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Abstract—We consider the complexity of the satisfiability
problems for the existential fragment of Büchi arithmetic and for
the existential fragment of linear arithmetic over p-adic fields.
Our main results are that both problems are NP-complete. The
NP upper bound for existential linear arithmetic over p-adic
fields resolves an open question posed by Weispfenning [J. Symb.
Comput., 5(1/2) (1988)] and holds despite the fact that satisfying
assignments in both theories may have bit-size super-polynomial
in the description of the formula. A key technical contribution is
to show that the existence of a path between two states of a finite-
state automaton whose language encodes the set of solutions of
a given system of linear Diophantine equations can be witnessed
in NP.

I. INTRODUCTION

The computational complexity of first-order linear arith-
metic over the integers (also called Presburger arithmetic)
and of first-order linear arithmetic over the rational numbers
has been thoroughly studied. In this paper we are concerned
with extensions of linear arithmetic that encode divisibility
information. One such extension is Büchi arithmetic. Given
an integer p ≥ 2, Büchi arithmetic of base p is the first-order
theory of the structure 〈N,+, Vp〉, where Vp maps every non-
zero integer to its greatest divisor that is a power of p.

A basic result about Büchi arithmetic is that a subset
X ⊆ Nn is first-order definable over 〈N,+, Vp〉 if and only
if X is p-automatic, that is, recognisable by an automaton
under a base-p encoding of natural numbers. This result
was first stated by Büchi [1] (in an incorrect form) and
later reformulated and proved by Bruyère [2]. A consequence
of this fact is that the first-order theory of 〈N,+, Vp〉 is
decidable for every p ≥ 2. The decidability frontier cannot
be pushed any further: the first-order theory of the structure
〈N,+, Vp, V`〉 is undecidable for multiplicatively independent
p, ` ∈ N [3]. The celebrated Cobham–Semënov theorem states
that if X ⊆ Nn is separately definable in Büchi arithmetic
over two multiplicatively independent bases p and `, then X
is definable in Presburger arithmetic [4], [5], [6], [7].

The second extension of linear arithmetic that we consider is
linear arithmetic over the p-adic numbers Qp. Given a prime p
and a non-zero rational number x, the p-adic valuation vp(x)
is defined to be the unique integer d ∈ Z such that x = pd · ab
with a, b ∈ Z and p - a, b. Intuitively vp(x) is the exponent
of the greatest power of p that divides x. There is a clear
connection between the p-adic valuation vp and the function

Vp of Büchi arithmetic: namely for a natural number x we
have Vp(x) = pvp(x). Thus we could view vp(x) as a succinct
representation of Vp(x). Note, though, that we only consider
the p-adic valuation in the case of prime p, unlike in Büchi
arithmetic.

The field Qp of p-adic numbers is obtained as the Cauchy
completion of the field of rational numbers under an ultramet-
ric obtained from the valuation vp. Alongside their established
importance in number theory, p-adic numbers have more
recent applications in computer arithmetic [8], and many other
areas such as physics. Decidability of the first-order theory
of the valued field Qp was shown by Ax and Kochen [9],
[10] and Ershov [11]. These works used model-theoretic
techniques that do not yield primitive recursive bounds. Later
Cohen [12] gave a primitive recursive decision procedure using
quantifier elimination in a two-sorted language, with one sort
for elements of the field Qp and another sort for the codomain
Z ∪ {∞} of the valuation function (see also Macintyre et
al. [13] and Weispfenning [14] for alternative approaches to
quantifier elimination).

The first-order theory of linear arithmetic over Qp (as
well as general valued fields) has been studied by Weispfen-
ning [15] and Sturm [16]. Both these works use a single-
sorted formalism in which the valuation function is not ex-
plicitly mentioned, but rather the binary divisibility relation
vp(a) ≤ vp(b) is taken as primitive. This relation can directly
be expressed in the two-sorted language. It is shown in [15,
Theorem 3.4] and [16, Corollary 11.1] that for every prime p
the decision problem for the full first-order theory of linear
arithmetic over Qp is complete for the Berman complexity
class STA(∗, 2O(n), n), and hence can be solved in exponential
space. Furthermore [15, Theorem 6.2] shows that the truth
in Qp of an existential sentence ϕ with m variables can
be decided in time 〈ϕ〉O(m), where 〈ϕ〉 denotes the length
of ϕ (i.e., the decision problem lies in EXPTIME). This
upper bound has recently been improved to the counting
hierarchy [17], an analogue of the polynomial hierarchy that
contains the latter and is believed to be strictly contained in
PSPACE. The concluding remarks of [15, Section 6] pose
the question of whether the existential fragment of linear
arithmetic over Qp lies in NP.

The first main result of this paper is to show that the decision
problem for the existential fragment of Büchi arithmetic is in
NP. Here we regard the base p, given in binary, as part of the978-1-7281-3608-0/19/$31.00 c©2019 IEEE



input. The second main result shows that the decision problem
for the existential fragment of linear arithmetic over the p-adic
numbers is in NP. Again, we consider the prime p in binary as
part of the input. This last result resolves the above-mentioned
problem of Weispfenning positively.

Unlike the case of existential Presburger arithmetic, the NP
upper bound for existential Büchi arithmetic cannot be directly
obtained by guessing and checking satisfying assignments. For
example, it is known that for infinitely many primes q the
multiplicative order ordq(2) of 2 modulo q is at least

√
q [18].

For such a prime the predicate x is a strictly positive power
of 2 that is congruent to 1 modulo q can easily be expressed
as a formula of existential Büchi arithmetic of base 2 that has
length linear in the bit-length of q, while the smallest satisfying
assignment is x = 2ordq(2). Thus satisfying assignments in
existential Büchi arithmetic may have super-polynomial bit-
length in the formula size, even for a fixed base.

Both main results rely on a key technical lemma, described
in Section III, involving well-known automata-theoretic repre-
sentations of solution sets of linear equations over nonnegative
integers and over p-adic integers. We show that while the
obtained automata have size exponential in the length of the
equation systems, there is a nondeterministic procedure that
decides state-to-state reachability in the automata and runs
in time polynomial in the length of the underlying equation
system.

II. DEFINITIONS AND MAIN RESULTS

We recall some basic definitions and results that will be used
throughout. All numbers are assumed to be encoded in binary,
unless otherwise stated. The L2-norm of a vector v ∈ Rn

is ‖v‖2 :=
√∑n

i=1 |vi|2, while the L∞-norm is ‖v‖∞ :=
maxn

i=1 |vi|. Given a matrix A ∈ Zm×n with components
aij ∈ Z, 1 ≤ i ≤ m, 1 ≤ j ≤ n, the (1,∞)-norm of A is
‖A‖1,∞ := maxm

i=1

∑n
j=1|aij |.

