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Abstract
The Boolean satisfiability problem plays a central role in computational complexity and is often
used as a starting point for showing NP lower bounds. Generalisations such as Succinct SAT, where
a Boolean formula is succinctly represented as a Boolean circuit, have been studied in the literature
in order to lift the Boolean satisfiability problem to higher complexity classes such as NEXP. While,
in theory, iterating this approach yields complete problems for k-NEXP for all k > 0, using such
iterations of Succinct SAT is at best tedious when it comes to proving lower bounds.

The main contribution of this paper is to show that the Boolean satisfiability problem has
another canonical generalisation in terms of higher-order Boolean functions that is arguably more
suitable for showing lower bounds beyond NP. We introduce a family of problems HOSAT(k, d),
k ≥ 0, d ≥ 1, in which variables are interpreted as Boolean functions of order at most k and there are
d quantifier alternations between functions of order exactly k. We show that the unbounded HOSAT
problem is TOWER-complete, and that HOSAT(k, d) is complete for the weak k-EXP hierarchy
with d alternations for fixed k, d ≥ 1.

We illustrate the usefulness of HOSAT by characterising the complexity of weak Presburger
arithmetic, the first-order theory of the integers with addition and equality but without order. It has
been a long-standing open problem whether weak Presburger arithmetic has the same complexity as
standard Presburger arithmetic. We answer this question affirmatively, even for the negation-free
fragment and the Horn fragment of weak Presburger arithmetic.
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1 Introduction

The Boolean satisfiability problem (SAT) plays a central role in computational complexity. It
was the first problem shown to be NP-complete [8] and has ever since been used a countless
number of times to show NP lower bounds for numerous combinatorial problems, a prime
example being Karp’s list of twenty-one NP-complete problems [17]. What makes SAT stand
out is its simplicity: describing an instance of SAT does not require tapes and automata as
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in the case of Turing machines, and neither grids nor dominoes like in tiling problems; it also
does not require the introduction of graphs and their properties as in, e.g., graph colouring
problems. To obtain a reduction from SAT, it suffices to show how to encode assignments
to Boolean variables and how to model connectives. Unfortunately, this simplicity does not
transfer over to higher complexity classes.

Succinct representations have been used as a technical tool to lift NP-complete problems
to exponential classes [27, 20, 2, 32]. The idea is that the main object of interest is succinctly
encoded by a Boolean circuit. For instance, a Boolean formula represented as a DAG whose
vertices are labelled by a type (e.g., a Boolean connective or constant value) and a unique
integer index can be encoded by a Boolean circuit with outputs. Given a binary encoding of
an index, this circuit returns the type of the node with that index and, if present, the indices
of its two predecessor nodes. Succinct variants of P- or NP-complete problems become EXP-
or NEXP-complete, e.g., the Succinct Circuit Value problem and the Succinct SAT Problem
are respectively EXP- and NEXP-complete [26]. In theory, this approach can be iterated
indefinitely, and, e.g., the problem of deciding whether a propositional formula encoded by a
Boolean circuit that is itself encoded by a Boolean circuit evaluates to true is a “canonical”
2-EXP-complete problem. One does not need too much imagination to see that these iterated
succinct problems become unbearable for showing lower bounds.

This loss of simplicity for higher complexity classes compared to classical SAT is at odds
with other canonical problems, such as the halting problem for a (non)deterministic Turing
machine running in time f(n) on an input of length n, or the problem of tiling a grid of
size f(n)× f(n). Here, the function f can be chosen appropriately in order to obtain hard
problems for many complexity classes such as k-EXP and k-NEXP [26]. The same picture
emerges in the presence of alternation: whereas QBF [12, Chapter 7.4] elegantly extends
SAT to the whole polynomial hierarchy [33], no simple extension of SAT has been defined to
capture every level of the weak k-EXP hierarchies, for any k ≥ 1 (cf. [15]). Again, this is
in contrast with Turing machines and tiling problems: both admit extensions to deal with
alternation in the context of complexity classes above NP [4, 5, 23].

The main contribution of this paper is to identify a canonical generalisation of SAT,
called HOSAT, that gives complete problems for all weak k-EXP hierarchies and that shares
the simplicity of classical SAT. Instead of Boolean variables, the building blocks of HOSAT
are function applications. The functions considered are higher-order Boolean function f of
order k, i.e., functions that take as input higher-order functions of order k−1 and return a
Boolean value, and Boolean values themselves are functions of order zero. HOSAT closes
function applications under Boolean connectives as well as quantification.

The development of HOSAT is a result of an attempt of the authors to settle the open
problem of the computational complexity of weak Presburger arithmetic, the first-order theory
of the integers with addition and equality, but without an order predicate (which is provably
not definable in this theory). This less expressive theory is in fact the “original” arithmetic
theory studied by Presburger in his seminal paper [28], see also [7], and it has been an open
problem whether it is computationally as hard as what is nowadays commonly understood
as Presburger arithmetic; see, e.g., [6]. The lower bound for Presburger arithmetic given
by Berman [3] reduces from an alternating Turing machine running in doubly exponential
time with a linear number of alternations. This reduction glosses over some technical details,
which is unproblematic in the presence of the sufficient expressive power that the order
predicate provides, but becomes problematic for weak Presburger arithmetic. Giving a clean
reduction from HOSAT enables us to settle the complexity of weak Presburger arithmetic
and to show that it has indeed the same complexity as Presburger arithmetic with the order
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predicate. We hope that HOSAT will be as beneficial as it was for us for other researchers
for proving their lower bounds, in particular since the question of finding canonical complete
problems for weak k-EXP hierarchies frequently comes up; see, e.g., [31, 21].

2 Preliminaries

We write Z, N and N+ to denote the set of integers, natural numbers including zero, and
natural numbers without zero, respectively. Unless otherwise stated, we assume integers to
be encoded in binary. Given l, u ∈ N, we define [l, u] := {l, l+1, . . . , u}, [l, u) := [l, u− 1] and
[u] := [0, u). The cardinality of a finite set A is denoted by #A. For k, n ∈ N, we write expk

2(n)
for the tetration function inductively defined as exp0

2(n) := n and expk
2(n) := 2expk−1

2 (n).
Intuitively, expk

2(n) is a tower of exponentials of height k, base 2, and top-most exponent n.
We recall complexity classes based on the notion of alternating Turing machines [5]. The

class Σk-EXP
d contains all problems that can be decided by an alternating Turing machine

running in time expk
2(f(n)) on an input of length n, where f : N→ N is some polynomial

that does not depend on the input, and starting in an existential state and making at most
d− 1 alternations on every computation path. By definition, Σk-EXP

1 = k-NEXP. The weak
k-EXP hierarchy is defined as

⋃
d≥0 Σk-EXP

d ; for k = 1 see [15].
Given functions a, s, t : N→ N, the class STA(s(n), t(n), a(n)) contains all problems that

can be decided by an alternating Turing machine in time t(n) using space s(n) making
at most a(n) alternations on every computation path, where n is the length of the input.
We use ∗ to indicate an unbounded availability of a certain resource. For instance, the
polynomial hierarchy can be characterized as

⋃
d∈N STA(∗, nO(1), d), and the d-th level of

the weak k-exponential hierarchy Σk EXP
d corresponds to STA(∗, expk

2(nO(1)), d). The STA
complexity measure was introduced by Berman [3] to show the following result.

