
Tightening the Complexity of Equivalence
Problems for Commutative Grammars∗

Christoph Haase and Piotr Hofman

Laboratoire Spécification et Vérification (LSV), CNRS & ENS Cachan
Université Paris-Saclay, France
{haase,hofman}@lsv.ens-cachan.fr

Abstract
Given two finite-state automata, are the Parikh images of the languages they generate equiva-
lent? This problem was shown decidable in coNEXP by Huynh in 1985 within the more general
setting of context-free commutative grammars. Huynh conjectured that a ΠP

2 upper bound might
be possible, and Kopczyński and To established in 2010 such an upper bound when the size of
the alphabet is fixed. The contribution of this paper is to show that the language equivalence
problem for regular and context-free commutative grammars is actually coNEXP-complete. In
addition, our lower bound immediately yields further coNEXP-completeness results for equiv-
alence problems for regular commutative expressions, reversal-bounded counter automata and
communication-free Petri nets. Finally, we improve both lower and upper bounds for language
equivalence for exponent-sensitive commutative grammars.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases language equivalence, commutative grammars, Presburger arithmetic,
semi-linear sets, Petri nets

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Language equivalence is one of the most fundamental decision problems in formal language
theory. Classical results include PSPACE-completeness of deciding language equivalence for
regular languages generated by non-deterministic finite-state automata (NFA) [4, p. 265],
and the undecidability of language equivalence for languages generated by context-free gram-
mars [12, p. 318].

Equivalence problems for formal languages which are undecidable over the free monoid
may become decidable in the commutative setting. The problem then is to decide whether
the Parikh images of two languages coincide. Given a word w over an alphabet Σ consisting of
m alphabet symbols, the Parikh image of w is a vector in Nm counting in its i-th component
how often the i-th alphabet symbol occurs in w. This definition can then be lifted to
languages, and the Parikh image of a language consequently becomes a subset of Nm, or,
equivalently, a subset of Σ�, the free commutative monoid generated by Σ. Parikh’s theorem
states that Parikh images of context-free languages are semi-linear sets. Since the latter
are closed under all Boolean operations [5], deciding equivalence between Parikh images of
context-free languages is decidable.

When dealing with Parikh images of formal languages, it is technically more convenient
to directly work with commutative grammars, which were introduced by Huynh in his sem-

∗ Supported by Labex Digicosme, Univ. Paris-Saclay, project VERICONISS.

© Christoph Haase and Piotr Hofman;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Tightening the Complexity of Equivalence Problems for Commutative Grammars

inal paper [13] and are “generating devices for commutative languages [that] use [the] free
commutative monoid instead of [the] free monoid.” In [13], Huynh studied the uniform word
problem for various classes of commutative grammars; the complexity of equivalence prob-
lems for commutative grammars was subsequently investigated in a follow-up paper [14].
One of the main results in [14] is that the equivalence problem for regular and context-free
commutative grammars is ΠP

2 -hard and in coNEXP. Huynh remarks that a better upper
bound might be possible and states as an open problem the question whether the equiv-
alence problem for context-free commutative grammars is ΠP

2 -complete [14, p. 117]. Some
progress towards answering this question was made by Kopczyński and To, who showed that
inclusion and a fortiori equivalence for regular and context-free commutative grammars are
coNP-complete respectively ΠP

2 -complete when the size of the alphabet is fixed [18, 17].
One of the main contributions of this paper is to answer Huynh’s question negatively: we
show that already for regular commutative grammars the equivalence problem is coNEXP-
complete.

Our coNEXP lower bound is established by showing how to reduce validity in the coNEXP-
complete Π2-fragment of Presburger arithmetic [7, 8] (i.e. its ∀∗∃∗-fragment) to language
inclusion for regular commutative grammars. A reduction from this fragment of Presburger
arithmetic has recently been used in [9] in order to show coNEXP-completeness of inclusion
for integer vector addition systems with states (Z-VASS), and this reduction is our starting
point. Similarly to the standard definition of vector addition systems with states, Z-VASS
comprise a finite-state controller with a finite number of counters which, however, range
over the integers. Consequently, counters can be incremented and decremented, may drop
below zero, and the order in which transitions in Z-VASS are taken may commute along a
run—those properties are crucial to the hardness proof in [9]. The corresponding situation
is different and technically challenging for regular commutative grammars. In particular,
alphabet symbols can only be produced but not deleted, and, informally speaking, we cannot
produce negative quantities of alphabet symbols.

A further contribution of our paper is to establish a new upper bound for the equiva-
lence problem for exponent-sensitive commutative grammars, a generalisation of context-free
commutative grammars where the left-hand sides of productions may contain an arbitrary
number of some non-terminal symbol. Exponent-sensitive commutative grammars were re-
cently introduced by Mayr and Weihmann in [21], who showed PSPACE-completeness of
the word problem and membership in 2-EXPSPACE of the equivalence problem. Our hard-
ness result implies that the equivalence problem is coNEXP-hard, and we also improve the
2-EXPSPACE-upper bound to co-2NEXP.

Finally, commutative grammars are closely related to Petri nets, cf. [13, 3, 27, 23].
We also discuss implications of our results to equivalence problems for various classes of
Petri nets as well as regular commutative expressions [2] and reversal-bounded counter
automata [16].

We only sketch some of the proofs in the main part of this paper. Full proofs can be
found in the appendix.

2 Preliminaries

2.1 Commutative Grammars.
Let Σ = {a1, . . . , am} be a finite alphabet. The free monoid generated by Σ is denoted by Σ∗,
and we denote by Σ� the free commutative monoid generated by Σ. We interchangeably
use different equivalent ways in order to represent a word w ∈ Σ�. For 1 ≤ j ≤ m, let

C. Haase and P. Hofman 3

ij be the number of times aj occurs in w, we equivalently write w as w = ai11 a
i2
2 · · · aimm ,

w = (i1, i2, . . . , im) ∈ Nm or w : Σ → N with w(aj) = ij , whatever is most convenient.
By |w| =

∑
1≤j≤m ij we denote the length of w, and the representation size #w of w

is
∑

1≤j≤mdlog ije. Given v, w ∈ Σ�, we sometimes write v + w in order to denote the
concatenation v ·w of v and w. The empty word is denoted by ε, and as usual Σ+ def= Σ∗ \{ε}
is the free semi-group and Σ⊕ def= Σ� \ {ε} the free commutative semi-group generated by
Σ. For Γ ⊆ Σ, πΓ(w) denotes the projection of w onto alphabet symbols from Γ.