A. Büchi arithmetic

Given p ≥ 2, let Vp denote the partial function on N with
domain the set of all strictly positive integers and such that
for all a 6= 0, Vp(a) = b if and only if there exists j ≥ 0 with
b = pj , pj | a, and pj+1 - a.1 Büchi arithmetic of base p is
the first-order theory of the structure 〈N, 0, 1,+, Vp〉. Formally,
we consider Vp as a binary relation, but we write Vp(x) = y
as shorthand for (x, y) ∈ Vp. Without loss of generality, we
can assume that atomic formulas of Büchi arithmetic are either
linear Diophantine equations a·x = c or assertions Vp(x) = y.

By application of the automata-based method described
below, one can derive a polynomial-space upper bound for
the satisfiability problem for the existential fragment of Büchi
arithmetic. The first main result of this paper provides a tight
complexity bound on this problem (where the base p, encoded
in binary, is part of the input of the decision problem).

1An alternative formulation would be to include a special value ∞ in our
structure, and define Vp(0) = ∞. However following this route does not
change the class of definable subsets of N.

Theorem 1. The satisfiability problem for existential Büchi
arithmetic is NP-complete.

B. Linear arithmetic over p-adic fields

Fix an integer prime p. The p-adic valuation vp : Q →
Z ∪ {∞} is defined as follows. For every a ∈ Z \ {0}, we
define vp(a) := max{k : pk | a}. If a, b ∈ Z \ {0} then we
furthermore write vp(a/b) = vp(a)− vp(b). Finally we define
vp(0) = ∞. Note the relation between the valuation function
vp and the Büchi function Vp, namely Vp(a) = pvp(a) for
every a ∈ Z \ {0}.

The p-adic valuation vp induces a non-Archimedean abso-
lute value | · |p on Q that is defined by writing |x|p = p−vp(x)

for all x ∈ Q. The field Qp of p-adic numbers is the Cauchy
completion of Q with respect to the absolute value | · |p. Any
p-adic number x ∈ Qp \ {0} can be expressed as a p-adic
expansion, i.e., as an infinite power series x =

∑∞
i=k aip

i

(that converges with respect to | · |p), where k ∈ Z, ai ∈
{0, . . . , p − 1} for each i, and ak 6= 0. The p-adic valuation
extends to a map vp : Qp → Z ∪ {∞} with vp(x) = k for
x =

∑∞
i=k aip

i with ak 6= 0.
A p-adic number x such that vp(x) ≥ 0 is called a p-

adic integer. The p-adic expansion of such an x has the form
x =

∑∞
i=0 aip

i, where ai ∈ {0, . . . , p − 1} for each i. The
p-adic expansion of every positive integer is simply its base-p
expansion with least significant digit first. Note, however, that
negative integers have infinite p-adic expansions, e.g., −1 =∑∞

i=0(p− 1)pi for all primes p.
Following Cohen [12], we work with a two-sorted first-order

language LLVF for linear arithmetic over valued fields. This
language has a sort for the set of p-adic numbers Qp and a sort
for the set of values Z. We are interested in linear arithmetic
over Qp, so LLVF includes a constant symbol of p-adic sort
for each element of Q, a constant symbol of value sort for
each element of Z, a binary function symbol + on both the
p-adic and value sorts, and a binary relation symbol denoting
the p-adic valuation vp. We will informally consider vp as a
partial function with domain Qp\{0}, i.e., we write vp(x) = y
instead of (x, y) ∈ vp.

As remarked in the introduction, the papers [15], [16] study
linear arithmetic over Qp using a single-sorted formalism in
which the valuation function is not directly mentioned, but
rather the binary divisibility relation vp(a) ≤ vp(b) is taken
as primitive. The language of [15], [16] also has a constant
symbol denoting p and further allows constants to be built
using both product and sum. Thus, e.g., the atomic LLVF-
formula vp(x) = 2 would be translated as vp(p · p) ≤ vp(x)∧
vp(x) ≤ vp(p · p) in the one-sorted language. Since the terms
that can be built from the constant p using product and sum
denote integers of bit-length polynomial in the size of the term,
formulas in the one-sorted language can be translated into the
language LLVF with only a polynomial blow-up in formula
size.

The concluding remarks of [15, Section 6] pose the question
of whether the existential fragment of linear arithmetic over
Qp admits a decision procedure running in nondeterministic

2



polynomial time. The second main result of this paper resolves
this question positively:

Theorem 2. The decision problem for existential sentences of
linear arithmetic over Qp (where p, given in binary, is regarded
as part of the input) is NP-complete.

C. Automata and integer solutions of linear equations

Let p ≥ 2 be an integer. A central concept in this paper
is that of a p-automaton: a deterministic automaton whose
language encodes a set of integers in base p. In this section,
we define the notion of p-automaton and recall from [19]
the construction that gives a representation of the set of
nonnegative integer solutions of a system of linear equations
by a finite-state p-automaton.

A system S of linear Diophantine equations has the form
S : Ax = c, where A is an m × n matrix with integer
coefficients, c ∈ Zm, and x = (x1, . . . , xn)> is a vector
of variables taking values in the nonnegative integers. We
write JSK := {u ∈ Nn : Au = c} for the set of all
nonnegative integer solutions of S. We denote by 〈S〉 the size
of the encoding of S, i.e., the number of symbols required to
represent S assuming binary encoding of all numbers.

Definition 3. A deterministic automaton is a tuple A =
(Q,Σ, δ, q0, F ), where
• Q is a set of states,
• Σ is a finite alphabet,
• δ : Q × Σ → Q ∪ {⊥}, where ⊥ 6∈ Q, is the transition

function,
• q0 ∈ Q is the initial state, and
• F ⊆ Q is the set of final states.

Note that we allow automata to have infinitely many states
and to have partially defined transition functions (due to the
presence of ⊥ in the codomain of δ).

For states q, r ∈ Q and u ∈ Σ, we write q u−→ r if δ(q, u) =
r, and extend −→ inductively to words by stipulating, for w ∈
Σ∗ and u ∈ Σ, that q w·u−−→ r if there is s ∈ Q such that
q

w−→ s
u−→ r. We write q ∗−→ r if there is some w ∈ Σ∗ such

that q w−→ r. The language of A is defined as L(A) = {w ∈
Σ∗ : q0

w−→ qf , qf ∈ F}.

