only if wi = a for every i ∈ [n] and a ∈ Γ. The invariant that will be maintained during
all runs is y =

∑
i,a xi,a.

The control-states of V are defined as:

Q def
= {rp,i : p ∈ P, i ∈ [n]} ∪ {ra,i : a ∈ Γ, i ∈ [n]} ∪ {racc}.

The purpose of each state of the form rp,i is to store the current state p and head position i of
A. States of the form ra,i will be part of a gadget testing whether A is simulated faithfully.

We associate a transition to every triple (p, a, i) ∈ P × Γ × [n], which denotes a
configuration of A: the automaton is in state p in position i, where letter a is stored. Let

us fix a transition δ(p, a) = (q, b,D); and let j def
= i + 1 if D = Right, and j def

= i − 1 if
D = Left. For every i ∈ [n], if j ∈ [n], then we add to T the transition

(rp,i,A,a, rq,j)

where A is a permutation matrix that swaps the values of xi,a and xi,b; and a is the vector
whose only nonzero components are a(xi,b) = 1 and a(y) = 1. The transition is depicted
on the left of Figure 4 (for D = Right). Notice that all transitions maintain the invariant
y =

∑
i,a xi,a.

The purpose of the swap is to simulate the transition of A, upon reading a in tape cell
i and state p, by moving the contents from xi,a to xi,b. Note that this transition may be
faulty, i.e. it can simulate reading letter a even though tape cell i contains another letter.
The purpose of the vector a is to detect such faulty behaviour: if the cell i does not contain
a, then more than one counter among {xi,a : a ∈ Γ} will be a nonzero counter.

Recall that y =
∑

i,a xi,a. We conclude that A accepts w if and only if there exist j ∈ [n],

u′ ∈ Nd and a1, a2, . . . , an ∈ Γ such that

rqini,1(u)
∗−→ rqacc,j(u

′) and u′(y) =
∑
i∈[d]

u′(xi,ai).

To test whether such index j, vector u′ and letters a1, a2, . . . , an exist, we add some
transitions to T as illustrated on the right of Figure 4. For every i ∈ [n] and every a ∈ Γ,
we add to T the transitions (rqacc,i, I,0, ra,1). For every i ∈ [n] and a ∈ Γ, we add to T
the transitions (ra,i, I, b, ra,i) where b is the vector whose only non zero components are
b(xi,a) = b(y) = −1. Moreover, if i < n, then for every a, b ∈ Γ we also add transitions
(ra,i, I,0, rb,i+1). Finally, for all a ∈ Γ, we also add transitions (ra,n, I,0, racc). The purpose
of these transitions is to guess for each i some letter ai and simultaneously decrease xi,ai
and y. We do this for each i starting from 1 to n and in the end we move to the state racc.

We conclude that A accepts w if and only if rqini,1(u)
∗−→ racc(0) in V.

Corollary 6.2. The reachability problem is PSPACE-complete for permutation Z-VASS,
transfer Z-VASS and copy Z-VASS.

16 M. BLONDIN, C. HAASE, F. MAZOWIECKI, AND M. RASKIN

rp,i rq,i+1

ra,1

rb,1

ra,2

rb,2

ra,n

rb,n

racc

swap xi,a
and xi,b

xi,b ← xi,b + 1
y ← y + 1

x1,a ← x1,a − 1
y ← y − 1

x1,b ← x1,b − 1
y ← y − 1

x2,a ← x2,a − 1
y ← y − 1

x2,b ← x2,b − 1
y ← y − 1

xn,a ← xn,a − 1
y ← y − 1

xn,b ← xn,b − 1
y ← y − 1

Figure 4. Left : transitions of V simulating transition δ(p, a) = (q, b,Right)
of A. Right : gadget verifying whether the accepting state has been reached
with no error during the simulation. For readability, we assume Γ = {a, b} in
the right gadget.

Proof. PSPACE-hardness for permutation Z-VASS was shown in Theorem 6.1, and the
upper bound for transfer Z-VASS and copy Z-VASS follows from Theorem 5.1. It remains
to observe that permutation matrices are also transfer and copy matrices.

Proposition 6.3. The reachability problem for transfer + copy Z-VASS is undecidable,
even when restricted to three counters.

Proof. Reichert [39] gives a reduction from the Post correspondence problem over the alphabet
{0, 1} to reachability in affine Z-VASS with two counters. The trick of the reduction is to

p q p q

D1,

(
b1

b2

) 1 0 0
0 1 0
1 0 0

, 0

1 0 1
0 1 0
0 0 0

,

b1

b2

0



Figure 5. Gadget (on the right) made of copy and transfer transitions
simulating the doubling transition on the left.

represent two binary sequences as the natural numbers the sequences encode, one in each
counter. If we add an artificial 1 at the beginning of the two binary sequences, then these
sequences are uniquely determined by their numerical values. We only need to be able to
double the counter values, which corresponds to shifting the sequences. This can be achieved
using the following matrices:

D1
def
=

(
2 0
0 1

)
and D2

def
=

(
1 0
0 2

)
.

