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Abstract. We study the computational complexity of model checkitglogic
and modal logic on parametric one-counter automata (POCA). A POCArnsa
counter automaton whose counter updates are either integer valueeénoo
binary or integer-valued parameters. Given a formula and a coafigorof a
POCA, the model-checking problem asks whether the formula is true inghis c
figuration for all possible valuations of the parameters. We show thatribidgm

is undecidable foEF logic via reduction from Hilbert’s tenth problem, however
for modal logic we prové®SPACE-completeness. Obtaining tiRSPACE upper
bound involves analysing systems of linear Diophantine inequalities ohexpo
tial size that admit solutions of polynomial size. Finally, we show that model
checkingEF logic on POCA without parameters RSPACE-complete.

1 Introduction

Counter automata, a fundamental and widely-studied modebmputation, consist
of a finite-state controller which manipulates a finite setofinters ranging over the
naturals. A classic result by Minsky states that Turing cletgmess can already be
obtained when restricting to two counters [17]. Due to thastf research has sub-
sequently focused on studying restricted classes of coantemata and related for-
malisms. Among others, we note the use of restrictions toglescounter (one-counter
automata oOCA for short), restrictions on the underlying structure af tontroller
(such as flatness [5, 15]), on the kinds of allowable testeerdunters, and on the types
of computations considered (such as reversal-boundefitiskl]). Counter automata
are also closely related to Petri nets and pushdown autoatecent years, motivated
by complexity-theoretic considerations on the one handpadtical applications on
the other, researchers have investigated decision preblenctounter automata with
additional primitive operations on counters, such as addiipdates encoded ini-
nary [1, 15] or even inparametricform, i.e., updates whose precise values depend on
a finite set of parameters [3, 12]. We refer to such countesraata asuccinctand
parametricrespectively, the former being a subclass of the latterutdhfipplications
of such counter automata include the modeling of resoucceMbed processes, numeric
data types, programs with lists, recursive or multi-thezhgrograms, and XML query
evaluation; seee.qg, [4, 11,10, 1].

The two most prominent decision problems for counter autaragereachability
and model checkingReachability asks whether there is path between two caafigu
tions in the potentially infinite transition system genedhby a counter automaton. For



counter automata with parameters, this problem genesals@sking whether there
exists a valuation of the parameters such that reachabditys between two configura-
tions in the concrete transition system induced throughaheation. Model checking is
the problem of deciding whether a formula given in some ter@dogic holds in a con-
figuration of the transition system induced by a counter maton, and when param-
eters are present whether the formula holds in a configuratiall transition systems
induced by all possible valuations. Due to Minsky's restlig restriction to aingle
counter is the only way to potentially obtain decidability feachability and model
checking problems. Consequently, in this paper we resiticattention to this class of
counter automata, and in particular investigate modelkihggroblems forsuccinct
one-counter automata (SOCAhdparametric one-counter automata (POCA)

State of the artReachability is known to bRL-complete for OCA and has recently
been shown to b&P-complete for SOCA and decidable for POCA [9]. The complex-
ity of model-checking problems for various temporal logiesluding LTL, CTL and
fragments thereof has been studied for OCA, SOCA and POCAimaber of recent
works [20, 8,7, 6,22]. When comparing OCA with SOCA, an expdiaé complex-
ity jump for the model checking problem may arise: b@hL and y-calculus model
checking on OCA aréSPACE-complete [20, 7], whereas for SOCA these problems
areEXPSPACE-complete [20, 6]. However, this jump is not inherent, sifazeexample
model checkind TL is PSPACE-complete for both OCA and SOCA. When parameters
come into play, model checkirlglf'L on POCA isNEXP-complete and becomes unde-
cidable forCTL [6]. In [8], model checking the fragmeiftF of CTL on OCA, which
can be seen as an extension of modal logic with a reachapiktyicate, is shown to be
complete folPNP. Despite its relatively limited expressiveneBE,is a useful specifica-
tion language, and in particular bisimilarity checking dbitrary systems against finite
systems is polynomial-time reducible E& model checking [13].

Our contribution.In this paper, we investigate the decidability and compyeod EF
and modal logic IL) model checking on transition systems generated by SOCA and
POCA. As mentioned abov€ TL model checking of POCA is undecidable [6], which
is shown via a reduction from the reachability problem footeounter automata. In
[6], we conjectured thaEF model checking on POCA could be decidable, which is
not unreasonable for two reasons. First, the undecidatmtibof for CTL on POCA
in [6] heavily relies on the use of thentil operator. Second, reachability for POCA
is decidable [9], which is shown via a translation into theugjifier-free fragment of
Presburger arithmetic with divisibility. Since there éx@gtensions of the latter theory
that allow for universal quantification, seeg.[2], and sinceEF primarily allows for
reasoning about reachability relations, it seemed plésiat an instance of aBF
model-checking problem on POCA could be translated intonéesee in such an ex-
tended theory. Nevertheless, we show in this paper that hoteking EF logic on
POCA is undecidable via a different reduction, namely froilbétt’s tenth problem,
which Matiyasevich showed to be undecidable [16]. On thétipesside, we establish
sharp complexity bounds for model checking POCA and SOCAnagkarge fragments
of EF. First, by dropping the reachability modality and thusnieshg EF to ML, we
show that the model-checking problem for POCA becoR&RACE-complete. Obtain-
ing thePSPACE upper bound involves a careful analysis of the size of thetul sets