A commutative grammar (sometimes just grammar subsequently) is a tupleG = (N,Σ, S, P),
where

N is the finite set of non-terminal symbols;
Σ is a finite alphabet, the set of terminal symbols, such that N ∩ Σ = ∅;
S ∈ N is the axiom; and
P ⊆ N⊕ × (N ∪ Σ)� is a finite set of productions.

The size of G, denoted by #G, is defined as

#G def= |N |+ |Σ|+
∑

(V,W)∈P

|V |+ |W |.

Note that commutative words in G are encoded in unary. Unless stated otherwise, we use
this definition of the size of a commutative grammar in this paper.

Subsequently, we write V → W whenever (V,W) ∈ P . Let D,E ∈ (N ∪ Σ)�, we say D
directly generates E, written D ⇒G E, iff there are F ∈ (N ∪ Σ)� and V → W ∈ P such
that D = V +F and E = F +W . We write ⇒∗G to denote the reflexive transitive closure of
⇒G, and if U ⇒∗G V we say that U generates V . If G is clear from the context, we omit the
subscript G. For U ∈ N⊕, the reachability set R(G,U) and the language L(G,U) generated
by G starting at U are defined as

R(G,U) def= {W ∈ (N ∪ Σ)� : U ⇒∗ W} L(G,U) def= R(G,U) ∩ Σ�.

The reachability set R(G) and the language L(G) of G are then defined as R(G) def= R(G,S)
and L(G) def= L(G,S). The word problem is, given a commutative grammar G and w ∈ Σ�,
is w ∈ L(G)? The main focus of our paper is on the complexity of deciding language
inclusion and equivalence for commutative grammars: Given commutative grammars G,H,
language inclusion is to decide L(G) ⊆ L(H), and language equivalence is to decide L(G) =
L(H). Since our grammars admit non-determinism, language inclusion and equivalence are
logarithmic-space inter-reducible.

By imposing restrictions on the set of productions, we obtain various classes of commu-
tative grammars. Following [13, 21], given G = (N,Σ, S, P), we say that G is

of type-0 if there are no restrictions on P ;
context-sensitive if |W | ≥ |V | for each V →W ∈ P ;
exponent-sensitive if V ∈ {{U}⊕ : U ∈ N} for each V →W ∈ P ;
context-free if V ∈ N for each V →W ∈ P ;
regular if V ∈ N and W ∈ (N ∪ {ε}) · Σ� for each V →W ∈ P .

Equivalence problems for commutative grammars were studied by Huynh, who showed that
it is undecidable for context-sensitive and hence type-0 grammars, and ΠP

2 -hard and in
coNEXP for regular and context-free commutative grammars [14]. The main contribution of
this paper is to prove the following theorem.

I Theorem 1. The language equivalence problem for regular and context-free commutative
grammars problem is coNEXP-complete.

4 Tightening the Complexity of Equivalence Problems for Commutative Grammars

Exponent-sensitive grammars were only recently introduced by Mayr andWeihmann [21].
They showed that the word problem is PSPACE-hard, and that language equivalence is
PSPACE-hard and in 2-EXPSPACE. The lower bounds require commutative words on the
left-hand sides of productions to be encoded in binary. The second main contribution of our
paper is to improve those results as follows.

I Theorem 2. The language equivalence problem for exponent-sensitive commutative gram-
mars is coNEXP-hard and in co-2NEXP.

2.2 Presburger Arithmetic, Linear Diophantine Inequalities and
Semi-Linear Sets.

Let u = (u1, . . . , um), v = (v1, . . . , vm) ∈ Zm, the sum of u and v is defined component-
wise, i.e., u + v = (u1 + v1, . . . , um + vm). Given u ∈ Z, û denotes the vector consisting
of u in every component and any appropriate dimension. Let 1 ≤ i ≤ j ≤ m, we define
π[i,j](u) def= (ui, . . . , uj). By ‖u‖∞ we denote the maximum norm of u, i.e., ‖u‖∞

def=
max{|ui| : 1 ≤ i ≤ n}. Let M,N ⊆ Zm and k ∈ Z, as usual M +N is defined as {m + n :
m ∈M, n ∈ N} and k ·M def= {k ·m : m ∈M}. Moreover, ‖M‖∞

def= max{‖z‖∞ : z ∈M}.
The size #u of u is #u

def=
∑

1≤i≤mdlog|ui|e, i.e., numbers are encoded in binary, and the
size of M is #M def=

∑
u∈M #u. For an m × n matrix A consisting of elements aij ∈ Z,

‖A‖1,∞
def= max{

∑
1≤j≤n|aij | : 1 ≤ i ≤ m}.

Presburger arithmetic is the is the first-order theory of the structure 〈N, 0, 1,+,≥〉. In
this paper, atomic formulas of Presburger arithmetic are linear Diophantine inequalities of
the form∑

1≤i≤n
ai · xi ≥ zi,

where ai, zi ∈ Z and the xi are first-order variables. Formulas of Presburger arithmetic can
then be obtained in the usual way via positive Boolean combinations of atomic formulas
and existential and universal quantification over first-order variables, i.e., according to the
following grammar:

φ ::= ∀x.φ | ∃x.φ | φ ∧ φ | φ ∨ φ | t

Here, the x range over tuples of first-order variables, and t ranges over linear Diophantine
inequalities as above. We assume that formulas of Presburger arithmetic are represented as
a syntax tree, with no sharing of sub-formulas.

Given a formula φ of Presburger arithmetic with no free variables, validity is to decide
whether φ holds with respect to the standard interpretation in arithmetic. By ‖φ‖∞ we
denote the largest constant occurring in φ, and |φ| is the length of φ, i.e., the number of
symbols required to write down φ, where constants are represented in unary. In analogy
to matrices, we define ‖φ‖1,∞

def= ‖φ‖∞ · |φ|. Let ψ(x) be a quantifier-free formula open
in x = (x1, . . . , xm) and x∗ = (x∗1, . . . , x∗m) ∈ Nm, we denote by ψ[x∗/x] the formula
obtained from ψ by replacing every xi in ψ by x∗i . Finally, given a quantifier-free Pres-
burger formula ψ containing linear Diophantine inequalities t1, . . . , tk and b1, . . . , bk ∈ {0, 1},
ψ[b1/t1, . . . , bk/tk] denotes the Boolean formula obtained from ψ by replacing every ti with
bi.