The only matrices used in the construction of Reichert are I, D1 and D2. The last
two matrices can be simulated by a gadget made of copy and transfer matrices and by
introducing a third counter. This gadget is depicted in Figure 5 for the case of matrix D1.

AFFINE EXTENSIONS OF INTEGER VECTOR ADDITION SYSTEMS WITH STATES 17

The other gadget is symmetric. Note that if a run enters control-state p of the gadget with
vector (x, y, 0), then it leaves control-state q in vector (2x+ b1, y + b2, 0) as required.

Remark 6.4. The coverability problem for nonnegative affine VASS is known to be decidable
in Ackermann time [21]. Recall that coverability and reachability are inter-reducible for affine
Z-VASS. Thus, Proposition 6.3 gives an example of a decision problem, namely coverability,
which is more difficult for affine Z-VASS than for affine VASS.

7. Reachability beyond finite monoids

Thus far, we have shown, on the one hand, that reachability is decidable for affine Z-VASS
with the finite-monoid property, and, on the other hand, that reachability is undecidable for
arbitrary affine Z-VASS. This raises the question of whether there is a decidability dichotomy
between classes of finite and infinite monoids, i.e. whether reachability is undecidable for
every class of infinite monoids. In this section, we show that this is not the case: we exhibit
a non-trivial class of infinite monoids for which affine Z-VASS reachability is decidable. In
other words, the top rectangular region of Figure 1 is not equal to the red ellipse, which
answers a question we left open in [9]. The class of affine Z-VASS will have a particular
shape, namely, the matrix monoids have a single generator. More formally, we say that
a class of matrices C =

⋃
d≥1 Cd is monogenic if each monoid Cd is generated by a single

matrix. In the second part of this section we prove that reachability is in general undecidable
for monogenic classes.

7.1. Decidability for a class of affine Z-VASS with infinite monoids. Let Cd be the
monoid generated by the (nonnegative) matrix Jd ∈ Nd×d whose entries are all equal to 1.
Clearly, Cd is infinite for every d ≥ 2 since (Jd)

n is the matrix whose entries are all equal to
dn. Let CJ =

⋃
d≥1 Cd. The rest of this section is devoted to proving the following theorem:

Theorem 7.1. The reachability problem ReachCJ is decidable.

Let V = (d,Q, T) be an affine Z-VASS belonging to CJ. We will simply write J instead
of Jd as d is implicit from the dimension of V . Observe that we can assume w.l.o.g. that for
every transition (p,A, b, q) ∈ T either A = I or b = 0, i.e. each transition either performs
a transformation of the form x ← x + b or x ← A · x. Indeed, by adding an extra state
r, we can always split such a transition into two transitions (p,A,0, r) and (r, I, b, q). We
can further assume w.l.o.g. that I and J are the only matrices occurring in V. Indeed, if
T contains a transition t = (p,A, b, q) where A 6∈ {I,J}, then A = Jn for some n ≥ 2 and
b = 0. Thus, we can simply replace t by a sequence of transitions t1, t2, . . . , tn leading from
p to q and such that M(ti) = J and ∆(ti) = 0 for every i ∈ [n].

Let TI and TJ denote the (maximal) subsets of T of transitions with matrix I and J

respectively. Note that TI and TJ form a partition of T . We will write
S−→ and

S∗−→ to

denote respectively the restriction of −→ and
∗−→ to transitions of a set S. We give a simple

characterization of reachability in V:

Proposition 7.2. For all configurations p(u) and q(v) of V, p(u)
∗−→ q(v) if and only if:

(1) p(u)
T ∗I−−→ q(v); or

(2) p(u)
∗−→ r′(w)

TJ−→ r(J ·w)
T ∗I−−→ q(v) for some r, r′ ∈ Q and w ∈ Zd.

18 M. BLONDIN, C. HAASE, F. MAZOWIECKI, AND M. RASKIN

Proof. ⇐) Immediate.

⇒) Assume that p(u)
w−→ q(v) for some w ∈ T ∗. If w does not contain any transition

from TJ, then (1) holds and we are done. Thus, suppose that w contains at least one
transition from TJ. Let t ∈ TJ be the last such transition occurring in w. Recall that, by
assumption, M(t) = J and ∆(t) = 0. Therefore, we are done since there exist r, r′ ∈ Q and
w ∈ Zd such that

p(u)
∗−→ r′(w)

t−→ r(J ·w)
T ∗I−−→ q(v).

