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ABSTRACT
This paper resolves two open problems on linear integer arithmetic

(LIA), also known as Presburger arithmetic. First, we give a triply

exponential geometric decision procedure for LIA, i.e., a procedure

based on manipulating semilinear sets. This matches the running

time of the best quantifier elimination and automata-based pro-

cedures. Second, building upon our first result, we give a doubly

exponential upper bound on the Vapnik–Chervonenkis (VC) dimen-

sion of sets definable in LIA, proving a conjecture of D. Nguyen

and I. Pak [Combinatorica 39, pp. 923–932, 2019].
These results partially rely on an analysis of sets definable in

linear real arithmetic (LRA), and analogous results for LRA are also

obtained. At the core of these developments are new decomposition

results for semilinear and R-semilinear sets, the latter being the sets

definable in LRA. These results yield new algorithms to compute

the complement of (R-)semilinear sets that do not cause a non-

elementary blowup when repeatedly combined with procedures

for other Boolean operations and projection. The existence of such

an algorithm for semilinear sets has been a long-standing open

problem.
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1 INTRODUCTION
Linear arithmetic theories are first-order theories over numerical

domains, such as R or Z, and the signature ⟨0, 1, +, ≤⟩ whose con-
stant and relation symbols are interpreted in their natural semantics.

For R and Z, these theories are commonly referred to as linear real
arithmetic (LRA) and linear integer arithmetic (LIA), respectively,
the latter also known as Presburger arithmetic. The expressiveness
and computational complexity of these theories have been stud-

ied for decades. From the perspective of computational logic, an

appealing aspect of arithmetic theories is a troika of decision pro-

cedure paradigms for both LRA and LIA: quantifier elimination

procedures [12, 32, 36, 46], automata-based procedures [4, 5, 9, 47],

and geometric (generator-based) procedures [6, 15].

The main focus of this paper is on the algorithmic and descrip-

tional complexity of Boolean operations on sets definable in LRA

and LIA and their geometric properties. The fact that both LRA and

LIA admit quantifier elimination (in case of LIA in the extended

structure with additional unary divisibility predicates 𝑐 | · for all
𝑐 > 0 [36]) immediately enables us to understand the geometry of

the sets they define. For LRA, a quantifier-free formula is a Boolean

combination of linear inequalities, and hence the sets definable

in LRA are finite unions of copolyhedra, which are convex poly-

hedra possibly with some faces removed. We refer to such sets as

R-semilinear sets. The sets definable in LIA are commonly known as

semilinear sets, which are finite unions of intersections of a convex

polyhedron with an integer lattice.

Semilinear sets admit a generator representation as finite unions

of hybrid linear sets [6, 15]. Given finite sets of generators 𝐵, 𝑃 ⊆ Z𝑑 ,
the hybrid linear set𝑀 ⊆ Z𝑑 (in dimension 𝑑) generated by 𝐵 and 𝑃

is the set

𝐿(𝐵, 𝑃) := {𝒃 +𝜆1 ·𝒑1
+ · · · +𝜆𝑘 ·𝒑𝑘 : 𝒃 ∈ 𝐵, 𝑘 ≥ 0, 𝜆𝑖 ∈ N,𝒑𝑖 ∈ 𝑃}.

We call the hybrid linear sets constituting a semilinear set its com-
ponents, and we denote by ∥𝑀 ∥ the maximum of 2 and the absolute

values of all the numbers appearing in the generators. Analogously,

by the Minkowski–Weyl theorem (see, e.g., [33, Thm. 2.8] or [40,

Ch. 8]), rational convex polyhedra admit a generator representation

𝐾 (𝑉 ,𝑊 ) ⊆ R𝑑 as the sum of the convex hull of a finite set 𝑉 ⊆ Q𝑑

https://doi.org/10.1145/3531130.3533372
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and a cone generated by another finite set𝑊 ⊆ Q𝑑 . The generator
representation of R-semilinear sets are finite unions of copolyhe-

dra, i.e., sets of the form 𝐾 (𝑉 ,𝑊 ) \
(
𝐾 (𝑉1,𝑊1) ∪ · · · ∪ 𝐾 (𝑉𝑛,𝑊𝑛)

)
,

where all𝐾 (𝑉𝑖 ,𝑊𝑖 ) are faces of𝐾 (𝑉 ,𝑊 ). Since the components ofR-
semilinear sets and semilinear sets are easily seen to be definable in

LRA and LIA, respectively, it follows that they are effectively closed

under projection along the coordinate axes and under all Boolean

operations. Consequently, it is not difficult to see that (R-)semilinear

sets in generator representation can be employed in geometric
(generator-based) decision procedures for LRA and LIA, respec-

tively. Given a formula Φ(𝒙) ≡ ∃𝒚
1
∀𝒚

2
· · ·𝑄𝑛𝒚𝑛 Ψ(𝒙,𝒚1, . . .𝒚𝑛),

𝑄𝑛 ∈ {∃,∀}, of LRA or LIA in prenex normal form, the idea is to

transformΨ into an (R-)semilinear set and to then perform repeated

complementation and projection steps to eliminate all 𝒚𝑖 until a
generator representation for the set of all 𝒙 satisfying Φ is obtained.

Algorithms for Boolean operations on (R-)semilinear sets given

in generator representation have been investigated over the last 40

years. For the reals, generator-based decision procedures have seen

early successes. E. Sontag [44] gave such a decision procedure for

LRA with optimal complexity-theoretic upper bounds, in particular

for a fixed number of quantifier alternations. Over the integers, how-

ever, the situation has been less satisfactory. D.T. Huynh [20, 21]

was the first to use a geometric approach to show that the inclusion

problem for explicitly given semilinear sets is in ΠP

2
by establishing

that the complement of a semilinear set, if non-empty, contains an

element of polynomially bounded bit size. E. Kopczyński [25] gen-

eralised this result and furthermore showed that for (implicitly de-

fined) semilinear sets𝑀, 𝑁 ⊆ Z𝑑 in fixed dimension 𝑑 , of 𝑛 compo-

nents each, only a subset of points of bit size𝑂 (𝑛 · log(∥𝑀 ∥ + ∥𝑁 ∥))
needs to be explored to decide the set inclusion𝑀 ⊆ 𝑁 , which is

hence in ΠP

2
in this setting. Continuing this line of research, the first

two authors of the present paper established that the maximum

bit size of numbers in the generator representation of the comple-

ment of𝑀 can be bounded by 𝑂 (𝑛 · 𝑑4 · log∥𝑀 ∥) [6]. Furthermore,

S. Beier et al. [2] analysed the growth of numbers in S. Ginsburg

and E.H. Spanier’s seminal paper on the relationship between Pres-

burger arithmetic and semilinear sets [14]. All the constructions

and algorithms in this line of work so far lead to a non-elementary

blow-up for repeated complementation of any given semilinear set.

It has been a widely open problem whether there exists a comple-

mentation algorithm which, when interleaved with intersection

and projection operations, results in an elementary procedure.

The first main contribution of this paper is to affirmatively settle

this open problem in a general setting. We establish that a term in

an algebra over semilinear sets consisting of Boolean operations

and projection operations can be evaluated in triply exponential

time. A consequence of this result is a generator-based decision

procedure for Presburger arithmetic whose running time matches

the triply exponential upper bounds of quantifier elimination and

automata-based approaches [9, 32]. At the heart of our algorithm

lies an algorithm for constructing a splitter for a semilinear set

𝑀 ⊆ Z𝑑 . In a nutshell, this is a partition of Z𝑑 into simple disjoint

parts, such that inside each of them the set is easy to complement.

These parts are all hybrid linear sets of the form 𝐿(𝐵, 𝑃). We control

the number of periods 𝑃 : for all of these parts combined, this number

is upper bounded (in any fixed dimension 𝑑) by a polynomial of the

same number for the original set𝑀 . Iteration of this bound leads

to the aforementioned triply exponential bound.

Our second main contribution concerns the Vapnik–
Chervonenkis (VC) dimension of Presburger arithmetic. The

VC dimension is a core concept in computational learning theory

and gives an upper bound on the sample complexity required

to train a binary classifier, see e.g. [24]; we refer the reader to

Section 6 for a formal definition. Y. Gurevich and P.H. Schmitt

showed that every complete theory of ordered abelian groups,

Presburger arithmetic being one, has finite VC dimension [16].

In the context of establishing bounds on the VC dimension of

neural networks, M. Karpinski and A. Macintyre proposed a

systematic study of concrete bounds on the VC dimension of

various first-order theories [22, 23] and related concepts. This line

of research has led to deep results in model theory, for instance,

that every quasi-o-minimal structure has linear VC density [1].

Recently, D. Nguyen and I. Pak established polynomial upper

bounds on the VC dimension of LIA with a fixed number of

variables [30, Thm. 1.4], building upon a geometric approach for

inferring properties of Boolean operations on semilinear sets [29].

The authors of [30] conjecture that it should be possible to establish

a doubly exponential upper bound on the VC dimension of full LIA,

but also remark that this is unlikely to be achieved by analysing

quantifier elimination procedures because of known lower bounds

on the growth of formula sizes in such procedures [45]. The

second main contribution of our paper is to prove this conjecture,

establishing singly and doubly exponential upper bounds on

the VC dimension of LRA and LIA, respectively. The basis for

these upper bounds are the bounds on the size and structure of

(R-)semilinear sets established in the first part of the paper.

2 PRELIMINARIES
Let Z, N, Q, and R denote the set of integers, non-negative integers,

rationals, and reals, respectively. We write Q+ and R+ to denote

the non-negative part of Q and R, respectively. Given 𝑎, 𝑏 ∈ Z, we
define [𝑎, 𝑏] B {𝑎, 𝑎 + 1, . . . , 𝑏}. We denote by 0 and 1 the null

vector and the vector with all components equal to 1, respectively,

in any finite dimension.

For an arbitrary set 𝑆 , we write #𝑆 for its cardinality. If 𝑆 is

infinite, then we write #𝑆 = ∞. For sets of vectors 𝑆 and 𝑇 , we

use the Minkowski sum notation: 𝑆 +𝑇 B {𝒔 + 𝒕 : 𝒔 ∈ 𝑆, 𝒕 ∈ 𝑇 }. We

see sets of numbers as sets of one-dimensional vectors. We omit

curly brackets when 𝑆 (or alternatively 𝑇 ) is a singleton, and thus

abbreviate {𝑠}+𝑇 to 𝑠+𝑇 . For a finite set of vectors 𝑃 = {𝒑
1
, . . . ,𝒑𝑛}

over a numerical domain, e.g. 𝑃 ⊆ R𝑑 , we assume a lexicographic

ordering on the elements of 𝑃 and thus sometimes treat 𝑃 as a

matrix whose column vectors are its elements. Then, for instance,

for 𝑃 ⊆ R𝑑 and𝝀 ∈ R#𝑃 , the notation 𝑃 ·𝝀 denotes the product of the

matrix 𝑃 with 𝝀, and given a set 𝑄 ⊆ R#𝑃 , 𝑃 ·𝑄 B {𝑃 · 𝝀 : 𝝀 ∈ 𝑄}.
We write rank𝐴 for the rank of the matrix 𝐴, i.e., its maximal

number of linearly independent columns (equiv., rows).

The binary logarithm function is denoted by log(·).

Linear arithmetic theories. We assume basic familiarity with first-

order logic. Linear integer arithmetic (LIA) and linear real arithmetic
(LRA) are the first-order theories of the structures ⟨Z, 0, 1, +, ≤⟩ and
⟨R, 0, 1, +, ≤⟩, respectively. Formulae Φ,Ψ, . . . from both theories
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are formed by taking the closure of linear inequalities under binary

Boolean connectives ∧,∨, negation ¬ and first-order quantifica-

tion ∃,∀. In a linear inequality 𝑎1 · 𝑥1 + · · · + 𝑎𝑑 · 𝑥𝑑 ≤ 𝑏, usually
abbreviated as 𝒂 ·𝒙 ≤ 𝑏 where 𝒂 = (𝑎1, . . . , 𝑎𝑑 ) and 𝒙 = (𝑥1, . . . , 𝑥𝑑 ),
all coefficients 𝑎1, . . . , 𝑎𝑑 and the constant term𝑏 are taken from Z. In
LIA, variables 𝒙 are interpreted over Z; in LRA they are interpreted

over R.
We write ⟦Φ⟧ for the set of solutions of a formula Φ; it should

always be clear from the context whether the interpretation ⟦.⟧
concerns LIA or LRA.

Linear algebra and geometry. The linear span, cone, convex hull and
affine hull of a set 𝑆 ⊆ R𝑑 are defined as:

span 𝑆 B
{
𝑇 · 𝝀 : 𝑇 ⊆ 𝑆, #𝑇 ≠ ∞, 𝝀 ∈ R#𝑇

}
,

cone 𝑆 B
{
𝑇 · 𝝀 : 𝑇 ⊆ 𝑆, #𝑇 ≠ ∞, 𝝀 ∈ R#𝑇+

}
,

conv 𝑆 B
{
𝑇 · 𝝀 : 𝑇 ⊆ 𝑆, #𝑇 ≠ ∞, 𝝀 ∈ R#𝑇+ , 𝝀 · 1 = 1

}
,

aff 𝑆 B
{
𝑇 · 𝝀 : 𝑇 ⊆ 𝑆, #𝑇 ≠ ∞, 𝝀 ∈ R#𝑇 , 𝝀 · 1 = 1

}
.

A nonempty subset of R𝑑 is a linear subspace (alternatively a vector
subspace) if it is closed under taking linear combinations of its

elements. A subset of R𝑑 is an affine subspace if it coincides with
its affine hull; such sets have the form 𝒗 + 𝑇 where 𝑇 is a linear

subspace ofR𝑑 . The dimension of an affine subspace𝐴 is theminimal

number of vectors that spans it minus 1, i.e., the smallest 𝑘 such that

𝐴 = aff𝐺 and #𝐺 = 𝑘 + 1. The dimension does not exceed 𝑑 . The

dimension of an arbitrary non-empty set 𝑆 ⊆ R𝑑 , written dim 𝑆 , is

the dimension of its affine hull aff 𝑆 ; and dim ∅ B −1. A hyperplane
in R𝑑 is an affine subspace of dimension 𝑑 − 1.

We call sets of linearly independent vectors proper.

Polyhedral geometry. We refer the reader to [40, Ch. 7–8] and [33]

for further background on the following concepts.