In this paper, we are in particular interested in the Π2-fragment of Presburger arithmetic,
i.e. the fragment in which formulas are restricted to a form φ = ∀x.∃y.ψ(x,y) where ψ(x,y)
is quantifier free, for which the following is known.

C. Haase and P. Hofman 5

I Proposition 3 ([7, 8]). Validity in the Π2-fragment of Presburger arithmetic is coNEXP-
complete (with hardness under polynomial-time many-one reductions).

The sets of natural numbers definable in Presburger arithmetic are semi-linear sets [6].
Let b ∈ Nm and P = {p1, . . . ,pn} be a finite subset of Nm, define

cone(P) def= {λ1 · p1 + · · ·+ λn · pn : λi ∈ N, 1 ≤ i ≤ n} .

A linear set L(b, P) with base b and periods P is defined as L(b, P) def= b + cone(P). A
semi-linear set is a finite union of linear sets. For convenience, given a finite subset B of Nm,
we define L(B,P) def=

⋃
b∈B L(b, P). The size of a semi-linear set M =

⋃
i∈I L(Bi, Pi) ⊆ Nm

is defined as

#M def=
∑
i∈I

#Bi + |Bi| ·#Pi.

In particular, numbers are encoded in binary. Given a semi-linear set N ⊆ Nm, #N is the
minimum over the sizes of all semi-linear sets M =

⋃
i∈I L(bi, Pi) such that N = M .

A system of linear Diophantine inequalities D is a conjunction of linear inequalities over
the same first-order variables x = (x1, . . . , xn), which we write in the standard way as
D : A · x ≥ c, where A is a m × n integer matrix and c ∈ Nm. The size #D of D is the
number of symbols required to write down D, where we assume binary encoding of numbers.
The set of solutions of D is denoted by JDK ⊆ Nn. We say that D is feasible if JDK 6= ∅.
In [24, 1], bounds on the semi-linear representation of JDK are established. The following
proposition is a consequence of Corollary 1 in [24] and Theorem 5 in [1]. A formal proof can
be found in Appendix A.

I Proposition 4. Let D : A · x ≥ c be a system of linear Diophantine inequalities such that
A is an m× n matrix. Then JDK = L(B,P) for B,P ⊆ Nn such that |P | ≤

(
m+n
m

)
and

‖B‖∞, ‖P‖∞ ≤ (‖A‖1,∞ + ‖c‖∞ + 2)m+n
.

3 Lower Bounds

In this section, we establish the coNEXP-lower bound of Theorems 1 and 2. For the sake
of a clear presentation, we will first describe the reduction for context-free commutative
grammars, and then outline how the approach can be adapted to regular commutative
grammars.

As stated in the introduction, we reduce from validity in the Π2-fragment of Presburger
arithmetic. To this end, let φ = ∀x.∃y.ψ(x,y) such that x = (x1, . . . , xm), y = (y1, . . . , yn),
and ψ is a positive Boolean combination of atomic formulas t1, . . . , tk. For our reduction,
we write atomic formulas of ψ as

ti :
∑

1≤j≤m
(a+
i,j − a

−
i,j) · xj + z+

i − z
−
i ≥

∑
1≤j≤n

(b+i,j − b
−
i,j) · yj , (1)

where the a+
i,j , a

−
i,j ∈ N are such that a+

i,j = 0 or a−i,j = 0, and likewise the b+i,j , b
−
i,j ∈ N are

such that b+i,j = 0 or b−i,j = 0, and the z+
i , z

−
i ∈ N such that z+

i = 0 or z−i = 0. Moreover, in
the following we set ai,j

def= a+
i,j − a

−
i,j , bi,j

def= b+i,j − b
−
i,j and zi

def= z+
i − z

−
i .

6 Tightening the Complexity of Equivalence Problems for Commutative Grammars

I Example 5. Let φ = ∀x.∃y.ψ(x, y) with ψ(x, y) = (t1 ∧ t2) ∨ (t3 ∧ t4) and

t1 = x ≥ 2 · y t2 = −x ≥ −2 · y t3 = x+ 1 ≥ 2 · y t4 = −x− 1 ≥ −2 · y,

which expresses that every natural number is either even or odd. Here, for instance, a+
2,1 = 0,

a−2,1 = 1, z+
1 = z−1 = 0, b+2,1 = 0 and b−2,1 = 2. Hence a2,1 = −1, z2 = 0 and b2,1 = −2. ♦

With no loss of generality and due to unary encoding of numbers in φ, we may assume
that the following inequalities hold:

|φ| ≥ 2 +m+ n+ k |φ| ≥ ‖φ‖∞ (2)

We furthermore define a constant c ∈ N, whose bit representation is polynomial in |φ|, as

c
def= min{2n : n ∈ N, 2n ≥ |φ|3·|φ|+2 · 2|φ|}. (3)

Let Σ def= {t+1 , t
−
1 , . . . , t

+
k , t
−
k }, we now show how to construct in logarithmic space context-

free commutative grammars G,H over Σ such that L(G) ⊆ L(H) iff φ is valid. The un-
derlying idea is as follows: the language of G consists of all possible values of the left-hand
sides of the inequalities ti for every choice of x, where the value of some ti is represented
by a word w ∈ Σ� via the difference w(t+i) − w(t−i). For every w ∈ Σ� and 1 ≤ i ≤ k,
we misuse notation and define w(ti)

def= w(t+i) − w(t−i) ∈ Z; note that in particular ti 6∈ Σ.
The grammar H can then be defined in an analogous way and produces the values of the
right-hand sides of H for a choice of y, but can in addition simulate the Boolean structure
of ψ in order to tweak those ti for which, informally speaking, it cannot obtain a good value.

Before we defineG, we remark that in context-free commutative grammars we can assume
commutative words to be encoded in binary. This is not possible in regular grammars.
I Remark 6. For any class of commutative grammars containing context-free commutative
grammars, it is with no loss of generality possible to assume binary encoding of commutative
words, which has, for instance, been observed in [26]. For example, given a production
V → a2n , n > 0, we can introduce fresh non-terminal symbols V1, . . . , Vn and replace
V → a2n by V → V1V1, Vn → a and Vi → Vi+1Vi+1 for every 1 ≤ i < n. Clearly, the
grammar obtained by this procedure generates the same language and only results in a
sub-quadratic blow-up of the size of the resulting grammar.
Recall that we may represent commutative words of Σ� as vectors of natural numbers. We
define:

u
def= (z+

1 , z
−
1 , . . . , z

+
k , z

−
k) ∈ Σ� vi

def= (a+
1,i, a

−
1,i, . . . , a

+
k,i, a

−
k,i) ∈ Σ� (1 ≤ i ≤ m) (4)

where a+
j,i, a

−
j,i, z

+
j , z

−
j are defined in Equation (1).