OCA SOCA POCA

CTL, p-cal. | PSPACE-complete [7, 20] EXPSPACE-complete [6, 20 H?-complete[G]
EF PNP_complete [7, 8]
ML P-complete [14]

I19-complete

PSPACE-complete

Table 1.Complexity of model checkingF, ML andCTL/modalu-calculus on OCA, SOCA and
POCA.

of certain systems of linear Diophantine inequalities ofeptially exponential size.
Second, when no parameters are present, we shovizfhatodel checking for SOCA
is PSPACE-complete. The main technical challenge is to develop apdaential peri-
odicity property” that characterizes those counter vaateghich anEF formula holds.
Our results are summarized bold font in Table 1, which also summarizes known
results from the literature.

Structure of this papeie introduce basic definitions and notations in Section 2
and present results on model checking POCA in Section 3iddettdeals with model
checking SOCA before we conclude in Section 5. Due to theesfiaitations, details
of some proofs have to be deferred to a full version of thisepap

2 Preliminaries

Throughout this paper, we denote Ry= {0, 1,...} thenon-negative integerand by

Z theintegers We defin€li, j] def {i,i+1,...,7} and introducds] as an abbreviation
for [1,4]. For anyn € N, we denote byg n the smallest € N such that: < 2¢. Given
afunctionf : N — N, we write f(n) = poly(n) (resp.f(n) = exp(n)) if there is some
polynomialp(n) such thatf(n) < p(n) (resp.f(n) < 2P(") for eachn € N.

The Branching-Time Logic EF: Formulas ofEF over a finite sef® of atomic propo-
sitionsare inductively defined by the following grammar, whenranges oveP:

pu=ploAe|-p|EXp|EFp.

We define the standard Boolean abbreviatipns’ 2 d:efﬁ(ﬁgal A =pa), 1 — P2 def

-1 Vg andp; < ¢o def ©1 — p2 A pa — 1. Moreover, we define the additional
modalitiesAX¢ ool —EX-p andAGy gef —EF-¢. Modal Logic(ML) is obtained from
EF by disallowing theEF operator. AnEF formula ¢ is in negation normal formif
all negation symbols occur only in front of atomic propasis. Thesize|p| of EF
formulasy is defined as usual.

The semantics of aBF formula is given in terms of transition systemstrAnsition
systeml is a tupleT = (S,P,\,—), whereS is the set ofstates P is a finite set
of atomic propositions) : S — 2F is thestate-labeling functiomnd— C S x S
is thetransition relation We use infix notation fo— and writes — s’ whenever



(Tos)Ep <= peXs) (Tis)Eeihps < (T)s) = erand(T,s) = @2
(T,s) E—p <= (T,s) e (T,s) EEXp < 3s' € S.(T,s') Eyands — s
(T,s) EEFp «= 3s' € S.(T,s') E pands —" &’
Table 2. Semantics oEF.

(s,s') €e—. An s-¢’ path g in a transition systenT is a finite sequence of states
0: 818y such thats = sy, s = s, ands; — s;41 forall i € [n — 1], and we
write o : s —* s’ to express thap is ans-s’ path. Table 2 presents the semantics
of EF formulas. Given arkF formula ¢, a transition systerfi” and a state € S, the
satisfaction relatior{7’, s) = ¢ is defined by induction on the structure of and we
sayy holds ats in T if (T, s) | .

Parametric One-Counter Automata: Let X = {z1,...,z,} denote a finite set of

parametersand letOp gef {add(z),add(z) : z € Z,x € X} U {zero} be a set obper-
ations A parametric one-counter automaton (POGAJ tupled = (Q, X, P, A, A),
where( is a finite set ofcontrol locations IP is a finite set ofatomic propositions
A : Q — 2F is thelocation-labeling functionand A C @ x Op x @ is thetransi-
tion relation A succinct one-counter automaton (SOG#\a POCA withX = (. We
write ¢ =2 ¢/ whenever(q,op, ¢') € A. By n,,..(A) we denote the largest absolute

value of all integers occurring in the operations.4f The size|.A| of a POCAA is

defined ag.A| oot |A| + 1g nmas (A). A valuationrv : X — Z is a function assign-

ing an integer to each parameter. Given a PQZAa valuation induces a SOCA”

which is obtained by replacing each transitipree "y ¢/ with ¢ 222“@)y 1 For

a SOCAA, we denote byl'(A) def (S4,P, A4q, —>4) thetransition system induced

by A, whereS4 £ Q x N, Ax & (¢,n) — A(g), and(g,n) —s4 (¢',n’) if, and

. . dd
only if, eitherq 2dd(z), ¢ andn’ =n+z0rq =3 ¢ € Aandn = n’ = 0. For

convenience, we writg(n) instead of(q, n) for states inS 4. Given two stateg(n) and
¢ (n’), reachabilityis to decide whether there existg@)-¢’(n’) path inT'(A).