Given an integer p ≥ 2, a p-automaton is a deterministic
automaton over an alphabet Σn

p := {0, 1, . . . , p−1}n for some
nonnegative integer n. A finite word over alphabet Σn

p can nat-
urally be seen as encoding an n-tuple of nonnegative integers
in base p. In fact we consider two such encodings: the lsd-first
encoding, in which the least significant digit is on the left, and
the msd-first encoding, in which the most significant digit is
on the left. Formally, given a word w = u0 · · ·uk ∈ (Σn

p )∗,
we define JwKl ∈ Nn and JwKm ∈ Nn by

JwKl :=

k∑
j=0

pj · uj JwKm :=

k∑
j=0

pk−j · uj .

The subscripts l and m in the above definition indicate whether
we consider the lsd-first or msd-first interpretation. Note also
that for w = ε, the empty word, we have JwKl = JwKm = 0.

Following Wolper and Boigelot [19], we define a p-
automaton whose language is the msd-first encoding all non-
negative integer solutions of systems of linear equations.

Definition 4. Let S : Ax = c be a system of linear equations
with integer coefficients such that A has dimension m × n.
Corresponding to S, we define a p-automaton Amsd(S) :=
(Q,Σn

p , δ, q0, F ) such that
• Q = Zm,
• δ(q,u) = p · q + Au for all q ∈ Q and u ∈ Σn

p ,
• q0 = 0, and
• F = {c}.

Although the automaton Amsd(S) has infinitely many
states, it defines a regular language since only finitely many
states can reach the set F of accepting states; we call such
states live states subsequently.

Proposition 5. Given automaton Amsd(S), no state q ∈ Q
such that ‖q‖∞ > ‖A‖1,∞ and ‖q‖∞ > ‖c‖∞ can reach an
accepting state.

Proof. Suppose that state q ∈ Q is such that ‖q‖∞ > ‖A‖1,∞
and ‖q‖∞ > ‖c‖∞. Then for all u ∈ Σn

p we have

‖δ(q,u)‖∞ = ‖p · q + Au‖∞
≥ p · ‖q‖∞ − ‖Au‖∞
≥ p · ‖q‖∞ − ‖A‖1,∞ · ‖u‖∞
> p · ‖q‖∞ − ‖q‖∞ · (p− 1)

= ‖q‖∞ .

In other words, the set of states {q ∈ Q : ‖q‖∞ >
max(‖A‖1,∞, ‖c‖∞)} is invariant under the transition relation
of Amsd(S) and excludes the accepting state c. Hence no state
in this set can reach an accepting state.

It follows from Proposition 5 that a rough upper bound on
the number #Q of states of Amsd(S) is

#Q ≤ 2m ·max(‖A‖1,∞, ‖c‖∞)m , (1)

where m is the number of equations in the system S.
A key reachability property of the automaton Amsd(S) is

the following:

Lemma 6. Let q, r ∈ Zm be states of Amsd(S). Then for all
k ∈ N and words w ∈ (Σn

p )k we have

q
w−→ r ⇐⇒ r = pk · q + A JwKm

Proof. Straightforward induction on k.

It follows from Lemma 6 that the language of Amsd(S) is
an msd-first encoding of the set of solutions of the system
Ax = c. Indeed, applying the lemma to the initial state 0 and
the final state c of Amsd(S), we have that 0 w−→ c if and only
if AJwKm = c.

If we wish to emphasise the underlying system S of linear
Diophantine equations of a p-automaton Amsd(S) we annotate
the transition relation with the subscript S and, e.g., write
q
∗−→S r.
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From the bound (1), it follows that p-automata can be used
to obtain a PSPACE upper bound for deciding feasibility over
the nonnegative integers of a system of linear Diophantine
equations. However, von zur Gathen and Sieveking [20] have
shown that any feasible system of linear Diophantine equations
has a solution whose bit-size is polynomially bounded in the
encoding of S, which yields an NP bound for the feasibility
problem. Thus, measured in terms of the encoding size 〈S〉 of
the underlying linear system of equations, while the automaton
Amsd(S) has exponentially many (live) states, it accepts a
word of length polynomial in 〈S〉.

The main technical result of this paper gives bounds on
the complexity of the reachability problem for p-automata,
i.e., deciding whether q

∗−→ r for states q, r ∈ Zm of a
p-automaton Amsd(S). If Amsd(S) is explicitly given, this
problem is of course trivial, but constructing Amsd(S) from
S incurs an exponential blow-up. We will establish an NP-
upper bound for this problem in case the input consists of the
base p encoded in binary, the system of equations S, and the
states q and r of the induced automaton (note that by (1) the
encoding of the (live) states of Amsd(S) is polynomial in the
size of S):

Theorem 7. The state-to-state reachability problem for p-
automata of the form Amsd(S) is NP-complete.

D. Automata and p-adic solutions of linear equations

Given an integer p ≥ 2 and a system S of linear Diophantine
equations, we define an automaton Alsd(S) that represents
the base-p lsd-first encoding of the set of nonnegative integer
solutions of S. It is clear that the language of Alsd(S) is the
reverse of the language of automaton Amsd(S). In fact, since
Amsd(S) is reverse-deterministic, Alsd(S) can be obtained by
simply reversing the direction of the transitions in Amsd(S)
and interchanging the initial and accepting states. In particular,
Alsd(S) has the same set of states as Amsd(S), although Alsd

has a partial transition function in general, while Amsd has a
total transition function.

An explicit definition of automaton Alsd(S) is as follows:

Definition 8. Let S : Ax = c be a system of linear equations
with integer coefficients, where A has dimension m×n. Define
Alsd(S) := (Q,Σn

p , δ, q0, F ) such that
• Q = Zm,
• for all q ∈ Q and u ∈ Σn

p , δ(q,u) = q−Au
p if q ≡ Au

(mod p) and δ(q,u) = ⊥ otherwise,
• q0 = c, and
• F = {0}.

As we now explain, in the case of a prime base p, automaton
Alsd(S) can also be used to encode the set of all p-adic
integer solutions of the system S. Given an infinite word
w = u0u1 . . . ∈ (Σn

p )ω , we define a corresponding n-tuple
of p-adic integers JwKl by

JwKl :=

∞∑
i=0

pi · ui .

We show that such a word w encodes a p-adic integer
solution of the system S whenever the automaton Alsd(S)
has an infinite run on w, starting from its initial state. (This
requirement is non-vacuous since the the transition function
of Alsd(S) is partially defined.)