Let 𝑆 ⊆ R𝑑 be the set of solutions of a system of linear inequal-

ities 𝔖 : 𝐴 · 𝒙 ≤ 𝒄 , 𝑆 ≠ ∅. Such sets are called (closed) convex
polyhedra. A row 𝒂 · 𝒙 ≤ 𝑐 of𝔖 is called an implicit equality of𝔖

whenever 𝒂 · 𝒙 = 𝑐 holds for every 𝑥 ∈ 𝑆 . Given 𝒂 ≠ 0, the set of
solutions in R𝑑 of a single equation 𝒂 · 𝒙 = 𝑐 is a hyperplane. The

convex polyhedron 𝑆 ⊆ R𝑑 above is said to be rational whenever
all entries of 𝐴 and 𝒄 are from Q. Throughout the paper, we only
consider convex polyhedra that are rational.

Given a nonzero vector 𝒘 ∈ R𝑑 such that 𝛿 = max{𝒘 · 𝒙 :

𝐴 · 𝒙 ≤ 𝒄} is finite, the hyperplane {𝒙 : 𝒘 · 𝒙 = 𝛿} is called a

supporting hyperplane of 𝑆 . A set 𝐹 ⊆ R𝑑 is a face of 𝑆 if 𝐹 = 𝑆 or if

𝐹 is the non-empty intersection of 𝑆 with a supporting hyperplane

of 𝑆 . This means that 𝐹 ⊆ 𝑆 is a face whenever there is some

𝒘 ∈ R𝑑 for which 𝐹 is the (non-empty) set of all points in 𝑆 attaining

max{𝒘 · 𝒙 : 𝒙 ∈ 𝑆}, provided that this maximum is finite (possibly

𝒘 = 0). Alternatively, a face 𝐹 of 𝑆 is a nonempty subset of 𝑆 such

that 𝐹 = {𝒙 ∈ 𝑆 : 𝐴′ · 𝒙 = 𝒄 ′} for some subsystem 𝐴′ · 𝒙 ≤ 𝒄 ′ of𝔖.

Note that if𝔖 has rational coefficients and right-hand sides then

all vectors𝒘 in the previous paragraph lie in Q𝑑 .

A face 𝐹 of 𝑆 is said to be minimal whenever 𝐹 = {𝒙 ∈ R𝑑 :

𝐴′ ·𝒙 = 𝒄 ′} for some subsystem𝐴′ ·𝒙 ≤ 𝒄 ′ of𝔖. In fact, the minimal

faces of 𝑆 are exactly those faces of 𝑆 that are affine subspaces.

For finite sets 𝑉 ,𝑊 ∈ Q𝑑 , define

𝐾 (𝑉 ,𝑊 ) := conv𝑉 + cone𝑊 .

The Minkowski–Weyl theorem (see, e.g., [33, Thm. 2.8] or [40,

Ch. 8]) states that a set 𝑆 ⊆ R𝑑 is a rational convex polyhedron if

and only if 𝑆 = 𝐾 (𝑉 ,𝑊 ) for some 𝑉 ,𝑊 ∈ Q𝑑 . A set 𝐶 ⊆ R𝑑 is a

finitely generated shifted (rational) cone whenever 𝐶 = 𝐾 (𝒗,𝑊 ) for
some 𝒗 ∈ Q𝑑 and finite𝑊 ⊆ Q𝑑 .

Given a system of inequalities𝔖 with the set of its solutions 𝑆 ,

we say that a set 𝐻 of hyperplanes carves out 𝑆 whenever for every

row 𝒂 · 𝒙 ≤ 𝑐 of𝔖 there is a hyperplane ℎ ∈ 𝐻 with ℎ : 𝒂 · 𝒙 = 𝑐 .

Two comments are in order:

• 𝑆 can be obtained by intersecting R𝑑 with a subset of the

half-spaces induced by𝐻 . Each ℎ : 𝒂 ·𝒙 = 𝑐 in𝐻 induces two

half-spaces: 𝒂 · 𝒙 ≥ 𝑐 and 𝒂 · 𝒙 ≤ 𝑐;
• aff 𝑆 can be obtained by intersecting R𝑑 with a subset of

the hyperplanes in 𝐻 . This follows since aff 𝑆 is the set of

vectors satisfying all implicit equalities in𝔖, see [40, Ch. 8].

We postulate that 𝐻 = ∅ carves out R𝑑 .

Semilinear sets and R-semilinear sets. Fix a natural number 𝑑 ≥ 1.

A set 𝑆 ⊆ Z𝑑 is a (𝑑-dimensional) linear set if it is of the form

𝑆 = 𝐿(𝒃, 𝑃) B 𝒃 + 𝑃 · N#𝑃 for some base 𝒃 ∈ Z𝑑 and a finite set

of periods 𝑃 ⊆ Z𝑑 . The set 𝑆 is hybrid linear if it is of the form

𝑆 = 𝐿(𝐵, 𝑃) B 𝐵 + 𝑃 · N#𝑃 , where 𝐵, 𝑃 ⊆ Z𝑑 are finite sets. Notice

that 𝐿(𝐵, 𝑃) = ⋃
𝒃∈𝐵 𝐿(𝒃, 𝑃), and thus every hybrid linear set is

a union of finitely many linear sets sharing the same periods 𝑃 .

A semilinear set is a finite union of linear sets, i.e., represented as⋃
𝑖∈𝐼 𝐿(𝐵𝑖 , 𝑃𝑖 ), where 𝐼 is a finite set of indices.
Notice that every semilinear set

⋃
𝑖∈𝐼 𝐿(𝐵𝑖 , 𝑃𝑖 ) ⊆ Z𝑑 is equal to

the set ⟦Φ⟧, where

Φ(𝒙) B
∨
𝑖∈𝐼

∨
𝒃∈𝐵𝑖
∃𝒚𝑖 : 𝒙 = 𝒃 + 𝑃𝑖 · 𝒚𝑖 ∧𝒚𝑖 ≥ 0 ,

𝒙 is a vector of 𝑑 variables and every 𝒚𝑖 is a vector of #𝑃𝑖 fresh

variables. Here, Φ is an LIA formula. Conversely, whenever Φ is an

LIA formula, ⟦Φ⟧ is a semilinear set [15].

A set 𝑆 ⊆ R𝑑 is an R-semilinear set whenever it is of the form

𝑆 =
⋃
𝑖∈𝐼

(
𝐾 (𝑉𝑖 ,𝑊𝑖 ) \

⋃
𝑗 ∈𝐽𝑖

𝐾 (𝑉𝑗 ,𝑊𝑗 )
)
,

where 𝐼 and 𝐽𝑖 (for all 𝑖 ∈ 𝐼 ) are finite sets and, for all 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐽𝑖 ,
the polyhedron𝐾 (𝑉𝑗 ,𝑊𝑗 ) is a face of𝐾 (𝑉𝑖 ,𝑊𝑖 ). By the Minkowski–

Weyl theorem and the definition of face of a polyhedron, each

component 𝐾 (𝑉𝑖 ,𝑊𝑖 ) \
⋃
𝑗 ∈𝐽𝑖 𝐾 (𝑉𝑗 ,𝑊𝑗 ) is the set of solutions of a

system 𝐴 · 𝒙 ≤ 𝒄 ∧ 𝐵 · 𝒙 < 𝒅.
For every LRA formula Φ, the set ⟦Φ⟧ is R-semilinear. This is a

consequence of, e.g., [44].

We remark that representing a convex polyhedron 𝐾 (𝑉 ,𝑊 )
by reference to 𝑉 and 𝑊 is standard and sometimes called “V-

representation” (V stands for “vertex”), in contrast with the dual

“H-representation” (H for “half-space”) as a conjunction of lin-

ear inequalities. To capture LRA and LIA one must extend the

V-representation to (R-)semilinear sets. In the absence of a useful

dual, we choose to use a different term, generator representation, to
refer to the representation of (R-)semilinear sets by explicit lists
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of all members of generator sets 𝐵𝑖 , 𝑃𝑖 (𝑖 ∈ 𝐼 ) and 𝑉𝑖 ,𝑊𝑖 ,𝑉𝑗 ,𝑊𝑗

( 𝑗 ∈ 𝐽𝑖 , 𝑖 ∈ 𝐼 ), respectively.

Magnitude and encoding of numbers. In this paper, the (infinity)
norm of a vector 𝒗 = (𝑣1, . . . , 𝑣𝑑 ) ∈ R𝑑 is defined as ∥𝒗∥ B
max{2, |𝑣𝑖 | : 𝑖 ∈ [1, 𝑑]}. This non-standard definition is for techni-

cal and presentational convenience only as it, e.g., prevents multi-

plication by 0 or 1 and ensures that ∥𝒗∥𝑛 ≥ 2
𝑛
for all 𝒗 and 𝑛 ∈ N,

when deriving bounds on the size of objects. For a matrix 𝐴, ∥𝐴∥
is the maximum norm of its columns. Similarly, for a finite set

𝑊 ⊆ R𝑑 , we define ∥𝑊 ∥ B max{∥𝒗∥ : 𝒗 ∈𝑊 }.
For finite representations of infinite sets, we extend the notation

∥·∥ to refer to the maximum infinity norm of all numbers appearing

in the representation of that set. For instance, given a semilinear

set𝑀 =
⋃
𝑖∈𝐼 𝐿(𝐵𝑖 , 𝑃𝑖 ), we write ∥𝑀 ∥ B max{∥𝐵𝑖 ∥, ∥𝑃𝑖 ∥ : 𝑖 ∈ 𝐼 }.

Following [40, Sec. 3.2], given a rational number
𝑝
𝑞 where 𝑝 and

𝑞 ≥ 1 are relatively prime integers, we write

⟨𝑝𝑞 ⟩ B 1 + ⌈log
2
( |𝑝 | + 1)⌉ + ⌈log

2
( |𝑞 | + 1)⌉ .

Intuitively,
𝑝
𝑞 can be encoded in binary using 𝑂 (⟨𝑝𝑞 ⟩) bits. We

extend this notation to rational matrices and finite sets of ra-

tional matrices. Given a matrix 𝐴 ∈ Q𝑛×𝑑 , we denote ⟨𝐴⟩ B
max{⟨𝐴[𝑖, 𝑗]⟩ : 𝑖 ∈ [1, 𝑛], 𝑗 ∈ [1, 𝑑]}, where 𝐴[𝑖, 𝑗] is the ra-

tional number at the intersection of the 𝑖-th row and 𝑗-th col-

umn of 𝐴. Notice that the number of bits required to encode 𝐴

is 𝑂 (𝑛 · 𝑑 · ⟨𝐴⟩). Similarly, for a finite set𝑊 ⊆ Q𝑑 of rational vec-

tors, ⟨𝑊 ⟩ B max𝒗∈𝑊 ⟨𝒗⟩. Our convention for the infinity norm for

finite representations of infinite sets extends to the notation ⟨·⟩. For
instance, given a set 𝑆 = 𝐾 (𝑉 ,𝑊 ) ⊆ R𝑑 with 𝑉 ,𝑊 ⊆ Q𝑑 , we write
⟨𝑆⟩ B max{⟨𝑉 ⟩, ⟨𝑊 ⟩}.

Given a formula Φ of LIA or LRA, we write ⟨Φ⟩ for the maximal

⟨𝑐⟩ for a coefficient or constant 𝑐 appearing in a linear inequality

of Φ. The length of a formula is the number of symbols required to

write it down, assuming binary encoding of numbers.

3 OPERATIONS ON POLYHEDRA AND THEIR
REPRESENTATION

In this section, we identify a set of technical tools from polyhe-

dral geometry that we use for establishing our main results. We

mostly recall such results and provide bounds on algorithms and

descriptional complexity when necessary.

Change of representation over R. We need to move between the rep-

resentations of polyhedra as solutions to systems of (in)equalities

and as sets of the form 𝐾 (𝑉 ,𝑊 ).

Proposition 3.1. Let 𝑆 = 𝐾 (𝑉 ,𝑊 ), with 𝑉 ,𝑊 ⊆ Q𝑑 finite sets.
There is a system of linear inequalities 𝔖 : 𝐴 · 𝒙 ≤ 𝒄 whose set of
solutions is 𝑆 and such that

• 𝐴 ∈ Q𝑛×𝑑 with 𝑛 ≤ (#𝑉 + #𝑊 )𝑑 + 2𝑑 ;
• ⟨𝐴⟩, ⟨𝒄⟩ ≤ 𝑂 (𝑑2) · ⟨𝑆⟩.

The system𝔖 can be computed in time (#𝑉 + #𝑊 )𝑑 · poly(𝑑, ⟨𝑆⟩).

We also rely on further results of this kind, omitted here for

brevity. These are all underpinned by the fact that Gaussian elimina-

tion over Q in dimension 𝑑 can be carried out in time polynomial in

the size of thematrix and bit size of its entries; see, e.g., [40, Sec. 3.3].

Membership and representation results over Z and N. The following
lemma gives an algorithm to decide membership in a semilinear set.

Lemma 3.2. Let 𝒗 ∈ Z𝑑 and 𝑀 = 𝐿(𝐵, 𝑃) ⊆ Z𝑑 . Deciding 𝒗 ∈ 𝑀
can be done in time poly(𝑑𝑑 , ⟨𝒗⟩, (∥𝐵∥ + #𝑃 · ∥𝑃 ∥)𝑑 ).

We recall a discrete version of Carathéodory’s theorem.

Proposition 3.3 ([6, Prop. 5]). Let 𝑆 = 𝐿(𝐵, 𝑃) ⊆ Z𝑑 be a hybrid
linear set. Then 𝑆 =

⋃
𝑖∈𝐼 𝐿(𝐶𝑖 , 𝑄𝑖 ) where

• #𝐼 ≤ (#𝑃)𝑑 ; max

𝑖∈𝐼
∥𝐶𝑖 ∥ ≤ ∥𝐵∥ + (#𝑃 · ∥𝑃 ∥)𝑂 (𝑑) ; and

• for all 𝑖 ∈ 𝐼 , 𝑄𝑖 ⊆ 𝑃 and 𝑄𝑖 is proper.

The family {(𝐶𝑖 , 𝑄𝑖 )}𝑖∈𝐼 can be computed in time

𝑂 (#𝐵 · (𝑑 · #𝑃 · ∥𝑃 ∥)𝑑+1) .

The following lemma shows that, when represented as a hybrid

linear set, the set of non-negative solutions of a homogeneous

system of linear equations has few periods. Its proof relies on a

characterisation of such sets of solutions due to E. Domenjoud [8].