I Theorem 1 ([3]). Presburger arithmetic is complete for STA(∗, 22nO(1)

, O(n)).

A function f : N→ N is said to be elementary if there is a k ∈ N such that f(n) < expk
2(n)

for all n ∈ N. The (non-elementary) class TOWER [29] contains all problems decidable by a
Turing machine in time expg(n)

2 (f(n)) for some fixed polynomial f and elementary function g,
on inputs of length n. We have ∪k≥1 k-EXP ( TOWER, as TOWER contains problems
decidable in time expn

2 (1).

3 The higher-order quantified satisfiability problem

We introduce the higher-order quantified satisfiability problem, a problem whose instances form
a hierarchy (HOSAT(k, d))k,d of problems that characterise every complexity class Σk-EXP

d .
We write B to denote the Boolean domain {0, 1}. We often treat B as the set of the two

nullary Boolean functions () → {0} and () → {1}. Fix n ∈ N+ and let B0,n := B. Given
k ≥ 1, we write Bk,n for the set of all functions with domain (Bk−1,n)n and codomain B. For
instance, B1,n is the set of all n-ary Boolean functions f : {0, 1}n → {0, 1}, whereas B2,n is
the set of all n-ary second-order Boolean functions f : ({0, 1}n → {0, 1})n → {0, 1}. For
k ≥ 1, the number of functions in Bk,n satisfies the recurrence relation #(Bk,n) = 2#(Bk−1,n)n ,
and therefore expk+1

2 (n) ≤ #Bk,n ≤ expk+1
2 ((k + 1) · n). We refer to the indices k and n as

the order and the arity of Bk,n, respectively. Both n and k are written in unary.
We discuss the encoding enc(f) of Boolean functions as bit-strings over {0, 1}, which we

often treat as the binary number from N represented by the bit-string, with least significant
digit first. For b ∈ B, enc(b) := b. Functions f ∈ B1,n can be encoded as a string of length
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2n over B, whose i-th position encodes the truth value of f on the tuple (b1, . . . , bn) ∈ Bn

such that b1 · · · bn is the binary encoding of i, with least significant digit first. For k > 1,
functions f ∈ Bk,n can be encoded as a string over B whose i-th position encodes the truth
value of f on input (g1, . . . , gn) ∈ (Bk−1,n)n such that the concatenation enc(g1) · · · enc(gn)
of the encodings of g1, . . . , gn is a binary encoding of i, with least significant digit first. The
length |f | of a function f from Bk,n is defined as the length of enc(f). Therefore, |b| = 1 for
all b ∈ B, and for every f ∈ Bk,n with k ≥ 1, we have |f | = (#(Bk−1,n))n ≥ (expk

2(n))n.
A quantifier-free generalised Boolean formula is a formula from the following grammar

Φ := > | f(g1, . . . , gn) | ¬Φ | Φ ∧ Φ

where f(g1, . . . , gn) is said to be a function application, and each f , g1, . . . , gn are function
symbols taken from an infinite alphabet Σ. Each function symbol in Σ is implicitly endowed
with a type Bk,n, with k, n ∈ N. A (quantifier-free) generalised Boolean formula is said to be
well-formed whenever every function application is consistent with the type of the function
symbol, i.e., a function application f(g1, . . . , gn) requires f to be of arity n, if f ∈ B then
n = 0, and otherwise f ∈ Bk,n for some k ≥ 1 and every gi with i ∈ [1, n] belongs to Bk−1,n.

Given a vector-variable of function symbols f = (f1, . . . , fm) of type Bk,n, we write
∃f : Bk,n as a shorthand for the existential quantifier block ∃f1 : Bk,n . . . ∃fm : Bk,n; the
universal quantifier block ∀f : Bk,n stands for ∀f1 : Bk,n . . . ∀fm : Bk,n. The set of all
generalised Boolean formulae of order 0 and alternation depth d is the set of all formulae
∃b1 : B ∀b2 : B . . . ∃bd : B .Φ, where Φ is a quantifier-free generalised Boolean formula.
Generalised Boolean formulae of order k ≥ 1 and alternation depth d are formulae

∃f1 : Bk,n ∀f2 : Bk,n . . . ∃fd : Bk,n .Φ,

where the arity n is arbitrary and Φ is a generalised Boolean formula of order k− 1, arbitrary
alternation depth, and same arity n. The semantics of generalised Boolean formulae is as
expected, e.g., ∃f : Bk,n Ψ states that there is a function f ∈ Bk,n that makes Ψ true. We
write Φ ≡ Ψ to denote that Φ and Ψ are equivalent.

The size |Φ| of a generalised Boolean formula Φ is the number of symbols required to
write it down, where “: Bk,n” is a lexeme that decorates the function symbols, providing
their type, and should not be confused with the actual set Bk,n. We write fv(Φ) for the set of
free function symbols of Φ, i.e., the set of those function symbols that do not appear in the
scope of a quantifier. A sentence is a well-formed generalised Boolean formula Φ where all
function symbols are quantified, i.e. fv(Φ) = ∅. We sometimes write Φ(f1, . . . , fm) or Φ(f),
with f = (f1, . . . , fm), for a formula Φ with fv(Φ) = {f1, . . . , fm}. Given function symbols
g1, . . . , gm and a formula Φ(f1, . . . , fm), we write Φ(g1, . . . , gm) for the formula obtained
from Φ by replacing each fi with gi.

Generalised Boolean formulae are formulae in prenex normal form in which the type Bk,n

of Boolean functions of the quantifier prefix weakly decreases with respect to k. For
presentational convenience, throughout the remainder of the paper we relax these constraints
and consider formulae that are not in prenex formal form. This is done w.l.o.g., as standard
ways of efficiently translating formulae in prenex normal form also work for generalised
Boolean formulae. Moreover, we use standard Boolean connectives ∨, → and ↔, and ⊥.

Let k and d in N+. We introduce the problem HOSAT(k, d):

HOSAT(k, d) : d-alternating satisfiability problem of order k

INPUT: A sentence Φ of order k and alternation depth d.
QUESTION: Is Φ valid?