Let S : Ax = c be a system of linear equations, where A ∈
Zm×n and c ∈ Zm. Given an infinite word w = u0u1 . . . ∈
(Σn

p )ω , we have AJwKl = c if and only if AJu0 . . .uk−1Kl ≡
c (mod pk) for all k ∈ N. But for all k ∈ N we have

AJu0 . . .uk−1Kl ≡ c (mod pk)

⇐⇒ AJu0 . . .uk−1Kl + r · pk = c for some r ∈ Zm

⇐⇒ AJuk−1 . . .u0Km + r · pk = c for some r ∈ Zm

By Lemma 6, the last line in the above chain of equivalences
expresses that state r can reach state c in automaton Amsd(S)
by reading the word uk−1 . . .u0. Thus for w = u0u1 . . . ∈
(Σn

p )ω we have AJwKl = c if and only if for every k ≥ 0

there exists a state r of Alsd(S) such that c
u0...uk−1−−−−−−→ r in

Alsd(S). Since Alsd(S) is deterministic, this last condition is
equivalent to the existence of an infinite run in Alsd(S) over
the word w starting from state c.

E. Semi-linear sets

Given finite sets B,P ⊆ Nn of base and period vectors,
define

L(B,P ) :=

{
b +

m∑
i=1

λi · pi : b ∈ B,pi ∈ P, λi ∈ N

}
.

If B = {b} is a singleton then we simply write L(b, P ). We
call L(b, P ) a linear set and we say that a subset of Nn is
semi-linear if it can be written as a finite union of linear sets.
In particular, each set L(B,P ) is semi-linear. It is well-known
that the set of nonnegative integer solutions of a system of
linear Diophantine equations is a semi-linear set [20], [21].

We will denote mixed systems of equations and inequations
by the notation S : Ax ∼ c, where ∼ is a vector of relation
symbols, with each entry either “=” or “<”. Given a finite
set B ⊆ Nn, we denote by ‖B‖∞ the quantity max{‖b‖∞ :
b ∈ B}. We moreover denote by ‖S‖1,∞ the (1,∞)-norm
of the matrix

(
A −c

)
. We use the following bound on the

magnitude of the generators B and P of the set of solutions
of a system of linear Diophantine equations, which is derived
from [22].

Proposition 9. [23, Prop. 4] Let S : Ax ∼ c be a system
of m linear Diophantine equations and inequalities in n
variables. Then there exist finite sets B,P ⊆ Nn such that
JSK = L(B,P ) and
• ‖B‖∞ ≤ (‖S‖1,∞ + 1)O(m+n)

• ‖P‖∞ ≤ (‖A‖1,∞ + 1)O(m+n)

Proposition 9 shows that bit-size of the entries of the
vectors in B and P are polynomially bounded in 〈S〉. The
following proposition shows that we can decompose L(B,P )
as a union of linear sets whose sets of period vectors are
linearly independent and hence have cardinality bounded by
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n while only increasing the size of the constants appearing by
a polynomial factor.

Proposition 10. [23, Prop. 5] Let M = L(B,P ) ⊆ Nn, where
B,P ⊆ Nn are finite. Then we can write M =

⋃
i∈I L(Bi, Pi)

such that for all i ∈ I ,
• ‖Bi‖∞ ≤ ‖B‖∞ + (#P · ‖P‖∞)O(n), and
• each Pi is a linearly independent subset of P (and hence

#Pi ≤ n).

By combining Propositions 9 and 10, we derive the follow-
ing corollary:

Corollary 11. Let S : Ax ∼ c be a system of m linear
Diophantine equations and inequalities in n variables. Then
we can write JSK =

⋃
i∈I L(Bi, Pi) for some finite set I such

that for all i ∈ I ,
• ‖Bi‖∞ ≤ (‖S‖1,∞ + 1)O((mn)3),
• ‖Pi‖∞ ≤ (‖A‖1,∞ + 1)O(m+n), and
• #Pi ≤ n.

Recall that a set M ⊆ N is ultimately periodic if there is a
threshold t ∈ N and a period ` ∈ N such that for all a, b ∈ N
with a, b ≥ t and a ≡ b mod ` we have a ∈M if and only if
b ∈M .

Semi-linear sets in dimension one are ultimately periodic.
We will use the following result (paraphrased from Wilf [24])
in to obtain bounds on the threshold and period of a given
linear set.

Proposition 12 ([24]). Let M ⊆ N be a finite set such that
gcd(M) = 1. Then the linear set L(0,M) contains every
natural number a such that (maxM)2 ≤ a.

From the above proposition it follows that a linear set
L(c,Q) ⊆ N is ultimately periodic with threshold c+max(Q)2

and period gcd(Q).
We will also need the the following result of Chrobak and

Martinez [25], [26], corrected by To [27], which is related to
Proposition 12.

Proposition 13 ([25], [26], [27]). The language of an NFA
with n states over a unary alphabet (considered in the natural
way as a subset of N) can be written as a union of linear sets
L(a, b) such that a = O(n2) and b = O(n).

III. DECIDING REACHABILITY IN p-AUTOMATA

The goal of this section is to prove that the reachability
problem for p-automata lies in NP (Theorem 7). Recall that
an instance of this problem consists of a base p ≥ 2, a
system S of linear Diophantine equations, and two states q, r
of the corresponding p-automaton Amsd(S); the question is
whether q can reach r. Since automaton Alsd(S) is gotten by
reversing the transition function of Amsd(S), we immediately
get that state-to-state reachability in Alsd(S) also lies in
NP. Membership of these reachability problems in NP is
key to showing that the respective satisfiability problems for
existential Büchi arithmetic and existential linear arithmetic
over p-adic numbers lie in NP.

It is classical that deciding satisfiability over nonnegative
integers of systems of linear equations is NP-complete [28].
Since a system S of linear equations is satisfiable over non-
negative integers if and only if the initial state of Amsd(S) can
reach the final state, it follows that the reachability problem
for p-automata is NP-hard. The main goal in the rest of the
section is obtain an NP upper bound for reachability between
arbitrary pairs of states.

Let S : Ax = c, be a system of linear Diophantine
equations in n variables, with corresponding p-automaton
Amsd(S) = (Q,Σn

p , δ, q0, F ). Suppose further that q, r ∈ Q
are states of Amsd(S) and we wish to decide whether q can
reach r. Lemma 6 implies that deciding whether q

∗−→ r
is equivalent to deciding whether there exist k ∈ N and
w ∈ (Σn

p )k such that

r = pk · q + AJwKm .

This problem can equivalently be rephrased as finding some
x ∈ Nn and k ∈ N satisfying the following linear-exponential
system of Diophantine inequalities:

Ax = r − pk · q, ‖x‖∞ < pk . (2)

It will thus suffice to prove the following proposition.

Proposition 14. Deciding feasibility of linear-exponential
systems of the form (2) is in NP.