Lemma 3.4. Let 𝑆 ⊆ N𝑑 be the set of all non-negative integer
solutions of𝔖 : 𝐴 · 𝒙 = 0, with𝐴 ∈ Z𝑛×𝑑 . Then 𝑆 = 𝐿(𝐵, 𝑃) such that
⟨𝐵⟩, ⟨𝑃⟩ ≤ 𝑂 (𝑛 · 𝑑3) · ⟨𝐴⟩, #𝑃 ≤ 𝑑𝑘+1, where 𝑘 = rank𝐴; and 𝐵 and
𝑃 can be computed in time poly(𝑑𝑘+1, ∥𝐴∥𝑛 ·𝑘3 ).

An equivalence relation induced by hyperplanes. Consider a set

of rational hyperplanes 𝐻 = {ℎ1, . . . , ℎ𝑛} given by 𝑛 equations

ℎ𝑖 : 𝒂𝑖 · 𝒙 = 𝑐𝑖 in 𝑑 variables. Let ∼𝐻 ⊆ R𝑑 ×R𝑑 be the equivalence

relation defined as

𝒙1 ∼𝐻 𝒙2 iff, for all 𝑖 ∈ [1, 𝑛], sgn(𝒂𝑖 · 𝒙1 − 𝑐𝑖 ) = sgn(𝒂𝑖 · 𝒙2 − 𝑐𝑖 ),

where sgn : R → {−1, 0, 1} is the sign function: sgn(0) B 0,

sgn(𝑟 ) B −1 for 𝑟 < 0, and sgn(𝑟 ) B 1 for 𝑟 > 0.

We recall a folklore result on the number of regions induced

by 𝐻 on R𝑑 (cf. [28, Ch. 6]).

Proposition 3.5. For every set 𝐻 of 𝑛 hyperplanes in R𝑑 , the
relation ∼𝐻 has at most (2𝑛)𝑑 + 1 many equivalence classes.

Polyhedral complexes and triangulations. A polyhedral complex is

a finite set R of convex polyhedra that satisfies the following two

properties:

• for every face 𝑅′ of every 𝑅 ∈ R, 𝑅′ ∈ R;
• for every 𝑅1, 𝑅2 ∈ R, either 𝑅1 ∩ 𝑅2 = ∅ or 𝑅1 ∩ 𝑅2 is a face
of both 𝑅1 and 𝑅2.

The following definitions and statements about generalised sim-

plices, triangulations and half-openings are only required for our

construction of Z-splitters (Sec. 4.3) and can be skipped at the first

reading.

A generalised𝑚-dimensional simplex is a set𝑇 = 𝐾 (𝑉 ,𝑊 ) where
𝑉 ,𝑊 ⊆ Q𝑑 are such that #𝑉 + #𝑊 = 𝑚 + 1 and dim(aff𝑇 ) = 𝑚.

For example, two-dimensional generalised simplices are triangles,

closed half-infinite strips, and closed infinite sectors [38, Sec. 17].

A triangulation is a polyhedral complex T where every 𝑇 ∈ T
is a generalised simplex and all 𝑇 ∈ T that are not a face of any

𝑇 ′ ∈ T \ {𝑇 } have the same dimension𝑚. The latter 𝑇 are called

the maxima of T , and we write dimT =𝑚. Given 𝑆 ⊆ R𝑑 , we say
that T is a triangulation of 𝑆 whenever 𝑆 =

⋃
𝑇 ∈T 𝑇 .
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Proposition 3.6. Every convex polyhedron 𝐾 (𝑉 ,𝑊 ) ⊆ R𝑑 has a
triangulation T such that for every 𝑇 ∈ T , 𝑇 = 𝐾 (𝑉 ′,𝑊 ′) for some
𝑉 ′ ⊆ 𝑉 and𝑊 ′ ⊆ 𝑊 . The triangulation T can computed in time
(#𝑉 + #𝑊 )𝑂 (𝑑) · poly(𝑑, ⟨𝑉 ⟩ + ⟨𝑊 ⟩).

Let 𝑆 ⊆ R𝑑 be a rational polyhedron given as the set of solutions

of a system𝔖 : 𝐴 · 𝒙 ≤ 𝒃 . A half-opening of 𝑆 is a set of the form

𝑆op = {𝒙 ∈ 𝑆 : 𝐴′ · 𝒙 < 𝒃 ′} for some subsystem 𝐴′ · 𝒙 ≤ 𝒃 ′ of𝔖.

The following proposition is a version of [6, Lem. 10], slightly

strengthened to accommodate the case of non-integer vectors in

the set of base vectors 𝑉 .

Proposition 3.7. Let 𝑆 = 𝐾 (𝑉 ,𝑊 ) where 𝑉 ⊆ Q𝑑 , 𝑊 ⊆ Z𝑑 ,
#𝑉 + #𝑊 ≤ 𝑑 + 1 and𝑊 is proper. Then 𝑆op ∩ Z𝑑 = 𝐿(𝐵,𝑊 ) for any
half-opening 𝑆op of 𝑆 , and ∥𝐵∥ ≤ ∥𝑉 ∥ + 2𝑑 · ∥𝑊 ∥. The set 𝐵 can be
computed in time (∥𝑉 ∥ + ∥𝑊 ∥)𝑂 (𝑑) .

Let T be a triangulation of some polyhedron 𝑃 ⊆ R𝑑 . We define

the maximal half-opening T op
of T as the smallest set containing

all finite 𝑇 ∈ T and for every infinite 𝑇 ∈ T given by 𝔗 : 𝐴 · 𝒙 ≤ 𝒄
the half-opening given by 𝔗′ : 𝐴 · 𝒙 < 𝒄 .

Intuitively, if 𝑃 is a generalised simplex itself, then T op
contains,

for each face 𝐹 of 𝑃 , the relative interior of that face (i.e., the set

difference of 𝐹 and all its proper sub-faces). This extends to the gen-

eral case, enumerating all 𝐹 ∈ T . We remark that in the definition

above, since each 𝑇 ∈ T is a generalised simplex, it cannot contain

any line (affine subspace of dimension 1), so 𝑇 is finite if and only

if 𝑇 is a minimal face of T .

Proposition 3.8. Let T be a triangulation and T op its maximal
half-opening. Then

⋃
𝑇 op∈Top 𝑇 op =

⋃
𝑇 ∈T 𝑇 and, for all distinct

𝑇
op

1
,𝑇

op

2
∈ T op, 𝑇 op

1
∩𝑇 op

2
= ∅.

4 SPLITTERS
In this section we present geometric constructions that are at the

core of our main results. We start with the setting of R-semilinear

sets and later move to the integer case.

Splitters in R𝑑 . Let us first fix 𝑀 =
⋃
𝑖∈𝐼 𝐾 (𝑉𝑖 ,𝑊𝑖 ) ⊆ R𝑑 . Our

overall goal here is to characterise the complement𝑀 of the set𝑀

as a union of polyhedra. To do this, we construct a partition of R𝑑

induced by 𝑀 , in the sense captured by the following definition,

and study the descriptional and computational complexity of this

construction.

Given a family P of polyhedra in R𝑑 , a splitter for P is any

polyhedral complex R = {𝑅1, . . . , 𝑅𝑚} that satisfies the following
two properties:

(S1) for all 𝑅 ∈ R and all 𝑃 ∈ P, the set 𝑅 ∩ 𝑃 is either empty or

equal to a face of 𝑅; and

(S2) 𝑅1 ∪ · · · ∪ 𝑅𝑚 = R𝑑 .

We remark that, as every polyhedron is a face of itself, condition (S1)

is satisfied if in particular 𝑅 ⊆ 𝑃 . Abusing notation slightly, we will

talk about splitters for a union of convex polyhedra (making the

family of polyhedra implicit).

In the theorem below, recall that ⟨𝑀⟩ B max𝑖∈𝐼 ⟨𝐾 (𝑉𝑖 ,𝑊𝑖 )⟩.

Theorem 4.1 (splitters for unions of polyhedra). Given any
R-semilinear set 𝑀 =

⋃
𝑖∈𝐼 𝐾 (𝑉𝑖 ,𝑊𝑖 ) ⊆ R𝑑 , there exists a splitter

R = {𝑅1, . . . , 𝑅𝑚} for𝑀 that has the following properties:

(i) for each 𝑗 ∈ 𝐽 B [1,𝑚] we have 𝑅 𝑗 = 𝐾 (𝐶 𝑗 , 𝑄 𝑗 ) where
𝐶 𝑗 , 𝑄 𝑗 ⊆ Q𝑑 and ⟨𝐶 𝑗 ⟩, ⟨𝑄 𝑗 ⟩ ≤ 𝑂 (𝑑5) · ⟨𝑀⟩; and

(ii) 𝑚, #( ⋃
𝑗 ∈𝐽
𝐶 𝑗 ), #(

⋃
𝑗 ∈𝐽
𝑄 𝑗 ) ≤ (#𝐼 ·max

𝑖∈𝐼
(#𝑉𝑖 + #𝑊𝑖 ) + 𝑑)𝑂 (𝑑

2) .

The family {(𝐶 𝑗 , 𝑄 𝑗 )}𝑗 ∈𝐽 can be computed from𝑀 in time

(#𝐼 ·max

𝑖∈𝐼
(#𝑉𝑖 + #𝑊𝑖 + 1))𝑂 (𝑑

2) · poly(⟨𝑀⟩).

We describe the proof idea for Theorem 4.1 in Section 4.1.

While Theorem 4.1 will be useful to us when we deal with op-

erations on R-semilinear sets, it is not sufficient as it is to support

our constructions for sets inside Z𝑑 . Intuitively, the reason for this

is that, in the presence of polyhedra 𝐾 (𝑉𝑖 ,𝑊𝑖 ) with large #𝑉𝑖 , the

splitter for the union𝑀 will have to “respect” many hyperplanes

that pass through various subsets of 𝑉𝑖 . These hyperplanes will be

irrelevant if we view the set𝑀 =
⋃
𝑖∈𝐼 𝐾 (𝑉𝑖 ,𝑊𝑖 ) as an overapproxi-

mation of the semilinear set

⋃
𝑖∈𝐼 𝐿(𝑉𝑖 ,𝑊𝑖 ): the latter is simply the

union of many sets of the form 𝐿(𝒗,𝑊𝑖 ), and, roughly speaking,

there is no “interaction” between different elements of the same set

𝑉𝑖 . This motivates the following refinement of Theorem 4.1.

Theorem 4.2 (splitters for unions of cones). Given any R-
semilinear set of the form 𝑁 =

⋃
𝑖∈𝐼

⋃
𝒗∈𝑉𝑖 𝐾 (𝒗,𝑊𝑖 ) ⊆ R

𝑑 , there is
a splitter R ′ = {𝑅′

1
, . . . , 𝑅′𝑡 } for 𝑁 that has the following properties:

(i) for each 𝑗 ∈ 𝐽 B [1, 𝑡], 𝑅′
𝑗
= 𝐾 (𝐸 𝑗 , 𝐹 𝑗 ) where 𝐸 𝑗 ⊆ Q𝑑 ,

𝐹 𝑗 ⊆ Z𝑑 , ⟨𝐸 𝑗 ⟩ ≤ 𝑂 (𝑑5) · ⟨𝑁 ⟩, ⟨𝐹 𝑗 ⟩ ≤ 𝑂 (𝑑6) ·max

𝑖∈𝐼
⟨𝑊𝑖 ⟩;

(ii) #( ⋃
𝑗 ∈𝐽

𝐹 𝑗 ) ≤ (#𝐼 ·max

𝑖∈𝐼
#𝑊𝑖 + 𝑑)𝑂 (𝑑

2) ; and

(iii) 𝑡, #( ⋃
𝑗 ∈𝐽
𝐸 𝑗 ) ≤ (#𝐼 ·max

𝑖∈𝐼
#𝑉𝑖 ·max

𝑖∈𝐼
(1 + #𝑊𝑖 ) + 𝑑)𝑂 (𝑑

2) .

The family {(𝐸 𝑗 , 𝐹 𝑗 )}𝑗 ∈𝐽 can be computed from 𝑁 in time

(#𝐼 ·max

𝑖∈𝐼
(#𝑉𝑖 + #𝑊𝑖 + 1))𝑂 (𝑑

2) · poly(⟨𝑁 ⟩).

While some of the bounds of Theorem 4.2 follow directly from

the previous theorem, there are several differences, of which we

highlight one. The upper bound on #(⋃𝑗 ∈[1,𝑡 ] 𝐹 𝑗 ) is independent
of the cardinality and norms of sets 𝑉𝑖 ; controlling the number of

cone generators is crucial for the triply exponential running time

bound of our decision procedure for Presburger arithmetic.

Splitters in Z𝑑 . Moving from R to Z, let us fix a semilinear set

𝑀 =
⋃
𝑖∈𝐼 𝐿(𝐵𝑖 , 𝑃𝑖 ) ⊆ Z𝑑 . We will need an integer analogue of

splitters, partitioning Z𝑑 into disjoint regions that are in some

sense induced by𝑀 .

Given a familyM = {𝐿(𝐵𝑖 , 𝑃𝑖 )}𝑖∈𝐼 of hybrid linear sets in Z𝑑 ,
a Z-splitter for M is any family of sets Z = {𝑍1, . . . , 𝑍𝑚} that
satisfies the following four properties for all 𝑗 ∈ [1,𝑚]:
(Z1) 𝑍 𝑗 = 𝐿(𝐶 𝑗 , 𝑄 𝑗 ) for some 𝐶 𝑗 , 𝑄 𝑗 ⊆ Z𝑑 with 𝑄 𝑗 proper;

(Z2) 𝑍 𝑗 ⊆ 𝐾 (𝒃, 𝑃𝑖 ) or 𝑍 𝑗 ∩ 𝐾 (𝒃, 𝑃𝑖 ) = ∅, for all 𝑖 ∈ 𝐼 , 𝒃 ∈ 𝐵𝑖 ;
(Z3) for all 𝑖 ∈ 𝐼 , 𝒃 ∈ 𝐵𝑖 , if 𝑍 𝑗 ⊆ 𝐾 (𝒃, 𝑃𝑖 ) then 𝑄 𝑗 ⊆ 𝐿(0, 𝑃𝑖 );
(Z4) 𝑍1 ∪ · · · ∪ 𝑍𝑚 = Z𝑑 , where the union is disjoint.