We define HOSAT(k, ∗) :=
⋃

d∈N+
HOSAT(k, d), i.e., the problem of deciding the validity of
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a sentence of order k and arbitrary alternation depth; and HOSAT :=
⋃

k∈N+
HOSAT(k, ∗).

I Theorem 2. (I) HOSAT(k, d) is complete for Σk-EXP
d .

(II) HOSAT(k, ∗) is complete for STA(∗, expk
2(nO(1)), O(n)).

The reduction we use to show the lower bound of Theorem 2(I) is uniform for all k ≥ 1. By
uniform polynomial time reduction [29], this implies that HOSAT is TOWER-complete.

Related work. In view of the fact that HOSAT is a natural generalisation of SAT, it comes
with no surprise that some of its instances have previously been defined and have found
diverse application in the past. In [1], Babai, Fortnow and Lund relied on HOSAT(1, 1)
(called Oracle-3-satisfiability in the paper) to show that NEXP ⊆ MIP, where MIP is the
class of all languages with multiple-prover interactive proof systems. In [19], Lohrey relied
on HOSAT(1, d) (called QOΣd-SAT in the paper) to show ΣEXP

d -hardness of model checking
Σd-MSO sentences over hierarchical graph unfoldings. These works already hint at how
considering Boolean functions instead of succinct circuits is already beneficial, in terms of
directness of the reductions, for NEXP-hard problems.

Above ΣEXP
d , closely related is the work of Statman on the typed λ-calculus. In [30],

he considers the λ-calculus with single ground type 0, no constants, only power types (→)
and β-conversion, and shows that checking whether two λ-terms of the calculus reduce to
the same normal form is non-elementary recursive (in fact, it shows that the problem is
TOWER-complete). The proof of TOWER-hardness follows thanks to a Church encoding
of the basic language of set theory denoted by Statman with Ω. The variables in formulae
from Ω are associated with a number type from N. A variable of type n ranges over Dn where
D0 := {0,1}, with 0 and 1 constants, and Dn+1 is the powerset of Dn. Formulae of Ω are
obtained by taking the closure under Boolean connectives and quantification of membership
queries of the form 0 ∈ x, 1 ∈ x and y ∈ z, where x is of type 1 and y and z are of types n
and n+1, respectively, for some n ∈ N. While HOSAT and the satisfiability of formulae from
Ω are essentially the same problem, the logic Ω is not suitable to capture any of the levels of
the weak k-EXP hierarchies. To see this, fix k ≥ 1 and let Ω(k) be the subset of the formulae
in Ω having variables of type at most k. Differently from HOSAT(k, ∗), the satisfiability
problem of Ω(k) can be shown to be in PSPACE (more precisely, it is equivalent to QBF)
since the sets Dj with j ≤ k are now fixed a priori. Here, the reason why HOSAT(k, ∗) is
instead k-NEXP-hard is because the sets Bj,n with j ≤ k still have some degree of freedom
given by the unbounded number of choices for n ∈ N.

According to [30], TOWER-completeness of the satisfiability problem of Ω was announced
by Meyer in [24, Theorem 1(7)] as part of a forthcoming paper coauthored with Fischer. To
the best of our knowledge, the latter paper was never published. To resolve this issue, in [22]
Mairson gives a revision of [30] that provides a standalone proof of the TOWER-hardness of
Ω and a simplification to the aforementioned Church encoding.

4 The complexity of HOSAT(k, d)

We prove Theorem 2(I). The proof of the Σk-EXP
d upper bound is quite simple: given a

sentence ∃f1 : Bk,n ∀f2 : Bk,n · · · ∃fd : Bk,n .Φ, where Φ is a generalised Boolean formula
of order k − 1 and arbitrary alternation depth, an alternating Turing machine running in
k-EXP time and performing d alternations implements the following recursive procedure.
1. Guess functions from Bk,n for each of the function symbols in the vectors f1, . . . ,fd,

alternating between existential and universal states according to the quantifier prefix.

CVIT 2016
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2. Recursively on Φ, if Φ = ∃f : Bj,n Ψ (resp. Φ = ∀f : Bj,n Ψ) with j < k then check whether
some (resp. each) function of order j satisfies Φ when assigned to f ; if Φ is quantifier-free,
then check whether it is satisfied under the current assignment of function symbols.

Since k-exponential time is available, the second step can be performed deterministically by
iterating through all function in Bj,n, thus without introducing further alternation.

The Σk-EXP
d lower bound of HOSAT(k, d) is shown by reducing from the d-alternating

multi-tiling problem of order k (in short, AMTP(k, d)) considered in [10]. Amulti-tiling system
S is a tuple (T , T0, Tacc,H,V,M,m) such that T is a finite set of tile types, T0, Tacc ⊆ T are
sets of initial and accepting tiles, respectively, H,V,M ⊆ T × T represent the horizontal,
vertical and multi-tiling matching relations, respectively, and m ∈ N+ is a number written in
unary. We write |S| for the number of symbols required to encode S.

Fix k ∈ N+, and let grid(k,m) be the two-dimensional grid [expk
2(m)]× [expk

2(m)], where
we recall that [u] := [0, u). Each (h, v) ∈ grid(k,m) is said to be a position of the grid,
comprised of a horizontal position h and a vertical position v. Let d ∈ N odd (so that the
innermost quantifier of the AMTP(k, d) problem we are about to formalise is existential).
A d-level S-tiling for grid(k,m) is a tuple (f1, f2, f3, . . . , fd) such that for all ` ∈ [1, d]:
maps: f` : grid(k,m)→ T assigns a tile type to each position of grid(k,m);
hori: (f`(i, j), f`(i, j + 1)) ∈ H for every j ∈ [expk

2(m)− 1] and i ∈ [expk
2(m)];

vert: (f`(i, j), f`(i+ 1, j)) ∈ V for every i ∈ [expk
2(m)− 1] and j ∈ [expk

2(m)];
multi: if ` < d, then (f`(i, j), f`+1(i, j)) ∈M for every i, j ∈ [expk

2(m)]; and
accept: fd(expk

2(m)− 1, j) ∈ Tacc, for some j ∈ [expk
2(m)].

The initial row I (f) of a map f : grid(k,m)→ T is the word f(0, 0)f(0, 1) . . . f(0, expk
2(m)− 1).

AMTP(k, d) : d-alternating multi-tiling problem of order k

INPUT: A multi-tiling system S = (T , T0, Tacc,H,V,M,m).
QUESTION: Is it true that there is w1 ∈ (T0)expk

2 (m) such that for all w2 ∈ (T0)expk
2 (m)

there is · · · there is wd ∈ (T0)expk
2 (m) such that grid(k,m) has a d-level tiling

(f1, . . . , fd) where I (f`) = w` for all ` ∈ [1, d] ?

