
Subclasses of Presburger Arithmetic and the
Weak EXP Hierarchy

Christoph Haase ∗

Laboratoire Spécification et Vérification (LSV), CNRS
École Normale Supérieure (ENS) de Cachan, France

haase@lsv.ens-cachan.fr

Abstract
It is shown that for any fixed i > 0, the Σi+1-fragment of Pres-
burger arithmetic, i.e., its restriction to i+ 1 quantifier alternations
beginning with an existential quantifier, is complete for ΣEXP

i , the
i-th level of the weak EXP hierarchy, an analogue to the polynomial-
time hierarchy residing between NEXP and EXPSPACE. This re-
sult completes the computational complexity landscape for Pres-
burger arithmetic, a line of research which dates back to the seminal
work by Fischer & Rabin in 1974. Moreover, we apply some of the
techniques developed in the proof of the lower bound in order to
establish bounds on sets of naturals definable in the Σ1-fragment
of Presburger arithmetic: given a Σ1-formula Φ(x), it is shown that
the set of non-negative solutions is an ultimately periodic set whose
period is at most doubly-exponential and that this bound is tight.

Categories and Subject Descriptors F.4.1 [Mathematical logic]:
Computational logic

Keywords Presburger arithmetic, bounded quantifier alternation,
weak EXP hierarchy, ultimately periodic sets, context-free commu-
tative grammars

1. Introduction
Presburger arithmetic is the first-order theory of the structure
〈N, 0, 1,+, <〉. This theory was shown to be decidable by Pres-
burger in his seminal paper in 1929 by providing a quantifier-
elimination procedure [31]. Presburger arithmetic is central to a
vast number of different areas in computer science and is often
employed as a tool for showing decidability and complexity results.

The central decision problem for Presburger arithmetic is valid-
ity, i.e., to decide whether a given sentence is true with respect to
the standard interpretation in arithmetic. The two most prominent
ways to decide validity are either quantifier-elimination based [8] or
automata based [9, 23, 40]. Any decision procedure for Presburger
arithmetic is inherently tied to the computational complexity of Pres-

∗ The author is supported by the French Agence Nationale de la Recherche
(ANR), REACHARD (grant ANR-11-BS02-001).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CSL-LICS 2014, July 14–18, 2014, Vienna, Austria.
Copyright c© 2014 ACM 978-1-4503-2886-9. . . $15.00.
http://dx.doi.org/10.1145/2603088.2603092

burger arithmetic; for that reason the complexity of Presburger arith-
metic has extensively been studied in the literature from the 1970’s
onwards. In order to fully capture the computational complexity of
Presburger arithmetic, Berman even introduced the STA measure on
the complexity of a decision problem, since Presburger arithmetic

“may not have precise complexity characterisations in terms of the
usual time and tape measures” [3]. The class STA(s(n), t(n), a(n))
is the class of all problems of length n that can be decided by an
alternating Turing machine in space s(n) and time t(n) using a(n)
alternations, where “∗” acts as a wildcard in order to indicate an
unbounded availability of a certain resource. Based on the work
by Fischer & Rabin [11] and Ferrante & Rackoff [10], Berman
established the following result.

Proposition 1 (Berman [3]). Presburger arithmetic is complete for

STA(∗, 22nO(1)

, n).

In terms of the usual time and space measures, this settles
Presburger arithmetic between 2-NEXP and 2-EXPSPACE. Despite
these high computational costs, on the positive side when looking
at fragments Presburger arithmetic becomes more manageable.
There are two dimensions in which we can constraint formulas
in order to obtain fragments of Presburger arithmetic: the number
of quantifier alternations and the number of variables in each
quantifier block. For i, j ∈ N ∪ {∗}, let PA(i,j) denote the set
of formulas of the Σi-fragment of Presburger arithmetic1 such
that at most j different variables occur in each quantifier block,
where “∗” is used as a wildcard for an unbounded number. Hence,
Proposition 1 characterises the computational complexity of PA(∗,∗)
with n being the number of symbols required to write down
the formula. Subsequently, PA and PA(i) abbreviate PA(∗,∗) and
PA(i,∗), respectively.

One of the most prominent fragments of Presburger arithmetic is
its existential or quantifier-free fragment, which is computationally
not more expensive than standard Boolean satisfiability.

Proposition 2 (Scarpellini [33], Borosh & Treybing [5]). For any
fixed j ∈ N, PA(1,j) is in P [33]. PA(1) is NP-complete [5].

Due to its comparably low computational complexity, quantifier-
free Presburger arithmetic is the fragment that is most commonly
found in application areas which aim at a practical impact. The
existential fragment of Presburger arithmetic can even be extended
with a full divisibility predicate while retaining decidability [25, 26].

Another subclass of Presburger arithmetic which has extensively
been studied is obtained by allowing for an arbitrary but fixed
number of quantifier alternations.

1 All results obtained are symmetric when considering Πi-formulas.

Proposition 3 (Grädel [17], Schöning [34], Reddy & Love-
land [32]). For any fixed i > 0 and j > 2, PA(i + 1,j) is ΣP

i -
complete2 [17, 34]. PA(i) is in STA(∗, 2nO(i)

, i) [32].

Thus, when fixing the number of quantifier alternations, the
complexity of Presburger arithmetic decreases roughly by one
exponent, and when additionally fixing the number of variables,
we obtain every level of the polynomial-time hierarchy. Notice
that there is an obvious gap: a completeness result for Presburger
arithmetic with a fixed number of quantifier alternations and an
arbitrary number of variables in each quantifier block is missing.

The study of lower bounds for PA(i) goes back to the work
of Fürer [13], who showed a NEXP lower bound for some fixed
i > 1. Later, Grädel showed NEXP-hardness and EXPSPACE
membership of PA(2), but tight lower and upper bounds for the
whole class of PA(i) formulas have not yet been established. The
purpose of the first part of this paper is to close this gap and establish
the following theorem.

Theorem 1. For any fixed i > 0, the Σi+1-fragment of Presburger
arithmetic is ΣEXP

i -complete.

Here, ΣEXP
i denotes the i-th level of the weak EXP hierarchy [19],

an analogue to the polynomial-time hierarchy [36] residing between
NEXP and EXPSPACE; a formal definition will be provided in
Section 2.4. Equivalently, we obtain that PA(i + 1) is complete
for STA(∗, 2nO(i)

, i). Determining the precise complexity of the
Σi-fragment of Presburger arithmetic for a fixed i has been listed
as a problem that “deserves to be investigated” by Compton &
Henson [7, Prob. 10.14]. However, as pointed out in [7], their generic
methods for proving lower bounds do not seem to be applicable to
this fragment, and our hardness result is based on rather specific
properties of, for instance, distributions of prime numbers.

The second part of the paper diverts from the first part and
focuses on the Σ1-fragment of Presburger arithmetic. More specif-
ically, we consider sets of naturals definable by formulas in the
Σ1-fragment of Presburger arithmetic open in one variable. Given
a Σ1-formula Φ(x), denote by JΦ(x)K the set of those a ∈ N such
that replacing xwith a in Φ(x) is valid. It is well-known that JΦ(x)K
is an ultimately periodic set, see e.g. [4]. A set N ⊆ N is ultimately
periodic if there exists a threshold t ∈ N, a baseB ⊆ {0, . . . t−1},
a period p ∈ N, and a set of residue classes R ⊆ {0, . . . p − 1}
such that N = U(t, p, B,R) with

U(t, p, B,R)
def
= B ∪ {t+ r + kp : r ∈ R, k ≥ 0} .

Given a Σ1-formula Φ(x), by applying some insights from the
first part, we can establish a doubly-exponential upper bound on
the period of the ultimately periodic set equivalent to JΦ(x)K and
show that this bound is tight, which is captured by the second main
theorem of this paper.

Theorem 2. There exists a family of Σ1-formulas of Presburger
arithmetic (Φn(x))n>0 such that each Φn(x) is a PA(1,O(n))
formula with |Φn(x)| ∈ O(n2) and JΦn(x)K is an ultimately
periodic set with period pn ∈ 22Ω(n)

. Moreover for any Σ1-formula
Φ(x), we have JΦ(x)K = U(t, p, B,R) such that t ∈ 2poly(|Φ(x)|)

and p ∈ 22poly(|Φ(x)|)
.