As above, we will abuse notation and talk about Z-splitters for a
semilinear set 𝑀 , implying the family of hybrid linear sets to be

the set of components of𝑀 in a given representation. We show the

following theorem:
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Theorem 4.3 (splitters for semilinear sets). Given any semi-
linear set 𝑀 =

⋃
𝑖∈𝐼 𝐿(𝐵𝑖 , 𝑃𝑖 ) ⊆ Z𝑑 , there exists a Z-splitter

Z = {𝑍1, . . . , 𝑍𝑚} for𝑀 that has the following properties:

(i) for all 𝑗 ∈ 𝐽 B [1,𝑚] and 𝑍 𝑗 = 𝐿(𝐶 𝑗 , 𝑄 𝑗 ), we have
∥𝐶 𝑗 ∥ ≤ ∥𝑀 ∥𝑂 (𝑑

10) ·#𝐼 and ∥𝑄 𝑗 ∥ ≤ max

𝑖∈𝐼
∥𝑃𝑖 ∥𝑂 (𝑑

10) ·#𝐼 ;

(ii) #( ⋃
𝑗 ∈𝐽

𝑄 𝑗 ) ≤ (#𝐼 ·max

𝑖∈𝐼
#𝑃𝑖 + 𝑑)𝑂 (𝑑

2) ; and

(iii) 𝑚 ≤ (#𝐼 ·max

𝑖∈𝐼
#𝐵𝑖 · (1 +max

𝑖∈𝐼
#𝑃𝑖 ))𝑂 (𝑑

3) .

The family {(𝐶 𝑗 , 𝑄 𝑗 )}𝑗 ∈𝐽 can be computed from𝑀 in time

(max

𝑖∈𝐼
(#𝐵𝑖 + #𝑃𝑖 ) + ∥𝑀 ∥)𝑂 (𝑑

11) ·#𝐼 .

Observe that, while ∥𝑄 𝑗 ∥ may be exponential in #𝐼 , the number

of different vectors across all 𝑄 𝑗 is comparably small and bounded,

in any fixed dimension 𝑑 , by a polynomial in #𝐼 ·max𝑖∈𝐼 #𝑃𝑖 . The
proof of Theorem 4.3 invokes the construction of splitter for a union

of cones (Theorem 4.2), decomposes each atomic polyhedron (see

Sec. 4.1) further and intersects parts of the decomposition with Z𝑑 .
Importantly, Theorem 4.3 benefits from the refined bounds of

Theorem 4.2 to control the cardinality of

⋃
𝑗 ∈𝐽 𝑄 𝑗 . This turns out to

be possible even though the dependency of ∥𝑄 𝑗 ∥ on #𝐼 is exponen-

tial, roughly speaking because (Z3) effectively forces an intersection

of up to #𝐼 hybrid linear sets. As mentioned previously, our upper

bound on the total number of periods (coming from the splitters) is

the key to an elementary decision procedure.

4.1 Splitters for unions of polyhedra: sketch
We sketch the proof of Theorem 4.1. Let 𝑖 ∈ 𝐼 . We start by consid-

ering a set of hyperplanesH(𝑉𝑖 ,𝑊𝑖 ) that carves out 𝐾 (𝑉𝑖 ,𝑊𝑖 ), of
which we characterise the descriptional complexity. By Proposi-

tion 3.1, there exists such a set of hyperplanesH(𝑉𝑖 ,𝑊𝑖 ), respecting
the following bounds:

#H(𝑉𝑖 ,𝑊𝑖 ) ≤ (#𝑉𝑖 + #𝑊𝑖 )𝑑 + 2𝑑 ;
⟨H (𝑉𝑖 ,𝑊𝑖 )⟩ ≤ 𝑂 (𝑑2) · ⟨𝐾 (𝑉𝑖 ,𝑊𝑖 )⟩ .

(∗)

The left-hand side of the second equation in (∗) refers to the max-

imum ⟨·⟩ measure of numbers appearing in the linear equations

defining these hyperplanes. The set of hyperplanes in H(𝑀) B⋃
𝑖∈𝐼 H(𝑉𝑖 ,𝑊𝑖 ) divides R𝑑 into regions that we call atomic polyhe-

dra. More precisely, for H(𝑀) = {ℎ1, . . . , ℎ𝑘 } with ℎ𝑖 : 𝒂𝑖 · 𝒙 = 𝑐𝑖 ,

an atomic polyhedron 𝑅 induced byH(𝑀) associates to every ℎ𝑖 a

set𝐻𝑖 that is the set of solutions to 𝒂𝑖 ·𝒙 ∼ 𝑐𝑖 for some ∼ ∈ {≤,=, ≥}
such that 𝑅 is the intersection 𝑅 =

⋂
1≤𝑖≤𝑚 𝐻𝑖 . Let 𝑅1, . . . , 𝑅𝑚 be

the family of all atomic polyhedra induced byH(𝑀).
We first show that polyhedra 𝑅1, . . . , 𝑅𝑚 form a polyhedral com-

plex. Indeed, by our definition of atomic polyhedra, {𝑅1, . . . , 𝑅𝑚} is
closed under taking faces of polyhedra. This is due to the character-

isation of faces using systems of equations, recalled in Sec. 2. To see

the closure under intersection, whenever for some 𝑗, 𝑘 ∈ [1,𝑚] the
set 𝑅 𝑗 ∩𝑅𝑘 is non-empty and different from 𝑅 𝑗 , we note that 𝑅 𝑗 ∩𝑅𝑘
can be obtained as the intersection of 𝑅 𝑗 with some hyperplanes

specified by equations of the form 𝒂𝑖 · 𝒙 = 𝒄𝑖 , and thus forms a face

of 𝑅 𝑗 . Thus, {𝑅1, . . . , 𝑅𝑚} is a polyhedral complex.

We next show that this family is a splitter for {𝐾 (𝑉𝑖 ,𝑊𝑖 )}𝑖∈𝐼 .
Property (S2), i.e., the equality 𝑅1 ∪ · · · ∪ 𝑅𝑚 = R𝑑 , is immediate.

Property (S1) follows from the definition of atomic polyhedra and

the definition ofH(𝑀). Indeed, take some 𝑅 𝑗 and 𝑃𝑖 = 𝐾 (𝑉𝑖 ,𝑊𝑖 ).
Suppose 𝑅 𝑗 ∩𝑃𝑖 is nonempty and different from 𝑅 𝑗 ; we show that it

must be a face of 𝑅 𝑗 . We know that, for eachℎ ∈ H (𝑀), all points of
𝑅 𝑗 lie on the same side of ℎ, in the non-strict sense; or possibly even

on ℎ itself. Recall that 𝑃𝑖 = 𝐾 (𝑉𝑖 ,𝑊𝑖 ) is a convex polyhedron and, as
such, is the set of solutions to a conjunction of affine inequalities, all

represented by constraints of the form 𝒂𝑖 · 𝒙 ∼ 𝑐𝑖 , for ∼ ∈ {≤,=, ≥}
and some ℎ𝑖 : 𝒂𝑖 · 𝒙 = 𝑐𝑖 with ℎ𝑖 ∈ H (𝑀). Hence, each of these

inequalities either is valid for all points of the set 𝑅 𝑗 , or is violated

at all these points, or restricts 𝑅 𝑗 to some non-empty face. Since an

intersection of faces is itself a face, we conclude that 𝑅 𝑗 ∩ 𝑃𝑖 is a
face of 𝑅 𝑗 .

Towards checking the satisfaction of the two properties required

by Theorem 4.1, note that from Proposition 3.5 together with Eqs. (∗)
we conclude that the number𝑚 of atomic polyhedra is bounded

by (#𝐼 ·max𝑖∈𝐼 (#𝑉𝑖 + #𝑊𝑖 ))𝑂 (𝑑
2)
, as required by Property (ii).What

is left is to study the descriptional complexity of atomic polyhedra:

prove that they satisfy Property (i) and show that the sets of bases

and periods required to describe all atomic polyhedra satisfy the

bound in Property (ii). We leave this part out for space reasons.

4.2 Splitters for unions of cones: idea
The proof of Theorem 4.2 is left out for space reasons. Our con-

struction refines the analysis of Theorem 4.1 for the case of sets

𝑁 , where polyhedra are cones, but big groups of these cones share

periods. This analysis is possible because, intuitively, supporting

hyperplanes for cones from a union

⋃
𝒗∈𝑉𝑖 𝐾 (𝒗,𝑊𝑖 ) are translates

of one another.

4.3 Splitters for semilinear sets: sketch
We sketch the proof of Theorem 4.3. We start with a semilinear set

𝑀 =
⋃
𝑖∈𝐼 𝐿(𝐵𝑖 , 𝑃𝑖 ). We first apply Theorem 4.2 to obtain a splitter

for the union of cones

⋃
𝑖∈𝐼

⋃
𝒃∈𝐵𝑖 𝐾 (𝒃, 𝑃𝑖 ). Let the obtained splitter

be A = {𝑅1, . . . , 𝑅𝑡 } with 𝑅 𝑗 = 𝐾 (𝐸 𝑗 , 𝐹 𝑗 ). We further split these

polyhedra to obtain a Z-splitter. Define 𝐹 B
⋃
𝑗 ∈[1,𝑡 ] 𝐹 𝑗 , recalling

that 𝐹 ⊆ Z𝑑 by Property (i) in Theorem 4.2. The set 𝐹 enjoys the

bound from Property (ii) in the same theorem.

In order to satisfy the property (Z3) in the definition of Z-splitter,
we scale each vector in 𝐹 using the lemma below.

Lemma 4.4. For each 𝒑 ∈ 𝐹 there is an integer 𝜆 ≥ 0 such that
⟨𝜆⟩ ≤ #𝐼 ·𝑂 (𝑑10) ·max𝑖∈𝐼 ⟨𝑃𝑖 ⟩ and, for all 𝑖 ∈ 𝐼 , if 𝒑 ∈ cone 𝑃𝑖 then
𝜆 · 𝒑 ∈ 𝐿(0, 𝑃𝑖 ). This 𝜆 can be computed in time

((#𝐼 )2 + ∑
𝑖∈𝐼
(#𝑃𝑖 )𝑑+1) · poly(𝑑,max

𝑖∈𝐼
⟨𝑃𝑖 ⟩, ⟨𝒑⟩).

Below, we write 𝐹 for the set {𝜆𝒑 · 𝒑 : 𝒑 ∈ 𝐹 }, where 𝜆𝒑 is the

integer obtained from Lemma 4.4 for the vector 𝒑. The following
lemma partitions Z𝑑 into hybrid linear sets with periods from 𝐹 .

Taking the splitter A computed above, we let A𝑘 = {𝐴 ∈ A :

dim𝐴 ≤ 𝑘} and notice that A = A𝑑 .

Lemma 4.5. For every 𝑘 ∈ [0, 𝑑] there is a finite collection C𝑘 of
subsets of R𝑑 such that
(i) all sets in C𝑘 are pairwise disjoint;
(ii) #C𝑘 ≤ #A𝑘 · (#𝐼 ·max

𝑖∈𝐼
#𝐵𝑖 · (1 +max

𝑖∈𝐼
#𝑃𝑖 ) + 𝑑)𝑂 (𝑑

3) ;
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(iii)
⋃

𝐴∈A𝑘

𝐴 =
⋃

𝐶∈C𝑘
𝐶 ;

(iv) for every 𝐶 ∈ C𝑘 , we have 𝐶 ∩ Z𝑑 = 𝐿(𝐷,𝑄) where
∥𝐷 ∥ ≤ ∥𝑀 ∥𝑂 (𝑑10) ·#𝐼 , 𝑄 ⊆ 𝐹 , and 𝑄 is proper; and

(v) for every 𝐶 ∈ C𝑘 there is 𝐴 ∈ A𝑘 such that 𝐶 ⊆ 𝐴.
Overall, all the sets 𝐷 and 𝑄 required to represent C0, . . . , C𝑑 can be
computed in time (max𝑖∈𝐼 (#𝐵𝑖 + #𝑃𝑖 ) + ∥𝑀 ∥)𝑂 (𝑑

11) ·#𝐼 .

Proof (sketch). We use induction on 𝑘 ≤ 𝑑 . In the induction

base case𝑘 = 0, we set C0 = A0, the latter being a finite set of points.

For the induction step, C𝑘+1 contains C𝑘 and is further populated

as follows. For every 𝐴 ∈ A𝑘+1 \ A𝑘 , let T be a triangulation of

𝐴, and let T op
be the maximal half-opening of T . We add to C𝑘+1

every 𝑇 op ∈ T op
that is not fully contained in some 𝐴′ ∈ A𝑘 .

We show that the resulting set has Property (iv), skipping the

other properties for space reasons. Recall that every polyhedron𝐴 ∈
A has a representation𝐾 (𝐸 𝑗 , 𝐹 𝑗 ), where 𝐹 𝑗 ⊆ 𝐹 ⊆ Z𝑑 , and 𝐸 𝑗 ⊆ Q𝑑
is such that ⟨𝐸 𝑗 ⟩ ≤ 𝑂 (𝑑5) · ⟨𝑀⟩. By definition of 𝐹 and following

Lemma 4.4, there is 𝐹 ′
𝑗
⊆ 𝐹 ⊆ Z𝑑 such that #𝐹 ′

𝑗
= #𝐹 𝑗 , ⟨𝐹 ′𝑗 ⟩ ≤ #𝐼 ·

𝑂 (𝑑10) ·max𝑖∈𝐼 ⟨𝑃𝑖 ⟩ and 𝐴 = 𝐾 (𝐸 𝑗 , 𝐹 ′𝑗 ). Then Property (iv) follows

by computing the triangulation of 𝐾 (𝐸 𝑗 , 𝐹 ′𝑗 ) with Proposition 3.6

and by applying Proposition 3.7. An observation: when applying

Proposition 3.7, we consider the infinity norm of bases and period,

instead of their bit length. The relation between bit length and

infinity norm is simple: for every rational number
𝑝
𝑞 with 𝑝 and

𝑞 ≥ 1 relatively prime integers, if ⟨𝑝𝑞 ⟩ ≤ 𝛼 then ∥ 𝑝𝑞 ∥ ≤ 2
𝑂 (𝛼)

, as

∥ 𝑝𝑞 ∥ ≤ ∥𝑝 ∥ ≤ 2
𝑂 ( ⟨𝑝 ⟩)

and ⟨𝑝⟩ ≤ ⟨𝑝𝑞 ⟩. □

Once Lemma 4.5 is in place, in order to show Theorem 4.3 it

suffices to pickZ = {𝐶 ∩ Z𝑑 : 𝐶 ∈ C𝑑 }.