I Proposition 3 ([10]). The problem AMTP(k, d) is complete for Σk-EXP
d . When d is given

as part of the input instead of being fixed, the problem is STA(∗, expk
2(nO(1)), O(n))-complete.

The AMTP(k, d) problem arose from [4], in which the case k = 1 and d not fixed is shown
to be STA(∗, 2nO(1)

, O(n))-complete. See [25, Appendix E.7] or [23] for self-contained proofs.
In the remaining part of this section, we describe a reduction from AMTP(k, d) to

HOSAT(k, d). First, we introduce a family of generalised Boolean formulae that allows us to
compare the bit-strings enc(f) and enc(g) of two functions f and g in Bk,n, with n, k ∈ N.
Subsequently, we define formulae to encode the tiling conditions (maps)–(accept) as well as
the alternation on elements of (T0)expk

2 (m) required by the AMTP(k, d) problem. We remind
the reader that, w.l.o.g., we define generalised Boolean formulae without constraining them
to be in prenex normal form, though we need to keep track of the quantifier alternation for
function symbols of type k.

Comparing bit-strings. We define formulae eqk(f, g), lessk(f, g) and succk(f, g) stating that
enc(f) = enc(g), enc(f) < enc(g) and enc(f) + 1 = enc(g), respectively, and (h1, . . . , hn) <k

(h′1, . . . , h′n), with all hi and h′i in Bk,n, which checks if the concatenation enc(h1) · · · enc(hn)
encodes a number smaller than enc(h′1) · · · enc(h′n). The formula eqk(f, g) is defined as:

eqk(f, g) := ∀h1, . . . , hn : Bk−1,n.f(h1, . . . , hn)↔ g(h1, . . . , hn).
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The formulae lessk(f, g) and (h1, . . . , hn) <k (h′1, . . . , h′n) have a mutually recursive definition:
lessk+1(f, g) is defined using (h1, . . . , hn) <k (h′1, . . . , h′n), which in turn requires lessk(f, g).
First, we define the base case (h1, . . . , hn) <0 (h′1, . . . , h′n), with each hi and h′i in B = {0, 1}:

(h1, . . . , hn) <0 (h′1, . . . , h′n) :=
∨n

i=1 ¬hi ∧ h′i ∧
∧n

j=i+1(h′j ↔ hj).

Intuitively, this formula forces enc(h1) . . . enc(hn) < enc(h′1) . . . enc(h′n) by requiring that
there is a bit i ∈ [1, n] that is set to 0 in enc(h1) . . . enc(hn), set to 1 in enc(h′1) . . . enc(h′n),
and the binary representations of enc(h′1) . . . enc(h′n) and enc(h1) . . . enc(hn) coincide on all
bits j > i. This is indeed the characterisation of < on binary numbers in least significant digit
first encoding. The same idea is used to define the formula lessk(f, g). Inductively, assume
that the formula (h1, . . . , hn) <k (h′1, . . . , h′n) was defined. We use it to define lessk+1(f, g):

lessk+1(f, g) := ∃h : Bk,n .¬f(h) ∧ g(h) ∧ ∀h′ : Bk,n .h <k h′ → (f(h′)↔ g(h′)),

where h = (h1, . . . , hn) and h′ = (h′1, . . . , h′n).
To complete the definitions of lessk(f, g) and (h1, . . . , hn) <k (h′1, . . . , h′n), what is left is

to define (h1, . . . , hn) <k+1 (h′1, . . . , h′n) using lessk+1. We need to respect the equivalence
(h1, . . . , hn) <k+1 (h′1, . . . , h′n) ≡

∨n
i=1 lessk+1(hi, h

′
i) ∧

∧n
j=i+1 eqk+1(hj , h

′
j). However, we

cannot define (h1, . . . , hn) <k+1 (h′1, . . . , h′n) as the formula in the right hand side of this
equivalence, as this formula uses n occurrences of lessk and would thus lead to both lessk and
(h1, . . . , hn) <k (h′1, . . . , h′n) being of size exponential in k. To solve this issue and obtain
formulae of polynomial size, we rely on a variant of a trick used by Fisher and Rabin in [11],
based on the equivalence Φ(a) ∨ Φ(b) ≡ ∃c : Φ(c) ∧ (c = a ∨ c = b):

(h1, . . . , hn) <k+1 (h′1, . . . , h′n) :=
∃a, b : Bk+1,n . lessk+1(a, b) ∧

∨n
i=1 eqk+1(a, hi) ∧ eqk+1(b, h′i) ∧

∧n
j=i+1 eqk+1(hj , h

′
j).

I Lemma 4. Let f, g ∈ Bk,n. Then, lessk(f, g) iff enc(f)<enc(g); and |lessk(f, g)| ≤ O(n3k).

The definition of succk(f, g) follows a similar characterisation of successor for binary
numbers: we have a+ 1 = b whenever (1) there is a bit i that is set to 0 in a and to 1 in b,
(2) the binary representations of a and b coincide on every bit j > i (exactly as in the case of
<) and moreover (3) every bit j < i is set to 1 in a and it is set to 0 in b. For instance, in
least significant digit first encoding, (1111001)2 + 1 = (0000101)2. We have:

succk+1(f, g) :=∃h : Bk,n .¬f(h) ∧ g(h) ∧ ∀h′ : Bk,n .(
h <k h′ → (f(h′)↔ g(h′))

)
∧
(
h′ <k h→ f(h′) ∧ ¬g(h′)

)
,

where h = (h1, . . . , hn) and h′ = (h′1, . . . , h′n).

I Lemma 5. For f, g ∈ Bk,n, succk(f, g) iff enc(f)+1 = enc(g); and |succk(f, g)| ≤ O(n3k).

From AMTP(k, d) to HOSAT(k, d). We are ready to prove the lower bounds of Theorem 2.
For k = 1, the ΣEXP

d -hardness of HOSAT(1, d) was already established by Lohrey in [19,
Proposition 33] via a reduction from Turing machines. Therefore, we consider k ≥ 2 (our
proof can nonetheless be adapted to the case k = 1). Let S = (T , T0, Tacc,H,V,M,m) be a
multi-tiling system. We assume T = [1, r] for some r ∈ N+ (thus H,V,M⊆ [1, r]× [1, r]).