The most interesting part about this theorem is the doubly-
exponential lower bound of the period of ultimately periodic sets
definable by PA(1) formulas. Establishing bounds on constants
of ultimately periodic sets naturally occurs when analysing the
computational complexity of decision problems for infinite-state

2 In order to establish hardness, j > 2 is only required on the innermost
quantifier.

systems [15] or in formal language theory [20]. For instance,
analysing such bounds has been crucial in order to obtain optimal
complexity results for model-checking problems of a class of one-
counter automata in [15]. In more detail, in [15] it has been shown
that the set of non-negative weights of paths between two nodes in a
weighted graph is ultimately periodic with a period that is at most
singly-exponential bounded. A result by Seidl et al. [35] on Parikh
images of non-deterministic finite-state automata implicitly states
that those ultimately periodic sets are definable in the Σ1-fragment
of Presburger arithmetic. It would thus be desirable to establish
a generic upper bound for ultimately periodic sets definable in
PA(1) yielding the same optimal bounds. In this context, Theorem 2
provides a negative result in that it shows that a general bound on
ultimately periodic sets definable in PA(1) cannot yield the optimal
bounds required for natural concrete ultimately periodic sets like
those considered in [15].

This paper is structured as follows. In Section 2 we provide most
of the formal definitions required in this paper; however the reader is
expected to have some level of familiarity with standard notions and
concepts from linear algebra, integer programming, first-order logic
and computational complexity. Even though we provide a slightly
more elaborated account on succinct encodings via Boolean circuits,
it will be beneficial to the reader to be familiar with Chapters 8
and 20 in Papadimitriou’s book on computational complexity [28].
Section 3 is then going to establish the lower and upper bounds
of Theorem 1, and Theorem 2 is shown in Section 4. The paper
concludes in Section 5. Subsequent to the bibliography, a proof of a
technical characterisation of the weak EXP hierarchy is outlined in
the appendix for the sake of completeness.

2. Preliminaries
2.1 General notation
By Z and N we denote the set of integers and natural numbers,
respectively. We will usually use a, b, c for numbers in Z and N.
Given a ∈ N, we define [a]

def
= {0, . . . a−1}. Given setsM,N ⊆ N,

as is standard M + N
def
= {m + n : m ∈ M,n ∈ N} and

M ·N def
= {mn : m ∈M,n ∈ N}. Moreover, we will use standard

notation for integer intervals and, e.g., for a ≤ b ∈ N denote by
[a, b) the set {a, . . . b−1}. For vectors a = (a1, . . . , an) ∈ Zn, we
will denote by ‖a‖ the norm of a, which is the maximum absolute
value of all components of a, i.e., ‖a‖ def

= max{|ai|}1≤i≤n. For
m × n integer matrices A, ‖A‖ denotes the maximum absolute
value of all components of A. Finally, given a set M ⊆ Zn, we
denote by ‖M‖ the maximum of the norm of all elements of M . All
functions in this paper are assumed to map non-negative integers
to non-negative integers. Unless stated otherwise, we assume all
integers in this paper to be encoded in binary, i.e., the size or length
to write down a ∈ Z is O(log|a|).

2.2 Presburger Arithmetic
Usually, x, y, z will denote first-order variables, and x,y, z vec-
tors or tuples of first-order variables. Let x = (x1, . . . , xn) be
an n-tuple of first-order variables. In this paper, formulas of Pres-
burger arithmetic are standard first-order formulas over the struc-
ture 〈N, 0, 1,+, <〉 obtained from atomic expressions of the form
p(x) < b, where p(x) is a linear multivariate polynomial with inte-
ger coefficients and absolute term zero, and b ∈ Z. If the dimension
of x is clear from the context, for brevity we will often omit stating
it explicitly. Let a = (a1, . . . , an) ∈ Nn and Φ(x) be open in the
first-order variables x, we denote by Φ(a/x) the closed formula
obtained from replacing every occurrence of xi in Φ(x) with ai. By
JΦ(x)K we denote the set {a ∈ Nn : Φ(a/x) is valid}. The size |Φ|
of a formula of Presburger arithmetic is defined as the number of

symbols required to write it down, and the norm ‖Φ‖ is the largest
absolute value of all constants occurring in Φ.

Remark. For notational convenience, when stating concrete formu-
las we will permit ourselves to use atomic formulas p(x) < q(x)
for linear polynomials p(x), q(x). Moreover, all results on the com-
plexity of validity of formulas of Presburger arithmetic carry over
if we assume unary encoding of numbers, since binary encoding
of numbers can be “simulated” by the introduction of additional
first-order variables and repeated multiplication by two, causing
only a sub-quadratic blowup in the formula size. In addition, an
equality predicate “=” can be expressed in terms of < causing a
linear blowup, since x = y ↔ x < y + 1 ∧ y < x+ 1. Likewise,
x > y and x < y < z abbreviate y < x and x < y ∧ y < z,
respectively.

2.3 Semi-Linear Sets and Systems of Linear Diophantine
Inequalities

A central result due to Ginsburg and Spanier states that the sets of
natural numbers definable by a formula of Presburger arithmetic
open in n variables are the n-dimensional semi-linear sets [14],
which we just call semi-linear sets if the dimension is clear from
the context. A semi-linear set is a finite union of linear sets. The
latter are defined in terms of a base vector b ∈ Nn and a finite set
of period vectors P = {p1, . . .pk} ⊆ Nn, and define the set

L(b;P)
def
= b + λ1p1 + · · ·λkpk, λi ∈ N, 1 ≤ i ≤ k.

Let A be an m × n integer matrix and c ∈ Zm. A system of
linear Diophantine inequalities is given as S : Ax ≥ c. The size |S|
of S is the number of symbols required to write down S assuming
binary encoding of numbers. The set of positive solutions of S is
denoted by JSK ⊆ Nn and is the set of all n-tuples such that the
inequalities in every row of S hold.

The following proposition is due to Frank & Tardos and es-
tablishes a strongly polynomial-time algorithm for the feasibility
problem of a system of linear Diophantine inequalities in a fixed
dimension, i.e., deciding whether JSK 6= ∅.

Proposition 4 (Frank & Tardos [12]). Let S : Ax ≥ c be a system
of linear Diophantine inequalities such that A is an m× n matrix.
Then feasibility of S can be decided using n2.5n+o(n)|S| arithmetic
operations and space polynomial in |S|.

When we are interested in representing the set of all solutions of
S, we will employ the following proposition, which provides bounds
on the semi-linear representation of JSK and is a consequence of
Corollary 1 in [30].

Proposition 5 (Pottier [30]). Let S : Ax ≥ c be a system of linear
Diophantine inequalities such that A is an m × n matrix. Then
JSK =

⋃
i∈I L(bi;Pi) such that for all i ∈ I ,

‖bi‖, ‖Pi‖ ≤ (n‖A‖+ ‖c‖+ 2)m+n.

2.4 Time Hierarchies
Let us recall the definitions of the polynomial-time hierarchy
PH [36] and the weak EXP hierarchy EXPH [19] in terms of oracle
complexity classes. As usual,

P =
⋃
k>0

DTIME(nk) EXP =
⋃
k>0

DTIME(2nk

)

NP =
⋃
k>0

NTIME(nk) NEXP =
⋃
k>0

NTIME(2nk

).

The aforementioned time hierarchies are now defined as

ΣP
0

def
= ΠP

0
def
= P ΣEXP

0
def
= ΠEXP

0
def
= EXP

ΣP
i+1

def
= NPΣP

i ΣEXP
i+1

def
= NEXPΣP

i

ΠP
i+1

def
= coNPΣP

i ΠEXP
i+1

def
= coNEXPΣP

i

PH
def
=
⋃
i≥0

ΣP
i EXPH

def
=
⋃
i≥0

ΣEXP
i .

For our lower bounds, we will rely on the following equivalent
characterisation of ΣEXP

i .

Lemma 1. For any i > 0, a language L ⊆ {0, 1}∗ is in ΣEXP
i iff

there exists a polynomial q and a predicate R ⊆ ({0, 1}∗)i+1 such
that for any w ∈ {0, 1}n,

w ∈ L iff ∃w1 ∈ {0, 1}2
q(n)

.∀w2 ∈ {0, 1}2
q(n)

· · ·

· · ·Qiwi ∈ {0, 1}2
q(n)

.R(w,w1, . . . , wi)

and R(w,w1, . . . , wi) can be decided in deterministic polynomial
time.

Despite being in the spirit of an elementary result on computa-
tional complexity, the author was unable to find a formal proof of
Lemma 1 in the standard literature. It is somewhat stated informally
without a proof in [19]. In order to keep this paper self-contained
and for the reader’s convenience, a proof sketch of Lemma 1 based
on a proof of an analogue characterisation of the polynomial-time
hierarchy given in [2] is provided in the appendix.

2.5 Boolean Circuits
A standard approach to raise the complexity of a problem known to
be complete for a complexity class by one exponent is to succinctly
represent the input, see e.g. [16, 29]. A well-known concept is to
represent the input by Boolean circuits. In this paper, for technical
convenience we adapt the definition provided in [16].