5 SEMILINEAR AND R-SEMILINEAR
EXPRESSIONS

In this section, we define an algebra of (R-)semilinear sets compris-

ing all Boolean operations with projections along the coordinate

axes and show that expressions in this algebra can be evaluated

in doubly and triply exponential time over the reals and integers,

respectively. To this end, consider the grammar

𝑠 F 𝑎 | 𝜋𝐷 (𝑠) | 𝑠 | 𝑠 ∩ 𝑠 | 𝑠 ∪ 𝑠,

where 𝑎 are atoms to be defined below, and 𝐷 can be any finite

subset of positive integers.

A semilinear expression is an expression from the above grammar

where atoms are hybrid linear sets. Whenever possible, we endow

a semilinear expression 𝑠 with a dimension 𝑑 ∈ N, written below as

“𝑠 : 𝑑” and given by the typing rules

𝐿(𝐵, 𝑃) ⊆ Z𝑑
𝐿(𝐵, 𝑃) : 𝑑

𝑠 : 𝑑 𝐷 ⊆ [1, 𝑑]
𝜋𝐷 (𝑠) : 𝑑 − #𝐷

𝑠 : 𝑑

𝑠 : 𝑑

𝑠1 : 𝑑 𝑠2 : 𝑑

𝑠1 ⊕ 𝑠2 : 𝑑
where ⊕ ∈ {∩,∪}. Expressions that comply with the type assertions

above are well-formed, and we restrict ourselves subsequently to

well-formed expressions.

A well-formed semilinear expression 𝑠 : 𝑑 evaluates to a subset

⟦𝑠⟧ ⊆ Z𝑑 following the standard semantics where the symbols

∪, ∩ and · denote the Boolean operations union, intersection and

complement, respectively, and 𝜋𝐷 (·) is the function projecting away

the coordinates indexed by all 𝑖 ∈ 𝐷 . By convention, the coordinates
in Z𝑑 are indexed 1 through 𝑑 .

Analogously, we define R-semilinear expressions in which atoms

are rational closed convex polyhedra given as 𝐾 (𝑉 ,𝑊 ).
For an (R-)semilinear expression 𝑠 , we write

• 𝑑 (𝑠) for the maximal dimension of atoms in 𝑠;

• ℎ(𝑠) for the height of 𝑠 , i.e., the maximum nesting depth of

operations appearing in 𝑠; and

• ⟨𝑠⟩ for the maximal ⟨𝑎⟩ of an atom 𝑎 appearing in 𝑠 .

When 𝑠 is a semilinear expression,𝑛p (𝑠) (number of periods) denotes
the maximal cardinality of 𝑃 of a hybrid linear set 𝐿(𝐵, 𝑃) appearing
as an atom of 𝑠 .When 𝑠 is anR-semilinear expression,𝑛g (𝑠) (number
of generators) denotes the maximal cardinality of𝑉 ∪𝑊 for a convex

polyhedron 𝐾 (𝑉 ,𝑊 ) appearing as an atom of 𝑠 .

Theorem 5.1. There is an algorithm that, given a well-formed
semilinear expression 𝑠 , computes a family {(𝐵𝑖 , 𝑃𝑖 )}𝑖∈𝐼 such that
⟦𝑠⟧ = ⋃

𝑖∈𝐼 𝐿(𝐵𝑖 , 𝑃𝑖 ). Let 𝑛 = 𝑛p (𝑠), 𝑑 = 𝑑 (𝑠) and ℎ = ℎ(𝑠). Assume
𝑑, 𝑛 ≥ 2; the algorithm ensures

#𝐼 ≤ 𝑛𝑑
𝑂 (ℎ)

; ⟨𝐵𝑖 ⟩, ⟨𝑃𝑖 ⟩ ≤ (⟨𝑠⟩ + 𝑛)𝑑
𝑂 (ℎ)

; 𝑃𝑖 proper.

The algorithm runs in time exp((⟨𝑠⟩ + 𝑛)𝑑𝑂 (ℎ) ).

As a consequence, we obtain a triply exponential geometric

decision procedure for Presburger arithmetic, matching the optimal

running time of quantifier elimination and automata-based decision

procedures [9, 32]. Below, given a formula Φ of LIA or LRA, we

write𝑑 (Φ) for themaximum number of free variables appearing in a

subformula ofΦ, andℎ(Φ) for the maximum nesting depth of binary

Boolean connectives, negations and quantifications appearing in Φ.

Corollary 5.2. There is an algorithm that, given a formula Φ of
LIA, computes a family {(𝐵𝑖 , 𝑃𝑖 )}𝑖∈𝐼 such that ⟦Φ⟧ =

⋃
𝑖∈𝐼 𝐿(𝐵𝑖 , 𝑃𝑖 ).

Let 𝑑 = 𝑑 (Φ) and ℎ = ℎ(Φ). Assume 𝑑 ≥ 2; the algorithm ensures

#𝐼 ≤ 2
𝑑𝑂 (ℎ)

; ⟨𝐵𝑖 ⟩, ⟨𝑃𝑖 ⟩ ≤ (⟨Φ⟩ + 2)𝑑
𝑂 (ℎ)

; 𝑃𝑖 proper.

The algorithm runs in time exp((⟨Φ⟩ + 2)𝑑𝑂 (ℎ) ).

We establish analogous results for R-semilinear expressions and

formulae of LRA where the running time and bounds on the con-

stants is one exponential lower.

Theorem 5.3. There is an algorithm that, given a well-
formed R-semilinear expression 𝑠 , computes a family of triples
{(𝑈𝑘 , 𝑌𝑘 , {(𝑈ℓ , 𝑌ℓ )}ℓ∈𝐿𝑘 )}𝑘∈𝐾 such that ⟦𝑠⟧ =

⋃
𝑘∈𝐾

(
𝐾 (𝑈𝑘 , 𝑌𝑘 ) \⋃

ℓ∈𝐿𝑘 𝐾 (𝑈ℓ , 𝑌ℓ )
)
. Let 𝑑 = 𝑑 (𝑠), ℎ = ℎ(𝑠) and 𝑛 = 𝑛g (𝑠). Assume

𝑑, 𝑛, ⟨𝑠⟩ ≥ 2; the algorithm ensures

#𝐾, #𝐿𝑘 , #𝑈𝑘 , #𝑌𝑘 , #𝑈ℓ , #𝑌ℓ ≤ 𝑛𝑑
𝑂 (ℎ)

; ⟨𝑈𝑘 ⟩, ⟨𝑌𝑘 ⟩ ≤ 𝑑𝑂 (ℎ) ⟨𝑠⟩.

The algorithm runs in time ⟨𝑠⟩𝑂 (𝑑) · 𝑛𝑑𝑂 (ℎ) .

Interestingly enough, the bound on the number #𝐾 of compo-

nents of ⟦𝑠⟧ derived in Theorem 5.3 is doubly exponential, exactly

as in the case of LIA. While this may on the first sight seem surpris-

ing, it turns out that there is a matching lower bound. It is known

from [26, Lecture 23, p. 146] that there is a formula 𝐼𝑛 of size linear

in 𝑛 ∈ N that defines the set of integers in the interval [0, 22𝑛 − 1].
The only way to represent this formula as an R-semilinear set is
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⋃
𝑖∈[0,22𝑛−1] 𝐾 ({𝑖}, ∅). Theorem 5.3 yields a doubly exponential

procedure for deciding LRA.

Corollary 5.4. There is an algorithm that, given a formula Φ
of LRA, computes a family of triples {(𝑈𝑘 , 𝑌𝑘 , {(𝑈ℓ , 𝑌ℓ )}ℓ∈𝐿𝑘 )}𝑘∈𝐾
such that ⟦Φ⟧ = ⋃

𝑘∈𝐾
(
𝐾 (𝑈𝑘 , 𝑌𝑘 ) \

⋃
ℓ∈𝐿𝑘 𝐾 (𝑈ℓ , 𝑌ℓ )

)
. Let 𝑑 = 𝑑 (Φ)

and ℎ = ℎ(Φ). Assume 𝑑, ⟨Φ⟩ ≥ 2; the algorithm ensures

#𝐾, #𝐿𝑘 , #𝑈𝑘 , #𝑌𝑘 , #𝑈ℓ , #𝑌ℓ ≤ 2
𝑑𝑂 (ℎ)

; ⟨𝑈𝑘 ⟩, ⟨𝑌𝑘 ⟩ ≤ 𝑑𝑂 (ℎ) ⟨Φ⟩.

The algorithm runs in time ⟨Φ⟩𝑂 (𝑑) · 2𝑑𝑂 (ℎ) .

5.1 Evaluating semilinear expressions
We now provide an analysis of the operations required to eval-

uate a semilinear expression, which in turn enables us to prove

Theorem 5.1. Thanks to the notion of Z-splitters and the bounds de-
rived in Theorem 4.3, we can design a complementation procedure

for semilinear sets that, when combined with further algorithms

for other Boolean operations and projection, enables evaluating a

semilinear expression in triply exponential time. Below, we give a

complementation procedure for semilinear sets with proper sets of

periods, which has to be combined with Proposition 3.3 to apply to

arbitrary semilinear sets.

Lemma 5.5. There is an algorithm that, given a semilinear set
𝑀 =

⋃
𝑖∈𝐼 𝐿(𝐵𝑖 , 𝑃𝑖 ) ⊆ Z𝑑 , where each 𝑃𝑖 is proper, computes a family

of pairs {(𝐷 𝑗 , 𝑄 𝑗 )}𝑗 ∈𝐽 such that𝑀 =
⋃
𝑗 ∈𝐽 𝐿(𝐷 𝑗 , 𝑄 𝑗 ), and

• #𝐽 ≤ ((#𝐼 + 1) · 𝑑)𝑂 (𝑑3) and each 𝑄 𝑗 is proper; and
• ⟨𝐷 𝑗 ⟩, ⟨𝑄 𝑗 ⟩ ≤ #𝐼 ·𝑂 (𝑑10) · ⟨𝑀⟩.

The algorithm runs in time (max𝑖∈𝐼 (#𝐵𝑖 + #𝑃𝑖 ) + ∥𝑀 ∥)𝑂 (𝑑
11) ·#𝐼 .

The algorithm is simple to state:

1: Z = {𝑍1, . . . , 𝑍𝑚} ← Z-splitter for {𝐿(𝐵𝑖 , 𝑃𝑖 )}𝑖∈𝐼 ,
where 𝑍 𝑗 = 𝐿(𝐶 𝑗 , 𝑄 𝑗 )

2: for 𝑗 ∈ 𝐽 B [1,𝑚] do
3: 𝐸 𝑗 ← 𝐶 𝑗 \𝑀
4: for each distinct 𝑄 ∈ {𝑄 𝑗 : 𝑗 ∈ 𝐽 } do
5: 𝐷𝑄 ←

⋃
𝑗 𝐸 𝑗 : 𝑗 ∈ 𝐽 is such that 𝑄 𝑗 = 𝑄

6: output (𝐷𝑄 , 𝑄)

In Line 1 of the algorithm, the Z-splitter is computed according

to Theorem 4.3. The set 𝐸 𝑗 in Line 3 can be computed by deciding

membership in𝑀 of all 𝒗 ∈ 𝐶 𝑗 using Lemma 3.2 and discarding such

𝒗 accordingly. The running time of the overall algorithm is easily

seen to have the same order of magnitude as that for the Z-splitter.
The algorithm returns the set of all pairs (𝐷𝑄 , 𝑄), so⋃

𝑗 ∈𝐽
𝐿(𝐸 𝑗 , 𝑄 𝑗 ) =

⋃
𝑄

𝐿(𝐷𝑄 , 𝑄),

where the union on the right-hand side enumerates all distinct sets

among 𝑄1, . . . , 𝑄𝑚 . The difference between the two expressions on

the left-hand side and on the right-hand side is that the latter groups

together base points from hybrid linear sets sharing the same set

of periods, i.e., if on the left-hand side we have 𝐿(𝐸1, 𝑄) ∪ 𝐿(𝐸2, 𝑄),
then on the right-hand side we have 𝐿(𝐸1 ∪ 𝐸2, 𝑄).

For every 𝑗 ∈ 𝐽 , let 𝐹 𝑗 B 𝐶 𝑗 ∩𝑀 . So,

Z𝑑 =
⋃
𝑗 ∈𝐽

𝐿(𝐶 𝑗 , 𝑄 𝑗 ) =
( ⋃
𝑗 ∈𝐽

𝐿(𝐸 𝑗 , 𝑄 𝑗 )
)
∪
( ⋃
𝑗 ∈𝐽

𝐿(𝐹 𝑗 , 𝑄 𝑗 )
)
.

To establish the correctness of the algorithm, it suffices to show that

𝑀 =
⋃
𝑗 ∈𝐽 𝐿(𝐸 𝑗 , 𝑄 𝑗 ). This is done by relying on the conditions (Z2)

and (Z3) from the definition of Z-splitters in order to show that,

given 𝑗 ∈ 𝐽 , both 𝐿(𝐸 𝑗 , 𝑄 𝑗 ) ∩𝑀 = ∅ and 𝐿(𝐹 𝑗 , 𝑄 𝑗 ) ⊆ 𝑀 hold.

We now turn towards the proof of Theorem 5.1, for which the

complementation procedure established in Lemma 5.5 is the key.

Informally, the algorithm to construct ⟦𝑠⟧ as a semilinear set start-

ing from a semilinear expression 𝑠 works bottom up, beginning

from the atoms of 𝑠 . When considering an expression 𝑠 = 𝑠1 ∪ 𝑠2,
𝑠 = 𝑠1 ∩ 𝑠2, 𝑠 = 𝑠1 or 𝑠 = 𝜋𝐷 (𝑠1), the algorithm first computes

semilinear sets ⟦𝑠1⟧ and ⟦𝑠2⟧, and then computes ⟦𝑠⟧ according
to the type of the operator. Whenever needed, e.g., before a com-

plementation step, the algorithm uses Proposition 3.3 to make all

period sets of the semilinear sets ⟦𝑠1⟧ and ⟦𝑠2⟧ proper. To compute

the complement ⟦𝑠1⟧, the algorithm invokes Lemma 5.5.