Let n := 2 + #T + m. We write ⊥k for the function in Bk,n such that enc(⊥k) = 0,
i.e. ⊥k is the only solution f of the formula botk(f) := ∀g1, . . . , gn : Bk−1,n .¬f(g1, . . . , gn).
Similarly, we write >k for the function in Bk,n with maximal encoding, that is the only
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23:8 Higher-Order Quantified Boolean Satisfiability

solution f to the formula topk(f) := ∀g1, . . . , gn : Bk−1,n . f(g1, . . . , gn). The first step of the
reduction consists of encoding the d functions of a d-level S-tiling (f1, . . . , fd). We encode
each of these functions using a function f ∈ Bk,n satisfying the following two properties:
1: If f(h, v, t1, . . . , tr, u1, . . . , um) = 1 then enc(h) and enc(v) belong to [expk

2(m)], each ti
belongs to {⊥k−1,>k−1} and every uj is ⊥k−1.

2: Given h, v ∈ Bk−1,n, if enc(h), enc(v) ∈ [expk
2(m)] then there is exactly one tuple t =

(t1, . . . , tr) such that f(h, v, t, u1, . . . , um) = 1; and exactly one among t1, . . . , tr is >k−1.
Here, the inputs h and v are used to represent horizontal and vertical positions in the grid,
the inputs t1, . . . , tr are used to encode the tiles, and the inputs u1, . . . , um are only required
to makes sure we have enough inputs to encode the fact that h and v belong to [expk

2(m)] (see
the formula ok1 below). Together, Properties (1) and (2) characterise the condition (maps)
of the S-tiling (we add the other tiling conditions later). To capture Property 1 above,
notice first that h and v should be taken from a space of exactly expk

2(m) functions. As
#(Bk−1,n) ≥ expk

2(m), this obliges us to introduce a formula okk(g) characterising the fact
that a function g ∈ Bk,n is such that enc(g) ∈ [expk+1

2 (m)]. We have

ok1(g) := ∀h1, . . . , hn : B . g(h1, . . . , hn)→
∧n

i=m+1 ¬hi

okk+1(g) := ∀h1, . . . hn : Bk,n . g(h1, . . . , hn)→ (okk(h1) ∧
∧n

i=2 botk(hi)).

Intuitively, for k ≥ 1 the formula okk(g) holds whenever for all inputs (h1, . . . , hn) and
j := enc(h1) · · · enc(hn), if the j-th bit of enc(g) is set to 1 then j ∈ [expk

2(m)]. This means
that enc(g) corresponds to a binary number with expk

2(m) bits, i.e. enc(g) ∈ [expk+1
2 (m)].

In all the formulae below, we let t = (t1, . . . , tr), u = (u1, . . . , um) and t′ = (t′1, . . . , t′r).
We define the formula mapsOnek(f) stating that f ∈ Bk,n satisfies Property 1:

mapsOnek(f) :=∀h, v, t,u : Bk−1,n . f(h, v, t,u)→ okk−1(h) ∧ okk−1(v)∧∧r
i=1(topk−1(ti) ∨ botk−1(ti)) ∧

∧m
j=1 botk−1(uj).

Suppose that f ∈ Bk,n satisfies mapsOnek(f). In a similar fashion, one defines a for-
mula mapsTwok(f) stating that f satisfies Property 2 of the encoding:

mapsTwok(f) := ∀h, v : Bk−1,n . okk−1(h) ∧ okk−1(v)→ ∃t,u : Bk−1,n . f(h, v, t,u)∧∨r
i=1(topk−1(ti) ∧

∧r
j=1
j 6=i

botk−1(tj)) ∧ ∀t′ : Bk−1,n . f(h, v, t′,u)→
∧r

i=1 eqk−1(ti, t′i).

We define mapsk(f) := mapsOnek(f) ∧mapsTwok(f), and move to the remaining tiling
conditions. The conditions (hori) and (vert) can be defined with the help of the formula succk.
Below, we present the definition of the formula horik(f) that encodes the condition (hori):

horik(f) := ∀h, v, v′ : Bk−1,n . okk−1(h) ∧ okk−1(v) ∧ okk−1(v′) ∧ succk−1(v, v′)
→
∨

(i,j)∈H f(h, v, i) ∧ f(h, v′, j),

where f(h, v, i) is a shortcut for ∃t,u : Bk−1,n . topk−1(ti)∧ f(h, v, t,u), i.e. a formula stating
that the tile i ∈ T is assigned to the position (enc(h), enc(v)) of the grid, under the
hypothesis that f satisfies mapsk(f). The definition of the formula vertk(f) encoding the
condition (vert) is defined analogously. For the condition (multi), let f and g be two functions
of Bk,n satisfying mapsk. We define:

multik(f, g) := ∀h, v : Bk−1,n . okk−1(h) ∧ okk−1(v)→
∨

(i,j)∈M f(h, v, i) ∧ g(h, v, j).
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Lastly, we define the formula acck(f) corresponding to the condition (accept):

acck(f) := ∃h, v : Bk−1,n . okk−1(h) ∧ okk−1(v) ∧
(∨

i∈Tacc
f(h, v, i)

)
∧

∀h′ : Bk−1,n . lessk−1(h, h′)→ ¬okk−1(h′).

Here, the subformula ∀h′ : Bk−1,n . lessk−1(h, h′)→ ¬okk−1(h′) forces enc(h) = exp2
2(m)−1.

To complete the reduction, what is left is to encode the quantifier prefix “∃w1 ∈ (T0)expk
2 (m)

∀w2 ∈ (T0)expk
2 (m) . . . ∃wd ∈ (T0)expk

2 (m)” of the AMTP(k, d) problem. To this end, we
introduce two formulae rowk(f) and rowCpk(f, g). The former states that f ∈ Bk,n satisfies
mapsk, and whenever f(h, v, t,u) holds the only ti equal to >k−1 is such that i ∈ T0:

rowk(f) := mapsk(f) ∧ ∀h, v, t,u : Bk−1,n . f(h, v, t,u)→
∨

i∈T0
topk(ti).

We use this formula to quantify on the initial row I(f) of a S-tiling function f, forgetting about
the information stored by f elsewhere. This is done thanks to the formula rowCpk(f, g),
which given f, g ∈ Bk,n satisfying mapsk, states that f and g agree on the first row:

rowCpk(f, g) := ∃h : Bk−1,n .botk−1(h) ∧ ∀v, t,u : Bk−1,n . f(h, v, t,u)↔ g(h, v, t,u),

The quantifier prefix of AMTP(k, d) is encoded in HOSAT(k, d) by first quantifying over
functions w1, . . . , wd ∈ Bk,n satisfying rowk, appropriately alternating between existential and
universal quantification, and then existentially quantifying over functions f1, . . . , fd ∈ Bk,n

that encode the S-tiling functions (f1, . . . , fd). The formula rowCpk(fi, wi) is used to “copy”
the first row of wi in fi. This leads to the formula amtpk(S):

∃w1 : Bk,n . rowk(w1)∧
∀w2 : Bk,n . rowk(w2) →
. . .