Proposition 1 ([9]). Reachability in SOCA islP-complete.

Themodel-checking problefior POCA, and thus for SOCA, is defined as follows:
ML/EF MODEL CHECKING ON POCA
INPUT: APOCAA = (Q,X,P, A\, A), q € Q and anML/EF formula.
QUESTION: Does(T'(A"),q(0)) |= ¢ hold for each assignment: X — Z?

We note that deciding wheth€f'(A”), ¢(0)) = ¢ holds for each assignmentis the
complement of deciding if7'(.A”), ¢(0)) = —¢ holds for some assignment

We close this section with an example of a model-checkinglpro. Figure 1 de-
picts a SOCAA; with i € [0,m] for somem € N. Starting in statey;(n) with
n € [0,2m+! — 1], it is easily verified that the statg (0), which is labeled withp;,
is reachable fromy;(n) if, and only if, the coefficient o2? in the binary expansion



add(—2°) add(—2"1) add(—2"1) add(—2™)

'/\. TN TN, TN

qi

2dd(0) ° " *add(0) "add(—2))" add(0) © T *add(0) * =0y

Fig. 1. SOCA A; used for testing a bit of a numbere [2™+! — 1].

of n is 1, which is the case if, and only i{,7(A),¢;(n)) = EFp; or alternatively
(T(A),qi(n)) = EX™2p,. Here,EX™*? is an abbreviation for the: 4 2-fold appli-
cation of theEX operator.

3 Model Checking POCA

In this section, we prove that model checkiigon POCA is undecidable (Section 3.1).
We show that foML model checking on POCA is decidable andPBPACE (Section
3.2).

3.1 Model checking EF on POCA

We now consider model checkirsF on POCA and show that this problem i%}-
complete. WithEF being a notational fragment &TL, membership inl7{ follows
from the fact thatCTL model checking on POCA i&l{-complete [6]. Thus, we con-
centrate in this section on a matchidff’-lower bound by giving a reduction from
Hilbert’s Tenth Problem to the complement of the model ciregcbroblem.

HILBERT'S TENTH PROBLEM (HTP)

INPUT: A polynomialp with coefficients ranging over the integers.
QUESTION: Do there exist, ..., a, € Z such thap(ay,...,a,) = 0?

HTP was shown to beZ?-complete by Matiyasevich [16]. Note thidfr P remainsX?-
hard if we restrict they; to range ovelN: A Diophantine equatiop(z1, zo, .., x,) = 0

is solvable in the integers if, and only if, one of tieequation(+x1,...,+x,) =0
has a solution in the naturals. Replacing every unknown tliggtssum of squares of four
unknowns gives, by Lagrange’s Theorem, the reduction imther direction.

Moreover, we may assume with no loss of generality that 0 for eachi € [n].

If somea; were to be zero in a solution, we can obtain a new polynopiial n — 1
variables by replacing; with 0 in p.

Let us fix some polynomial with coefficients ranging ovet. We will subsequently
show how we can compute fropa POCAA,, with a control state,, and arEF formula
¢p such thap has a solutions over the naturals if, and onlyTf(.A}), ¢,(0)) |= , for
someevaluationv of the parameters ofl. Recall that the evaluation of the parameters
of A, ranges ovelZ. However, we can easily ensure with a simpleformula that a
parameter is positive. For the following SOCA,;>1



add(1)

@ , (T(A%,),q(0)) = —EFL

q s -~ e Wehave if, and only if,
add(z) zero @) > 1.

More challenging than testing if a parameter is positive nvredlucing fromHTP
is that we need to be able to express a multiplication refadieer the parameters in
the POCA. In order to do that, we employ a trick that becameufaoby the work of
Robinson [18] which allows us to define multiplication inrtesx of the least common
multiple. In fact givenz, y € N, we have

lcmz+y,z+y+1—Ilecmz,z+1—lcmy,y + 1
=(@® +a+2y+y* +y) - (@ +a) - +y) = 2y

We note that addition and subtraction of the parameters asityebe realized by in-
troducing additional slack parameters in the POCA. Thuscaveenhance our POCA
by transitions of the kindub(z), meaning that(x) is subtracted from the counter,
provided the counter is at leag{z). We now demonstrate that for parameterg, =
of some POCA that each assume positive values, which we ek @s seen above,
we can “express” irEF thatz = lcmz, y. Consider the following POCA4,.,, where
unlabeled transitions are assumed to be labeled with(0)":

sub(z)
(5 zero

add(1) /Jb<y>
Al (;' (5 zero

~e ~e ~e Dy
pr sub(z)
(b zero

o — =~ ,eD:

o Px

The idea is to express that for all ¢ N, we have that bothx andy divide » if, and
only if, z dividesn. We note that for each : {z,y, 2z} — Z with v(x),v(y), v(y) > 1
we have thatT'(A}..,),¢(0))) &= AG(p; — ((EFp; A EFp,) <> EFp,)) if, and only if,
v(2) = lem(v(x), v(y)).