The grammar G is constructed as G def= (NG,Σ, SG, PG), where NG
def= {S,X} and PG is

defined as follows:

SG → X ĉu X → ε X → X ĉvi (1 ≤ i ≤ m)

Here, c is the constant from (3) whose addition ensures that the values of the t+i and t−i
generated by G are large. Clearly, G can be constructed in logarithmic space even though
c is exponential in |φ|. The following lemma, whose proof can be found in Appendix B.1,
captures the essential properties of G.

C. Haase and P. Hofman 7

I Lemma 7. Let G be as above. The following hold:

(i) For every x ∈ Nm there exists w ∈ L(G) such that for all 1 ≤ i ≤ k,

w(ti) =
∑

1≤j≤m
(a+
i,j − a

−
i,j) · xj + z+

i − z
−
i .

(ii) For every w ∈ L(G) there exists x ∈ Nm such that for all 1 ≤ i ≤ k,

w(ti) =
∑

1≤j≤m
(a+
i,j − a

−
i,j) · xj + z+

i − z
−
i (5)

w(t+i) ≥ c+ z+
i +

∑
1≤j≤m

c · xj ≥ c · (1 + ‖x‖∞) (6)

w(t−i) ≥ c+ z−i +
∑

1≤j≤m
c · xj ≥ c · (1 + ‖x‖∞). (7)

We now turn towards the construction of H def= (NH ,Σ, SH , PH) and define the set of
non-terminals NH and productions PH of H in a step-wise fashion. Starting in SH , H
branches into three gadgets starting at the non-terminal symbols Y , Fψ and I:

SH → Y FψI

Here, Y is an analogue to X in G. Informally speaking, it allows for obtaining the right-hand
sides of the inequalities ti for a choice of y ∈ Nn. In analogy to G, we define

wi
def= (b+1,i, b

−
1,i, . . . , b

+
k,i, b

−
k,i) ∈ Σ� (1 ≤ i ≤ n)

Y → Y wi (1 ≤ i ≤ n)
Y → ε

In contrast to X from G, note that Y does not add ĉ every time it loops. The following
lemma is the analogue of H to Lemma 7 and can be shown along the same lines.

I Lemma 8. Let Y be the non-terminal of H as defined above. The following hold:

(i) For every y ∈ Nn there exists w ∈ L(H,Y) such that for all 1 ≤ i ≤ k, w(t+i) =∑
1≤j≤n b

+
i,j · yj, w(t−i) =

∑
1≤j≤n b

−
i,j · yj, and

w(ti) =
∑

1≤j≤n
(b+i,j − b

−
i,j) · yj .

(ii) For every w ∈ L(H,Y) there exists y ∈ Nn such that for all 1 ≤ i ≤ k,

w(ti) =
∑

1≤j≤n
(b+i,j − b

−
i,j) · yj .

It is clear that the wY generated by Y may not be able to generate all ti in a way that
match all w generated by G (i.e., all choices of x made through G). For now, let us even
assume that w(t+i) ≥ wY (t+i) and w(t−i) ≥ wY (t−i) holds for every 1 ≤ i ≤ k. Later, we
will show that if there is a good choice for y, we can find a good wY ∈ L(H,Y) with this
property. After generating wY , informally speaking, H should produce t+i and t−i in order
match w, provided that ψ is valid.

In particular, the Boolean structure of ψ enables us to produce arbitrary quantities of
some ti. This is the duty of the gadget Fψ which allows for assigning arbitrary values to some

8 Tightening the Complexity of Equivalence Problems for Commutative Grammars

atomic formulas ti via gadgets Rti defined below. The gadget Fψ recursively traverses the
matrix formula ψ and invokes some Rγ whenever a disjunction is processed and a disjunct
γ is evaluated to false:

Fti → ε Fα∧β → FαFβ Fα∨β → FαRβ Fα∨β → RαFβ Fα∨β → FαFβ

The definition of Rγ for every subformula γ of ψ occurring in the syntax tree of ψ is now
not difficult: we traverse γ until we reach a leaf ti of the syntax tree of γ and then allow for
generating an arbitrary number of alphabet symbols t+i and t−i . Let 1 ≤ i ≤ k, we define
the following productions:

Rti → ε Rti → Rtit
+
i Rti → Rtit

−
i Rα∧β → RαRβ Rα∨β → RαRβ

Finally, it remains to provide a possibility to increase wY (ti) for those ti that were not
processed by some Rti in order to match w. For a good choice of wY , we certainly should
have that for those ti, the number of ti generated by wY in H is at least as much as the
number generated by G. Hence, in order to make wY agree with w on ti, all we have to do
to wY is to non-deterministically increment, i.e., produce, t+i at least as often as t−i . This is
the task of the gadget I of H, whose production rules are as follows:

I → ε I → It+i t
−
i I → It+i (1 ≤ i ≤ k)

The subsequent lemma, whose proof is immediate, states the properties of I formally.

I Lemma 9. L(H, I) =
{

(n+
1 , n

−
1 , . . . , n

+
k , n

−
k) ∈ Σ� : n+

j ≥ n
−
j , 1 ≤ j ≤ k

}
.

This completes the construction of H. We now prove the correctness of our construction.

I Lemma 10. Suppose L(G) ⊆ L(H), then φ = ∀x.∃y.ψ(x,y) is valid.

Proof. The idea underlying the proof is to show how to construct for every choice of x ∈ Nm
some y ∈ Nn such that ψ(x,y) evaluates to true. By Lemma 7(i), for any x ∈ Nm there
exists some corresponding w ∈ L(G) and by assumption w ∈ L(H). In particular, w is
composed of some wY ∈ L(H,Y) from which by Lemma 8(ii) some suitable y ∈ Nn can be
obtained. All details can be found in Appendix B.2. J

The converse direction is slightly more involved. Informally speaking, on the first sight
one might be worried that H produces more t+i or t−i than G which cannot be “erased.”
However, the addition of c in every component for every production applied by G together
with Proposition 4 allows us to overcome this obstacle.

I Lemma 11. Suppose φ = ∀x.∃y.ψ(x,y) is valid, then L(G) ⊆ L(H).