For the intersection of ⟦𝑠1⟧ =
⋃
𝑗 ∈𝐽 𝐿(𝐶 𝑗 , 𝑄 𝑗 ) and ⟦𝑠2⟧ =⋃

𝑘∈𝐾 𝐿(𝐷𝑘 , 𝑅𝑘 ), the algorithm first distributes the intersection

over the unions, obtaining ⟦𝑠1 ∩ 𝑠2⟧ =
⋃
( 𝑗,𝑘) ∈𝐽 ×𝐾 (𝐿(𝐶 𝑗 , 𝑄 𝑗 ) ∩

𝐿(𝐷𝑘 , 𝑅𝑘 )), and then computes a hybrid linear set equivalent to each

𝐿(𝐶 𝑗 , 𝑄 𝑗 ) ∩ 𝐿(𝐷𝑘 , 𝑅𝑘 ) following the lemma below, which makes

the construction of [6, Thm. 6] effective.

Lemma 5.6. Let𝑀 = 𝐿(𝐶,𝑄) ⊆ Z𝑑 and 𝑁 = 𝐿(𝐷, 𝑅) ⊆ Z𝑑 . Then
𝑀 ∩ 𝑁 = 𝐿(𝐵, 𝑃) where
• ⟨𝐵⟩, ⟨𝑃⟩ ≤ 𝑂 (𝑑 · (#𝑄 + #𝑅)3) ·max{⟨𝑀⟩, ⟨𝑁 ⟩}2; and
• #𝑃 ≤ (#𝑄 + #𝑅) (𝑑+1) .

The sets 𝐵, 𝑃 ⊆ Z𝑑 can be computed in time

(#𝑄 + #𝑅)𝑂 (𝑑) ·max(∥𝑀 ∥, ∥𝑁 ∥)𝑂 (𝑑
4) .

The cases for union and projection are not difficult, and only

recalled in the lemma below for completeness.

Lemma 5.7. Let𝑀𝑘 =
⋃
𝑖∈𝐼𝑘 𝐿(𝐵𝑖 , 𝑃𝑖 ) ⊆ Z

𝑑 , with 𝑘 ∈ {1, 2} and
𝐼1 ∩ 𝐼2 = ∅, and let 𝐷 ⊆ [1, 𝑑]. We have:
• 𝑀1 ∪𝑀2 =

⋃
𝑖∈𝐼1∪𝐼2 𝐿(𝐵𝑖 , 𝑃𝑖 );

• 𝜋𝐷 (𝑀1) =
⋃
𝑖∈𝐼1 𝐿(𝜋𝐷 (𝐵𝑖 ), 𝜋𝐷 (𝑃𝑖 )).

Such a representation of 𝑀1 ∪𝑀2 (resp. 𝜋𝐷 (𝑀1)) can be computed
in time 𝑂 (max𝑘∈{1,2} (

∑
𝑖∈𝐼𝑘 #(𝐵𝑖 ∪ 𝑃𝑖 ) · ⟨𝑀𝑘 ⟩)) (resp. with 𝑘 = 1).

The bounds and running time in Theorem 5.1 are established

with an induction on the height of the input semilinear expression,

together with the bounds and running times of the operations

established in Lemmas 5.5, 5.6 and 5.7. We rely on Proposition 3.3

to make period sets proper whenever needed, for instance before

complementing a semilinear set.

In a nutshell, notice that complementation is the most expensive

of the operations. For a sequence of ℎ nested complementation

operations (possibly interleaved with projections), first estimate

the number of hybrid linear sets in the output, #𝐽 . Assuming #𝐼 ≥ 2,

this will be

(((#𝐼 )𝑒 )𝑒 . . .)𝑒 , where 𝑒 = 𝑂 (𝑑3 log𝑑)

and there are ℎ exponentiations in total. Therefore, #𝐽 ≤ (#𝐼 )𝑑𝑂 (ℎ) .
Other bounds on the description size and running time then rely

on this key estimate. As Lemma 5.5 relies on each input 𝐿(𝐵𝑖 , 𝑃𝑖 )
having linear independent 𝑃𝑖 , we can use Proposition 3.3 so that

we initially have #𝐼 ≤ (𝑛p (𝑠))𝑑 .
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Finally, to establish Corollary 5.2, given a formula of Presburger

arithmetic, we first translate it into a semilinear expression: disjunc-

tions, conjunctions and negations become unions, intersections and

complements, respectively; a sequence of quantifiers ∃𝑥1 · · · ∃𝑥𝑘
is translated into a projection 𝜋𝐷 (·) where 𝐷 contains 𝑘 indices

for the variables 𝑥1, . . . , 𝑥𝑘 (assuming an enumeration across all

variables in the formula). To handle ∀𝑥1 · · · ∀𝑥𝑘 , we first rewrite it
into ¬∃𝑥1 · · · ∃𝑥𝑘¬. Each inequality 𝒂 · 𝒙 ≤ 𝑐 is translated into a

hybrid linear set thanks to the following lemma.

Lemma 5.8. Let 𝑆 ⊆ Z𝑑 be the set of integer solutions of a linear
inequality 𝒂 · 𝒙 ≤ 𝑐 , 𝒂 ∈ Z1×𝑑 and 𝑐 ∈ Z. Then 𝑆 = 𝐿(𝐵, 𝑃) such that
#𝑃 ≤ 2𝑑 − 1 and ⟨𝐵⟩, ⟨𝑃⟩ ≤ 𝑂 (𝑑4) · (⟨𝒂⟩ + ⟨𝑐⟩). Moreover, 𝐵 and 𝑃
can be computed in time (∥𝒂∥ + |𝑐 |)poly(𝑑) .

Corollary 5.2 then follows by an application of Theorem 5.1.

5.2 Evaluating R-semilinear expressions
Analogously to the previous section, the algorithm for evaluat-

ing R-semilinear expressions required by Theorem 5.3 can be ob-

tained from algorithms for Boolean operations and projections on

R-semilinear sets. Due to space constraints, we only provide the

relevant statements. It is worth mentioning that due toR-semilinear

sets being constituted by copolyhedra, projection is not a trivial

operation as it is in the case of semilinear sets.

Lemma 5.9. There is an algorithm that, given an R-semilinear set
𝑀 =

⋃
𝑖∈𝐼

(
𝐾 (𝑉𝑖 ,𝑊𝑖 ) \

⋃
𝑗 ∈𝐽𝑖 𝐾 (𝑉𝑗 ,𝑊𝑗 )

)
⊆ R𝑑 , computes a family

of triples {(𝑈𝑘 , 𝑌𝑘 , {(𝑈ℓ , 𝑌ℓ )}ℓ∈𝐿𝑘 )}𝑘∈𝐾 such that

𝑀 =
⋃
𝑘∈𝐾

(
𝐾 (𝑈𝑘 , 𝑌𝑘 ) \

⋃
ℓ∈𝐿𝑘

𝐾 (𝑈ℓ , 𝑌ℓ )
)
.

The algorithm ensures, for every 𝑘 ∈ 𝐾 and ℓ ∈ 𝐾ℓ ,
• #𝑈𝑘 , #𝑌𝑘 , #𝑈ℓ , #𝑌ℓ ≤ (#𝐼 ·max𝑖∈𝐼 (#𝑉𝑖 + #𝑊𝑖 ) + 𝑑)𝑂 (𝑑

2) ;
• ⟨𝑈𝑘 ⟩, ⟨𝑌𝑘 ⟩, ⟨𝑈ℓ ⟩, ⟨𝑌ℓ ⟩ ≤ 𝑂 (𝑑5) · ⟨𝑀⟩; and
• #𝐾, #𝐿𝑘 ≤ (#𝐼 ·max𝑖∈𝐼 (#𝑉𝑖 + #𝑊𝑖 ) + 𝑑)𝑂 (𝑑

2) .
The algorithm runs in time

poly(#𝐼 ,max

𝑖∈𝐼
#𝐽𝑖 , (max

𝑖∈𝐼
(#𝑉𝑖 + #𝑊𝑖 ) + 𝑑)𝑑

3

, ⟨𝑀⟩).

Lemma 5.10. Let𝑀𝑘 =
⋃
𝑖∈𝐼𝑘

(
𝐾 (𝑉𝑖 ,𝑊𝑖 ) \

⋃
𝑗 ∈𝐽𝑖 𝐾 (𝑉𝑗 ,𝑊𝑗 )

)
, with

𝑘 ∈ {1, 2} and 𝐼1 ∩ 𝐼2 = ∅. We have

𝑀1 ∩𝑀2 =
⋃
𝑘∈𝐾

(
𝐾 (𝑈𝑘 , 𝑌𝑘 ) \

⋃
ℓ∈𝐿𝑘

𝐾 (𝑈ℓ , 𝑌ℓ )
)

where, given #P B max𝑖∈𝐼1∪𝐼2, 𝑗 ∈𝐽𝑖 (#𝑉𝑖 , #𝑊𝑖 , #𝑉𝑗 , #𝑊𝑗 ),
• #𝐾 ≤ #𝐼1 · #𝐼2 and #𝐿𝑘 ≤ 2 ·max𝑖∈𝐼1∪𝐼2 #𝐽𝑖 ;
• #𝑈𝑘 , #𝑌𝑘 , #𝑈ℓ , #𝑌ℓ ≤ (#P + 𝑑)𝑂 (𝑑

2) ; and
• ⟨𝑈𝑘 ⟩, ⟨𝑌𝑘 ⟩, ⟨𝑈ℓ ⟩, ⟨𝑌ℓ ⟩ ≤ 𝑂 (𝑑4) ·max𝑘∈{1,2} ⟨𝑀𝑘 ⟩.

The family of triples {(𝑈𝑘 , 𝑌𝑘 , {(𝑈ℓ , 𝑌ℓ )}ℓ∈𝐿𝑘 )}𝑘∈𝐾 can be computed
in time poly(#𝐼1, #𝐼2,max𝑖∈𝐼1∪𝐼2 #𝐽𝑖 ,max𝑘∈{1,2} ⟨𝑀𝑘 ⟩, (#P + 𝑑)𝑑

2 ).

Lemma 5.11. Let𝑀 =
⋃
𝑖∈𝐼

(
𝐾 (𝑉𝑖 ,𝑊𝑖 ) \

⋃
𝑗 ∈𝐽𝑖 𝐾 (𝑉𝑗 ,𝑊𝑗 )

)
be an

R-semilinear set, and let 𝐷 ⊆ [1, 𝑑]. Then

𝜋𝐷 (𝑀) =
⋃
𝑖∈𝐼

(
𝐾 (𝜋𝐷 (𝑉𝑖 ), 𝜋𝐷 (𝑊𝑖 )) \

⋃
ℓ∈𝐿𝑖

𝐾 (𝑈ℓ , 𝑌ℓ )
)

is a R-semilinear set where, for every 𝑖 ∈ 𝐼 and ℓ ∈ 𝐿𝑖 ,
• #𝐿𝑖 ≤ (#𝑉𝑖 + #𝑊𝑖 + 2𝑑)𝑑

2

;

• #𝑈ℓ , #𝑌ℓ ≤ 2(#𝑉𝑖 + #𝑊𝑖 + 2𝑑)𝑑
2

; and
• ⟨𝑈ℓ ⟩, ⟨𝑌ℓ ⟩ ≤ 𝑂 (𝑑4) ·max𝑖∈𝐼 (⟨𝑉𝑖 ⟩, ⟨𝑊𝑖 ⟩).

Such a representation of 𝜋𝐷 (𝑀) can be computed in time

poly(#𝐼 ,max

𝑖∈𝐼
(#𝐽𝑖 + 1), ⟨𝑀⟩, (#P + 𝑑)𝑑

2

),

where #P B max𝑖∈𝐼 , 𝑗 ∈𝐽𝑖 (#𝑉𝑖 , #𝑊𝑖 , #𝑉𝑗 , #𝑊𝑗 ).

Lemma 5.12. Let𝑀𝑘 =
⋃
𝑖∈𝐼𝑘

(
𝐾 (𝑉𝑖 ,𝑊𝑖 ) \

⋃
𝑗 ∈𝐽𝑖 𝐾 (𝑉𝑗 ,𝑊𝑗 )

)
, with

𝑘 ∈ {1, 2} and 𝐼1 ∩ 𝐼2 = ∅. We have

𝑀1 ∪𝑀2 =
⋃

𝑖∈𝐼1∪𝐼2

(
𝐾 (𝑉𝑖 ,𝑊𝑖 ) \

⋃
𝑗 ∈𝐽𝑖

𝐾 (𝑉𝑗 ,𝑊𝑗 )
)
,

which can be computed in timemax𝑘∈{1,2}𝑂 (#𝐼𝑘 · #P) · ⟨𝑀𝑘 ⟩, where
#P B max𝑖∈𝐼1∪𝐼2, 𝑗 ∈𝐽𝑖 (#𝑉𝑖 , #𝑊𝑖 , #𝑉𝑗 , #𝑊𝑗 ).

6 THE VC DIMENSION OF LRA AND LIA
We recall the notion of VC dimension [24, Ch. 3]. Let (𝑋, F ) be a
set system consisting of a set 𝑋 and a family F of subsets of 𝑋 . We

say that F shatters a set 𝐴 ⊆ 𝑋 if for every 𝐴′ ⊆ 𝐴 there is 𝑆 ∈ F
such that 𝑆 ∩ 𝐴 = 𝐴′. The largest cardinality 𝑘 of some 𝐴 ⊆ 𝑋

shattered by F is the Vapnik–Chervonenkis (VC) dimension of F ,
written as V𝐶 (F ) = 𝑘 , which may be infinite. The VC dimension

is a fundamental measure in computational learning theory: if

V𝐶 (F ) = 𝑘 holds for a family F then the sample complexity of

F , i.e., the number of samples needed to PAC learn F , is linear
in 𝑘 [10, 18].

As a simple example, consider the family of all closed intervals

I B {[𝑝, 𝑞] : 𝑝, 𝑞 ∈ R}. This family has a VC dimension of 2.

Indeed, V𝐶 (I) ≥ 2, since I shatters the set {0, 1}. To show that

V𝐶 (I) ≤ 2, it suffices to pick any set {𝑎, 𝑏, 𝑐} with 𝑎 < 𝑏 < 𝑐 and

notice that no interval 𝐼 ∈ I is such that {𝑎, 𝑏, 𝑐} ∩ 𝐼 = {𝑎, 𝑐}.
The notion of VC dimension can be applied to formulae of any

first-order theory [1]. Consider a partitioned first-order formula

Φ(𝒙;𝒚), in the structure M with universe 𝑀 , whose 𝑛 +𝑚 free

variables are separated into two groups of 𝑛 ≥ 1 object variables
𝒙 and 𝑚 ≥ 1 parameter variables 𝒚. Given a parameter 𝒘 ∈ 𝑀𝑚 ,

i.e., a particular choice of the 𝑚 parameter variables, we define

S𝒘 B {𝒗 ∈ 𝑀𝑛
:M |= Φ(𝒗,𝒘)} and we associate to Φ(𝒙;𝒚) the

family SΦ B {S𝒘 : 𝒘 ∈ 𝑀𝑚}. The VC dimension of Φ, writ-
ten V𝐶 (Φ), is defined as V𝐶 (SΦ). For example, for the formula

Φ(𝑥,𝑦1, 𝑦2) B 𝑦1 ≤ 𝑥 ∧ 𝑥 ≤ 𝑦2 with object variable 𝑥 and parame-

ter variables 𝑦1 and 𝑦2, we have V𝐶 (Φ) = 2 since SΦ = I for the

family of intervals I defined above.