∃wd : Bk,n . rowk(wd)∧
∃f1, . . . , fd : Bk,n .

∧d
i=1(mapsk(fi) ∧ rowCpk(fi, wi) ∧ horik(fi) ∧ vertk(fi))

∧
∧d−1

i=1 multik(fi, fi+1) ∧ acck(fd).

I Proposition 6. Let d ∈ N+ and k ≥ 2. The formula amtpk(S) is valid if and only if
AMTP(k, d) accepts on input S. Moreover, the formula amtpk(S) has size O(d · k · |S|4).

Notice that amtpk(S) is a generalised Boolean formula of order k and alternation depth d,
since bringing it into prenex normal form yields a formula of the form ∃w1 : Bk,n ∀w2 : Bk,n . . .

∃wd, f1, . . . , fd : Bk,n .Φ, where Φ is a generalised Boolean formula of order k − 1 and size
in O(d · k · |S|4). By Proposition 3 (first part), this completes the proof of Theorem 2(I).
Theorem 2(II) is proven analogously, by simply treating d as part of the input instead of
being fixed. The upper bound follows the same strategy as the case of HOSAT(k, d), and
the lower bound follows form Proposition 6 together with the second part of Proposition 3.

5 Weak Presburger arithmetic is as hard as Presburger arithmetic

In this section, we illustrate the usefulness of the higher order satisfiability problem by
employing it to derive a STA(∗, exp2

2(nO(1)), O(n)) lower bound for the weak fragment of
Presburger arithmetic (Weak PA), hence showing that this logic matches the complexity
of (standard) Presburger arithmetic. Weak PA is the first-order theory of the structure
〈Z, (c)c∈Z,+,=〉, where (c)c∈Z are constant symbols interpreted as their homographic integer,
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the binary function symbol + is interpreted as addition on Z and the binary relation = is
interpreted as equality on Z. Subsequently, linear Terms t, t′, . . . are of the form a1x1 +
· · ·+ adxd + c, where d is arbitrary, a1, . . . , ad, c ∈ Z, and x1, . . . , xd are first-order variables
interpreted over Z. Formulae of Weak PA close equalities between linear terms t = t′ under
Boolean connectives ¬, ∧, ∨, etc., and first-order quantifiers ∃x and ∀x. For example, given
m ∈ N+ and linear terms t, t′, the modulo constraint t ≡m t′ stating that t is congruent to t′
modulo m is characterised by the Weak PA formula ∃x . t− t′ = x ·m, where x is a variable
not appearing in t or t′.

Surprisingly, our lower bound holds for the following two fragments of Weak PA:
The positive fragment that forbids negation, allowing formulae from the grammar

Φ := a1x1 + · · ·+ adxd = c | Φ ∧ Φ | Φ ∨ Φ | ∃x .Φ | ∀x .Φ.

The Horn fragment, in which formulae are of the form ∃x1∀x2 . . . ∃xm .
∧

i∈I(Φi → Ψi),
where x1, . . . ,xm are vectors of variables, and each Φi and Ψi is a system of equalities,
that is a conjunction of equalities between linear terms.

I Theorem 7. The positive and Horn fragments of Weak PA are STA(∗, 22nO(1)

, O(n))-hard.

To prove this theorem we provide a reduction from HOSAT(2, ∗) to the validity problem for
the positive fragment of Weak PA, and a translation from Weak PA to its Horn fragment.
The reduction defines arithmetic with multiplication on doubly exponential finite segments
of integers, such as [22n ], and, in a more restricted way, one exponential higher. Here we
strengthen Berman’s lower bound argument for standard PA [3] (see also [18, Lecture 22]),
which relies on the order predicate throughout.

Encoding second-order Boolean functions in Weak PA. Let n ∈ N+ be encoded in unary.
In a nutshell, the main difficulty in the reduction from HOSAT(2, ∗) is to understand how to
encode the functions in B1,n := {0, 1}n → {0, 1} and B2,n := (B1,n)n → {0, 1} using integer
numbers, as well as translating the function applications f(g1, . . . , gn). For the set B1,n,
we rely on the encoding enc(.) defined in Section 3 that maps every function f ∈ B1,n into
the number enc(f) ∈ [22n ] written in binary. To encode functions in B2,n, we borrow ideas
from [13, 14]. We say that z ∈ Z encodes some function in B2,n if and only if for every
i ∈ [2n2n ] and all prime numbers p, q ∈ [i3, (i+ 1)3), z ≡p 0 or z ≡p 1, and z ≡p 0 if and only
if z ≡q 0. Furthermore, we say that z ∈ Z (precisely) encodes the function f ∈ B2,n if and
only if z encodes some function in B2,n and moreover for every g = (g0, . . . , gn−1) ∈ (B1,n)n

and b ∈ {0, 1},

f(g) = b if and only if z ≡p b for a prime p ∈ [β(g)3, (β(g) + 1)3),

where β : (B1,n)n → [0, 2n2n) is the bijection β(g0, . . . , gn−1) :=
∑n−1

j=0 enc(gj) · 2j·2n . The
fact that any function in B2,n is encoded by some z ∈ Z follows from the Chinese remainder
theorem together with Ingham’s theorem [16], a theorem ensuring that for i sufficiently large,
[i3, (i+ 1)3) contains at least one prime. As in, e.g., [13, 14], to simplify the presentation we
apply Ingham’s theorem as if it was known to be true for all i ∈ N. An alternative would be
to use an analogous result on primes between fixed powers [9] that holds for all i, or to add
constant offsets throughout.

From HOSAT(2, ∗) to the positive fragment of Weak PA. We formalise the translation τ
that, given a formula from HOSAT(2, ∗) returns an equivalent formula in the positive fragment
of Weak PA. We divide the translation into three parts, depending on whether we are dealing
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formula semantics
ϕn(x, z) x = 22n

· z
multn(x, y, z) x = y · z, z ∈ [22n

]
In(x) z ∈ [22n

]
powern(y, j) y = 2j and j ∈ [2n]
ψk,n(x) x = 2k2n

formula semantics
intdivn(x, y, q, r) x = q · y + r, y ∈ [22n

], r ∈ [y]
quotn(x, y, q) ∃r ∈ [y] s.t. intdivn(x, y, q, r)
remn(x, y, r) ∃q ∈ Z s.t. intdivn(x, y, q, r)
(not)primen(p) p ∈ [22n

] is (not) prime
x =n y

3 y ∈ [222(n+1)
] and x = y3

Figure 1 Auxiliary formulae required to reduce HOSAT(2, ∗) to positive Weak PA.

with a generalised Boolean formula of order 0, 1 or 2. The translation τ is homomorphic for
binary Boolean connectives: τ(Φ∧Ψ) := τ(Φ)∧ τ(Ψ) and τ(Φ∨Ψ) := τ(Φ)∨ τ(Ψ). Without
loss of generality we assume that negations occurring in the quantifier-free part of generalised
Boolean formulae only appear in front of function applications (recall that we see Boolean
values as 0-ary functions). A (function application) literal is either a function application
f(g1, . . . , g`) or its negation ¬f(g1, . . . , g`).