In order to prove that ReachCJ is decidable, it suffices to show that there exist procedures
to decide the two conditions of Proposition 7.2. Testing condition (1) amounts to Z-VASS
reachability, which belongs to NP [24]. Indeed, any run restricted to TI is a run of the
Z-VASS induced by TI. Thus, in the rest of the proof, we focus on showing how to test
condition (2).

For this purpose, let us introduce an auxiliary model. An affine one-counter Z-net is a
pair (P,U) where

• P is a finite set of states, and
• U ⊆ Q× {+, ·} × Z×Q is a finite set of transitions.

Furthermore, for every transition t = (p,~, c, q), we write p(n)
t−→ q(m) if m = n ~ c.

The notions of runs and reachability are defined accordingly as for affine Z-VASS. These
machines are a special case of one-counter register machines with polynomial updates whose
reachability problem belongs to PSPACE [22], i.e. we only allow the counter to be multiplied
or incremented by constants, whereas the model of [22] allows to update the counter by a
polynomial such as x2 or x3 − x+ 1.

For every v ∈ Zd, let

δ(v) def
=

d∑
i=1

v(i).

Consider the transitions T in the affine Z-VASS V. For every transition t ∈ T , let t be
defined as:

t def
=

{
(p,+, δ(∆(t)), q) if t ∈ TI,
(p, ·, d, q) if t ∈ TJ,

where p = src(t) and q = tgt(t).
Let W = (Q,T) be the affine one-counter Z-net obtained from V = (d,Q, T) by keeping

the same states and taking T def
= {t : t ∈ T}. We write w ∈ T

∗
to denote the (unique)

sequence of transitions in W corresponding to the sequence w ∈ T ∗ of V . Let us observe the
following correspondence between V and W:

Lemma 7.3. For every p, q ∈ Q, u ∈ Zd, m ∈ Z and w ∈ T ∗, we have p(δ(u))
w−→ q(m) in

W if and only if p(u)
w−→ q(v) in V for some v ∈ Zd such that δ(v) = m.

Proof. The claim follows from a simple induction on |w|.

We may now prove Theorem 7.1.

Proof of Theorem 7.1. Recall that it suffices to show how to decide condition (2) of Propo-
sition 7.2. By definition of J, this condition is equivalent to determining whether there exist

AFFINE EXTENSIONS OF INTEGER VECTOR ADDITION SYSTEMS WITH STATES 19

r ∈ Q and n ∈ Z such that

p(u)
T ∗·TJ−−−→ r(n, n, . . . , n)

T ∗I−−→ q(v).

Let S = {m ∈ Z : ∃n ∈ Z (m = d · n)∧
∨
r∈Q r(n, n, . . . , n)

T ∗I−−→ q(v)}. As we mentioned
earlier, V can be seen as a standard Z-VASS when restricted to TI. Since the reachability
relation of any Z-VASS is effectively semilinear [24], the set S is also effectively semilinear.

p

...

· · ·

r r′

TJ

TJ

·d

·d

−f1

−f2

−fk

−b1 −b2 −b`

+0

−a

Figure 6. Affine one-counter Z-netW extended with a gadget subtracting a
number of S from some transition of TJ leading to r. The gadget is depicted
in colour. Transitions connecting W to the gadget are labeled with “·d” as
this is the effect of every transition of TJ.

By Lemma 7.3, we have p(u)
T ∗·TJ−−−→ r(n, n, . . . , n) if and only if p(δ(u))

T
∗·TJ−−−→ r(d · n).

Indeed, the direction (⇒) is immediate. To prove the implication (⇐) suppose p(δ(u))
T
∗·TJ−−−→

r(d · n). By Lemma 7.3 we have p(u)
T ∗·TJ−−−→ r(v) such that δ(v) = d · n. By definition the

last transition is r′(w)
t−→ r(J ·w), where v = J ·w. By definition of J: v = (δ(w), . . . , δ(w)).

Since δ(v) = d · n we get v = (n, n, . . . , n).

Thus, it suffices to test whether p(δ(u))
T
∗·TJ−−−→ r(m) in W for some m = d · n ∈ S. This

can be achieved by extending W with a gadget that non deterministically subtracts some
element of S after executing a transition from TJ. More precisely, since S is an (effectively)
semilinear set of integers, it is also (effectively) ultimately periodic. Thus, it is possible to
obtain a description of S = F ∪B+ a ·N where F = {f1, f2, . . . , fk} and B = {b1, b2, . . . , b`}
are finite subsets of Z. We extend W with the gadget depicted in Figure 6. More precisely,
for every transition t ∈ TJ leading to r, we add a new transition leading to a gadget that

20 M. BLONDIN, C. HAASE, F. MAZOWIECKI, AND M. RASKIN

either subtracts some number from F or some number from B + a ·N. Note that the gadget
is not “attached” directly to r as we must ensure that r is entered by a transition of TJ.
Hence, testing whether

p(δ(u))
T
∗·TJ−−−→ r(m) in W for some m ∈ S

amounts to testing whether p(δ(u))
∗−→ r′(0) in the new net. Since the latter can be done in

polynomial space [22], we are done.