In model theory, finiteness of V𝐶 (Φ) is equivalent to Φ not hav-
ing the independence property (Φ is NIP, for short) in the sense of

S. Shelah [42]; see also [1, Sec. 1.3] for a modern account on NIP

theories. A structureM is NIP if every partitioned first-order for-

mula inM is NIP. While insufficient to deduce precise bounds on

the VC dimension, the results of Y. Gurevich and P.H. Schmitt [16,

Thm. 3.1], relying on [35, Thm. 7] of B. Poizat, imply that both LRA

and LIA are NIP, and thus all formulae from these theories have

finite VC dimension.

The goal of this section is to establish precise upper bounds on

the VC dimension for both LRA and LIA.

Theorem 6.1. Every formula Φ of LRA has VC dimension that is
at most exponential in the length of Φ.
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Theorem 6.2. Every formula Φ of LIA has VC dimension that is
at most doubly exponential in the length of Φ.

These upper bounds have simple matching lower bounds.

For LRA, it is known from [26, Lec. 23] that there is a formula

div𝑛 (𝑥,𝑦), of length polynomial in 𝑛 ∈ N, that is satisfied when-

ever 𝑥,𝑦 ∈ N with 0 ≤ 𝑥 ≤ 𝑦 < 2
2
𝑛
, and 𝑥 divides 𝑦. With 𝑥 as

an object variable and 𝑦 as a parameter variables, div(𝑛+1) (𝑥,𝑦)
shatters the set P2𝑛 of prime numbers below 2

𝑛
. By the prime num-

ber theorem [19], #P2𝑛 is Θ(2𝑛−log𝑛), i.e., it is exponential in the

length of div(𝑛+1) (𝑥,𝑦), and the product of the primes in P2𝑛 is

less than 2
2
𝑛+1

. Then each subset {𝑝1, . . . , 𝑝𝑘 } ⊆ P2𝑛 is obtained by

setting 𝑦 =
∏𝑘
𝑖=1 𝑝𝑖 . Similarly, for LIA, [26, Lec. 24] defines another

formula div𝑛 (𝑥,𝑦), of length polynomial in 𝑛 ∈ N, that is satisfied
whenever 𝑥 divides 𝑦 and 0 ≤ 𝑥 ≤ 𝑦 ≤ ℓ𝑛 , where ℓ𝑛 is the product

of all primes below 2
2
𝑛
; thus ℓ𝑛 ≤ 2

𝑐22
𝑛

for some constant 𝑐 > 0.

With 𝑥 as an object variable and 𝑦 as a parameter variable, this

formula shatters the set of all primes below 2
2
𝑛
.

6.1 The VC dimension of linear real arithmetic
To derive an upper bound on the VC dimension of LRA, we consider

the analogous problem of bounding the VC dimension of an R-
semilinear set. Similarly to the definition of VC dimension for a

first-order theory, given a set 𝑀 ⊆ R𝑛+𝑚 , where the first 𝑛 ≥ 1

coordinates are called object coordinates and the last𝑚 ≥ 1 are called

parameter coordinates, we define sets S𝒘 B {𝒗 ∈ R𝑛 : (𝒗,𝒘) ∈ 𝑀}
for each choice𝒘 ∈ R𝑚 of the parameters, and consider the family

S𝑀 B {S𝒘 : 𝒘 ∈ R𝑚}. Define V𝐶 (𝑀) B V𝐶 (S𝑀 ).
Whenever𝑀 is an R-semilinear set, we show that its VC dimen-

sion is polynomial in the dimension 𝑛 +𝑚 and (only) logarithmic

in the number of its components and the maximum cardinality

of its generator sets. There is no dependence on ∥𝑀 ∥, i.e., on the

magnitude of numbers in the presentation.

Theorem 6.3. Let𝑀 =
⋃
𝑖∈𝐼

(
𝐾 (𝑉𝑖 ,𝑊𝑖 ) \

⋃
𝑗 ∈𝐽𝑖 𝐾 (𝑉𝑗 ,𝑊𝑗 )

)
be an

R-semilinear set of dimension 𝑑 = 𝑛 +𝑚, with coordinates partitioned
into 𝑛 ≥ 1 object coordinates and𝑚 ≥ 1 parameter coordinates. Then
V𝐶 (𝑀) ≤ 6 · (𝑑 + 1)2 · log

(
#𝐼 · 𝑑 ·max𝑖∈𝐼 (#𝑉𝑖 + #𝑊𝑖 + 1)

)
.

Thanks to Corollary 5.4, Theorem 6.3 suffices to prove the upper

bound on the VC dimension of LRA in Theorem 6.1.

The key insight that leads to this result is depicted in Figure 1.

Pick a set 𝑉 of objects, in the figure 𝑉 = {𝑣1, 𝑣2}. Each object

corresponds to a hyperplane ℎ that, when intersected with𝑀 , gen-

erates an R-semilinear set. We project all these intersections (cross-

sections) coming from the different objects in 𝑉 on the parameter

space R𝑚 , and build a setH of hyperplanes that carves out all the

convex polyhedra appearing in the R-semilinear set resulting from

this projection. The hyperplanes inH divide the parameter space

into regions with a fundamental property: every two parameters

𝒘1 and𝒘2 belonging to the same region satisfy S𝒘1
∩𝑉 = S𝒘2

∩𝑉 .
This implies that, if 𝑀 shatters 𝑉 , the set H divides R𝑚 into at

least 2
#𝑉

regions. By relying on Proposition 3.5, we show that the

number of these regions is at most #𝑉𝑑 · 𝛼 , where 𝛼 is a quantity

that depends on the descriptional complexity of𝑀 . As 𝑓 (𝑛) = 2
𝑛

grows faster than 𝑔(𝑛) = 𝑐 · 𝑛𝑑 , this allows us to derive an upper

bound on the maximum cardinality of sets 𝑉 that S𝑀 shatters.
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Figure 1: Above: two cross-sections of a tetrahedron, associated

with two objects 𝑣1 and 𝑣2. Below: supporting hyperplanes (lines)

of these cross-sections, splitting the parameter space into regions.

Every two parameters 𝒘1 and 𝒘2 belonging to the same region

satisfy S𝒘1
∩ {𝑣1, 𝑣2} = S𝒘2

∩ {𝑣1, 𝑣2}.

Let us now formalise this idea. Consider the set H(𝑀) B⋃
𝑖∈𝐼 H(𝑉𝑖 ,𝑊𝑖 ), whereH(𝑉𝑖 ,𝑊𝑖 ) is a set of hyperplanes in R𝑛+𝑚

carving out𝐾 (𝑉𝑖 ,𝑊𝑖 ). In𝑀 , for each 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐽𝑖 , the polyhedron
𝐾 (𝑉𝑗 ,𝑊𝑗 ) is a face of𝐾 (𝑉𝑖 ,𝑊𝑖 ), soH(𝑀) also carves out𝐾 (𝑉𝑗 ,𝑊𝑗 ).
By Proposition 3.1, #H(𝑀) ≤ #𝐼 · (2𝑑 +max𝑖∈𝐼 (#𝑉𝑖 + #𝑊𝑖 )𝑑 ).

Assume that S𝑀 shatters a set 𝑉 = {𝒗1, . . . , 𝒗𝑘 } ⊆ R𝑛 of 𝑘 ≥ 1

objects. We derive an upper bound on 𝑘 . For each 𝒗 ∈ 𝑉 , we define
the𝑚-dimensional affine subspace 𝐴𝒗 B {(𝒗,𝒚) : 𝒚 ∈ R𝑚}. In the

top part of Figure 1, these affine subspaces are the two hyperplanes

in light grey.

We construct a setH𝒗 of non-trivial intersections between 𝐴𝒗

and hyperplanes inH(𝑀). First, observe that for every ℎ ∈ H (𝑀)
one of the following holds:

• ∅ ≠ (𝐴𝒗 ∩ ℎ) ≠ 𝐴𝒗 : in this case, dim(𝐴𝒗 ∩ ℎ) =𝑚 − 1;
• 𝐴𝒗 ⊆ ℎ: in this case, dim(𝐴𝒗 ∩ ℎ) = dim(𝐴𝒗) =𝑚; or

• 𝐴𝒗 ∩ ℎ = ∅: in this case, dim(𝐴𝒗 ∩ ℎ) = −1.
The dimension of the set 𝐴𝒗 ∩ ℎ can be calculated trivially in the

second and third cases. In the first case, pick 𝒔 ∈ 𝐴𝒗∩ℎ and 𝒕 ∈ 𝐴𝒗\ℎ.
Consider the sets 𝐴𝒗 − 𝒔 B 𝐴𝒗 + {−𝒔} and ℎ − 𝒔, which are both

subspaces of R𝑑 . We will apply to 𝐴𝒗 − 𝒔 and ℎ − 𝒔 Grassmann’s

formula

dim(𝑈 ∩𝑊 ) = dim𝑈 + dim𝑊 − dim(𝑈 +𝑊 ),

valid for any two subspaces𝑈 and𝑊 . Notice thatℎ−𝒔 has dimension

𝑑−1 and does not contain the vector 𝒕−𝒔. Since this vector belongs to
𝐴𝒗−𝒔, we conclude that (𝐴𝒗−𝒔)+(ℎ−𝒔) = R𝑑 , and so dim(𝐴𝒗∩ℎ) =
dim((𝐴𝒗 − 𝒔) ∩ (ℎ − 𝒔)) =𝑚 + (𝑑 − 1) − 𝑑 =𝑚 − 1.

DefineH𝒗 B {𝐴𝒗∩ℎ : dim(𝐴𝒗∩ℎ) =𝑚−1, ℎ ∈ H (𝑀)}. Notice
that each 𝐴𝒗 ∩ ℎ inH𝒗 is a hyperplane when considered relative
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to the affine subspace 𝐴𝒗 and that all points in 𝐴𝒗 ∩ ℎ are of the

form (𝒗,𝒘) ∈ R𝑛+𝑚 , for some𝒘 ∈ R𝑚 .

We define an equivalence relation ∼H⊆ R𝑚 ×R𝑚 of finite index,

such that 𝒘1 ∼H 𝒘2 implies S𝒘1
∩𝑉 = S𝒘2

∩𝑉 . Intuitively, ∼H
splits the parameter space R𝑚 as shown in the bottom-most part

of Figure 1. We first build analogous relations with respect to a

single 𝒗 ∈ 𝑉 . Let 𝒗 = (𝑣1, . . . , 𝑣𝑛) andH𝒗 = {𝐴𝒗 ∩ ℎ1, . . . , 𝐴𝒗 ∩ ℎ𝑟 },
where each hyperplane ℎ𝑖 is the set of solutions to the equation

𝔥𝑖 : 𝒂𝑖 · (𝒙,𝒚) = 𝑐𝑖 . Let ∼H𝒗
be the equivalence relation on R𝑚

given by:

𝒘1 ∼H𝒗
𝒘2 iff, for every 𝑖 ∈ [1, 𝑟 ],

sgn(𝒂𝑖 · (𝒗,𝒘1) − 𝑐𝑖 ) = sgn(𝒂𝑖 · (𝒗,𝒘2) − 𝑐𝑖 ).

Lemma 6.4. Consider 𝒘1 and 𝒘2 in R𝑚 such that 𝒘1 ∼H𝒗
𝒘2.

Then (𝒗,𝒘1) ∈ 𝑀 if and only if (𝒗,𝒘2) ∈ 𝑀 .

This lemma follows from the definition of 𝐴𝒗 andH(𝑀).
We define ∼H B

⋂
𝒗∈𝑉 ∼H𝒗

, which enjoys three properties

listed in the following lemma. These are proved by appealing to

Lemma 6.4, Proposition 3.5, plus the fact that H(𝑀) carves out
each polyhedron 𝐾 (𝑉𝑖 ,𝑊𝑖 ) in𝑀 .

Lemma 6.5. Let 𝑉 ⊆ R𝑛 be a set of 𝑘 ≥ 1 objects. Consider an
R-semilinear set 𝑀 =

⋃
𝑖∈𝐼 𝑀𝑖 ⊆ R𝑛+𝑚 , where 𝑀𝑖 = 𝐾 (𝑉𝑖 ,𝑊𝑖 ) \⋃

𝑗 ∈𝐽𝑖 𝐾 (𝑉𝑗 ,𝑊𝑗 ), having 𝑑 = 𝑛 +𝑚 dimensions, 𝑛 ≥ 1 object coordi-
nates and𝑚 ≥ 1 parameter coordinates. The equivalence relation ∼H
has the following properties:
(i) given 𝑖 ∈ 𝐼 , 𝒘1,𝒘2 ∈ R𝑚 and 𝒗 ∈ 𝑉 , if 𝒘1 ∼H 𝒘2, then
(𝒗,𝒘1) ∈ 𝑀𝑖 if and only if (𝒗,𝒘2) ∈ 𝑀𝑖 ;

(ii) given 𝑖 ∈ 𝐼 , 𝒘1,𝒘2 ∈ R𝑚 and 𝒗 ∈ 𝑉 , if 𝒘1 ∼H 𝒘2, then
(𝒗,𝒘1) ∈ aff𝑀𝑖 if and only if (𝒗,𝒘2) ∈ aff𝑀𝑖 ;

(iii) the number of equivalence classes of ∼H is bounded by
𝑘𝑑 · 2𝑑 · #𝐼𝑑 ·

(
2𝑑 +max𝑖∈𝐼 (#𝑉𝑖 + #𝑊𝑖 )𝑑

)𝑑 + 1.
By definition, Property (i) of Lemma 6.5 implies that, for every

two parameters 𝒘1 ∼H 𝒘2, we have S𝒘1
∩ 𝑉 = S𝒘2

∩ 𝑉 . Then,
Property (iii) implies that #{S𝒘 ∩ 𝑉 : 𝒘 ∈ R𝑚} is bounded from

above by 𝑘𝑑 · 2𝑑 · #𝐼𝑑 ·
(
2𝑑 +max𝑖∈𝐼 (#𝑉𝑖 + #𝑊𝑖 )𝑑

)𝑑 + 1. Since we
are assuming that S𝑀 shatters 𝑉 , it follows that

2
𝑘 ≤ 𝑘𝑑 · 2𝑑 · #𝐼𝑑 ·

(
2𝑑 +max

𝑖∈𝐼
(#𝑉𝑖 + #𝑊𝑖 )𝑑

)𝑑 + 1. (†)

It remains to analyse this inequality.