Proof. Let w ∈ L(G), by Lemma 7(ii) there exists x∗ ∈ Nm such that (5), (6) and (7) hold.
By assumption, there is y∗ ∈ Nn such that ψ(x∗,y∗) holds. Hence, there is ξ : {1, . . . , k} →
{0, 1} such that for all i where ξ(i) = 1,∑

1≤j≤m
ai,j · x∗j + zi ≥

∑
1≤j≤n

bi,j · y∗j

and ψ[ξ(1)/t1, . . . , ξ(k)/tk] evaluates to true. With no loss of generality, write {i : ξ(i) =
1} = {1, . . . , h} for some 1 ≤ h ≤ k. Consider the system D : A · (x,y) ≥ z of linear
Diophantine inequalities over the unknowns x and y, where

A
def=

a1,1 · · · a1,m −b1,1 · · · −b1,n
...

. . .
...

...
. . .

...
ah,1 · · · ah,m −bh,1 · · · −bh,n

 z
def=

−z1
...
−zh

 .

C. Haase and P. Hofman 9

By assumption, D has a non-empty solution set. We have that A is a h × (m + n) matrix
with ‖M‖1,∞ ≤ ‖ψ‖1,∞ and ‖z‖∞ ≤ ‖ψ‖∞. By Proposition 4, there are B,P ⊆ Nm+n such
that JDK = B + cone(P). Consequently, x∗ = π[1,m](b + λ1 · p1 + · · · + λ` · p`) for some
b ∈ B, pi ∈ P and λi ∈ N. In particular, since |P | ≤

(
h+m+n

h

)
≤ 2|φ| we have

0 ≤
∑

1≤i≤`
λi ≤ ‖x∗‖∞ · ` ≤ ‖x∗‖∞ · 2|φ|. (8)

Now let

y†
def= π[m+1,m+n](b + λ1 · p1 + · · ·+ λ` · p`).

We have (x∗,y†) is a solution of D and henceforth ψ[x∗/x,y†/y] evaluates to true. More-
over, in Appendix B.3 we show that

‖y†‖∞ ≤ (1 + ‖x∗‖∞) · c

|φ|2
.

Combining the estimation of ‖y†‖∞ with (6) and (7) of Lemma 7, for every 1 ≤ i ≤ k we
obtain

w(t+i), w(t−i) ≥ c · (1 + ‖x∗‖∞) ≥ ‖y†‖∞ · |φ|2 ≥ ‖y†‖∞ · ‖φ‖∞ · |φ|. (9)

By Lemma 8(i) there is wY ∈ L(H,Y) such that (9) yields

w(t+i) ≥
∑

1≤j≤n
‖y†‖∞ · ‖φ‖∞ ≥

∑
1≤j≤n

b+i,j · y
†
j = wY (t+i)

w(t−i) ≥
∑

1≤j≤n
‖y†‖∞ · ‖φ‖∞ ≥

∑
1≤j≤n

b−i,j · y
†
j = wY (t−i).

Moreover, the construction of Fψ is such that{
wF ∈ Σ� : wF (t+i) = wF (t−i) = 0, ξ(i) = 1, 1 ≤ i ≤ k

}
⊆ L(H,Fψ).

Hence, we can find some wF ∈ L(H,Fψ) which allows us to adjust those ti for which ξ(i) = 0.
More formally, for 1 ≤ i ≤ k such that ξ(i) = 0,

(wY + wF)(t+i) = w(t+i) and (wY + wF)(t−i) = w(t−i).

On the hand, for all 1 ≤ i ≤ k such that ξ(i) = 1,

(wY + wF)(t+i) = wY (t+i) and (wY + wF)(t+i) = wY (t+i),

i.e., those ti remain untouched by wF .
Consequently, it remains to show that there is a suitable wI ∈ L(H, I) such that we can

adjust those ti which were left untouched by wF above. For all 1 ≤ i ≤ k such that ξ(i) = 1,
since y† is a solution of D, we have

w(ti) = w(t+i)− w(t−i) ≥ wY (t+i)− wY (t−i) = wY (ti)
⇐⇒ w(t+i)− wY (t+i) ≥ w(t−i)− wY (t−i)
⇐⇒ there are mi, ni ∈ N such that w(t+i) = wY (t+i) +mi + ni and

w(t−i) = wY (t−i) +mi.

But then Lemma 9 yields the required wI ∈ L(H, I) such that wI(t+i) = mi + ni, wI(t−i) =
mi, and wI(t+j) = wI(t+j) = 0 for all j such that ξ(j) = 0.

Summing up, we have w = wY + wI + wF , and hence w ∈ L(H) as required. J

10 Tightening the Complexity of Equivalence Problems for Commutative Grammars

G : p0 p1 p1 p2 p2 · · · pi−1 pi pi

H : p0 p1 p1 p2 p2 · · · pi−1 pi pi

Figure 1 Illustration of the pairing of alphabet symbols. In G, we require that in each cell
w(pj+1) = 2 · pj , and in H that w(pj) = w(pj). Any word fulling these conditions has the property
that w(pi) = 2i · w(p0).

Lemmas 10 and 11 together with Proposition 3 yield the coNEXP-lower bound of The-
orems 1 and 2 of the language inclusion problem for context-free and exponent-sensitive
grammars, and hence coNEXP-hardness of the equivalence problem.
I Remark 12. In the appendix, we show that we can derive from G and H commutative
context-free grammars Ge and He such that an even stronger statement holds:

φ is valid ⇐⇒ R(Ge) = R(He).

♦

3.1 Hardness for Regular Commutative Grammars
It remains to show how our reduction can be adapted in order to prove coNEXP-hardness of
the equivalence problem for regular commutative grammars. Due to space constraints, we
only sketch the main ideas, full details are provided in Appendix C.

As constructed above, neither G nor H are regular, the main problem being the following
rules of G:

SG → X ĉu X → X ĉvi (1 ≤ i ≤ m).

Here, ĉ is a word of exponential length, cf. Equation (3), and, informally speaking, we cannot
force a regular commutative grammar to generate an exponential quantity of an alphabet
symbol. However, the interplay between G and H allows us to do so. The main idea is that
in order to generate ĉ we use additional alphabet symbols p0, . . . , pi such that we require
that number of occurrences of pj+1 is twice as much as pj in a word w accepted by G for all
0 ≤ j < i, or otherwise this word is trivially accepted by H. With this approach we get that
that if w witnesses L(G) 6⊆ L(H) then w(pi) = 2i · w(p0), which is exactly what we need.
In some more detail, the construction actually uses further additional alphabet symbols
p1, . . . , pi. Then, we enforce in G that w(pj+1) = 2 ·w(pj), and in H that w(pj) = w(pj+1).
This can be achieved by accepting any word w in H for which w(pj) 6= w(pj+1). Figure 1
illustrates this technique of pairing alphabet symbols pj and pj .