7.2. Undecidability for monogenic classes. In contrast with the previous result, we
prove that decidability is undecidable in general for monogenic classes:

Theorem 7.4. Reachability for monogenic affine Z-VASS is undecidable. Moreover, there
exists a fixed monogenic affine Z-VASS for which deciding reachability is undecidable.

We show the first part of Theorem 7.4 by giving a reduction from the problem of
determining whether a given Diophantine equation has a solution over the natural numbers,
which is well-known to be undecidable. The second part of Theorem 7.4 follows as a corollary.
Indeed, by Matiyasevich’s theorem, Diophantine sets correspond to recursively enumerable
sets. In particular, there exists a polynomial P such that

x ∈ N is the encoding of a halting Turing machine ⇐⇒ ∃y : P (x,y) = 0.

The forthcoming construction will yield a monogenic affine Z-VASS that can test “∃y :
P (x,y) = 0” by nondeterministically guessing y and testing P (x,y) = 0. Hence, reachability
cannot be decided for this monogenic affine Z-VASS as the above language is undecidable.

Let us show the first part of Theorem 7.4. Let x1, x2, . . . , xk be variables of a given
polynomial P (x1, x2, . . . , xk). We will construct an instance of the reachability problem, for a
monogenic affine Z-VASS V , such that reachability holds if and only if P (x1, x2, . . . , xk) = 0
has a solution over Nk.

The affine Z-VASS will be described using the syntax of counter programs; see [19, 15],
where a similar syntax was used to present the VASS model. We will make use of two
instructions: zero(x)? and loop. The former checks whether counter x has value 0, and
the latter repeats a block of instructions an arbitrary number of times. Figure 7 gives an
example of such a program together with its translation as an affine Z-VASS.

Macros. Before describing the reduction, let us introduce helpful macros. First, we define
macros “transfer x onto y” and “remove x from y”. The former computes y = y + x

and x = 0, and the latter computes y = y − x and x = 0. Both macros work under the
assumption that x is initially non negative. These macros are implemented as follows:

transfer x onto y: // pre-cond.: x ≥ 0
loop

x = x − 1
y = y + 1

zero(x)?

remove x from y: // pre-cond.: x ≥ 0
loop

x = x − 1
y = y − 1

zero(x)?

We define another macro “t = square(s)” for squaring the contents of a counter. More
precisely, it computes s = t2 and t = 0. This macro is implemented as follows:

AFFINE EXTENSIONS OF INTEGER VECTOR ADDITION SYSTEMS WITH STATES 21

loop
x = x + 1
y = y + 4

loop
y = y − 3x + 1

zero(y)?

(
1 0
0 1

)
,

(
1
4

) (
1 0
−3 1

)
,

(
0
1

)

(
1 0
0 1

)
,

(
0
0

)
Figure 7. Left : an example program P using instructions zero? and loop.
Right : an affine Z-VASS V equivalent to P, where its first and second
components correspond to counters x and y respectively. The program loops
are simulated by loops within the control structure of V . Note that whenever
P only adds and subtracts constants from counters, the associated matrix is
the identity. Since the only way V can test whether a counter equals 0 is at
the end of the program via a reachability query, instruction zero(y)? merely
emphasizes that counter y will never be used again.

1: t = square(s): // pre-condition: t = x = y = z = 0
2: transfer s onto x

3: loop
4: x = x − 1
5: y = y + 1
6: z = z + 2y + 1

7: zero(x)?
8: transfer z onto t // t = s2, y = s and x = z = 0
9: remove s from y

10: zero(y)? // y = 0

The above program starts with t and its auxiliary counters set to 0, and ends with s and the
auxiliary counters set to 0. Its correctness follows by observing that (n+ 1)2 = n2 + (2n+ 1).

We introduce one last macro “t = mult(s, s′)” for multiplication. More precisely, it
computes t = s · s′ and s = s′ = 0. Its implementation exploits the fact that 2mn =
(m+ n)2 −m2 − n2:

t = mult(s, s′): // pre-condition: t = x = y = z = z′ = 0
x = square(s) // x = s2

y = square(s′) // y = (s′)2

transfer s onto z′

transfer s′ onto z′

z = square(z′) // z = (s + s′)2, z′ = 0
remove x from z

remove y from z // z = 2 · s · s′, x = y = 0
loop

z = z − 2
t = t + 1

zero(z)? // t = s · s′, z = 0

22 M. BLONDIN, C. HAASE, F. MAZOWIECKI, AND M. RASKIN

The above program starts with t and its auxiliary counters set to 0, and ends with s, s′ and
its auxiliary counters set to 0. Note that a macro “t = mult(s, c)” for multiplying by a
constant c can be achieved by a simpler program:

t = mult(s, c): // pre-condition: t = 0
loop

s = s − 1
t = t + c

zero(s)?