Lemma 6.6. Consider any 𝑘, 𝑑, 𝛼 ∈ R satisfying

𝑘𝑑 · 𝛼 ≥ 2
𝑘 , 𝑑 ≥ 1, 𝛼 ≥ 2, 𝑘 ≥ 1.

Then 𝑘 ≤ 2 · (log𝛼 + 𝑑 log(2𝑑)).

Plugging Equation (†) in Lemma 6.6 yields the following bound

on 𝑘 , which implies Theorem 6.3.

Lemma 6.7. Consider 𝑘 from Equation (†). We have

𝑘 ≤ 6(𝑑 + 1)2 · log
(
#𝐼 · 𝑑 ·max𝑖∈𝐼 (#𝑉𝑖 + #𝑊𝑖 + 1)

)
.

6.2 The VC dimension of Presburger arithmetic
We now move to Presburger arithmetic, and adapt the proof tech-

nique used for Theorem 6.1 in order to establish Theorem 6.2,

as well as upper bounds on the VC dimension of semilinear sets.

Throughout this section, given a set𝑀 ⊆ Z𝑛+𝑚 of dimension 𝑛 +𝑚,

where the first 𝑛 ≥ 1 coordinates are called object coordinates and
the last 𝑚 ≥ 1 are called parameter coordinates, we define sets

S𝒘 B {𝒗 ∈ Z𝑛 : (𝒗,𝒘) ∈ 𝑀} for each choice𝒘 ∈ Z𝑚 of the param-

eters, and associate with𝑀 the family S𝑀 = {S𝒘 : 𝒘 ∈ Z𝑚}. Then
V𝐶 (𝑀) B V𝐶 (S𝑀 ).

We establish an upper bound on the VC dimension of a semilinear

set𝑀 ⊆ Z𝑑 : it is exponential, but only in 𝑑 .

Theorem 6.8. Let 𝑀 =
⋃
𝑖∈𝐼 𝐿(𝐵𝑖 , 𝑃𝑖 ) be a semilinear set in di-

mension 𝑑 = 𝑛 + 𝑚, with 𝑛 ≥ 1 object coordinates and 𝑚 ≥ 1

parameter coordinates. Then V𝐶 (𝑀) ≤ 𝛼 log𝛼 with 𝛼 in

𝑂 (#𝐼 · (max

𝑖∈𝐼
#𝑃𝑖 + 1)𝑑+1 (𝑑 + 1)6 log(max

𝑖∈𝐼
∥𝐵𝑖 ∥ ·max

𝑖∈𝐼
∥𝑃𝑖 ∥2)) .

In the proof of Theorem 6.8, the main difficulty lies in handling

the discrete behaviour of the various hybrid linear sets. Here, we

employ a simple yet effective approach that consists of establishing

an upper bound, firstly, on the VC dimension of a hybrid linear

set with a proper period set, and then on the VC dimension of a

semilinear set with the help of Proposition 3.3 together with the

following proposition by Sauer and Shelah [39, 43] (see also [30,

Proof of Thm. 4]).

Proposition 6.9. Let 𝑆1, . . . , 𝑆𝑡 ⊆ Z𝑛+𝑚 be any 𝑡 sets with
V𝐶 (S𝑆𝑖 ) = 𝑘𝑖 . If 𝑇 is any Boolean combination of 𝑆1, . . . , 𝑆𝑡 , then
V𝐶 (𝑇 ) = 𝑂 ((∑𝑡𝑖=1 𝑘𝑖 ) · log(∑𝑡𝑖=1 𝑘𝑖 )).

We start by deriving an upper bound on the VC dimension of a

hybrid linear set with a proper set of periods.

A set 𝑆 ⊆ Z𝑑 is an (integer) lattice whenever it is of the form
𝑆 = Λ(𝑃) B 𝑃 · Z#𝑃 with 𝑃 ⊆ Z𝑑 proper. Notice that for our

purposes we do not require dim 𝑆 to be 𝑑 .

Below, let us fix a hybrid linear set 𝐿 = 𝐿(𝐵, 𝑃) ⊆ Z𝑛+𝑚 having

a proper period set 𝑃 and 𝑑 = 𝑛 +𝑚 dimensions partitioned into

𝑛 ≥ 1 object coordinates and𝑚 ≥ 1 parameter coordinates. Let us

assume that S𝐿 shatters a set 𝑉 = {𝒗1, . . . , 𝒗𝑘 } ⊆ Z𝑛 of size 𝑘 ≥ 1.

Following the lemma below, the strategy to bound 𝑘 becomes clear:

it is sufficient to add to the strategy employed in Section 6.1 an

analysis of how the VC dimension increases in the presence of the

integer lattice Λ(𝑃).
Lemma 6.10. For 𝑃 proper, 𝐿(𝒃, 𝑃) = 𝐾 (𝒃, 𝑃) ∩ (𝒃 + Λ(𝑃)).

Proof. As 𝑃 is proper, every 𝒗 ∈ R𝑑 has at most one 𝝀 ∈ R#𝑃
s.t. 𝒗 = 𝒃 + 𝑃 · 𝜆. Then the lemma follows as N = R+ ∩ Z. □

We consider the R-semilinear set

⋃
𝒃∈𝐵 𝐾 (𝒃, 𝑃) and, by

Lemma 6.5, construct an equivalence relation ∼H such that:

1) given 𝒃 ∈ 𝐵, 𝒗 ∈ 𝑉 and 𝒘1,𝒘2 ∈ R𝑚 such that 𝒘1 ∼H 𝒘2, we

have (𝒗,𝒘1) ∈ 𝐾 (𝒃, 𝑃) if and only if (𝒗,𝒘2) ∈ 𝐾 (𝒃, 𝑃);
2) given 𝒃 ∈ 𝐵, 𝒗 ∈ 𝑉 and 𝒘1,𝒘2 ∈ R𝑚 such that 𝒘1 ∼H 𝒘2, we

have (𝒗,𝒘1) ∈ aff 𝐾 (𝒃, 𝑃) if and only if (𝒗,𝒘2) ∈ aff 𝐾 (𝒃, 𝑃);
3) the number of equivalence classes of the relation ∼H is bounded

by 𝑘𝑑 · 22𝑑 · #𝐵𝑑 · (𝑑 + 1)𝑑2 + 1 (given that #𝑃 ≤ 𝑑).
Given two parameters 𝒘1,𝒘2 ∈ Z𝑚 , we write 𝒘1 ∼Λ 𝒘2 when-

ever (0,𝒘1) − (0,𝒘2) ∈ Λ(𝑃), with 0 ∈ Z𝑛 . It is easy to see that ∼Λ
is an equivalence relation. The following two lemmas show how to

refine ∼H to account for the lattice Λ(𝑃).
Lemma 6.11. Let𝒘1,𝒘2 ∈ Z𝑛 such that𝒘1 (∼H ∩ ∼Λ)𝒘2, and let

𝒗 ∈ 𝑉 . Then (𝒗,𝒘1) ∈ 𝐿 if and only if (𝒗,𝑤2) ∈ 𝐿.
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Proof. We only show the left to right direction. Suppose

(𝒗,𝒘1) ∈ 𝐿, and thus (𝒗,𝒘1) ∈ 𝐿(𝒃, 𝑃) for some 𝒃 ∈ 𝐵. Since 𝑃
is proper, by Lemma 6.10, (𝒗,𝒘1) ∈ 𝐾 (𝒃, 𝑃) and (𝒗,𝒘1) ∈ 𝒃 + Λ(𝑃);
and to conclude the proof it suffices to show that (𝒗,𝒘2) ∈ 𝐾 (𝒃, 𝑃)
and (𝒗,𝒘2) ∈ 𝒃 + Λ(𝑃). The former, i.e., (𝒗,𝒘2) ∈ 𝐾 (𝒃, 𝑃), follows
directly from𝒘1 ∼H 𝒘2. We also have (𝒗,𝒘2) − (𝒗,𝒘1) = 𝑃 · 𝝀 for

some 𝝀 ∈ Z𝑑 , and by (𝒗,𝒘1) ∈ 𝒃 + Λ(𝑃) there is 𝝁 ∈ Z𝑑 such that

(𝒗,𝒘1) = 𝒃 + 𝑃 · 𝝁. So, (𝒗,𝒘2) = 𝒃 + 𝑃 · (𝝀 + 𝝁) ∈ 𝒃 + Λ(𝑃). □

Lemma 6.12. Let 𝐸 be an equivalence class of ∼H . Either
• for every𝒘 ∈ 𝐸, S𝒘 ∩𝑉 = ∅; or
• the relation ∼Λ partitions 𝐸 ∩ Z𝑚 into at most (2𝑑 · ∥𝑃 ∥)𝑑
equivalence classes.

Assuming dim span(𝑃) = 𝑑 , this lemma follows from the fact that

the number of equivalence classes in ∼Λ is |det 𝑃 | [27, Lem. 2.3.14].

A proof not requiring dim span(𝑃) = 𝑑 can be established by relying
on Property 2 of ∼H .

Below, let S𝒘 B {𝒗 ∈ Z𝑛 : (𝒗,𝒘) ∈ 𝐿(𝐵, 𝑃)}. Lemmas 6.11

and 6.12 allow us to derive a bound on the number of distinct

intersections S𝒘 ∩𝑉 across all parameters𝒘 ∈ Z𝑚 .

Lemma 6.13. Consider 𝐿(𝐵, 𝑃) ⊆ Z𝑑 with 𝑃 proper, 𝑑 = 𝑛 +𝑚 di-
mensions, 𝑛 ≥ 1 object coordinates and𝑚 ≥ 1 parameter coordinates.
Then the cardinality of the set {S𝒘 ∩𝑉 : 𝒘 ∈ Z𝑚} does not exceed
𝑘𝑑 · 22𝑑+2 · (𝑑 + 1)𝑑2+1 · (#𝐵 · ∥𝑃 ∥)𝑑 .

Since we are assuming that S𝐿 shatters𝑉 , Lemma 6.13 yields an

upper bound on the VC dimension of 𝐿 by Lemma 6.6.

Lemma 6.14. The VC dimension of a set 𝐿(𝐵, 𝑃) ⊆ Z𝑑 with 𝑃
proper is at most 6 · (𝑑 + 1)4 log

(
(𝑑 + 1) · #𝐵 · ∥𝑃 ∥

)
.

Finally, we apply Proposition 6.9 to extend Lemma 6.14 to semi-

linear sets with proper period sets.

Lemma 6.15. The VC dimension of a set
⋃
𝑖∈𝐼 𝐿(𝐵𝑖 , 𝑃𝑖 ) where each

𝑃𝑖 is proper does not exceed 𝛼 log𝛼 where

𝛼 B 6 · #𝐼 · (𝑑 + 1)4 log
(
(𝑑 + 1) · #𝐵 · ∥𝑃 ∥

)
.

Theorem 6.8 follows from Lemma 6.15 and Proposition 3.3. To-

gether with Theorem 5.1, this result show a doubly exponential

upper bound on the VC dimension of semilinear expressions. Theo-

rem 6.2 follows from Lemma 6.15 and Corollary 5.2.

7 CONCLUSIONS
We have presented geometric decision procedures for linear inte-

ger arithmetic (LIA) and linear real arithmetic (LRA) running in

triply and doubly exponential time, respectively. The existence of

such a procedure for LIA has been a long-standing problem. Whilst

the focus of this work has been on unrestricted LIA and LRA, our

results also deliver meaningful bounds for restricted fragments too.

Corollary 5.4, for example, recovers a polynomial-time algorithm

for the short fragment of LRA, i.e., for formulae in which both the

number of variables and the number of occurrences of all linear

inequalities are bounded from above by a fixed constant, indepen-

dent of the given formula (cf. [31] for hardness results for short

LIA). This result is not new, however, as even the nonlinear theory

in fixed dimension is known to be polynomial-time decidable [37].

It would be interesting to see if the bounds of Sec. 5 that involve

ℎ, i.e., the maximum nesting depth of Boolean connectives and

quantifications, could be strengthened to refer to the alternation

depth instead, expanding the reach of the geometric approach.

It is no surprise that the decision problem for linear arithmetic

theories is linked with standard computational geometry tasks

such as enumerating faces and triangulating convex polyhedra in

R𝑑 . However, before the present paper no elementary bound on

the running time of geometric decision procedures for LIA was

known, unlike for procedures based on automata and quantifier

elimination. With Corollaries 5.2 and 5.4 offering such guarantees,

we expect it possible to take advantage of established computational

geometry algorithms and heuristics for these tasks (see, e.g., [13]),

leading to competitive software implementations. By the results

of L. Berman [3], the doubly and triply exponential running time

and description size bounds from Sec. 5 cannot in the worst case be

reduced to, e.g., single and double exponential, respectively. This

barrier, however, need not hold for individual inputs arising from

practice. Our results indicate the properties that guarantee that time

and memory usage of our decision procedures (algorithms) stays

within the stated bounds. These bounds, however, are conservative

and are blind to savings that could be made on specific inputs.

Geometry can also be a strong tool to obtain decision procedures

for logical theories with more powerful signatures, for instance, to

show decidability of LIA enriched with a Kleene star operator [11,

17, 34]. However, it is currently open whether this extension of

LIA admits an elementary decision procedure, even though all sets

definable in this theory are still semilinear. The results of this paper

leave open the possibility of a decision procedure for LIA enriched

with a Kleene star operator with elementary running time.

Another direction for future work worth exploring is to investi-

gate whether a geometric approach can lead to a decision procedure

with elementary running time for the extension of LIA with a unary

counting quantifier [7, 41].

Finally, while initial work on characterising the geometry of

linear mixed integer and real arithmetic (LIRA) exists [46], to the

best of our knowledge a full geometric characterisation has not

been obtained. Furthermore, bounds on the VC dimension of LIRA

are not known. We are confident that the approach taken in this

paper can be used to address these open problems.
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