Finally, the gadget Fψ of H is also not regular. However, we can alternatively simulate
ψ by a regular grammar in which conjunction in ψ corresponds to sequential composition
and disjunction to branching.

4 Exponent-Sensitive Commutative Grammars

We now turn towards the equivalence problem for exponent-sensitive commutative grammars
and sketch the proof of Theorem 2, i.e., show that language inclusion is coNEXP-hard and
in co-2NEXP. The lower bound immediately follows from Theorem 1. Hence, it remains
to provide a co-2NEXP upper bound, thereby improving the 2EXPSPACE upper bound
from [21]. Due to space constraints, all formal details are deferred to Appendix D.

C. Haase and P. Hofman 11

It is sufficient to show that language inclusion between exponent-sensitive commutative
grammars can be decided in co-2NEXP. To this end, we adapt an approach proposed by
Huynh used to show that language inclusion between context-free commutative grammars is
in coNEXP [14]. Let G and H be exponent-sensitive commutative grammars. The starting
point of Huynh’s approach is to derive bounds on the size of a commutative word witnessing
non-inclusion via the semi-linear representation of the reachability sets of G and H. For
exponent-sensitive commutative grammars, in [22] R(G) and R(H) are shown semi-linear
with a representation size doubly exponential in #G and in #H, respectively, and this
representation is also computable in doubly-exponential time. Given semi-linear sets M
and N such that M \N is non-empty, Huynh shows in [15] that there is some v ∈ M \N
whose bit-size is polynomial in #M + #N . Consequently, if L(G) 6⊆ L(H) then the binary
representation of some word w ∈ L(G) \ L(H) has size bounded by 22p(#G+#H) for some
polynomial p. Since the word problem for exponent-sensitive commutative grammars is
in PSPACE, deciding L(G) ⊆ L(H) is in 2-EXPSPACE, as observed in [22, Thm. 5.5]. Now
comes the second part of Huynh’s approach into play. In [14], a Carathéodory-type theorem
for semi-linear sets is established: given a linear set M = L(b, P) ⊆ Nm, Huynh shows
that M =

⋃
i∈I L(bi, Pi), where bi ∈ L(b, P), each bi has bit-size polynomial in #M , and

Pi ⊆ P has full column rank and hence in particular |Pi| ≤ m. The key point is that deciding
membership in a linear set with such properties is obviously in P using Gaussian elimination,
and that we can show that a semi-linear representation of R(G) and R(H) in which every
linear set has those properties is computable in deterministic doubly-exponential time in #G
and in #H, respectively. Consequently, a co-2NEXP algorithm to decide L(G) ⊆ L(H) can
initially guess a word w whose representation is doubly-exponential in #G + #H, then
compute the semi-linear representations of R(G) and R(H) in the special form of Huynh,
and check in time polynomial in #w that w belongs to L(G) and not to L(H).

5 Applications to Further Equivalence Problems

Here, we discuss immediate corollaries of Theorem 1 for various other equivalence problems
in formal language and automata theory. Due to space constraints, we cannot provide formal
definitions of the objects we consider; they can be found in the references in the respective
paragraphs.

In [2], Eilenberg and Schützenberger studied properties of regular languages in com-
mutative monoids which are generated by regular commutative expressions. Such regular
expressions are the same as standard regular expression which use the free commutative
monoid instead of the free monoid. From Theorem 1, we obtain the following statement.

I Theorem 13. Language equivalence between regular commutative expressions is coNEXP-
complete.

The upper bound can easily be obtained via a reduction to equivalence between regular
commutative grammars. The lower bound follows from the observation that the construction
outlined in Section 3.1 can be adjusted in a way such that the directed graph underlying the
constructed regular commutative grammar does not contain nested cycles, and can hence
be translated into an equivalent regular commutative expression of linear size.

Regular commutative grammars can also be viewed as 0-reversal-bounded counter au-
tomata in which every counter corresponds to an alphabet symbol. Reversal-bounded
counter automata were introduced by Ibarra [16]. Along a run of a k-reversal bounded
counter automaton, every counter may only change from incrementing to decrementing

12 Tightening the Complexity of Equivalence Problems for Commutative Grammars

commutative grammar word problem language equivalence
type-0 EXPSPACE-h. [20], ∈ Fω3 [19] undecidable [10]

context-sensitive PSPACE-complete [13] undecidable [14]
exponent-sensitive PSPACE-complete [21] coNEXP-h., ∈ co-2NEXP

context-free
regular NP-complete [13, 3] coNEXP-complete

Table 1 Complexity of the word and the equivalence problem for classes of commutative gram-
mars.

mode at most k times. Given two reversal-bounded counter automata with the same num-
ber of counters, equivalence is to decide whether their sets of counter values occurring in a
final configuration is the same.

I Theorem 14. The equivalence problem for reversal-bounded counter automata is coNEXP-
complete.

The lower bound immediately follows from Theorem 1. For the upper bound, Hague and
Lin [11] have shown that the set of counter values occurring in a final configuration is
definable in existential Presburger arithmetic. Consequently, given two reversal-bounded
counter automata whose reachability sets are defined by existential Presburger formulas
ϕ(x) and ψ(x), respectively, they are equivalent iff φ def= ∀x.ϕ(x) ↔ ψ(x) is valid. Since φ
is a Π2-sentence of Presburger arithmetic, Proposition 3 yields a coNEXP-upper bound for
the equivalence problem.

Finally, it has, for instance, been observed in [3, 27, 23] that context-free commutative
grammars can be seen as notational variants of communication-free Petri nets and basic
parallel process nets (BPP-nets). In particular, language equivalence is logarithmic-space
interreducible with reachability equivalence for such nets. Hence, Theorem 1 together with
Remark 12 yields the following theorem.

I Theorem 15. The equivalence problem for communication-free Petri nets and BPP-nets
is coNEXP-complete.

6 Conclusion

We showed that language inclusion and equivalence for regular and context-free commu-
tative grammars are coNEXP-complete, resolving a long-standing open question posed by
Huynh [14]. Our lower bound also carries over to the equivalence problem for exponent-
sensitive commutative grammars, for which we could also improve the 2-EXPSPACE-upper
bound [21] to co-2NEXP. The precise complexity of this problem remains an open prob-
lem of this paper. An overview over the complexity of word and equivalence problems for
commutative grammars together with references to the literature is provided in Table 1.