Although these programs can be implemented rather straightforwardly by an affine
Z-VASS, two remarks are in order:

• Affine Z-VASS do not have any native operation for testing a counter for zero. However, a
counter x can be tested once via a reachability query, provided that x is left untouched after
instruction zero(x)? has been invoked. Consequently, a constant number of zero-tests
can be performed on a counter, provided its initial contents has been duplicated;
• Instruction “transfer s onto t” at line 2 of macro “t = square(s)” destroys the contents

of s which is later needed at line 9. As for zero-tests, this is not an issue provided that
some counter holds a copy of s. Thus, only a constant number of squaring, and hence of
multiplications, can be performed from a given counter.

The construction. Let us now describe the reachability instance. The initial vector is 0,
which corresponds to having all counters set to 0 at the start of the program. The target
vector is also 0, which corresponds to performing zero tests on all counters.

The program starts by performing a sequence of loops that guess a valuation x for
which P (x) = 0 is to be tested. More precisely, a value is nondeterministically picked for
each variable xi and stored in counters x1

i , x
2
i , . . . , x

ni
i . The reason for having ni copies of

the value is to address the two issues mentioned earlier concerning zero-tests and reusing
counters within macros. The precise number of copies, ni, will be determined later. The
fragment of code achieving the initialization is as follows:

loop
x1

1 = x1
1 + 1; x2

1 = x2
1 + 1; · · · xn1

1 = xn1
1 + 1

loop
x1

2 = x1
2 + 1; x2

2 = x2
2 + 1; · · · xn2

2 = xn2
2 + 1

...

loop
x1
k = x1

k + 1; x2
k = x2

k + 1; · · · x
nk
k = x

nk
k + 1

After the initialization, we compute the value of each monomial occurring within

polynomial P (x1, x2, . . . , xk). This can be achieved using counters xji and the multiplication
macro. Let Q(x1, x2, . . . , xk) be a monomial of degree d. We show how to proceed by
induction on d. If d = 0, then this is trivial. For larger degrees, we evaluate Q without its
coefficient c, and then apply macro “t = mult(s, c)”. If d = 1, then we can simply transfer

the appropriate counter xji . Otherwise, Q is a product of two monomials Q′ and Q′′ of smaller
degrees. By induction hypothesis, we can construct three copies of both monomials Q′ and
Q′′. Then, using the multiplication macro, we obtain Q. Having evaluated all monomials,
we can transfer each of their values to a common counter using the transfer and remove

AFFINE EXTENSIONS OF INTEGER VECTOR ADDITION SYSTEMS WITH STATES 23

macros depending on whether their sign is positive or negative. Finally, we test if the
resulting value equals zero, which corresponds to having a solution to P (x1, x2, . . . , xk) = 0.

Before arguing correctness of the construction, let us see why the whole program can be
translated as a monogenic affine Z-VASS V , i.e. using only the identity matrix and one extra
matrix A. First, note that all macros have internal counters x, y and z. Every time we use a
macro, we use three fresh counters, increasing the dimension of V . Second, note that the only
macro that requires a matrix different from the identity is “t = square(s)”, which doubles
y during an assignment to z at line 6. We will construct the matrix A as follows. Suppose
we want to encode one of the squaring macros. Matrix A will have the same updates for all
counters denoted as z in all macros, but the vector will use constants according to this macro.
That is, all coordinates for counters not occurring in this macro will be 0. In particular,
counter z from this macro will be updated like in line 6, i.e. “z = z + 2y + 1”, and all
other counters corresponding to some other z will be updated as “z = z + 2y”.

Correctness. We conclude by proving correctness of the construction. If P has a solution,

then it is straightforward to extract a run from V : (a) each x
j
i is initialized according to the

solution; and (b) each loop of the program is performed the exact number times so that each
zero-test holds. It remains to observe that after performing a zero-test on some counter,
V does not perform any operation on this counter or performs “z = z + 2y”. But if the
values of y and z are equal to zero, then z will remain equal to zero after such an update.

Conversely, suppose there is a reachability witness (from 0 to 0). We claim that the

initialization of counters xji provides a solution to P . To prove this, it suffices to show that
every zero-test was valid. This is clear for all counters except for the z within the squaring
macro. Indeed, all other counters never change their values afterwards. However, counter z
is updated by “z = z + 2y”. If y is non zero, then this will be detected by the zero-test on
y. Otherwise, the update “z = z + 2y” never changes the value of z as required.