Definition 1. A Boolean circuit C of size r with n ≤ r inputs
is a function f : [r] → {&, ‖,∼, ↑, ↓1} × [r] × [r], where
f(i) = (t, j, k) iff the gate with index i is of type t, i.e., an and, or,
not, input or constant gate, respectively, and j, k < i are inputs of
the gate, unless t = ∼ in which case we require j = k.

We identify each gate of C with an index from [r], and by
convention the first n ≤ r gates are input-gates, and the r-th
gate, i.e., the gate with index r − 1, is treated as the output gate
of C. Moreover for technical convenience, we sometimes identify
the various types of the gates by natural numbers ordered as in
Definition 1, i.e., & is identified as 0, ‖ as 1, etc. By using constant
gates as gates with constant value 1, an input w ∈ {0, 1}n to C
induces a unique evaluation mapping ew : [r] → {0, 1} defined
in the obvious way, and C evaluates to true (false) on input w
if ew(r − 1) = 1 (ew(r − 1) = 0). For brevity, we define
C(w)

def
= ew(r−1), and if m1, . . . ,mk ∈ N then C(m1, . . .mk) is

the output of C(w1 · · ·wk), where each wi ∈ {0, 1}dlog mie is the
binary, if necessary padded, representation of mi.

For the remainder of this section, we will briefly recall and
elaborate on some results and concepts about circuits and succinct
encodings from Papadimitriou’s book [28] on computational com-
plexity. Given a circuit C and an input w ∈ {0, 1}n for some n ≥ 0,
it is well-known that determining C(w) is P-complete [28, Thm.
8.1]. In [28], the proof of P-hardness is established by showing that
the computation table of a polynomial-time Turing machine can be
encoded as a Boolean circuit. For an f(n)-time-bounded Turing
machineM , a computation table is an f(n)×f(n) grid of cells Ti,j

from an alphabet that allows for uniquely encoding configurations of

...
...

...
...

...
...

. 1 1 0q0 � �

. 1 1q1 1 � �

. 1q2 0 1 � �
.q0 1 0 1 � �

Figure 1. Graphical illustration of a computation table of a time-
bounded Turing machineM . For example, here we have T2,2 = 0q2 .
The control state and the head position of M is indicated by tape
symbols with some qi as subscript. The four gray-shaded cells
illustrate that successive cells only depend on three preceding cells.

M such that the configuration of M in step i while running on w is
encoded in the i-th row. Figure 1 graphically illustrates the concept
of a computation table, where 0 and 1 are alphabet symbols of M ,
and . and � are left delimiters and blank symbols, respectively. The
crucial fact for encoding computation tables as Boolean circuits is
that for i, j > 1, the symbol at Ti,j only depends on a fixed number
of cells, namely Ti−1,j−1, Ti−1,j and Ti−1,j+1, illustrated by the
gray-shaded cells in Figure 1. It is then clear that the alphabet of a
computation table can be encoded into a binary alphabet of truth
values, and that a constant basic circuit can be constructed from
M which ensures that the values of the cells are correctly propa-
gated along the y-axis. It then follows that M accepts w iff there
exists a computation table ending in an accepting state iff the circuit
encoding this computation table evaluates to true.

In the next section, for our lower bound we will apply Lemma 1,
which entails deciding (w,w1, . . . , wi) ∈ R, where the wj are of
size exponential in n = |w|. Let Mw be a polynomial-time Turing
machine deciding R for a fixed w. The w1, . . . wj will implicitly be
coded into natural numbers, so it will not be possible to construct
a Boolean circuit Cw upfront that can evaluate Mw on the input
w1, . . . wj of exponential size, since we are required to establish
a polynomial-time reduction. Instead, we will succinctly encode
Cw via another Boolean circuit Dw. More precisely, Cw is encoded
via Dw as follows: Dw has 3r(n) + 3 input gates for some fixed
polynomial r depending on Mw such that for i, j, k ∈ [2r(n)] and
t ∈ [5], Dw(t, i, j, k) = 1 iff the defining function f of Cw gives
f(i) = (t, j, k), i.e., that the gate with index i of Cw is of type t and
has input gates with index j and k. In particular, Dw and henceforth
Cw only depend on w and M , and are independent of w1, . . . wi.
Note that we can view an assignment of truth values to the gates of
Cw as a string of length 2r(n).

More generally, it is known that if C with no input gates is
succinctly given by some circuitD, determining whether C evaluates
to true is EXP-complete [28, Thm. 20.2 & Cor. 2]. The idea
underlying the hardness proof is a straight-forward generalisation
of the approach outlined in the paragraph above. The circuit C
encodes the computation table of an EXP Turing machine M . Since
the indices of the gates of C can be represented in binary, via D
we can encode C by implicitly encoding an exponential number
of the constant basic circuit ensuring proper propagation between
consecutive cells. This approach can now be adapted for our purpose,
i.e., to evaluate a polynomial-time Turing machine on an input of
exponential size. The major challenge is to transfer input to the
succinctly encoded circuit on-the-fly.

Referring to Lemma 1 and given Mw as above, we can construct
in logarithmic space a Boolean circuit Dw encoding Cw such that
the input (w1, . . . , wi) to Cw is obtained from the first i2q(n) gates,
and Cw encodes a computation table of Mw on this input. Figure 2
illustrates how this can be realised. Each box in Figure 2 is a gate,
and a cell of the computation table of Mw while being executed on
(w1, . . . , wn) is encoded into the dashed boxes, or more specifically,

into the three framed gray-shaded boxes on the bottom of the dashed
boxes. Here, we assume that three bits are sufficient to represent
the alphabet of the computation table of Mw, and that .q0 is en-
coded as 111. Consequently, the gates with index (3, 4), (3, 5) and
(3, 6), representing the cell T1,1 of the computation table of Mw,
are gates with constant value one, as indicated in Figure 2. Now
we want the values of the cells T1,2, T1,3, etc. of the computation
table of Mw to be equivalent to w1 · · ·wn, which are represented
by the gates with indices (0, 0), . . . (0, i2q(n)). The gates in Dw

corresponding to T1,2 and T1,3 have indices (3, 15), (3, 16), (3, 17)
and (3, 26), (3, 27), (3, 28), respectively. Those gates have the gates
(0, 0) and (0, 1) as their inputs, respectively. Suppose that in our
encoding 1 is represented as 101 and 0 as 010, the sequence of ‖,
∼ and ‖ gates ensures that 1 is mapped to 101 and 0 to 010. Con-
sequently, the gates (3, 15), (3, 16), (3, 17) can correctly transfer
the alphabet symbols {0, 1} of Mw into the internal representation
of the computation table, and in particular copy the first symbol
of the input string w1 · · ·wi into the internal representation of the
computation table. In the example in Figure 2, the gates with index
(3, 15), (3, 16), (3, 17) would output 1, 0 and 1, respectively, since
the gate (0, 0) has value 1 which corresponds to the first symbol
of the input string w1. As stated before, in our reduction this value
is provided on-the-fly. The rest of the reduction follows standard
arguments. Each dashed box contains circuits T1, T2 and T3 which
compute the consecutive cell of the simulated computation table of
Mw, i.e., the values of the three gates representing this cell. The
dashed boxes on the left use different circuits U1,U2 and U3 since
they do not have a left neighbor. All unused gates can assumed to
be dummy gates, i.e. gates with constant value 1, as indicated in
Figure 2. It follows that Mw accepts (w1, . . . , wi) iff Cw evaluates
to true on the input provided, i.e., the value of the gate with the
highest index of Cw is equal to 1.

In order to encode Cw succinctly, it is clear that due to the regular
structure of Cw , the type and input gates to any gate can be computed
from a given index of a gate by a polynomial-time algorithm. The
circuit Dw can now be taken as the circuit corresponding to this
algorithm.

3. Completeness of the Σi+1-Fragment of
Presburger Arithmetic for ΣEXP

i

In this section, we show that PA(i+ 1) is ΣEXP
i -complete for every

fixed i > 0. We begin with the lower bound and first note that
it is not possible to adapt Berman’s hardness proof [3] in order
to get the desired result, since it relies on a trick by Fischer &
Rabin [11] in order to perform arithmetic operations on a bounded
interval over large numbers which linearly increases the number of
quantifier alternations. Instead, we will partly adapt concepts and
ideas introduced by Grädel in his hardness proof for PA(2) in [18]
and Gottlob, Leone & Veith in [16]. Roughly speaking, we aim
for “implementing” Lemma 1 via a PA(i+ 1) formula, which will
entail encoding bit strings of exponential size into natural numbers
and evaluating Boolean circuits in Presburger arithmetic on-the-
fly. The upper bound does not follow immediately and requires
combining solution intervals established by Weispfenning in [38]
with Proposition 4.