One major open problem related to the problems discussed in this paper is weak bisim-
ilarity between basic parallel processes. This problem is not known to be decidable and
PSPACE-hard [25]. Unfortunately, it does not seem possible to adjust the construction of
our coNEXP-lower bound to also work for weak bisimulation.

C. Haase and P. Hofman 13

References

1 Eric Domenjoud. Solving systems of linear Diophantine equations: An algebraic approach.
In Mathematical Foundations of Computer Science (MFCS), pages 141–150, 1991.

2 Samuel Eilenberg and M.P. Schützenberger. Rational sets in commutative monoids. Journal
of Algebra, 13(2):173–191, 1969.

3 Javier Esparza. Petri nets, commutative context-free grammars, and basic parallel pro-
cesses. Fundamenta Informaticae, 31(1):13–25, 1997.

4 M. R. Garey and David S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, 1979.

5 Seymour Ginsburg. The mathematical theory of context free languages. McGraw-Hill, 1966.
6 Seymour Ginsburg and Edwin H. Spanier. Bounded ALGOL-like languages. Transactions

of the American Mathematical Society, pages 333–368, 1964.
7 Erich Grädel. Dominoes and the complexity of subclasses of logical theories. Annals of

Pure Applied Logic, 43(1):1–30, 1989.
8 Christoph Haase. Subclasses of Presburger arithmetic and the weak EXP hierarchy. In

Proceedings of the Joint Meeting of the 23rd EACSL Annual Conference on Computer
Science Logic (CSL) and the 29th Annual ACM/IEEE Symposium on Logic in Computer
Science (LICS) (CSL-LICS), pages 47:1–47:10. ACM, 2014.

9 Christoph Haase and Simon Halfon. Integer vector addition systems with states. In Pro-
ceedings of the 8th International Workshop on Reachability Problems (RP), volume 8762 of
Lecture Notes in Computer Science, pages 112–124. Springer, 2014.

10 Michel Hack. The equality problem for vector addition systems is undecidable. Theoretical
Computer Science, 2(1):77–95, 1976.

11 Matthew Hague and Anthony Widjaja Lin. Model checking recursive programs with nu-
meric data types. In Proccedings of the 23rd International Conference on Computer Aided
Verification (CAV), volume 6806 of Lecture Notes in Computer Science, pages 743–759.
Springer, 2011.

12 John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to automata
theory, languages, and computation - international edition (2. ed). Addison-Wesley, 2003.

13 Dung T. Huynh. Commutative grammars: The complexity of uniform word problems.
Information and Control, 57(1):21–39, 1983.

14 Dung T. Huynh. The complexity of equivalence problems for commutative grammars.
Information and Control, 66(1–2):103–121, 1985.

15 Dung T. Huynh. A simple proof for the Σp2 upper bound of the inequivalence problem
for semilinear sets. Elektronische Informationsverarbeitung und Kybernetik, 22(4):147–156,
1986.

16 Oscar H. Ibarra. Reversal-bounded multicounter machines and their decision problems.
Journal of the ACM, 25(1):116–133, 1978.

17 Eryk Kopczyński. Complexity of problems of commutative grammars. Logical Methods in
Computer Science, 11(1), 2015.

18 Eryk Kopczyński and Anthony Widjaja To. Parikh images of grammars: Complexity and
applications. In Proceedings of the 25th Annual IEEE Symposium on Logic in Computer
Science, (LICS), pages 80–89. IEEE Computer Society, 2010.

19 Jérôme Leroux and Sylvain Schmitz. Demystifying reachability in vector addition systems.
In 30th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 56–
67. IEEE, 2015.

20 Richard Lipton. The reachability problem is exponential-space-hard. Technical report, Yale
University, New Haven, CT, 1976.

14 Tightening the Complexity of Equivalence Problems for Commutative Grammars

21 Ernst W. Mayr and Jeremias Weihmann. Completeness results for generalized
communication-free Petri nets with arbitrary edge multiplicities. In Proceedings of the
7th International Workshop on Reachability Problems (RP), volume 8169 of Lecture Notes
in Computer Science, pages 209–221. Springer, 2013.

22 Ernst W. Mayr and Jeremias Weihmann. Completeness results for generalized
communication-free Petri nets with arbitrary edge multiplicities. Technical Report TUM-
I1335, Technische Universität München, 2013.

23 Ernst W. Mayr and Jeremias Weihmann. Complexity results for problems of
communication-free Petri nets and related formalisms. Fundamenta Informaticae,
137(1):61–86, 2015.

24 Loïc Pottier. Minimal solutions of linear Diophantine systems: Bounds and algorithms. In
Proceedings of the 4th International Conference on Rewriting Techniques and Applications
(RTA), volume 488 of Lecture Notes in Computer Science, pages 162–173. Springer, 1991.

25 Jirí Srba. Complexity of weak bisimilarity and regularity for BPA and BPP. Mathematical
Structures in Computer Science, 13(4):567–587, 2003.

26 Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring exponential time:
Preliminary report. In 5th Annual ACM Symposium on Theory of Computing, STOC,
pages 1–9. ACM, 1973.

27 Hsu-Chun Yen. On reachability equivalence for BPP-nets. Theoretical Computer Science,
179(1-2):301–317, 1997.

C. Haase and P. Hofman 15

A Missing Proofs from Section 2

I Proposition 4. Let D : A · x ≥ c be a system of linear Diophantine inequalities such that
A is an m× n matrix. Then JDK = L(B,P) for B,P ⊆ Nn such that |P | ≤

(
m+n
m

)
and

‖B‖∞, ‖P‖∞ ≤ (‖A‖1,∞ + ‖c‖∞ + 2)m+n
.

Proof. First, the bounds on the max-norm follow from Corollary 1 in [24]. It is shown there
that the set of integer solutions to D is bounded by

‖B‖∞, ‖P‖∞ ≤ (‖A‖1,∞ + ‖c‖∞ + 2)m.

In order to restrict to non-negative solutions, we can add n additional constraints, which
yields the desired bounds on ‖B‖∞ and ‖A‖1,∞.

Second, the paper by Domenjoud [1] allows for deriving bounds on |P | as follows. In his
paper, he shows how to compute sets of minimal solutions P ′ to homogeneous systems of
equations D′ : A′ ·x′ = 0, where A′ is an m′×n′ matrix of rank r′. Any solution x′ to D′ can
be obtained as a non-negative linear combination of elements of the set of minimal solutions
P ′. In particular, Theorem 5 in [1] allows for deriving that there exists bijection between
elements in P ′ and subsets of the set of columns of A′ of rank r′. Hence, |P ′| ≤

(
n′

r′

)
.