Thus, by introducing a sufficient number of slack variables,can express mul-
tiplication, addition and subtraction, which allows us tive HTP for any arbitrary

polynomial. Thus, we obtain the following theorem.
Theorem 2. Model checkindEF logic on POCA islT?-complete.

We note that by [16] there existdiged universapolynomialp, (n, k, z1, ..., Zm)
such that for each recursively enumerable$et N, there is somé, € N such that
S ={neN|3Iny,...,nym € N: py(n,ko,n1,...,n,) = 0}. This allows us to
strengthen our result insofar as there existsxad EF formula ¢ and afixed POCA
A = (Q,X,P,\, A) with a transitiong 2dd(y) ¢ € A and a control statg, € Q

such that it isI7?-complete to decide for a givene N whether by replacing with n,
(T'(AY),q0(0)) E ¢ holds for ally : X — Z.



3.2 Model Checking ML on POCA

This section will be devoted to proving? PACE upper bound for model checkirigL
on POCA. Let us fix some POCA = (Q, X, P, \, A) with X = {z1,...,24}, some
control stategy € @ and someML formula «. Providedthat ML model checking of
SOCA is inPSPACE (we show that even model checkig§ on SOCA is inPSPACE
in Section 4.2), in order to obtainRSPACE upper bound, it is sufficient to show that
if (T'(A”),q0(0)) = o holds for somes : X — Z then there is somg : X — Z such
that(7'(A*), ¢(0)) = o and|u(x)| can be represented with polynomially many bits in
|A| + |a] for eachz € X, since such an assignment can be guesse8HACE.

For eachy € @ and each subformula of o, let us defineM (g, ¢) C Z* x N C
741 as follows:

Mg, 9) B {(z1,. 0, 20m) | (T(AY),q(n)) E g andu(a;) = z,i € [1,4]}.

Before we proceed with the proof of the upper bound, we neéotttoduce some ad-
ditional notation. For an integer matrig = (a;;) € Z™*", we denote by|A| =

max; {3, |a;;|} the norm ofA. For an integer vectal = (b;), we denote byjb| =
>, |bi| the norm ofb. A system of linear Diophantine inequalities (SLIX¥)a system
of the formS = (AZ > b), whereA € Z™*™ is anm x n matrix,b € Z™ is anm-
vector andr is ann-vector of indeterminants all ranging over the integers SB)S),

we denote the set afiteger solutiongo the SLDIS = (AZ > b). Finally, we define

def def | 77,
[Slmat = Al and | Slvec = (5]

Recall thatzy, . . ., 2, are the parameters gf. Our overall goal is to express!(q, ©)
by aunionof solutions to SLDIs, each of the form

-,

S=(AZ>b), wherede 2™V andb e Z™ for somem > 1.
In the remainder of this section, we will assume for m\ > b) that A is some
m x (¢ + 1) matrix andb is somem-vector for somen > 1. The intuition is that the
i!" component of with i € [¢] is going to correspond to the parametgrof A and
the (¢ + 1) component off is going to correspond to the counter value where\the

formula is evaluated. In casé = (a;;) we define|A] ;1 def max{|a;e41y| : @ € [m]}

and lift this definition to]S 41 = | A e+
In order to prove that small valuations: X — Z suffice fora, we are now going
to prove that for each € @ and each subformula of o, we have

M(q,a) = | Sol(S))

iel

for some index sef with |S;|mat = poly(|¢|) and|S;|vec = poly(|¢|) - exp(|.A|)
for eachi € I. Once this fact has been established, we will show that eAEH S;
admits solutions that can be represented using polynonmehy bits in|.A| + |«|, thus
establishing the desired upper bound on necessary vaisaifdhe parameters of.
We require some additional notation that, together with ghbsequent lemma,
will be useful for proving the existence of sets of SLDIs ofri@l” size for each



M(q, ). Let H C Z'*'. We defineH — xy, def {(z1, ..\ 202001 — 2) € TV |

(21,...,2041) € H} foreachk € [¢] andH — = o {(z1,- . 20,2001 — 2) € Z*Y |
(21,...,2041) € H} for eachz € Z. The following lemma states that solutions to
SLDIs are closed under the operations;, and—z and gives bounds on the blow-up
of the introduced norms. We remark that we do not require fattfe variant of this
lemma to establish ol*rSPACE upper bound.