Proof. In order to provide a polynomial-size witness of the
feasibility of (2), we introduce the following system T of linear
Diophantine inequalities:

T : Ax = r − y · q, ‖x‖∞ < y . (3)

Since the constraint ‖x‖∞ < y can be expressed as∧
1≤i≤n xi < y, (3) is a system of linear inequalities. The

bounds from Corollary 11 imply that the set JT K admits a
semi-linear decomposition JT K =

⋃
i∈I L(Bi, Pi) ⊆ Nn+1

such that for all i ∈ I we have #Pi ≤ n+ 1 and the vectors
in Bi and Pi have entries of absolute value at most

(‖T‖1,∞ + 1)poly(〈T 〉) . (4)

As a certificate that the linear-exponential system (2) is
satisfiable, we shall use a linear set L(b, P ) ⊆ Nn+1 subject
to the following conditions:

C1 #P ≤ n+ 1,
C2 vector b and all vectors in P have entries of absolute

value at most (‖T‖1,∞ + 1)poly(〈T 〉),
C3 L(b, P ) ⊆ JT K,
C4 the projection of L(b, P ) on the y-coordinate contains

a power of p.
We first show that (2) is satisfiable if and only if such

a certificate exists. Suppose that (2) is satisfiable. Given a
solution (x∗, k∗) of (2), clearly (x∗, pk

∗
) is a solution of (3).

In particular, there exist i ∈ I and b ∈ Bi such that
(x∗, pk

∗
) ∈ L(b, Pi). Using the bounds in (4), we see that

the linear set L(b, Pi) satisfies Items C1–C4 above.
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Conversely, suppose that some linear set L(b, P ) ⊆ Nn+1

satisfies Items C1–C4. By Items C3 and C4, T has a solution
of the form (x∗, pk

∗
). But then (x∗, k∗) is a solution of the

system (2).
Now to prove the proposition it suffices to give a non-

deterministic polynomial-time procedure for guessing and
checking certificates satisfying Items C1–C4. Algorithm 1 is
such a procedure. The input is a linear exponential system as
in (2). Line 2 guesses a linear set L(b, P ) satisfying the bounds
in Items C1 and C2, which thereby has size polynomial in the
encoding length of the input. The rest of the algorithm verifies
that L(b, P ) satisfies Items C3 and C4.

Line 3 of the algorithm verifies Item C3 in the definition
of a certificate, i.e., that the linear set L(b, P ) comprises
solutions of the system T . For this one need only check that
b is a solution of T and all vectors in P are solutions of the
corresponding homogeneous system

Ax = −y · q, ‖x‖∞ ≤ y .

This can clearly be done in polynomial time.
Lines 4–11 of the algorithm verify Item C4 in the definition

of a certificate. Line 4 computes the linear set L(c,Q) ⊆ N
obtained from projecting L(b, P ) onto the y-coordinate (which
can be done simply by projecting the base vector b and
set of period vectors P onto the y-coordinate). It follows
from Proposition 12 that L(c,Q) is ultimately periodic with
threshold t = c + (maxQ)2 and period ` = gcdQ (see
Line 5). Consequently, if pk ∈ L(c,Q) for some k ≥ 0 then
pk

∗ ∈ L(c,Q) for some

0 ≤ k∗ < dlogp te+ ` . (5)

The exponent k∗ in (5) has bit-size polynomial in the size of
the certificate L(b, P ) and the membership of pk

∗
in L(c,Q)

can be checked in nondeterministic polynomial time. There
are two cases. If pk

∗ ≤ t then checking pk
∗ ∈ L(c,Q) is an

instance of integer programming (which is in NP); see Line 8.
On the other hand, if pk

∗
> t then by ultimate periodicity of

L(c,Q) we have that pk
∗ ∈ L(c,Q) if and only if there exists

a ∈ {t, t+ 1, . . . , t+ `− 1} such that a ∈ L(c,Q) and pk
∗ ≡

a mod ` (see Lines 10–11). A nondeterministic polynomial-
time procedure can guess such an a and check a ∈ L(c,Q)
(an instance of integer programming) and pk

∗ ≡ a mod ` (by
iterated squaring).

This completes the proof of correctness of Algorithm 1.

As explained above, it follows from Proposition 14 that
deciding state-to-state reachability in p-automata of the form
Amsd(S) is in NP. Thus we have proven Theorem 7.

Remark 15. From the estimate in (5), we can only derive a
doubly-exponential upper bound on the magnitude of solutions
of (2), and hence only an exponential bound on the length of
the shortest word between two states q and r in a p-automaton
Amsd(S). It remains an open problem whether there exist
words of polynomial length between any two states, or whether
this exponential bound is tight.

Algorithm 1 Procedure for deciding satisfiability of linear-
exponential system Ax = r − pk · q, ‖x‖∞ < pk.

1: let T : Ax = r − y · q, ‖x‖∞ < y
2: guess L(b, P ) ⊆ Nn+1 satisfying Items C1 and C2
3: check L(b, P ) ⊆ JT K
4: let L(c,Q) ⊆ N be L(b, P ) projected onto y-coordinate
5: let t := c+ (maxQ)2 and ` := gcdQ
6: guess k∗ ∈ {0, 1, . . . , dlogp te+ `}
7: if k∗ ≤ logp t then
8: check pk

∗ ∈ L(c,Q)
9: else

10: guess a ∈ {t, t+ 1, . . . , t+ `− 1}
11: check a ∈ L(c,Q) and pk

∗ ≡ a mod `

From the proof of Theorem 7, we directly obtain the
following corollary.

Corollary 16. Let q, r be states of the p-automaton Amsd(S)
corresponding to a system of linear Diophantine equations S,
and let m ∈ N. Deciding whether q

w−→ r for some word w
of length m is in NP.

Proof. Use Algorithm 1, and instead of guessing k∗ in Line 6
set k∗ to m.

A. Reachability to zero in p-automata

In this section we consider a special case of the reachability
problem for p-automata of the form Amsd(S). Whereas this
problem is NP-complete in general, and already NP-hard when
the initial state is the zero vector, we show that the version
of the problem in which the target is fixed to be the zero
vector is solvable in polynomial time. (Recall again that the
p-automaton Am(S) in this problem is represently implicitly
by the linear system S.) The contents of this section are not
needed for main results of the paper and the reader primarily
interested in the NP upper bounds for Büchi arithmetic and
linear arithmetic over p-adic fields may safely skip the material
here.

In Section III we reduced the reachability problem for p-
automata to determining satisfiability of systems of linear-
exponential Diophantine inequalities of the form shown in (2)
over the variables x ∈ Nn and k ∈ N. If the target state r in
the reachability problem is set to 0 then (2) specialises to a
system of the following form:

Ax = −pk · q, ‖x‖∞ < pk . (6)

We will show that systems of this form are solvable in
polynomial time.

Dividing both sides in (6) by pk, it follows that (6) can
be turned into an instance of the following variant of linear
programming. In the definition below, recall that ∼ denotes a
vector of equality and strict inequality relations.