8. Conclusion

We have shown that the reachability problem for afmp-Z-VASS reduces to the reachability
problem for Z-VASS, i.e. every afmp-Z-VASS V can be simulated by a Z-VASS of size
polynomial in |V|, |MV | and ‖MV‖. In particular, this allowed us to establish that the
reachability relation of any afmp-Z-VASS is semilinear.

For all nonnegative classes and consequently for all of the variants we studied — reset,
permutation, transfer, copy and copyless Z-VASS — |MV | and ‖MV‖ are of exponential
size, thus yielding a PSPACE upper bound on their reachability problems. Moreover, we
have established PSPACE-hardness for all of these specific classes, except for the reset case
which is NP-complete.

We do not know whether an exponential bound on ‖MV‖ holds for any class of afmp-
Z-VASS over Zd×d. We are aware that an exponential upper bound holds when MV is
generated by a single matrix [27]; and when MV is a group then we have an exponential
bound but only on |MV | (see [31] for an exposition on the group case).

Finally, we have shown that there exists a (monogenic) class without the finite-monoid
property for which reachability is decidable. This result was complemented by showing that
reachability is undecidable in general for monogenic classes.

24 M. BLONDIN, C. HAASE, F. MAZOWIECKI, AND M. RASKIN

Acknowledgments

We are thankful to James Worrell for insightful discussions on transfer VASS.

References

[1] Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, and Yih-Kuen Tsay. General decidability theorems
for infinite-state systems. In Proc. 11th Annual IEEE Symposium on Logic in Computer Science (LICS),
pages 313–321, 1996. doi:10.1109/LICS.1996.561359.

[2] Parosh Aziz Abdulla and Giorgio Delzanno. Parameterized verification. International Journal on Software
Tools for Technology Transfer, 18(5):469–473, 2016. doi:10.1007/s10009-016-0424-3.

[3] Rajeev Alur, Adam Freilich, and Mukund Raghothaman. Regular combinators for string transformations.
In Proc. Joint Meeting of the 23rd EACSL Annual Conference on Computer Science Logic (CSL)
and the 29th ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 9:1–9:10, 2014.
doi:10.1145/2603088.2603151.

[4] Rajeev Alur and Mukund Raghothaman. Decision problems for additive regular functions. In Proc.
40th International Colloquium on Automata, Languages, and Programming (ICALP), pages 37–48, 2013.
doi:10.1007/978-3-642-39212-2_7.

[5] Toshiro Araki and Tadao Kasami. Some decision problems related to the reachability problem for Petri
nets. Theoretical Computer Science, 3(1):85–104, 1976. doi:10.1016/0304-3975(76)90067-0.

[6] Konstantinos Athanasiou, Peizun Liu, and Thomas Wahl. Unbounded-thread program verification using
thread-state equations. In Proc. 8th International Joint Conference on Automated Reasoning (IJCAR),
pages 516–531, 2016. doi:10.1007/978-3-319-40229-1_35.

[7] Michael Blondin, Alain Finkel, Stefan Göller, Christoph Haase, and Pierre McKenzie. Reachability in two-
dimensional vector addition systems with states is PSPACE-complete. In Proc. 30th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), pages 32–43, 2015. doi:10.1109/LICS.2015.14.

[8] Michael Blondin and Christoph Haase. Logics for continuous reachability in Petri nets and vector
addition systems with states. In Proc. 32nd Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS), pages 1–12, 2017. doi:10.1109/LICS.2017.8005068.

[9] Michael Blondin, Christoph Haase, and Filip Mazowiecki. Affine extensions of integer vector addition
systems with states. In Proc. 29th International Conference on Concurrency Theory (CONCUR), pages
14:1–14:17, 2018. doi:10.4230/LIPIcs.CONCUR.2018.14.

[10] Bernard Boigelot. Symbolic Methods for Exploring Infinite State Spaces. PhD thesis, Université de Liège,
Belgium, 1998.

[11] Rémi Bonnet. Theory of Well-Structured Transition Systems and Extended Vector-Addition Systems.

PhD thesis, École normale supérieure de Cachan, France, 2013.
[12] Michaël Cadilhac, Alain Finkel, and Pierre McKenzie. Bounded Parikh automata. International Journal

of Foundations of Computer Science, 23(8):1691–1710, 2012. doi:10.1142/S0129054112400709.
[13] Michaël Cadilhac, Alain Finkel, and Pierre McKenzie. Unambiguous constrained automata. International

Journal of Foundations of Computer Science, 24(7):1099–1116, 2013. doi:10.1142/S0129054113400339.
[14] Dmitry Chistikov and Christoph Haase. The taming of the semi-linear set. In Proc. 43rd International

Colloquium on Automata, Languages, and Programming (ICALP), pages 128:1–128:13, 2016. doi:

10.4230/LIPIcs.ICALP.2016.128.
[15] Wojciech Czerwinski, Slawomir Lasota, Ranko Lazic, Jérôme Leroux, and Filip Mazowiecki. The

reachability problem for petri nets is not elementary. In Proc. 51st Annual ACM SIGACT Symposium
on Theory of Computing (STOC), pages 24–33, 2019. doi:10.1145/3313276.3316369.