Lemma 3. LetS = (A% > b) be an SLDI withA = (a;;) € Z™*“*+D, Then the
following holds:

(1) For eachk € [¢] there is some SLDS$’ with Sol(S’) = Sol(S) — xg, |S'|mar <
|Slmat+ ISTes1, IS o1 = IS]e+1, and S’ |vec = [S]vec

(2) Foreach: € Z, there is some SLEA’ with Sol(S’) = Sol(S)—2z, |S’ |mat = |S |mat
|8 o1 = 1S]et1, and[S'lvec < [Shvee + [Sles1 - [2]-

Proof. Let us assumé = (b;). For Point (1), letc € [1,¢]. For each(z, ..., z11) €
Z'+* we have

(217 ey Zg+1) € SO'(S) — Tk
< (2’1,...,2’@,Zg+1+zk) GSO|(S)

— Vie[l,m]: ( Z aij - 25 + ioq) (Zep1 + 2x) > bi)
Jjell.

— Vie[l,m]: | (e + al—(Hl))zk + Z aij - 25 > b;

JElL,e+1],
i#k

We can thus define the matrit’ = (a;.j), wherea;j = a;; if j # kanda;; =
agj + a;e41) if j = k, for eachi € [1,m]. We putS’ = (A’Z > b) and we just
provedSol(S’) = Sol(S) — . Moreover, it hold4 S’ |mat = |A'| < [|A] + |4]e+1 =
S Imat+ [S]ex1, 8 N1 = [Aler1 = [Slex, and ]S fvee = [B] = [S Jvec:

Point (2) is shown analogously. O

We are now ready to prove the desired lemma.

Lemma 4. For everyg € Q and every subformula of « in negation normal form, we
have M(q, p) = ,c; Sol(S;), where! is some index set and ead is some SLDI
With [ S;lmat < [0}, [Sille4+1 < 1, [Silvec < (nmax(A) + 1) - |¢].

Proof. We prove the lemma by structural induction @n
Caseyp = p for somep € IP (the casep = —p is dual).

First, let us assume € A(q). ThenM(q, ) = Z' x N, which can be described by
the solutions to the single SLIA def (AT > b) with b2 Ganda & (aij) € Z' <D
with a,; %70 for eachj < [1,4] anday (o41) %71, Note that]S|mai = 4] = 1 = |4,
1Sle+1 = [Aless = 1, and]Slvec = 5] = 0 < (nmadA) + 1) - |o]-



In casep € A(q), we haveM(q, ) = 0, which we express as the solutions of

-

the SLDIS = (AZ > b), whereA is 1 x (¢ 4 1) zero matrix andy %" 1. We have
|Slhmae = [A] = 0 <1 = ¢|, [Slesr = [Afera = 0 < 1, and[Sfvec = [b] = 0 <
(nmaxd(A) +1) - |¢].

Casep = 1 v ¢": By the induction hypothesis we havel(q,v)) = (U, Sol(S;) for
some index sef and for SLDIS;, for eachi € T andM(q, ') = |, Sol(S;) for
some index sef’ and for SLDIS/, for eachi € I’. Obviously we can writeM (g, ¢)
aslJ,c; Sol(S;) U U, Sol(S;) and the bounds on the norms easily carry over from
induction hypothesis.

Caseyp = 9 A ¢': By induction the hypothesis we havel(q, v) = |, Sol(S;) for
some index sef and for SLDIsS;, for eachi € I andM(q, ") = J,;c Sol(S;) for
some index sef’ and for SLDISS], for eachi € I’. Let us assumé; = (A;@ > b:-)
for eachi € T andsS! = (A% > b)) for eachi € I'. We define the matrid;; & (4)

Ail
and the vectob,; def (f_’"/) for eachi € I and each’ € I’'. Obviously, we have

M(q,9) = M(q, 1) N M(q,%2) = Ujep.ep Sol(As@ > biir). Again, the bounds
on the norms immediately carry over from induction hypoihes

Casep = AXy): By the induction hypothesis, we havel(¢/,¢)) = [J,c; , Sol(Si o)

for some SLDIsS; - for eachg’ € Q. Let us assume tha; ,, = (A; & > b,:q/) for
eachi € I, and eacly’ € Q. Before giving the translation, we need to introduce some

auxiliary SLDISS, . andS,, for eachz € Z, eachk € [¢] and each € {<,>, <, >}
such that

icl

Sol(S..) = {(21,- .., 2041) € Z*t1 | zp41 0 2} and
Sol(Sozy) = {(21,- -+ 2041) € ZY | 241 0 2}
For z € Z, we only giveS,, for o ="<”, the remaining cases far can be defined

analogously. We pu$.., &' (47 > b), whered &' (a1;) € Z2 D with ay; %y if

J € [{] anday(p41) %" _1, and finallyb def (=2 + 1) since over the integers we have
ze41 < zif,and only if, zp1 1y < z — 11if, and only if, —z,,; > —z + 1. Observe that
ISozlmat < 1, [Sozllex1 < 1, and|Se. vec < |2| + 1 for eacho € {<, >, <, >1.