Formulae of order 0. We translate ∃f : B, ∀f : B and literals f and ¬f , with f of type B.
Let B(x) := x = 0 ∨ x = 1, i.e. the formula stating x ∈ B. Clearly, τ(f) := f = 1 and
τ(¬f) := f = 0. The quantifiers ∃f : B and ∀f : B are translated as follows:

τ(∃f : B Φ) := ∃f .B(f) ∧ τ(Φ), τ(∀f : B Φ) := ∀f ′∃f . f ≡2 f
′ ∧ B(f) ∧ τ(Φ).

A few words on the translation of ∀f : B. We cannot translate the universal quantifier ∀f : B Φ
as ∀f .B(f) → τ(Φ), i.e. relying on the ∃-∀ duality, as B(f) → τ(Φ) is not in the positive
fragment of Weak PA. Our definition circumvents this problem by relying on the equivalence
∀x . x ∈ [0, `]→ Φ(x, z) ≡ ∀x′∃x . x′ ≡`+1 x ∧ x ∈ [0, `] ∧ Φ(x, z).

Formulae of order 1. We treat quantifiers ∃f : B1,n, ∀f : B1,n and literals f(g1, . . . , gn) and
¬f(g1, . . . , gn), where f is of type B1,n and each gi is of type B. To achieve this we rely on the
auxiliary formulae formally specified in Figure 1 and defined below (ψk,n(x), notprimen(p)
and x =n y

3 are defined later as only used for formulae of order 2). The formulae ϕn, multn,
In and intdivn are an adaptation of the homonymous formulae provided by Kozen in [18,
Lecture 22] in the context of linear real arithmetic. For instance, the formula ϕn(x, z) is
inductively defined in [18, p. 147] as follows:

ϕ0(x, z) := x = 2z, ϕn+1(x, z) := ∃y∀a, b . (a = x ∧ b = y) ∨ (a = y ∧ b = z)→ ϕn(a, b).

The inductive case of ϕn+1(x, z) is defined relying on the trick of Fisher and Rabin [11] we
already encountered in Section 3, used here to obtain a linear size formula equivalent to
∃y : ϕn(x, y) ∧ ϕn(y, z). As it stands ϕn+1(x, z) is not in the positive fragment of Weak PA.
We rely on modulo constraints to resolve this issue, redefining ϕn+1(x, z) as follows:

ϕn+1(x, z) := ∃y∀i∃a, b .
(
(i ≡2 0 ∧ a = x ∧ b = y) ∨ (i ≡2 1 ∧ a = x ∧ b = y)

)
∧ ϕn(a, b) .

The definitions of multn(x, y, z), In(x) and intdivn(x, y, q, r) require similar adaptations
w.r.t. [18, p. 148f], which are omitted due to space constraints. The formulae quotn and
remn are simple shortcuts of intdivn, e.g., quotn(x, y, q) := ∃r intdivn(x, y, q, r).

Finally, powern(y, j) is intuitively defined by bit-blasting j into n bits j0, . . . , jn−1, so
that j =

∑n−1
i=0 ji · 2i, and forcing y = 2j =

∏
{exp2

2(i) : i ∈ [n] and ji = 1} to hold:

powern(y, j) := ∃(j0, y0, z0), . . . , (jn−1, yn−1, zn−1) . j =
∑n−1

i=0 ji · 2i ∧ z0 = y0 ∧ y = zn−1

∧
∧n−1

i=1
(
multn(zi, zi−1, yi) ∧

(
(ji = 0 ∧ yi = 1) ∨ (ji = 1 ∧ ϕi(yi, 1))

))
.
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The subformula z0 = y0 ∧ y = zn−1 ∧
∧n−1

i=1 multn(zi, zi−1, yi) computes y =
∏n−1

i=0 yi. We
are ready to translate the generalised Boolean formula of order 1. Recall that we encode
a function f in B1,n with the number enc(f) ∈ [22n ], and we have f(g0, . . . , gn−1) = 1
if and only if the jth bit of enc(f) is 1, where j =

∑n−1
i=1 gi · 2i. With this in mind,

the case for existential quantifiers closely follows the definition for formulae of order 0:
τ(∃f : B1,n Φ) := ∃f . In(f) ∧ τ(Φ). The case of universal quantifiers is more involved:
whereas for the case of formulae of order 0 we resorted to reasoning modulo 2, we now reason
modulo 22n . We can bind 22n to a variable ` with the formula ϕn(`, 1). For m ∈ Z and
r ∈ [22n ], we can then check if m ≡` r holds using the formula remn+1(m, `, r). Note that we
use remn+1 instead of remn, as ` belongs to the set [22n+1 ] \ [22n ]. Here is the translation:

τ(∀f : B1,n Φ) := ∀f ′∃f, ` . ϕn(`, 1) ∧ remn+1(f ′, `, f) ∧ τ(Φ).

For the function application literal f(g0, . . . , gn−1), where each gi is mapped through τ into
a homonymous Boolean variable according to the translation of formulae of order 0, we
consider the number j =

∑n−1
i=0 gi · 2i and check that the jth bit of enc(f) is set to 1 by

verifying that the quotient of the division f/2j is odd. As a formula:

τ(f(g0, . . . , gn−1)) := ∃j, y, q . j =
∑n−1

i=0 gi · 2i ∧ powern(y, j) ∧ quotn(f, y, q) ∧ q ≡2 1.

We treat the literal ¬f(g0, . . . , gn−1) in a similar way, by checking whether f/2j is even. So,
τ(¬f(g0, . . . , gn−1)) is obtained from τ(f(g0, . . . , gn−1)) by replacing q ≡2 1 with q ≡2 0.