[16] Giorgio Delzanno. A unified view of parameterized verification of abstract models of broadcast com-
munication. International Journal on Software Tools for Technology Transfer, 18(5):475–493, 2016.
doi:10.1007/s10009-016-0412-7.

[17] Catherine Dufourd, Alain Finkel, and Philippe Schnoebelen. Reset nets between decidability and
undecidability. In Proc. 25th International Colloquium on Automata, Languages and Programming
(ICALP), pages 103–115, 1998. doi:10.1007/BFb0055044.

[18] E. Allen Emerson and Kedar S. Namjoshi. On model checking for non-deterministic infinite-state systems.
In Proc. 13th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 70–80, 1998.
doi:10.1109/LICS.1998.705644.

http://dx.doi.org/10.1109/LICS.1996.561359
http://dx.doi.org/10.1007/s10009-016-0424-3
http://dx.doi.org/10.1145/2603088.2603151
http://dx.doi.org/10.1007/978-3-642-39212-2_7
http://dx.doi.org/10.1016/0304-3975(76)90067-0
http://dx.doi.org/10.1007/978-3-319-40229-1_35
http://dx.doi.org/10.1109/LICS.2015.14
http://dx.doi.org/10.1109/LICS.2017.8005068
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2018.14
http://dx.doi.org/10.1142/S0129054112400709
http://dx.doi.org/10.1142/S0129054113400339
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.128
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.128
http://dx.doi.org/10.1145/3313276.3316369
http://dx.doi.org/10.1007/s10009-016-0412-7
http://dx.doi.org/10.1007/BFb0055044
http://dx.doi.org/10.1109/LICS.1998.705644

AFFINE EXTENSIONS OF INTEGER VECTOR ADDITION SYSTEMS WITH STATES 25

[19] Javier Esparza. Decidability and complexity of Petri net problems — an introduction. In Lectures on
Petri Nets I, pages 374–428, 1998.

[20] Javier Esparza, Ruslán Ledesma-Garza, Rupak Majumdar, Philipp J. Meyer, and Filip Niksic. An
SMT-based approach to coverability analysis. In Proc. 26th International Conference on Computer Aided
Verification (CAV), pages 603–619, 2014. doi:10.1007/978-3-319-08867-9_40.

[21] Diego Figueira, Santiago Figueira, Sylvain Schmitz, and Philippe Schnoebelen. Ackermannian and
primitive-recursive bounds with Dickson’s lemma. In Proc. 26th Annual IEEE Symposium on Logic in
Computer Science (LICS), pages 269–278, 2011. doi:10.1109/LICS.2011.39.

[22] Alain Finkel, Stefan Göller, and Christoph Haase. Reachability in register machines with polynomial
updates. In Proc. 38th International Symposium on Mathematical Foundations of Computer Science
(MFCS), pages 409–420, 2013. doi:10.1007/978-3-642-40313-2_37.

[23] Alain Finkel and Jérôme Leroux. How to compose Presburger-accelerations: Applications to broadcast
protocols. In Proc. 22nd Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS), pages 145–156, 2002. doi:10.1007/3-540-36206-1_14.

[24] Christoph Haase and Simon Halfon. Integer vector addition systems with states. In Proc. 8th International
Workshop on Reachability Problems (RP), pages 112–124, 2014. doi:10.1007/978-3-319-11439-2_9.

[25] John E. Hopcroft and Jean-Jacques Pansiot. On the reachability problem for 5-dimensional vector
addition systems. Theoretical Computer Science, 8:135–159, 1979. doi:10.1016/0304-3975(79)90041-0.

[26] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages and Computation.
Addison-Wesley, 1979.

[27] Radu Iosif and Arnaud Sangnier. How hard is it to verify flat affine counter systems with the finite
monoid property? In Proc. 14th International Symposium on Automated Technology for Verification and
Analysis (ATVA), pages 89–105, 2016. doi:10.1007/978-3-319-46520-3_6.

[28] Alexander Kaiser, Daniel Kroening, and Thomas Wahl. A widening approach to multithreaded program
verification. ACM Transactions on Programming Languages and Systems, 36(4):14:1–14:29, 2014. doi:
10.1145/2629608.