Likewise, we defineS,,, for o ="<", the other cases fos can be dealt with

analogously. The reader easily verifies that one can déline et (cx > cf) with

C L (ery) € ZXE D with ey B 1§ =i, e © 1if j = £+ 1, andey; 0
otherwise. Moreover, we pd_t‘d:ef (1). Observe thafS.., [mat < 1, |Sozy le+1 < 1, and

|Soz), [vec < 1 for eacho € {<, >, <,>}. We now define

Mg, 0) E'sol(Ss0)n () (Sol<s<y>u U<Sol<si,qf>—y>>.

dd i€l
qa—(i»/)q’EA Ely
YyeEZUX

In the same fashion as for disjunction and conjunction, weegress the right-hand
side of the latter equality as a union of SLDIs. Note that iis thodification process



the number of rows of the matrix may change, heitherdo the norms of the matrices
nor the norms of the vectors of the systems. The reader easiliegethat the| - |mat
| - es1, and] - |vec Norms of each auxiliary SLDI satisfy the bounds requiredtsy t
lemma. Hence, in order to bound the norms of the SLDI that occthe final union,
it suffices to bound the norms of each SLBIsuch thatSol(S) = Sol(S; ) — y for

someqg’ € @, somei € I,, and somey 2ddty) q € A, wherey € Z U X. To this end,
we apply Lemma 3 by distinguishing betwegr Z andy € X.

If y = x), for somek € [¢],i.e.y € X, we obtain the following bounds by Point (1)
of Lemma 3:

Lemma 3 (1) IH
= [Slmar < JAig |+ 1Ai g lera < |l +1 = e,

L 301 H
— ISl M2 P)A; e < 1, and
L 3(1 - IH
— |Shvec "= Db < (max(A) + 1) - 9] < (nmadA) + 1) - ||
In casey € Z, we obtain the following by Point (2) of Lemma 3:
Lemma 3 (2) IH
= ISlmat "= P A | < 1] < el
L 3(2
— Sl M2 @4, feyr < 1,and

Lemma3(2) IH
— [Slvec < 100 ] + 1 Aigles1 - [yl < (nmadA) + 1) - [P + 1 - nmad A) <
(nmax<-'4) + 1) : “P|

Caseyp = EX¢. By induction hypothesis, we havet(q’, ) = U,c; , Sol(Si,) for

some SLDIsS; , for eachy’ € Q. Let us assume th&; ,, = (A4, & > bifq/) for each
i € I, and eacly’ € Q. We define

def
M(g, ) = Sol(80) N U U 6ol(Siq)—v)
add(y) i€l
qg—q'€eA q
The analysis of the sizes of the norms can be proven analygasi$or the case =
AXa). O

The following lemma from [19] states that solvable SLDIs éamall solutions
whose norm is independent on the number of rows of the SLDI.

Lemma 5 ([19], p. 239).Each solvable SLDAZ > b has a solution of norm at most
poly ([ A +[o])-

Let us come back to our original formuta By Lemma 4, there exists some SLDI
S, such thatM (qo, o) = Sol(S;), and wherdS;|mat < || and|S; Jvec < (nmax(A) +
1) - |a|. Since we are interested(iT"(A"), ¢o(0)) = « for somer : X — Z, think of
adding to each matrix that occurs§)two more rows expressing that,; = 0. Let us
call the resulting SLDIS;. By Lemma 5, we know that if; is solvable, thers, has a
solution of norm at mostoly(nmax(A) + |a|). In other words, il T'(A"), q0(0)) = «
for somev : X — Z, then(T(A*),qo(0)) = « already holds for somg : X — Z
andyp(x) is polynomially bounded in4| + |«| for eachz € X.

Hence, we obtain the following theorem.
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Fig. 2. SOCA A constructed for simulating the QBF formula

Theorem 6. ML model checking for POCA is iRSPACE.

4 Model Checking SOCA

In this section we prove that model checkilll. on SOCA isPSPACE-hard (Section
4.1) and that model checkirteF on SOCA is inPSPACE (Section 4.2).

4.1 Model checking ML on SOCA

PSPACE-hardness oML model checking on SOCA follows from a straight-forward
reduction from QBF.

Proposition 7. Model checkindlL on SOCA iPSPACE-hard.

Proof. We give a reduction from QBF. Let = Jz1Vxy - - - 3z, 8(x1,. .., 2,) be an
instance of QBF. Without loss of generality, we can assurag/jhis in 3-CNF,i.e,
of the form3 = A, Bi, where each clause; consists of three literals, s¢;, =
(4, VL, V). We are going to construct in polynomial time a SO@A= (Q, P, A\, A)
and anML formula ¢ such that for somey, € @ we have that is valid if, and only
if, (T'(A), q0(0)) = ¢. We defineP oef {p: | i € [n]}. The states and transitions df
are given in Figure 2, where the the SOCH is taken from from Figure 1. Finally, we
definey to be theML formula that is obtained by replacing eagh; from o with EX,
eachvz; with AX, and each literat;, with EX"?p;, if ¢;, = x;, and—EX""p,, if
t;, = 7;;. Itis easily verified thatv is valid if, and only if,(T(A), ¢o(0)) E . O

4.2 Model checking EF on SOCA

In this section, we are going to show thzt model checking on SOCA is iIRSPACE,
and henc@SPACE-complete by Proposition 7. To this end, let us fix some SOCA
(Q,P, A\, 0). Our result is based on the following lemma, which expresgsg®odicity
properties of reachability relations j#.