GRADED LINEAR PROGRAMMING (GRADED LP)
INPUT: A polyhedron P = {x : Ax ∼ c} ⊆ Rn and

p > 1.
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QUESTION: Is there some k ≥ 0 and x∗ ∈ Zn such that
x∗/pk ∈ P ?

We show that, just as for classical linear programming, Graded
LP is also decidable in polynomial time.

Theorem 17. Graded LP is decidable in polynomial time.
Moreover if a graded LP is feasible then it admits solutions
x∗/pk such that the bit size of x∗/pk is polynomial in the
description of the LP.

The remainder of this section is devoted to proving Theo-
rem 17. We first prove two technical lemmas. The first shows
that for any ε, any real interval of length ε contains a point
x∗/pk for “small” x∗ and k.

Lemma 18. Let y∗ ∈ Q and ε > 0. Then there are k ≥ 0 and
x∗ ∈ Z such that
• x∗/pk ∈ [y∗, y∗ + ε),
• k ≤ 2− logp ε, and
• |x∗| ≤ (|y∗|+ ε) · pk.

Proof. Choose k ∈ N such that 1/pk < ε, e.g., k = b2 −
logp εc. If k defined this way is negative then set k = 0. Now
pick x∗ ∈ Z such that y∗ ≤ x∗/pk < y∗+ ε, and observe that
|x∗| ≤ (|y∗|+ ε) · pk.

Clearly, both k and y are computable in polynomial time.
The next lemma shows that if a polyhedron P has full
dimension then there always exists some point x∗/pk ∈ P ,
and this point can be computed in polynomial time.

Lemma 19. Let P = {x : Ax ∼ c} be a full-dimensional
polyhedron. Then there are k > 0 and x∗ ∈ Zn such that
x∗/pk ∈ P . Moreover, k and x∗ are computable in polynomial
time and the bit size of x∗/pk is polynomial in the description
of P .

Proof. Since P has full dimension, there is some y∗ ∈ int(P ),
the interior of P , that is computable in polynomial time and
of size polynomial in the description of P , cf. [29, p. 170].
In particular, y∗ has distance at least d to every supporting
hyperplane of P for some rational d > 0 of bit-size polynomial
in the description of P . The idea is to perturb y∗ in every
component using Lemma 18 while staying inside P .

To this end, set ε = d/(n + 1). For every 1 ≤ i ≤ n, let
ki and xi be obtained from Lemma 18 by applying it to y∗i
and ε. Set k = max{k1, . . . , kn}, and let x∗ ∈ Z be such
that x∗i = pk−ki · xi. We claim that 1/pk · x∗ ∈ P . It suffices
to show that ‖y∗ − x∗‖2 < d. But this is the case since x∗

differs from y∗ in every component by at most ε, and

‖y∗ − x∗‖2 ≤
√
n · (d/(n+ 1))2 < d.

All computations can be performed in polynomial time and
the bit-size of x∗ and magnitude of k are polynomial in the
description of P .

We are now ready to prove Theorem 17. Let P = {x :
Ax ∼ c} and p > 1 be an instance of Graded LP. We
can check in polynomial time whether P has full dimension,

cf. [29, p. 170]. If this is the case then the statement imme-
diately follows from Lemma 19. Otherwise we reduce to the
full-dimensional case as follows.

If P does not have full dimension then P lies in a d-
dimensional affine subspace of Rn for some d < n. This affine
subspace is obtained as the intersection of all implicitly defined
equality constraints of P , cf. [29, p. 100]. Here we say that P
implicitly defines the equality a·x = c if there is an inequality
a · x ≥ c in the description of P such that a · x∗ = c for all
x∗ ∈ P . Such implicitly defined equalities can be identified
in polynomial time using linear programming. Hence we can
compute in polynomial time a submatrix A= of A, of row
rank d ≤ n, whose rows are the implicit equalities of P . Then
P is an open subset of the hyperplane P= = {x : A=x = c=}
and hence P is full dimensional in P=.

We can compute in polynomial time the Hermite normal
form H of A= such that H = A= U ∈ Nd×n for some
unimodular U ∈ Zn×n [29, p. 57]. Since H =

(
B 0

)
for

some lower triangular B ∈ Nd×d, the system

Q = {y : Hy = c=} ⊆ Rn

uniquely determines the first d components y∗1 , . . . , y
∗
d of all

y∗ ∈ Q. If there is a y∗i such that y∗i 6∈ Z/pk for all k ≥ 0
then (P, p) is a no-instance of Graded Linear Programming.
Otherwise, consider the polyhedron

R = {z : AU(y∗1 , . . . , y
∗
d, z1, . . . , zn−d) ∼ c} ⊆ Rn−d.

This polyhedron has full dimension, and as argued above, we
can find some z∗ ∈ R ∩ Zn−d/pj of polynomial bit size in
polynomial time, from which we can derive the desired x∗ =
U−1(y∗1 , . . . , y

∗
d, z
∗
1 , . . . , z

∗
n−d) ∈ P ∩Zn/pk for some k ≥ 0.

This completes the proof of Theorem 17.

IV. DECIDING EXISTENTIAL BÜCHI ARITHMETIC

Based on the results in Section III, we now develop
an NP upper bound for deciding satisfiability of formulas
of existential Büchi arithmetic, thereby proving Theorem 1.
Clearly it will suffice to show that the decision problem for
the existential conjunctive fragment of Büchi arithmetic is
in NP. Formulas in this fragment generalise classical integer
programming and are of the form

Ax = c ∧
∧
i∈I

Vp(xi) = yi (7)

for an integer matrix A and integer vector c.
It will first be useful to introduce a mild generalisation of

the reachability relation for p-automata. Suppose we are given
a linear system of equations S : Ax = c and an additional
system of constraints T : Bx = d. For all pairs of states q, r
of automaton Amsd(S), write q

w−→S[T ] r if q
w−→S r and

BJwKm = d. Plainly q
w−→S[T ] r if and only if(

q
0

)
w−→S∧T

(
r
d

)
,

where S ∧ T is the system of equations

S ∧ T :

(
A
B

)
x =

(
c
d

)
.
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It follows from Theorem 7 that it can be decided in non-
deterministic polynomial time whether q

w−→S[T ] r for some
word w ∈ (Σn

p )∗, given as input the base p ≥ 2, systems of
equations S, T , and states q, r of Amsd(S).