3.1 Lower Bounds
The goal of this section is to prove the following proposition.

Proposition 6. Let L ⊆ {0, 1}∗ be a language in ΣEXP
i , i > 0 and

w ∈ {0, 1}∗. There exists a polynomial-time computable PA(i+ 1)
formula ΦL,w such that w ∈ L iff ΦL,w is valid.

To this end, we employ the characterisation of ΣEXP
i in Lemma 1.

Let M be the deterministic polynomial-time Turing machine decid-

Figure 2. Illustration of the approach of how to succinctly encode a Boolean circuit encoding the computation table of a polynomial-time
Turing machine on an input of exponential size. Each square represents a gate, all gates not surrounded by boxes are assumed to be gates with
constant value 1.

ing R from Lemma 1, and let Mw be such a Turing machine decid-
ing R for a fixed input w ∈ {0, 1}n, which can be computed from
M in logarithmic space. The bit strings w1 to wi from Lemma 1
constituting the input to Mw are represented in our reduction via
natural numbers assigned to first-order variables x = (x1, . . . , xi).
The precise encoding of a wj via xj is discussed below. For now, it
is only important to mention that not every natural number encodes
a bit string. Let us focus on the high-level structure of ΦL,w:

ΦL,w
def
= ∃x1.∀x2 · · ·Qixi.

∧
1≤j≤i, j odd

Ψvalid,r(n)(xj)∧

∧
(∧

1≤j≤i, j even

Ψvalid,r(n)(xj)
)
→ ΨMw (x1, . . . , xi). (1)

Unsurprisingly, the alternation of quantifiers in Lemma 1 is reflected
by the alternation of quantifiers in (1), so Qi = ∃ if i is odd and
Qi = ∀ if i is even. The formula Ψvalid,r(n)(xi) is a Π1-formula,
and ΨMw (x1, . . . , xi) is a formula in the Boolean closure of Σ1 if
i is odd and a Σ1-formula if i is even. The first conjunct ensures
that the existentially quantified variables represent encodings of bit
strings and the second conjunct that, under the additional assumption
that the universally quantified variables encode valid bit strings as
well,Mw accepts the bit strings encoded in x1, . . . , xi. For the given
w ∈ {0, 1}n, those formulas are concrete instances of a family of
formulas, and r(n) is an index in this family for some polynomial
r(n) which dominates q(n) in Lemma 1 and is made more precise
at a later stage. Consequently, for a fixed i > 0, we have that ΦL,w

is a PA(i+ 1) formula.
In our reduction, we have to take extra care to prevent the

“accidental” introduction of quantifier alternations. In general when
providing formulas, we adapt Grädel’s approach in [18] and provide
neutral formulas, which are open polynomially equivalent Σ1- and
Π1-formulas. This ensures that, for instance, we do not have to
care about whether we could possibly introduce a new quantifier
alternation if a formula is used on the left-hand side of an implication.
When providing a neutral Σ1-formula Φ(x) = ∃y.ϕ(x,y), we will
denote by Φ̄(x) = ∀y.ϕ̄(x,y) its neutral equivalent Π1 counterpart.
For the sake of consistent naming, whenever Φ(x) occurs as a
subformula in some other formula, we implicitly assume that it is
appropriately replaced such that the resulting formula is either a Σ1-
or a Π1-formula, depending on the context. Likewise, if for instance
Φ(x) occurs as a negated subformula in a formula that is supposed
to be existentially quantified, we assume that this subformula is

implicitly replaced by ∃x.¬(ϕ̄(x,y)), and ¬(ϕ̄(x,y)) is treated
in the same way if it is not yet quantifier-free. In this way, we can
always make sure to result in Σ1- or Π1-formulas.

We now turn towards the details of our reduction and begin
with discussing the encoding of bit strings as natural numbers
we use subsequently. The encoding we use is due to Grädel [18].
In his NEXP lower bound for PA(2) he exploits a result due to
Ingham [6, 22] that for any sufficiently large3 i ∈ N there is at
least one prime in the interval [i3, (i + 1)3). Given a bit string
w = b1 · · · bn ∈ {0, 1}n, a natural number a ∈ N encodes w if for
all 1 ≤ i ≤ n and

for all primes p ∈ [i3, (i+ 1)3) : a ≡ bi mod p.

The existence of such an a is then guaranteed by the Chinese
remainder theorem. Given a fixed n > 0, we call a ∈ N a
valid encoding if for every 1 ≤ i ≤ n, either a ≡ 0 mod p or
a ≡ 1 mod p for all prime numbers p ∈ [i3, (i+ 1)3).

In order to enable the extraction of bits of bit strings encoded as
naturals, we show how to check for divisibility with a natural number
whose number of bits is fixed. Next, we show how to evaluate a
Boolean circuit in Presburger arithmetic. This serves two purposes:
first, it allows for deciding if a given number lies in an interval
[i3, (i+ 3)3) and for testing whether a given number is a prime due
to the AKS primality test [1]. Second, it allows for simulating Mw

discussed above on an input of exponential size using its succinct
encoding via a circuit as discussed in Section 2.5. Putting everything
together eventually yields the desired reduction.

We begin with a family of quantifier-free formulas Φbin,n(x, x)
such that given b ∈ {0, 1}n and b ∈ N, Φbin,n(b, b) holds if b is
the binary representation of b. Consequently, this formula implicitly
constraints b such that b ∈ [2n]:

Φbin,n(x, x)
def
=
∧

i∈[n]

(xi = 0 ∨ xi = 1) ∧ x =
∑
i∈[n]

2ixi. (2)

Next, we provide a family of neutral formulas Φmod,n(x, y) such
that for a, b with b ∈ [2n], Φmod,n(a, b) holds iff a ≡ 0 mod b.
Essentially, Φmod,n(x, y) realises a formula for bounded multiplica-
tion. In contrast to a formula with the same purpose given in [18], it

3 Cheng [6] provides explicit bounds on Ingham’s result [22] and shows that
this statement holds for all i ∈ N such that i > 2215

. As in [18], for brevity
we will use Ingham’s result as if it were true for all i > 0. It will be clear
that we could add Cheng’s offset to all numbers involved, causing a constant
blowup only.

is not recursively defined and of sizeO(n) as opposed toO(n logn)
when binary encoding of numbers is assumed. The latter fact will be
useful in Section 4. The underlying idea of the subsequent definitions
is that if the binary expansion of b is b =

∑
i∈[n] 2ibi and bk = a

for some k ≥ 0 then a can be written as a =
∑

i∈[n] 2iai with
ai = kbi:

Φdig,n(x,y, k)
def
=
∧

i∈[n]

(yi = 0→ xi = 0 ∧ yi = 1→ xi = k)

Φmod,n(x, y)
def
= ∃x.∃y.∃k.Φbin,n(y, y)∧

∧ Φdig,n(x,y, k) ∧ x =
∑
i∈[n]

2ixi (3)

Φ̄mod,n(x, y)
def
= ∀x.∀y.∀k.

(
Φbin,n(y, y)∧

∧ Φdig,n(x,y, k)
)
→ x =

∑
i∈[n]

2ixi.

We now turn towards evaluating Boolean circuits with suitable
formulas in Presburger arithmetic. The subsequent formulas for
evaluating a circuit C with n input and r gates in total are essentially
an adaption of a construction given by Gottlob, Leone & Veith
in [16]. It is easily checked that for a ∈ [2n], ΦC(a) holds iff
C(a) = 1. In ΦC , the input to C is encoded via a dimension n vector
of first-order variables x and the Boolean assignment to the gates via
a dimension r vector of first-order variables y, which are implicitly
assumed to range over {0, 1}. First, we provide a formula ensuring
that the structure of the gates of C is correctly encoded in y:

ΦC,gates(x,y)
def
=

∧
i∈[r]

yi = 1↔ (yj = 1 ∧ yk = 1) if f(i) = (&, j, k)
yi = 1↔ (yj = 1 ∨ yk = 1) if f(i) = (‖, j, k)
yi = 1↔ yj = 0 if f(i) = (∼, j, k)
yi = xi if f(i) = (↑, 0, 0)
yi = 1 if f(i) = (↓1, 0, 0).

(4)

Next, the formula ΦC(x) defined below now enables us to determine
whether C accepts a given input encoded into the first-order variable
x:

ΦC(x)
def
= ∃x.∃y.∃y.Φbin,n(x, x) ∧ Φbin,r(y, y)∧

∧ΦC,gates(x,y) ∧ yr = 1

(5)

Φ̄C(x)
def
= ∀x.∀y.∀y.