[29] Richard M. Karp and Raymond E. Miller. Parallel program schemata. Journal of Computer and System
Sciences, 3(2):147–195, 1969. doi:10.1016/S0022-0000(69)80011-5.

[30] S. Rao Kosaraju. Decidability of reachability in vector addition systems (preliminary version). In
Proc. 14th Annual ACM Symposium on Theory of Computing (STOC), pages 267–281, 1982. doi:

10.1145/800070.802201.
[31] James Kuzmanovich and Andrey Pavlichenkov. Finite groups of matrices whose entries are integers. The

American Mathematical Monthly, 109(2):173–186, 2002. doi:10.2307/2695329.
[32] Jérôme Leroux. Vector addition systems reachability problem (a simpler solution). In The Alan Turing

Centenary Conference, pages 214–228, 2012.
[33] Richard J. Lipton. The reachability problem requires exponential space. Technical Report 63, Department

of Computer Science, Yale University, 1976.
[34] Arnaldo Mandel and Imre Simon. On finite semigroups of matrices. Theoretical Computer Science,

5(2):101–111, 1977. doi:10.1016/0304-3975(77)90001-9.
[35] Ernst W. Mayr. An algorithm for the general Petri net reachability problem. SIAM Journal on Computing,

13(3):441–460, 1984. URL: https://doi.org/10.1137/0213029, doi:10.1137/0213029.
[36] Marvin Lee Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, 1967.

[37] Mojżesz Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen,
in welchem die Addition als einzige Operation hervortritt. Comptes Rendus du Ier Congrès des
mathématiciens des pays slaves, pages 192–201, 1929.

[38] Charles Rackoff. The covering and boundedness problems for vector addition systems. Theoretical
Computer Science, 6:223–231, 1978. doi:10.1016/0304-3975(78)90036-1.

[39] Julien Reichert. Reachability games with counters: decidability and algorithms. PhD thesis, École normale
supérieure de Cachan, France, 2015.

[40] Klaus Reinhardt. Reachability in Petri nets with inhibitor arcs. Electronic Notes in Theoretical Computer
Science, 223:239–264, 2008. doi:10.1016/j.entcs.2008.12.042.

[41] Philippe Schnoebelen. Revisiting Ackermann-hardness for lossy counter machines and reset Petri nets.
In Proc. 35th International Symposium Mathematical Foundations of Computer Science (MFCS), pages
616–628, 2010. doi:10.1007/978-3-642-15155-2_54.

http://dx.doi.org/10.1007/978-3-319-08867-9_40
http://dx.doi.org/10.1109/LICS.2011.39
http://dx.doi.org/10.1007/978-3-642-40313-2_37
http://dx.doi.org/10.1007/3-540-36206-1_14
http://dx.doi.org/10.1007/978-3-319-11439-2_9
http://dx.doi.org/10.1016/0304-3975(79)90041-0
http://dx.doi.org/10.1007/978-3-319-46520-3_6
http://dx.doi.org/10.1145/2629608
http://dx.doi.org/10.1145/2629608
http://dx.doi.org/10.1016/S0022-0000(69)80011-5
http://dx.doi.org/10.1145/800070.802201
http://dx.doi.org/10.1145/800070.802201
http://dx.doi.org/10.2307/2695329
http://dx.doi.org/10.1016/0304-3975(77)90001-9
https://doi.org/10.1137/0213029
http://dx.doi.org/10.1137/0213029
http://dx.doi.org/10.1016/0304-3975(78)90036-1
http://dx.doi.org/10.1016/j.entcs.2008.12.042
http://dx.doi.org/10.1007/978-3-642-15155-2_54

26 M. BLONDIN, C. HAASE, F. MAZOWIECKI, AND M. RASKIN

[42] Andreas Weber. Über die Mehrdeutigkeit und Wertigkeit von endlichen Automaten und Transducern.
PhD thesis, Goethe-Universität Frankfurt am Main, 1987.

[43] Andreas Weber and Helmut Seidl. On finitely generated monoids of matrices with entries in N. Informa-
tique Théorique et Applications, 25:19–38, 1991. doi:10.1051/ita/1991250100191.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

http://dx.doi.org/10.1051/ita/1991250100191

	1. Introduction
	2. Preliminaries
	3. From affine Z-VASS with the finite-monoid property to Z-VASS
	3.1. A characterization of reachability
	3.2. Reachability from the origin
	3.3. Reachability from an arbitrary configuration

	4. Semilinearity of affine Z-VASS
	5. Complexity of reachability for afmp-Z-VASS
	6. Hardness results for reachability
	7. Reachability beyond finite monoids
	7.1. Decidability for a class of affine Z-VASS with infinite monoids
	7.2. Undecidability for monogenic classes

	8. Conclusion
	Acknowledgments
	References