It will suffice to prove an NP upper bound for the satis-
fiability problem for formulas in the existential conjunctive
fragment of Büchi arithmetic. We first show an NP upper
bound for the simple case in which there is a single valuation
assertion Vp(x) = y and then generalise to an arbitrary number
of valuation assertions. Thus, consider the formula

ϕ : Ax = c ∧ Vp(x) = y ,

built over the system of equations S : Ax = c, where x, y are
particular variables in the vector x. We only consider the case
of satisfying assignments with x 6= 0; the case x = 0 can be
dealt with separately in a trivial way.

The solutions of the system of equations Ax = c are the
values JwKm for w ∈ (Σn

p )∗ such that 0
w−→S c. We now

describe conditions on w that are equivalent to the additional
requirement that JwKm satisfy Vp(x) = y.

Observe that Vp(x) = y constrains x and y such that in
their base-p msd representation we have
• x ∈ {0, . . . , p− 1}ka0`, and
• y = 0k10`

for some k, ` ≥ 0 and a ∈ {1, . . . , p−1}. Consequently, JwKm
satisfies Vp(x) = y if and only if w admits a decomposition
w = s · u · t such that s, t ∈ (Σn

p )∗, u ∈ Σn
p and

0
s−→S[y=0] d

u−→S[x=a,y=1] e
t−→S[x=y=0] c (8)

for some intermediate states d and e of automaton Amsd(S).
Now the intermediate states d and e can be guessed in
polynomial time in 〈ϕ〉. Moreover, by Theorem 7, the reach-
ability queries 0

∗−→S[y=0] d and e
∗−→S[x=y=0] c can be

checked in nondeterministic polynomial time, while checking
d −→S[x=a,y=1] e is trivial. This gives the desired NP upper
bound for this special case.

Generalising this approach to an arbitrary number of valua-
tion assertions

∧
i∈I V (xi) = yi is straightforward: we nonde-

terministically guess an ordering among the yi, which induces
a decomposition as in (8) with at most O(|I|) intermediate
states that can also be guessed in polynomial time; validity of
this decomposition can again be checked via Theorem 7. This
completes the proof of NP-completeness of existential Büchi
arithmetic.

V. DECIDING EXISTENTIAL LINEAR ARITHMETIC OVER
p-ADIC FIELDS

Recall from Section II-B the two-sorted language LLVF for
linear arithmetic over valued fields. Given an integer prime
p, we are interested in deciding the truth of sentences of the
form

∃z1 . . . ∃zm∃u1 . . . ∃unϕ , (9)

where the variables zi range over Z, the variables ui range over
Qp, and ϕ is a boolean combination of atomic formulas. For

proving that this problem lies in NP we can assume without
loss of generality that ϕ has the form

Au = c ∧
∧`

i=1 vp(ui) = zi

∧Bz ∼ d ∧
∧`−1

i=1 zi < zi+1 ,
(10)

where matrices A,B and vectors c,d have integer coefficients.
(In particular, one can guess a strict linear ordering on the
integer variables in ϕ and replace disequalities a ·u 6= 0 with
∃u′∃z (a · u = u′ ∧ vp(u′) = z).)

We introduce a particularly simple class of quantifier-free
LLVF-formulas that have no variables of integer sort. A system
of linear equations with valuation constraints is a formula

Au = b ∧
∧
i∈I

vp(ui) = ci, (11)

where the entries of A, b, and the ci are integers, and u
is a vector of p-adic variables. To decide whether (11) has a
solution, we may without loss of generality assume that ci ≥ 0
for all i ∈ I , i.e., that the ui in (11) are all p-adic integers.

We will first give a non-deterministic polynomial-time re-
duction of the general decision problem for the existential
linear theory of Qp to the satisfiability problem for linear
equations with valuation constraints. We then show that the
latter problem is NP-complete.

Proposition 20. There is a nondeterministic polynomial-
time reduction of the decision problem for existential LLVF-
sentences over Qp to the satisfiability problem for systems of
linear equations with valuation constraints over Qp.

Proof. Consider a quantifier-free LLVF-formula ϕ, as specified
in (10). At a high level the idea is to show that if ϕ is satisfiable
then it admits a satisfying assignment in which the integer
variables have bit-length bounded by a polynomial in 〈ϕ〉.
Having established this, the values of the integer variables
can be guessed in polynomial time, yielding a system of linear
equations with valuation constraints.

Denote by S : Au = c the system of linear equations in
p-adic variables appearing as a conjunct of ϕ. Furthermore,
define

W := {(vp(u1),vp(u2), . . . , vp(u`)) ∈ N` :

Au = c ∧ 0 ≤ vp(u1) < . . . < vp(u`)}

Since Amsd(S) has a run over w ∈ (Σn
p )ω if and only if

JwKl ∈ (Qp)n is a solution of S, we have that (k1, . . . , k`) ∈
W if and only if there exist
• states q1, r1, . . . , q`, r` of Amsd(S),
• words w1, . . . , w` ∈ (Σn

p )∗,
• letters a1, . . . , a` ∈ Σn

p ,
• non-zero digits d1, . . . , d` ∈ {1, . . . , p− 1},

such that k1 = |w1|, k2 = |w1|+ |w2|+ 1, etc.,

c
w1−−→S[u1,...,u`=0] q1

a1−→S[u1=d1,u2,...,u`=0] r1
w2−−→S[u2,...,u`=0] q2

a2−→S[u3=d2,...,u`=0] r2
w3−−→S[u2,...,u`=0] · · ·

a`−→S[u`=d`] r` , (12)
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and Alsd(S) has an infinite run on w`+1 starting in state r`.
Combining Proposition 13 and the bound (1) on the number

of live states of Amsd(S), we get that for any two live states
q and r of Amsd(S), the set

{k ∈ N : there is w ∈ (Σn
p )k such that q w−→S r}

can be written as a union of linear sets L(b, P ) such that b
and all vectors in P have entries of absolute value at most

22m ·max(‖A‖1,∞, ‖c‖∞)2m .

It follows that there is a polynomial P1(·) such that the set
W can be written as union of semi-linear sets that each have
description length at most P1(〈ϕ〉).

Now z∗ ∈ Nm satisfies the formula ∃u1 . . . ∃unϕ if and
only if (z∗1 , . . . , z

∗
` ) ∈ W , Bz∗ = d and z∗1 < . . . < z∗` .

Combining the description of W as a semi-linear set and the
classical bounds of von zur Gathen and Sieveking [20] on
integer solutions of systems of linear inequalites, it follows that
there exists a polynomial P2(·) such that if the formula (10)
admits a satisfying assignment then there exists a satisfying
assignment under which the values of the integer variables
have bit-length at most P2(〈ϕ〉). This completes the proof.

Proposition 21. Satisfiability of systems of linear equations
with valuation constraints over Qp is in NP.

Proof. The proof parallels the approach to showing an NP
upper bound for Büchi arithmetic.