Formulae of order 2. To complete the definition of τ , we now show how to handle quantifiers
∃f : B2,n and ∀f : B2,n, and function application literals f(g1, . . . , gn) and ¬f(g1, . . . , gn),
where f is of type B2,n and every gi is of type B1,n. As explained at the beginning of the
section, functions in B2,n are encoded as integers z ∈ Z having the property that for every
i ∈ [2n2n ] and all prime numbers p, q ∈ [i3, (i + 1)3), z ≡p 0 or z ≡p 1, and z ≡p 0 if and
only if z ≡q 0. Below, we aim at defining the formula enc2

n(z) stating that z encodes some
function in B2,n. We start by defining the formula notprimen(p) from Figure 1:

notprimen(p) := In(p) ∧ ∃d . In(d) ∧ In(d− 2) ∧ In(p− d− 1) ∧ remn(p, d, 0).

Informally, notprimen(p) states that p is not a prime number by finding a divisor d ∈ [2, p− 1].
Notice that if we assume p, d ∈ [22n ] then In(d− 2) ≡ d ≥ 2 and In(p− d− 1) ≡ d < p.

Two further comments on the definition of encoding for functions in B2,n given above:
first, observe that this definition requires the construction of numbers (i+ 1)3 with i ∈ [2n2n ].
Since (2n2n + 1)3 < 222(n+1) , all these numbers satisfy the formula I2(n+1)(x). This explains
the contribution of notprime2(n+1) and similar formulae in the forthcoming definition of
enc2

n(z). Second, the encoding requires to iterate over all i ∈ [2n2n ]. As in the definition of τ
for the case ∀f : B1,n, this is done by binding 2n2n to a variable ` and then considering all
numbers in [`] by relying on the formula rem2(n+1). To characterise 2n2n we use the following
formula that, given k ∈ N+ in unary, is satisfied whenever x = 2k2n :

ψk,n(x) := ∃z1, . . . , zk . zk = 1 ∧ ϕk(x, z1) ∧
∧k−1

i=1 ϕn(zi, zi+1).

We define x =n y
3 := ∃z .mult2(n+1)(z, y, y) ∧mult2(n+1)(x, z, y) and the formula enc2

n(z):

enc2
n(z) :=∀i′∃i, `, a, b . ψn,n(`) ∧ rem2(n+1)(i′, `, i) ∧ a =n i

3 ∧ b =n (i+ 1)3 ∧
∀p′, q′∃`′, p, q . ϕ2(n+1)(`′, 1) ∧ rem2n+3(p′, `′, p) ∧ rem2n+3(q′, `′, q)∧(∨

r∈{p,q}
(
I2(n+1)(a− r − 1) ∨ I2(n+1)(r − b) ∨ notprime2(n+1)(r)

)
∨
∨

s∈{0,1}
(
rem2(n+1)(z, p, s) ∧ rem2(n+1)(z, q, s)

))
.
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Let us dissect this formula line by line. The first line iterates through all i ∈ [`] = [2n2n ],
binding a and b to i3 and (i+1)3 respectively. The second line iterates through all p, q ∈
[`′] = [222(n+1) ]. Following the definition of our encoding of functions in B2,n, we check that

one among p and q lies outside [a, b) or is not prime (third line of the formula), or
z ≡p 0 or z ≡p 1, and z ≡p 0 if and only if z ≡q 0 (fourth line of the formula).

I Lemma 8. A number z ∈ Z satisfies enc2
n(z) iff z encodes some function in B2,n.

We can now define τ for ∃ quantifiers: τ(∃f : B2,n Φ) := ∃f : enc2
n(f) ∧ τ(Φ). For universal

quantifiers we reason dually and define a positive Weak PA formula notenc2
n(z) stating that

z does not encode any function in B2,n. Defining this formula requires a positive Weak PA
formula to test for the primality of p ∈ [22n ]:

primen(p) := In(p)∧ ∀z∃d, r . remn(z, p, d)∧
(
d = 0∨ d = 1∨

(
remn(p, d, r)∧ In(r− 1)

))
.

Afterwards, notenc2
n(z) is defined by slightly revisiting enc2

n(z):

notenc2
n(z) :=∃i, `, a, b, p, q . ψn,n(`) ∧ I2(n+1)(`− i− 1) ∧ a =n i

3 ∧ b =n (i+ 1)3 ∧∧
r∈{p,q}

(
I2(n+1)(r − a) ∧ I2(n+1)(b− r − 1) ∧ prime2(n+1)(r)

)
∧

∃s, t . rem2(n+1)(z, p, s) ∧ rem2(n+1)(z, p, t) ∧ (I2(n+1)(s− 2) ∨ s ≡2 t+ 1).

We define the translation for universal quantifiers as τ(∀f : B2,n Φ) := ∀f : notenc2
n(f)∨τ(Φ).

Let g = (g0, . . . , gn−1). What is left is to treat the literals f(g) and ¬f(g). Once
more, recall that every gi is a function in B1,n, and thus it is translated through τ into a
homonymous integer variable that is constrained to be in [22n ]. Suppose that z encodes the
function f . To check whether f(g) holds (resp. does not hold), we must check whether z ≡p 1
(resp. z ≡p 0) for some prime number p in the interval [i3, (i+ 1)3) with i :=

∑n−1
j=0 gj · 2j·2n .

Formally, given d ∈ {0, 1} and i ∈ [2n2n ], we define the macro z[i] =n d to check this property:

z[i] =n d := ∃a, b, p . a =n i
3 ∧ b =n (i+ 1)3 ∧ prime2(n+1)(p)∧

I2(n+1)(p− a) ∧ I2(n+1)(b− p− 1) ∧ rem2(n+1)(z, p, d).

It then suffices to compute i from g = (g0, . . . , gn−1), with the following formula

γn(i, g) := ∃x0, y0, . . . , xn−1, yn−1 . i =
∑n−1

j=0 xj ∧
∧n−1

j=0
(
ψj,n(yj) ∧mult2(n+1)(xj , yj , gj)

)
,

leading to the following translations for the literals f(g) and ¬f(g):

τ(f(g)) := ∃i . γn(i, g) ∧ f [i] =n 1, τ(¬f(g)) := ∃i . γn(i, g) ∧ f [i] =n 0.

The correctness of the translation τ is provided by the following proposition, shown by
structural induction on the generalised Boolean formula Φ.

I Proposition 9. A generalised Boolean formula Φ of order 2 is valid if and only if so
is τ(Φ). The size of τ(Φ) is polynomial in the size of Φ.

Horn Weak PA = Weak PA. To complete the proof of Theorem 7, we need to show
that Weak PA reduces to its Horn fragment. Briefly, this is done with standard formula
manipulations and by relying on the equivalences below (notice the similarities to the trick
used to define ϕn):

Φ ∧Ψ ≡ ∀x . (x ≡2 0→ Φ) ∧ (x ≡2 1→ Ψ), Φ ∨Ψ ≡ ∃x . (x ≡2 0→ Φ) ∧ (x ≡2 1→ Ψ);

where the variable x above does not occur in Φ nor in Ψ.
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