(
Φbin,n(x, x) ∧ Φbin,r(y, y)∧
∧ΦC,gates(x,y)

)
→ yr = 1.

(6)

We now show how a predicate determining whether a given
number a ∈ N is a prime number in the interval [b3, (b + 1)3)
for some b > 0 representable by n bits can be realised. It is easily
verified that any number in this interval can be represented by at most
m = 3(n+ 1) bits. Moreover as discussed above, both conditions
can be decided in polynomial time. Therefore we can construct in
logarithmic space a Boolean circuit Cprime,n withm+n input gates
implementing this predicate [28, Thm. 8.1] and define

Φprime,n(x, y)
def
= ∃x.∃y.∃z.Φbin,m(x, x) ∧ Φbin,n(y, y)∧

∧ z =
∑
i∈[m]

2ixi + 2m
∑
i∈[n]

2iyi ∧ ΦCprime,n(z) (7)

Φ̄prime,n(x, y)
def
= ∀x.∀y.∀z.

(
Φbin,m(x, x) ∧ Φbin,n(y, y)∧

∧ z =
∑
i∈[m]

2ixi + 2m
∑
i∈[n]

2iyi
)
→ ΦCprime,n(z). (8)

The first line of Φprime,n(x, y) converts x and y into their binary
representation. Next, the second line first concatenates these bit
representations via the additional variable z by appropriately shifting
the value of y by m bits, and finally z is passed to Cprime,n.
Consequently, we have that Φprime,n(a, b) holds iff a is prime and
a ∈ [b3, (b+ 1)3).

We are now in a position in which we can define a family of
Π1-formulas Ψvalid,n(x) used in (1) that allow for testing whether
some a ∈ N represents a valid respectively invalid encoding of
a bit string of length 2n. For valid encodings, we wish to make
sure that all primes in every relevant interval [b3, (b + 1)3) have
uniform residue classes in a for all 1 ≤ b ≤ 2n, i.e., for any two
primes p1, p2 ∈ [b3, (b + 1)3) we either have a ≡ 0 mod p1 and
a ≡ 0 mod p2, or a − 1 ≡ 0 mod p1 and a − 1 ≡ 0 mod p2. Let
m be as above,

Ψvalid,n(x)
def
= ∀y.∀p1.∀p2.

(
1 ≤ y ≤ 2n∧

∧ Φprime,n+1(p1, y) ∧ Φprime,n+1(p2, y)
)
→

→
(
(Φmod,m+3(x, p1) ∧ Φmod,m+3(x, p2))∨

∨ (Φmod,m+3(x− 1, p1) ∧ Φmod,m+3(x− 1, p2))
)
.

In order to complete our hardness proof for ΣEXP
i for a sub-

sequently fixed i > 0 via its characterisation in Lemma 1 and
ΦL,w in (1), we will now define the remaining Π1-formula
ΨMw (x1, . . . , xi) for a given w ∈ {0, 1}n. Let Cw be the Boolean
circuit succinctly encoded by a Boolean circuit Dw(t, y, z1, z2)
deciding Mw on an input of length 2q(n)i such that Cw consists of
2r(n) gates for some polynomial r : N → N. Recall that we can
view an assignment of truth values to the gates of the succinctly
encoded circuit Cw as a bit string, or sequence of bit strings, of
appropriate length. In the following let a = (a1, . . . , ai) ∈ Ni be a
valuation, for any 1 ≤ j < i each aj will be used to encode the val-
ues of the input gates with index 2q(n)(j−1) up to 2q(n)j−1 of Cw,
and ai will encode the values of the gates with index 2q(n)(i−1) up
to the gate with index 2r(n) − 1 of Cw. So in particular the internal
gates of Cw are encoded in ai.

In order to extract encodings of bit strings from natural num-
bers, as a first step we provide neutral formulas ΦCw,0(x, y) and
Φ̄Cw,0(x, y) which assume x to be a valid encoding. These formulas
enable us to test whether a bit of a bit string whose index is given
by y is encoded to be zero in x. Formally, for a valid encoding
a ∈ N and for b ∈ [2r(n)], we have ΦCw,0(a, b) iff there is a prime
p ∈ [(b+ 1)3, (b+ 2)3) and a ≡ 0 mod p, or a ≡ 0 mod p for all
primes p ∈ [(b+1)3, (b+2)3), respectively4. Let r′(x) = r(x)+1,
we define:

ΦCw,0(x, y)
def
= ∃p.Φprime,r′(n)(p, y + 1) ∧ Φmod,r′(n)(x, p)

Φ̄Cw,0(x, y)
def
= ∀p.Φprime,r′(n)(p, y + 1)→ Φmod,r′(n)(x, p).

The formulas ΦCw,1(x, y) and Φ̄Cw,1(x, y) testing whether the
bit with index y is set to 1 in the encoding x can be defined
analogously by negating ΦCw,0(x, y). The previously constructed
formulas now enable us to define formulas that allow for evaluating
the succinctly encoded Cw on an input that is provided on-the-
fly via a. Given an index b implicitly less than 2r(n) of a gate of
Cw, represented by the first-order variable y, and a vector of valid
encodings a = (a1, . . . , ai) represented by the first-order variables
x, the following formula ΦCw,>(x, y) checks whether the value of
the gate with index b is set to true under the valuation a according

4 In order to properly handle the case b = 0, we have to shift the interval we
use for the encoding by one from [b3, (b+ 1)3) to [(b+ 1)3, (b+ 2)3).

to the convention described before:

ΦCw,>(x, y)
def
=

∧
1≤j<i

((
2q(n)(j − 1) ≤ y < 2q(n)j →

→ ΦCw,1(xj , y)
)
∧
(
2q(n)(i− 1) ≤ y → ΦCw,1(xi, y)

))
.

A formula ΦCw,⊥(x, y) testing whether the value of a gate is set to
false can be defined analogously by negating ΦCw,>(x, y). Building
upon those formulas, we can now construct Boolean connectives
that allow for checking that the gates of Cw are consistently encoded.
Given a ∈ Ni as above, ΦCw,&(a, b, c1, c2) holds if the logical
and-connective holds for the truth values of the gates with index
b, c1 and c2 encoded via a:

ΦCw,&(x, y, z1, z2) =(
ΦCw,>(x, y)↔ ΦCw,>(x, z1) ∧ ΦCw,>(x, z2)

)
.

The remaining Boolean connectives found in Definition 1 can be
reflected via the additional formulas

ΦCw,‖(x, y, z1, z2), ΦCw,∼(x, y, z1, z2) and ΦCw,↓1(x, y, z1, z2)

which are defined analogously to ΦCw,&(x, y, z1, z2). These for-
mulas now enable us to define a Π1-analogue to ΦC,gates(x,y) in
(4) in order to check if the Boolean assignment of the succinctly
encoded circuit Cw is consistent:

ΨCw,gates(x) = ∀t.∀y.∀z1.∀z2.ΦDw (t, y, z1, z2)→

→
∧

t = 0→ ΦCw,&(x, y, z1, z2)
t = 1→ ΦCw,‖(x, y, z1, z2)
t = 2→ ΦCw,>(x, y)↔ ΦCw,⊥(x, z1)
t = 4→ ΦCw,>(x).

Here, ΦDw (t, y, z1, z2) is an instantiation of ΦC(x) defined in (5)
and (6) for the circuitDw . The use of ΦDw (t, y, z1, z2) is not totally
clean as ΦC(x) it is only open in x. However, this can easily be fixed
by concatenating t, y, z1 and z2 into a single first-order variable as
it was done in (7) and (8), and details have only been omitted for
the sake of readability. Also note that the values of t, y, z1 and z2

are then implicitly bounded through ΦDw (t, y, z1, z2).
Finally, we can define ΨMw (x1, . . . , xi), the last remaining

formula from (1), as follows

ΨMw (x1, . . . , xi)
def
={

ΨCw,gates(x) ∧ ΦCw,>(x, 2r(n) − 1) if i is odd
ΨCw,gates(x)→ ΦCw,>(x, 2r(n) − 1) if i is even

Inspecting the construction outlined in this section, it is not dif-
ficult to see that for a given w ∈ {0, 1}n the construction of
ΦLw (x1, . . . , xi) is tedious, but can be performed in polynomial
time with respect to n. We leave it as an open problem whether this
reduction can actually be performed in logarithmic space, though
there do not seem to be any major obstacles. Following the argumen-
tation of this section, we conclude that ΦL,w is the formula required
in Proposition 6.