Given a system of linear equations and valuation constraints
of the form (11) above, write I = {i1, . . . , i`}, and assume
with no loss of generality that cij < cij+1

for all 1 ≤ j ≤ `.
Recall that the set of all p-adic integer solutions of the system
of equations S in (11) is encoded by the p-automaton Alsd(S).
A p-adic solution of (11) is encoded by a word w ∈ (Σn

p )ω

corresponding to some infinite run of Alsd(S) starting in state
b. As in the proof of Proposition 20, we can write

w = w1a1w2a2 · · ·w`a`w`+1 ,

where
• w1, . . . , w` ∈ (Σn

p )∗ and w`+1 ∈ (Σn
p )ω ,

• a1, . . . , a` ∈ Σn
p ,

• c1 = |w1|, c2 = |w1|+ |w2|+ 1, etc.,
• there exist d1, . . . , d` ∈ {1, . . . , p− 1} with

b
w1−−→S[ui1 ,...,ui`

=0] q1
a1−→S[ui1=d1,ui2 ,...,ui`

=0] r1
w2−−→S[ui2

,...,ui`
=0] q2

a2−→S[ui2
=d2,...,ui`

=0] r2
w3−−→S[ui2 ,...,ui`

=0] · · ·
a`−→S[ui`

=d`] r` (13)

• Alsd(S) has an infinite run on w`+1 starting in r`.
Now w`+1 being infinite, we additionally find r such that

r`
∗−→ r

+−→ r. (14)

To summarise, we can guess all intermediate states in the
decomposition (13) and (14) in nondeterministic polynomial
time and also check in nondeterministic polynomial time, via
Corollary 16, that they are connected by some words wi of

appropriate length as required in (13). This completes the
proof of the NP upper bound of Proposition 21.

Proposition 22. For any fixed prime p ≥ 5, determining
satisfiability of systems of linear equations with valuation
constraints over Qp is NP-hard.

Proof. We reduce from the NP-complete 3-SAT problem:
Given a Boolean formula ψ ≡

∧
1≤i≤k L

i
1 ∨ Li

2 ∨ Li
3 in 3-

CNF over Boolean variables X1, . . . , Xn, 3-SAT is to decide
whether ψ has a satisfying assignment. We construct a system
of linear equations with valuation constraints that is satisfiable
if and only if ψ is satisfiable.

To this end, we introduce p-adic variables x1, x1, . . . , xn, xn
with the intended meaning that vp(xi) = 0 means that Xi is
set to true, and vp(xi) = 0 means that Xi is set to false.
Of course, we have to introduce constraints that ensure that
only exactly one of those cases occurs. For every 1 ≤ i ≤ n,
consider ∧

0<j<p

vp(xi + j · xi) = 0. (15)

Then any solution of (15) enforces that vp(xi) ≥ 0 for all
1 ≤ i ≤ n. To see this, suppose there is some xi such that
vp(xi) = k < 0. Then

xi = ak · pk + ak+1 · pk+1 + · · ·

and since by (15) vp(xi + xi) = 0 we get

xi = (p− ak) · pk + (p− ak+1) · pk+1 + · · · .

But (15) also implies vp(xi−xi) = 0, since p−1 ≡ −1 mod p,
from which we get

xi = (ak − p) · pk + (ak+1 − p) · pk+1 + · · ·

and which implies p − ak = ak − p and hence ak = p, a
contradiction. Symmetrically, we obtain vp(xi) ≥ 0 for all
1 ≤ i ≤ n.

Let us now show that in any solution of (15) we have either
vp(xi) = 0 or vp(xi) = 0. To the contrary, assume vp(xi) > 0
and vp(xi) > 0. Since vp(y+ z) ≥ min(vp(y), vp(z)) for any
p-adic numbers y, z such that y + z 6= 0, and vp(0) = ∞,
we have that vp(xi + xi) = 0 asserted by (15) is violated.
Thus, it remains to show that we cannot have vp(xi) = 0
and vp(xi) = 0 simultaneously. To the contrary, assume xi =
a0 · p0 + a1 · p1 + · · · and xi = b0 · p0 + b1 · p1 + · · · for
some a0, b0 6= 0. But then a0 + j · b0 ≡ 0 mod p for 0 6=
j ≡ b−10 a0 mod p, and hence vp(xi + j ·xi) > 0 contradicting
vp(xi + j · xi) = 0 asserted in (15).

Finally, we provide an encoding of ψ. For a literal L,
let h(L) be such that h(Xi) = xi and h(¬Xi) = xi. We
additionally assert∧

1≤i≤k

vp(h(Li
1) + h(Li

2) + h(Li
3)) = 0. (16)

It is now not difficult to see that ψ is satisfiable whenever
the conjunction of (15) and 16 is. If ψ has a satisfying
assignment we set xi = 1 and xi = p if Xi is set to true, and
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symmetrically xi = p and xi = 1 if Xi is set to false. Then
the first digit of any h(Li

1) + h(Li
2) + h(Li

3) is at most 3 < p
since p ≥ 5, and thus vp(h(Li

1) + h(Li
2) + h(Li

3)) = 0. One
easily checks that the remaining constraints in (15) and (16)
are satisfied.

Conversely, if (15) and (16) are satisfied, we define a
satisfying assignment of ψ by setting Xi to true if and only if
vp(xi) = 0. By the arguments above, this assignment is well-
defined. Moreover, since vp(h(Li

1) + h(Li
2) + h(Li

3)) = 0 for
all 1 ≤ i ≤ k, in every clause of ψ there is at least one literal
that is set to true since for vp(h(Li

1) +h(Li
2) +h(Li

3)) = 0 to
hold, at least one of vp(h(Li

1), vp(h(Li
2) or vp(h(Li

3) equals
zero. This completes the proof.

Remark 23. While we believe it to be the case, it remains
an open problem whether an NP lower bound can also be
established for the cases p = 2, 3.

Theorem 2, stating that the decision problem for existential
linear arithmetic over Qp lies in NP, follows directly from
Propositions 20 and 21.

VI. CONCLUSION

We have shown that the satisfiability problems for exis-
tential Büchi arithmetic and existential linear arithmetic over
the p-adic numbers are both NP-complete. The latter result
resolves an open problem posed by Weispfenning [15]. The
key technical result was to show that reachability in the
class of p-automata that respectively give msd-first and lsd-
first encodings in base p of sets of solutions of systems of
linear equations is in NP. Note that this NP bound does not
involve explicitly constructing those automata. To the best
of our knowledge, this is the first time that the automata-
theoretic approach to deciding theories of linear arithmetic has
contributed novel upper bounds for linear arithmetic decision
problems.

REFERENCES
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