Lemma 8. There are naturals, e, d = exp(|.A|) withe > nmaxA) such that for each
n,n',m,m’ > 7 withn = n’ modé andm = m’ mod the following statements hold
for eachq, ¢’ € Q:

11



(1) fm+e <nandm’ + e < n/, theng(n) —7 ¢'(m) if, and only if,q(n") —7%
q'(m’).

(2) fm >n+eandm’ > n' + ¢, theng(n) —7% ¢'(m) if, and only if,q(n') —7%
q'(m’).

Section 4.3 will be devoted to sketching a proof of Lemma &ukse the constants

e andé from Lemma 8 to be fixed for the rest of this section. Let us @efifi(q, ¢) =

{n e N: (T(A),q(n)) = ¢} for each control state € @) and eactEF formulay over
IP. For thePSPACE upper bound, we will show that1(q, ¢) is ultimately periodic with
periodsd.

Lemma 9. If n = n’ modd, thenn € M(q, ¢) if, and only if,n’ € M(q, ), for each
control stateg € @, eachEF formulap overP and eachn,n’ > 7+ || - € + 4.

Proof. Without loss of generality assumé > n. We show(T'(A), g(n)) = ¢ if, and
only if, (T(A),q(n + 6)) E ¢ by induction on|p|, from which the statement will
follow. We only consider the most interesting cages EX¢’ andy = EF¢’, the other
cases are easy.

If ¢ = EX¢’, we have(T'(A), q(n)) | ¢ if, and only if, there is some’ € @ and

z € Zsuchthay 24ds) q € Aand(T(A),q (n+z2)) E ¢'. Sincen+z > 7+|¢'|-e+4,
the induction hypothesis yieldd'(A), ¢'(n + 2)) = ¢’ if, and only if, (T'(A), ¢'(n +
z+9)) E ¢'. Hence(T'(A), q(n)) = EXy' if, and only if, (T'(A), g(n + ) = EX¢'.
If o = EFy’, we have(T'(A), ¢(n)) E ¢ if, and only if, there are/ € Q, m € N
andp such thatp : ¢(n) —% ¢'(m) and(T'(A),q(m)) = ¢'. Supposen > 7 +
|¢'| - € + § and no counter value less thdroccurs alongp, so in particular there is
no zero test along. The induction hypothesis yield§'(A), ¢(m + 9)) = ¢, and by
shifting o by 4 the existence of a pathl : g(n + J) —% ¢(m + ) follows, hence
(T(A),q(n+ ) E EFy’. Otherwise, ifm < 7+ |¢'| - £ + § or a counter value less
thand occurs along, Lemma 8, Point (1) guarantees thét) —* ¢'(m) if, and only
if, g(n 4+ 0) =% ¢'(m), which again allows us to conclude th{at(.A), ¢(n)) = EFy'.
The direction(T'(A), ¢(n)) | ¢ implies(T'(A), g(n + §)) = ¢ follows analogously.
O

Theorem 10. EF model checking of SOCARSPACE-complete.

Proof. PSPACE-hardness has already been established in Section 4.1h&apper
bound, Algorithm 1 is an alternating algorithm that decid&8.4),¢(n)) = ¢ in
PSPACE. For brevity, the caseg = AXy¢' andy’ = AGy' have been left out, they
are defined complementary to th&XK respectivelyEF counterparts. We only sketch
correctness of the cage= EF’ by induction only|, all other cases are obviously cor-
rect. Letm = maz{n+ec+9,7+|¢'| €+ d}. Supposd’'(A), ¢(n)) = EFy’, thereis
someq’(n’) such thay(n) —* ¢'(n") and(T'(A),q'(n")) = ¢'. If n’ > m, Lemma
9 guarantees that theres$ € [0, m] such thatl'(A4), ¢’ (n”)) E ¢, and Lemma 8,
Point (2) yieldsq(n) —* ¢'(n”), which by Proposition 1 can be checkedNR. By
the induction hypothesis, Algorithm 1 returtvae on inputg’(n”') and¢’, which con-
cludes the correctness proof. O
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Algorithm 1 Fragment of th&eF SOCA model checking algorithm

Input: EF formulaep, configuratiory(n) of A
caseyp = p: return p € \(q)
casep = —p: return p ¢ A\(q)
casep = 1 A pa:return (T'(A), q(n)) E ¢1 and(T(A),g(n)) E p2
casep = o1 V ga: retum (T(A), q(n)) = @1 or (T(A),q(n)) =
casep = EX¢': existential move
choosey =2 ¢’ € A
caseop = add(z): return (T'(A),q (n + z)) E ¢
caseop = zero andn = 0: return (T'(A), ¢'(0)) &= ¢
casep = EFy’: existential move
choosey’ (m) such thay(n) —% ¢'(m) andm € [0, maz{n+e+3, 7+|¢'|-e+6}]
return (T(A), ¢'(m)) = '

4.3 Proof Sketch of Lemma 8

In this section, we are going to give a sketch of a proof of Len@wmvhich was left open
in the previous section. The technical details are defagediull version of this paper.