3.2 Upper Bounds
We will now show that the previously obtained lower bounds
have corresponding upper bounds. Let us first recall an improved
version of a result by Reddy & Loveland [32] established by
Weispfenning [38, Thm. 2.2], which bounds the solution intervals
of Presburger formulas.

Proposition 7 (Weispfenning [38]). There exists a constant c > 0

such that for any PA(i,j) formula Φ and N = {0, . . . 2c|Φ|(3j)i

}, Φ
is valid iff Φ is valid when restricting the first-order variables of Φ
to be interpreted over elements from N .

Algorithm 1 Deciding ∃xi+1.ϕ(x1, . . . ,xi+1) for a given instanti-
ation a1, . . .ai ∈ Nj of x1, . . .xi.

1: ϕ(x1, . . . ,xi+1) :=DNF(ϕ(x1, . . . ,xi+1))
2: for all clauses ψ(x1, . . . ,xi+1) of ϕ do
3: for all literals t = p(x1, . . . ,xi+1) < b of ψ do
4: replace t in ψ with −p(x1, . . . ,xi+1) ≥ −b+ 1
5: end for
6: for all literals t = ¬(p(x1, . . . ,xi+1) < b) do
7: replace t in ψ(x1, . . . ,xi+1) with p(x1, . . . ,xi+1) ≥ b
8: end for
9: (S : Axi+1 ≥ c) := ψ[a1/x1, . . . ,ai/xi]

10: if JSK 6= ∅ then
11: return true
12: end if
13: end for
14: return false

Together with Lemma 1, this immediately gives that for any
fixed i > 0, validity in PA(i+ 1) is in ΣEXP

i+1 . We now show how to
decrease the number of oracle calls by one.

To this end, let Φ be a PA(i + 1,j) formula in prenex normal
form for a fixed i > 0 and some j, i.e.,

Φ = ∃x1.∀x2 · · ·Qi+1xi+1.ϕ(x1, . . . ,xi+1).

In order to decide validity of Φ, by application of Proposition 7, a
ΣEXP

i -algorithm can alternatingly guess valuations a1, . . .ai ∈ Nj

for the x1, . . .xi such that ‖ak‖ ≤ 2c|Φ|(3j)i+1

for all 1 ≤ k ≤ i
and some constant c > 0, and by additionally padding valuations
with leading zeros, we may assume that any number in every ak

is represented using 2poly(|Φ|) bits. Consequently, it remains to
show that validity of Qi+1xi+1.ϕ(a1/x1, . . . ,ai/xi,xi+1) can
be decided in polynomial time. This is, of course, not the case under
standard assumptions from complexity theory. However, the final
call to the ΣP

0 -oracle of a ΣEXP
i algorithm gets ϕ and all ak as input,

the latter being of exponential size in |Φ|. Informally speaking, this
provides us with sufficient additional time in order to decide validity
of

Qi+1xi+1.ϕ(a1/x1, . . . ,ai/xi,xi+1) (9)

in polynomial time with respect to the size of the input.
Algorithm 1, which takes ϕ and the ak as input, is a pseudo

algorithm deciding validity of a formula as in (9) for even i, i.e.,
Qi+1 = ∃. The case Qi+1 = ∀ can be derived symmetrically. Let
us discuss Algorithm 1 and analyse its running time. In Line 1, the
algorithm converts ϕ into disjunctive normal form. This step can
be performed in exponential time DTIME(2O(|Φ|)) and thus takes
polynomial time with respect to the input. Starting in Line 2, the
algorithm iterates over all clauses ψ of ϕ, and since there are at most
2O(|Φ|) clauses this iteration is performed at most a polynomial
number of times with respect to the size of the input. In each
iteration, in Lines 3–8 the algorithm transforms the disjuncts of
ψ into linear inequalities by eliminating negation. After Line 8,
ψ is a conjunction of linear inequalities and thus gives rise to an
equivalent system of linear Diophantine inequalities S in which
the first-order variables x1, . . .xi are instantiated by the a1, . . .ai.
Clearly, Lines 3–9 can be executed in polynomial time with respect
to the size of the input. Finally, in Line 10 feasibility of S is checked.
To this end, we invoke Proposition 4 from which it follows that
feasibility of each S can be decided in DTIME(2p(|Φ|)|S|) for some
polynomial p. This step is again polynomial with respect to the input
to the oracle call. If S is feasible the algorithm returns true in Line 11.
Otherwise, if no S is feasible for all disjuncts of ϕ, the algorithm
returns false in Line 14. Consequently, we have shown the following

proposition, which together with Proposition 6 completes the proof
of Theorem 1.

Proposition 8. For any fixed i > 0, PA(i+ 1) is decidable in ΣEXP
i .

3.3 Discussion
We conclude this part of the paper with a short discussion on the
relationship of our proof of the lower bound of PA(i+ 1) to the proof
of a NEXP lower bound for PA(2) by Grädel [18], and applications
of and results derivable from Proposition 8.

As it emerged in Section 3.1, at many places we can apply
and reuse ideas of Grädel’s NEXP-hardness proof for PA(2) given
in [18] for our lower bound. One main difference is that for his hard-
ness proof, Grädel reduces from a NEXP-complete tiling problem
that he specifically introduces in order to show hardness for PA(2).
In our paper, we are in the lucky position of having access to twenty-
five additional years of developments in computational complexity,
in which it turned out that succinct encodings via Boolean circuits
provide a canonical way in order to show hardness results for com-
plexity classes that include EXP, see e.g. [16, 28, 29]. Moreover, the
discovery of a polynomial-time algorithm for deciding primality [1]
also enables us to use Boolean circuits encoded into Σ1- respectively
Πi-formulas in order to decide primality of a positive integer of a
bounded bit size, while in [18] this is achieved by an application of
the Lucas primality criterion, cf. Lehmer’s more general proof [24].
In addition, Grädel’s stronger statement that PA(2) is NEXP-hard
already for an ∃∀∗-quantifier prefix can be recovered from our lower
bound. Even more generally for i > 1, we can derive ΣEXP

i -hardness
from our construction for a (∃∀)((i−1)/2)∃∗∀∗ quantifier prefix if
i is odd, and for a ∃(∀∃)(i/2−1)∀∗∃∗ quantifier prefix if i is even.
Even though essentially all technical results required to prove Theo-
rem 1 were available when [18] was published, as we have seen in
this section the proof of the lower bound requires some substantial
technical efforts, which is probably a reason why this result has not
been obtained earlier.

With regards to applications of Proposition 8, we give an example
of a result which can be obtained as a corollary of this proposition.
In [21], Huynh investigates the complexity of the inclusion prob-
lem for context-free commutative grammars. Given context-free
grammars G1, G2, this problem is to determine whether the Parikh
image5 of the language defined by G1 is included in the Parikh im-
age of the language defined by G2. Building upon a careful analysis
of the semi-linear sets obtained from Parikh images of context-free
grammars due to Ginsburg [14] and by establishing a Carathéodory-
type theorem for integer cones, Huynh shows that the complement
of this problem is in NEXP. This result can however now easily be
obtained as a corollary of Proposition 8: Verma et al. have shown
that the Parikh image of a context-free grammar can be defined in
terms of a Σ1-formula of Presburger arithmetic linear in the size of
the grammar [37]. Non-inclusion then reduces to checking validity
of a Σ2-sentence, which yields the following corollary.

Corollary 1. Non-inclusion between Parikh images of context-free
grammars is in NEXP.

Of course, the “hard work” of the upper bound is done in
Proposition 4, but nevertheless we are able to obtain a succinct proof
of Huynh’s result. In general, the NEXP upper bound for PA(2)
provides a generic upper bound for non-inclusion problems that can
be reduced to checking inclusion between semi-linear sets definable
via PA(1) formulas. For context-free commutative grammars, it
should however be noted that it is not known whether this upper
bound is tight, the best known lower bound being ΣP

2 [21].

5 The Parikh image of a word w ∈ Σ∗ is a vector of naturals of dimension
|Σ| counting the number of times each alphabet symbol occurs in w.

4. Ultimately-Periodic Sets Definable in the
Σ1-fragment of Presburger Arithmetic

We will now apply some techniques developed in Section 3 in order
to prove Theorem 2, i.e., give bounds on the representation of projec-
tions of PA(1) formulas open in one variable as ultimately-periodic
sets. Formally, given a PA(1) formula Φ(x), we are interested in the
representation of the set

JΦ(x)K = {a ∈ N : Φ(a/x) is valid}.

Subsequently, we show that this set is an ultimately periodic set
whose period is at most doubly-exponential and that this bound
is tight. Throughout this section we assume binary encoding of
numbers in Φ(x)

We begin with the first part of Theorem 2 and prove the following
proposition.