On a technical level, it is helpful to view SOCA agighted graphsan approach
also used in [9]. Given a SOCA, its corresponding weighted graghy is obtained by
removing allzero-labeled edges from, and for every edge labeled witlid(z), G 4
has an edge labeled with Thus, we can assign any pathin G 4 aweightw(7) and
adrop d(m), which is the smallest weight of all prefixes of This allows us to relate
runs inT'(A) with paths inG 4: there is a zero-test free rufin) —* ¢/(n’) if, and
only if, there is a pathr from ¢ to ¢’ in G 4 with w(w) = n’ — n andd(w) > —n.

Let us fixa SOCAA and its corresponding gragh In order to prove the periodicity
properties expressed in Lemma 8, we will use cycle&im order to construct paths
whose weight is periodic for some periédFor a start, let us concentrate oncles
in G with negative weightGiven a strongly connected component (S&dh G, we
defineged S as greatest common divisor of the set of all weights of alpléee cycles
in S. Note thatged S = exp(].A|). It is easy to check thajed S divides the weight of
every cycle that runs through, sogcd .S could potentially serve as a period. However,
if the weights of all cycles iS5 have the same sign, we cannot necessarily construct
a cycle whose weight is an arbitrary multiplegfd S. For example, le{5, 7} be the
set of all weights of simple cycles in some SGGwith S = {q} for someq € Q.
We haveged S = 1, however there is no cycle in S with, say,w(w) = 23. This
obstacle is related to therobenius problemwhich is stated as follows [21]: given
x1 < ... < z, € Nsuch thatgcd{z1,...,z,} = 1, what is thelargestg € N such
that g cannot be represented as non-negative integer linear ocatitn of thex;. It
is shown in [21] thaly < 2. Thus in our example, this fact guarantees that there is
ag-cycler with w(r) = m for everym > 49. The preceding observations allow us
to conclude that once a certain threshold is crossed, wegeriedicity of weights of
cycles in an SCC.

Lemma 11. There exists docal thresholdy € N such thaty = exp(|.4|) and for all
w,w < —y andq € @ such thatw = w’ mod ged S for some SCGCS such that
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g € S, whenever there exists@acycler with w(w) = w then there existg-cyclen’
with w(7’) = w" andd(x’) > w(x’) — 7.

Proving this lemma involves some tedious analysis of patld§ but is not too compli-
cated. Note that the drop af does not get too large. We can now generalise Lemma
11 to arbitrary paths, and we define thgdobal periodo as the least common multi-
ple of ged S of all SCCs inG. It is easily checked that = exp(].4|). Now consider

an arbitraryg-¢’ path= in G with negative weight. If we find @”-cycle =’ alongn

with w(7’) < —~, we can invoke Lemma 11 in order to obtainy/acycle = with
w(r’) = w(n"”) mod §. Thus, by using a counting argument on the number of con-
trol locations of A, we can define global threshold:s = exp(].4]) that guarantees the
existence of such a cycle. This allows us to state a variaheofma 11 for arbitrary
paths:

Lemma 12. For all w,w’ € Z such thatw, w’ < —e andw = w’ mod ¢, whenever
there exists g-¢’ path with w(r) = w then there exists a-¢’ path#’ with w(7’) =
w andd(r") > w(n’) — 7.

We can now “re-import” the observations made for paths ingivisid graphs to

paths inT'(.A) and sketch how to prove Lemma 8. To this end, we defin€' 2¢.

Regarding Point 1 of the lemma, we have théat.{n,n’} — min{m, m’} > . Lemma

12 thus guarantees the existence of a pathith w(r) = n — m if, and only if,
there is a pathr’ with w(zn’) = n’ — m’. Sinced(n) > w(w) — 7 andm > T, the
existence of a rug(n) —* ¢'(m) is guaranteed. The same argument yields a run
q(n’) —* ¢'(m’). Finally regarding Point 2, by using a symmetry argumentcee
get a similar statement as in Lemma 12 for paths with posutiggght that exceed.

The existence of the desired runs then follows from an argaisienilar to Point 1.

5 Conclusion

We strengthened our results from [6] and proved that modstkihg theCTL fragment
EF on POCA is undecidable via reduction from Hilbert's tentibldem. We showed
that when dropping the reachability modality, we regainidigaility: Model checking
ML on POCA isPSPACE-complete, which was proved by showing the existence of
small solutions for a class of systems of linear Diophaniiregjualities whose matrix
norm is small. We showed that it is al®6PACE-complete to model checkF on
SOCA by establishing an exponential periodicity propditis interesting to mention
that, in contrast t€ TL, one can avoid an exponential complexity jump EsrandML
when model checking SOCA. More precisely, model checkiRdrespectivelyML) is
PNP_complete (respectivelp-complete) on OCA, whereas it RSPACE-complete for
SOCA.
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