Proposition 9. There exists a family of Σ1-formulas of Presburger
arithmetic (Φn(x))n>0 such that each Φn(x) is a PA(1,O(n))
formula with |Φn(x)| ∈ O(n2) and JΦn(x)K is an ultimately
periodic set with period pn ∈ 22Ω(n)

.

To this end, we combine Φmod,n(x, y) from (3) in Section 3.1
with the following statement.

Proposition 10 (Nair [27]). Let n ≥ 9, then 2n ≤ lcm{1, . . . n} ≤
22n.

We define

Φn(x)
def
= ∃y.Φmod,n(x, y) ∧ y > 1.

We have |Φn(x)| ∈ O(n2), and, since numbers are encoded in
binary, that Φn(x) is a PA(1,O(n)) formula. Now a ∈ JΦ(x)K iff
there is 1 < m < 2n such that a ≡ 0 mod m, and consequently

JΦn(x)K =
⋃

1<m<2n

U(0,m, ∅, {0})

= U(0, p, ∅, {a : a ∈ [p],m|a, 1 < m < 2n}),

where p def
= lcm{1, . . . 2n − 1}. By Proposition 10, p ∈ 22Ω(n)

,
which yields the lower bound for Theorem 2.

Turning now towards the upper bound, the remainder of this
section is devoted to proving the second part of Theorem 2, i.e., the
following statement.

Proposition 11. For any Σ1-formula Φ(x), we have JΦ(x)K =

U(t, p, B,R) such that t ∈ 2poly(|Φ(x)|) and p ∈ 22poly(|Φ(x)|)
.

As a first step, we consider projections of sets of solutions
of systems of linear Diophantine inequalities. To this end, let
S : Ax ≥ c be such a system. From Proposition 5, we have
that JSK =

⋃
i∈I L(bi;Pi) for some index set I . Let Mi be the

projection of L(bi;Pi) on the first component. We get that Mi can
be obtained as

Mi = {bi + λi,1p1 + · · ·λrpi,ri : λk ∈ N}
= bi + gi · {λ1pi,1/gi + · · ·λrpi,ri/gi : λk ∈ N}

for some bi, pi,1 < · · · < pi,ri and gi = gcd{pi,1, . . . pi,ri}. Since
gcd{pi,1/gi, . . . pi,ri/gi} = 1, it is folklore that

Mi = bi + gi · U(t′i + 1, 1, B′i, {0})

for some B′i ⊆ [t′i] and t′i ∈ N known as the Frobenius number
of pi,1/gi, . . . pi,ri/gi. Given co-prime positive integers 1 < a1 <
a2 < · · · < ak ∈ N, the Frobenius number f ∈ N is the largest
positive integer not expressible as a positive linear combination of
a1, . . . ak and can be bounded as follows.

Proposition 12 (Wilf [39]). Let 1 < a1 < a2 < · · · < ak ∈ N
be pairwise co-prime. Then the Frobenius number f is bounded by
f ≤ a2

k.

Hence, for some ti ≤ bi + gi(pi,ri/gi)
2 ≤ bi + p2

i,ri we
consequently have

Mi = U(ti, pi, Bi, {0}) (10)

for some pi ≤ pi,ri .
Let Φ(x) = ∃x.ϕ(x,x) be a PA(1) formula. From Algorithm 1

we can derive that

Jϕ(x,x)K =
⋃
j∈J

JSjK =
⋃
i∈I

L(bi;Pi),

where each Sj : Aj(x,x) ≥ cj is a system of linear Diophan-
tine inequalities obtained from one disjunct of the disjunctive
normal form of ϕ, similar as in Line 9 of Algorithm 1. Clearly,
‖Aj‖, ‖cj‖ ≤ ‖Φ(x)‖+ 1 for all i ∈ I . Moreover, from Proposi-
tion 5 we derive that JSjK =

⋃
i∈Ij L(bi;Pi) for some index set

Ij such that for every i ∈ Ij
‖bi‖, ‖Pi‖ ≤ (|Φ(x)|‖Ai‖+ ‖ci‖+ 1)O(|Φ(x)|) ∈ 2poly(|Φ(x)|).

LetMi be as above, from (10) we haveMi = U(ti, pi, Bi, {0}).
Now define p def

= lcm{pi}i∈I , combining the estimations in (10)
with Proposition 10 we have p ∈ 22poly(|Φ(x)|)

. It follows that
JΦ(x)K = U(t, p, B,R) for some t ∈ 2poly(|Φ(x)|) and p ∈
22poly(|Φ(x)|)

as above, which concludes the proof of Theorem 2.

5. Conclusion
In the first part of this paper we have shown that Presburger
arithmetic with a fixed number of i + 1 quantifier alternations
and an arbitrary number of variables in each quantifier block is
complete for ΣEXP

i for every i > 0. This result closes a gap that
has been left open in the literature, and in particular improves and
generalises results obtained by Fürer [13], Grädel [18] and Reddy &
Loveland [32]. Moreover, it provides an interesting natural problem
which is complete for the weak EXP hierarchy, a complexity class
for which not that many natural complete problems have been known
so far.

In the second part, we established bounds on ultimately periodic
sets definable in the Σ1-fragment of Presburger arithmetic and
showed that in particular the period of those sets is at most doubly-
exponential and that this bound is tight. As already discussed in
the introduction, there are however natural ultimately periodic sets
definable in this fragment that admit periods that are at most singly-
exponential, cf. [15]. An interesting open question is whether it
is possible to identify a fragment of Σ1-Presburger arithmetic for
which such a singly-exponential upper bound can be established in
general and that captures sets such as those considered in [15].

Acknowledgments
The author would like to thank the anonymous referees for their
thoughtful comments on the first version of this paper. In addition,
the author is grateful to Benedikt Bollig, Stefan Göller, Felix
Klaedtke, Sylvain Schmitz and Helmut Veith for encouraging
discussions and helpful suggestions.

References
[1] Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. PRIMES is in P.

Annals of Mathematics, 2:781–793, 2002.
[2] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern

Approach. Cambridge University Press, New York, NY, USA, 1st
edition, 2009.

[3] Leonard Berman. The complexity of logical theories. Theoretical
Computer Science, 11(1):71–77, 1980.

[4] Alexis Bès. A survey of arithmetical definability. In A tribute to
Maurice Boffa, pages 1–54. Société Mathématique de Belgique, 2002.

[5] Itshak Borosh and Leon B. Treybing. Bounds on positive integral
solutions of linear Diophantine equations. Proceedings oft the American
Mathematical Society, 55:299–304, 1976.

[6] Yuan-You Fu-Rui Cheng. Explicit estimate on primes between consec-
utive cubes. Rocky Mountain Journal of Mathematics, 40(1):117–153,
2010.

[7] Kevin J. Compton and C. Ward Henson. A uniform method for proving
lower bounds on the computational complexity of logical theories.
Annals of Pure and Applied Logic, 48(1):1 – 79, 1990.

[8] D.C. Cooper. Theorem proving in arithmetic without multiplication.
Machine Intelligence, 7:91–99, 1972.

[9] Antoine Durand-Gasselin and Peter Habermehl. Ehrenfeucht-Fraı̈ssé
goes elementarily automatic for structures of bounded degree. In
Christoph Dürr and Thomas Wilke, editors, 29th International Sym-
posium on Theoretical Aspects of Computer Science, volume 14 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 242–
253, Dagstuhl, Germany, 2012. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik.

[10] Jeanne Ferrante and Charles Rackoff. A decision procedure for the first
order theory of real addition with order. SIAM Journal on Computing,
4(1):69–76, 1975.

[11] Michael J. Fischer and Michael O. Rabin. Super-exponential complex-
ity of Presburger arithmetic. In Bob F. Caviness and Jeremy R. Johnson,
editors, Quantifier Elimination and Cylindrical Algebraic Decomposi-
tion, Texts and Monographs in Symbolic Computation, pages 122–135.
Springer Vienna, 1998.

[12] András Frank and Éva Tardos. An application of simultaneous dio-
phantine approximation in combinatorial optimization. Combinatorica,
7(1):49–65, 1987.

[13] Martin Fürer. The complexity of Presburger arithmetic with bounded
quantifier alternation depth. Theoretical Computer Science, 18(1):105–
111, 1982.

[14] Seymour Ginsburg. The mathematical theory of context free languages.
McGraw-Hill, 1966.

[15] Stefan Göller, Christoph Haase, Joël Ouaknine, and James Worrell.
Branching-time model checking of parametric one-counter automata.
In Lars Birkedal, editor, Foundations of Software Science and Computa-
tional Structures, volume 7213 of Lecture Notes in Computer Science,
pages 406–420. Springer, 2012.

[16] Georg Gottlob, Nicola Leone, and Helmut Veith. Second order
logic and the weak exponential hierarchies. In Jiřı́ Wiedermann and
Petr Hájek, editors, Mathematical Foundations of Computer Science,
volume 969 of Lecture Notes in Computer Science, pages 66–81.
Springer, 1995.

[17] Erich Grädel. Subclasses of Presburger arithmetic and the polynomial-
time hierarchy. Theoretical Computer Science, 56(3):289–301, 1988.

[18] Erich Grädel. Dominoes and the complexity of subclasses of logical
theories. Annals of Pure and Applied Logic, 43(1):1–30, 1989.

[19] Lane A. Hemachandra. The strong exponential hierarchy collapses.
Journal of Computer and System Sciences, 39(3):299–322, 1989.

[20] Dung T. Huynh. Deciding the inequivalence of context-free grammars
with 1-letter terminal alphabet is ΣP

2-complete. Theoretical Computer
Science, 33(23):305–326, 1984.

[21] Dung T. Huynh. The complexity of equivalence problems for commu-
tative grammars. Information and Control, 66(12):103–121, 1985.

[22] Albert E. Ingham. On the estimation of N(σ, T). The Quarterly
Journal of Mathematics, os-11(1):201–202, 1940.

[23] Felix Klaedtke. Bounds on the automata size for Presburger arithmetic.
ACM Transactions on Computational Logic, 9(2):11:1–11:34, 2008.

[24] Derrick H. Lehmer. Tests for primality by the converse of Fermat’s
theorem. Bulletin of the American Mathematical Society, 33(3):327–
340, 1927.

[25] Leonard M. Lipshitz. The Diophantine problem for addition and
divisibility. Transactions of the American Mathematical Society,
235:271–283, 1978.

[26] Leonard M. Lipshitz. Some remarks on the Diophantine problem for
addition and divisibility. In Proceedings of the Model Theory Meeting,
volume 33, pages 41–52, 1981.

[27] Mohan Nair. On Chebyshev-type inequalities for primes. The American
Mathematical Monthly, 89(2):126–129, 1982.

[28] Christos H. Papadimitriou. Computational Complexity. Addison-
Wesley, 1994.

[29] Christos H. Papadimitriou and Mihalis Yannakakis. A note on succinct
representations of graphs. Information and Control, 71(3):181–185,
1986.

[30] Loı̈c Pottier. Minimal solutions of linear Diophantine systems : bounds
and algorithms. In Ronald V. Book, editor, Rewriting Techniques and
Applications, volume 488 of Lecture Notes in Computer Science, pages
162–173. Springer, 1991.

[31] Mojżesz Presburger. Über die Vollständigkeit eines gewissen Systems
der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Op-
eration hervortritt. In Comptes Rendus du I congres de Mathematiciens
des Pays Slaves, pages 92–101. 1929.

[32] C. R. Reddy and Donald W. Loveland. Presburger arithmetic with
bounded quantifier alternation. In Proceedings of the 10th annual ACM
Symposium on Theory of Computing, pages 320–325, New York, NY,
USA, 1978. ACM.

[33] Bruno Scarpellini. Complexity of subcases of Presburger arithmetic.
Transactions of the American Mathematical Society, 284:203–218,
1984.

[34] Uwe Schöning. Complexity of Presburger arithmetic with fixed
quantifier dimension. Theory of Computing Systems, 30(4):423–428,
1997.

[35] Helmut Seidl, Thomas Schwentick, Anca Muscholl, and Peter Haber-
mehl. Counting in trees for free. In Josep Dı́az, Juhani Karhumäki,
Arto Lepistö, and Donald Sannella, editors, Automata, Languages and
Programming, volume 3142 of Lecture Notes in Computer Science,
pages 1136–1149. Springer, 2004.

[36] Larry J. Stockmeyer. The polynomial-time hierarchy. Theoretical
Computer Science, 3(1):1–22, 1976.

[37] Kumar N. Verma, Helmut Seidl, and Thomas Schwentick. On the
complexity of equational Horn clauses. In Robert Nieuwenhuis, editor,
Automated Deduction – CADE-20, volume 3632 of Lecture Notes in
Computer Science, pages 337–352. Springer, 2005.

[38] Volker Weispfenning. The complexity of almost linear Diophantine
problems. Journal of Symbolic Computation, 10(5):395–403, 1990.

[39] Herbert S. Wilf. A circle-of-lights algorithm for the ”money-changing
problem”. The American Mathematical Monthly, 85(7):562–565, 1978.

[40] Pierre Wolper and Bernard Boigelot. An automata-theoretic approach
to Presburger arithmetic constraints. In Alan Mycroft, editor, Static
Analysis, volume 983 of Lecture Notes in Computer Science, pages
21–32. Springer, 1995.

A. Missing proofs
In the following, let B = {0, 1}. Let us recall the following
characterisation of the polynomial-time hierarchy.

Lemma 2 (Def. 5.3 and Thm. 5.12 in [2]). For i > 0, a language
L ⊆ B∗ is in ΣP

i iff there exists a polynomial r and a deterministic
polynomial-time computable predicate S ⊆ (B∗)i+1 such that
w ∈ L iff
∃w1 ∈ Br(n).∀w2 ∈ Br(n) · · ·Qiwi ∈ Br(n).S(w,w1, . . . , wi).

Lemma 3 (Lem. 1 in the main text). For any i > 0, a language
L ⊆ {0, 1}∗ is in ΣEXP

i iff there exists a polynomial q and a
predicate R ⊆ ({0, 1}∗)i+1 such that for any w ∈ {0, 1}n,

w ∈ L iff ∃w1 ∈ {0, 1}2
q(n)

.∀w2 ∈ {0, 1}2
q(n)
· · ·

· · ·Qiwi ∈ {0, 1}2
q(n)

.R(w,w1, . . . , wi)

and R(w,w1, . . . , wi) can be decided in deterministic polynomial
time.

Proof. (“⇐”) We describe a NEXPΣP
i−1 Turing machine M decid-

ing for a given w ∈ Bn whether w ∈ L. First,M performs a NEXP

guess in order to guess w1 ∈ B2q(n)

. Define L′ ⊆ Bn × B2q(n)

such that (w,w1) ∈ L′ iff

∃w2 ∈ B2q(n)
· · ·Q′iwi ∈ B2q(n)

.¬R(w,w1, . . . , wi),

where Q′i = ∃ if Qi = ∀ and vice versa. By Lemma 2, we have
that L′ is a language in ΣP

i since we can check if the input is
sufficiently large and immediately reject if this is not the case,
choose r : w 7→ |w| − n, and decide ¬R(w,w1, . . . , wi) in
deterministic polynomial time. Thus, after M has guessed w1, it
invokes the ΣP

i−1 oracle to check (w,w1) ∈ L′ and accepts if
(w,w1) 6∈ L′.

(“⇒”) Let L be decided by a NEXPΣP
i−1 Turing machine M .

Given w ∈ Bn, an accepting run of M has length at most 2nk

for some k > 0 on which it resolves c1, . . . , cm ∈ B,m ≤ 2nk

non-deterministic choices. Moreover, M makes ` oracle queries
“vj ∈ L′?” for some L′ in ΣP

i−1 such that nj = |vj |, ` ≤ 2nk

, and
M receives answers aj ∈ B to those queries. By Lemma 2, we have
vj ∈ L′ iff

∃w2,j ∈ {0, 1}r(nj) · · ·Qiwi,j ∈ {0, 1}r(nj).S(vj , w2,j , . . . , wi,j).

If M receives aj = 1 as an answer to an oracle call it can guess the
corresponding certificate w2,j ∈ Br(nj). Otherwise, if aj = 0 this
result can be verified using one quantifier alternation. Consequently,
we can guess the answers to the oracle queries and then verify at
once whether those guesses were correct. Hence, w ∈ L iff

∃c1, . . . cm ∈ B, v1, . . . v` ∈ B2nk

, a1, . . . a` ∈ B,

w2,1, . . . w2,` ∈ Br(2nk
).∀w2 ∈ B2q(n)

· · ·Qiwi ∈ B2q(n)
.

R((w · c1 · · · cm · v1 · · · v` · a1 · · · a` · w2,1 · · ·w2,`), w2, . . . , wi)

for some appropriately chosen polynomial q and appropriately
constructed R ⊆ (B∗)i+1 combining S with checking that the
ci resolve the non-determinism of M correctly and that the guessed
answers to the oracle calls are correct.