In order to derive the desired bounds on P , we proceed as follows. Let A′ def=
(
A | −I

)
,

where I is the m×m unit matrix. Now P can be obtained from the set of minimial solutions
to the system of equations D′ : A′ · x′ = 0 by projecting onto the first n components. Note
that rank(A′) = m, hence |P | ≤

(
m+n
m

)
as shown in [1]. J

B Missing Proofs from Section 3

B.1 Proof of Lemma 7

I Lemma 7. Let G be as above. The following hold:

(i) For every x ∈ Nm there exists w ∈ L(G) such that for all 1 ≤ i ≤ k,

w(ti) =
∑

1≤j≤m
(a+
i,j − a

−
i,j) · xj + z+

i − z
−
i .

(ii) For every w ∈ L(G) there exists x ∈ Nm such that for all 1 ≤ i ≤ k,

w(ti) =
∑

1≤j≤m
(a+
i,j − a

−
i,j) · xj + z+

i − z
−
i (5)

w(t+i) ≥ c+ z+
i +

∑
1≤j≤m

c · xj ≥ c · (1 + ‖x‖∞) (6)

w(t−i) ≥ c+ z−i +
∑

1≤j≤m
c · xj ≥ c · (1 + ‖x‖∞). (7)

Proof. Regarding (i), let x = (x1, . . . , xm) ∈ Nm and consider the following derivation of
G:

SG ⇒ Xu⇒ Xv1u⇒∗ Xvxm1 u⇒∗ Xvx1
1 · · · v

xm−1
m−1 u⇒∗ v

x1
1 · · · v

xm−1
m−1 v

xm
m u = w.

16 Tightening the Complexity of Equivalence Problems for Commutative Grammars

For every 1 ≤ i ≤ k we have

w(t+i) = v1(t+i) · x1 + · · ·+ vm(t+i) · xm + u(t+i)
= (a+

i,1 + c) · x1 + · · ·+ (a+
i,m + c) · x1 + z+

i + c

=
∑

1≤j≤m
(a+
i,j + c) · xj + z+

i + c.

In the same way, we obtain

w(t−i) =
∑

1≤j≤m
(a−i,j + c) · xj + z−i + c,

whence

w(ti) = w(t+i)− w(t−i) =
∑

1≤j≤m
(a+
i,j − a

−
i,j) · xj + z+

i − z
−
i .

Regarding (ii), by the construction of G, any w ∈ L(G) is of the form

w = vx1
1 · · · v

xm−1
m−1 v

xm
m u.

Define x
def= (x1, . . . , xm) and let 1 ≤ i ≤ k, Equation (5) follows as in (i). Moreover, since

u(t+i) = c + z+
i and vj(t+i) ≥ c for every 1 ≤ j ≤ m, we obtain inequality (6). The same

argument allows for deriving (7). J

B.2 Proof of Lemma 10
I Lemma 10. Suppose L(G) ⊆ L(H), then φ = ∀x.∃y.ψ(x,y) is valid.

Proof. Let x ∈ Nm, we show how to construct y ∈ Nn such that ψ(x,y) evaluates to true.
By Lemma 7(i), there exists w ∈ L(G) such that for all 1 ≤ i ≤ k,

w(ti) =
∑

1≤j≤m
(a+
i,j − a

−
i,j) · xj + z+

i − z
−
i , (10)

and since L(G) ⊆ L(H), w ∈ L(H). By definition of H, there are wY , wF , wI ∈ Σ� such
that

wY ∈ L(H,Y), wI ∈ L(H, I), wF ∈ L(H,Fψ); and
w = wY + wF + wI .

By Lemma 8(ii), there exists y ∈ Nn such that for all 1 ≤ i ≤ k,

wY (ti) =
∑

1≤j≤n
(b+i,j − b

−
i,j) · yj . (11)

We claim that y has the desired properties, i.e., that w(ti) ≥ wY (ti) for all inequalities
necessary to make ψ(x,y) evaluate to true. To this end, consider the derivation tree of wF
and define a mapping ξ : {1, . . . , k} → {0, 1} such that ξ(i) def= 0 if the non-terminal Rti
occurs in the derivation tree and ξ(i) def= 1 if Fti occurs in it. By the construction of Fψ, this
mapping is well-defined, and moreover it also implies that ψ[ξ(t1)/t1, . . . , ξ(tk)/tk] evaluates
to true. So it remains to show that for all ti such that ξ(i) = 1, i.e., we have

w(ti) = w(t+i)− w(t−i) ≥ wY (t+i)− wY (t−i) = wY (ti).

C. Haase and P. Hofman 17

Since for all such i we have wF (t+i) = wF (t−j) = 0, it follows that w(t+i) = wY (t+i) +wI(t+i)
and w(t−i) = wY (t−i) + wI(t−i), hence

w(t+i)− w(t−i) = (wY (t+i)− wY (t−i)) + (wI(t+i)− wI(t−i)).

By Lemma 9, wI(t+i) − wI(t−i) ≥ 0, and consequently w(ti) ≥ wY (ti) as required by (10)
and (11). J

B.3 Further Details to the Proof of Lemma 11

I Lemma 11. Suppose φ = ∀x.∃y.ψ(x,y) is valid, then L(G) ⊆ L(H).

Proof. We deferred showing that

‖y†‖∞ ≤ (1 + ‖x∗‖∞) · c

|φ|2

This can be derived as follows:

‖y†‖∞ ≤ ‖b‖∞ + ‖λ1 · p1 + · · ·+ λ` · p`‖∞
≤ ‖B‖∞ +

∑
1≤i≤`

λi · ‖P‖∞

≤ ‖B‖∞ + ‖x∗‖∞ · 2|φ| · ‖P‖∞ (by (8))

≤
(

1 + ‖x∗‖∞ · 2|φ|
)
· (‖A‖1,∞ + ‖z‖∞ + 2)h+m+n (by Prop. 4)

≤
(

1 + ‖x∗‖∞ · 2|φ|
)
· ((m+ n+ 1) · ‖φ‖∞ + 2)k+m+n

≤
(

1 + ‖x∗‖∞ · 2|φ|
)
· |φ|3·|φ|

≤ (1 + ‖x∗‖∞) · |φ|3·|φ| · 2|φ| (by (2))

≤ (1 + ‖x∗‖∞) · c

|φ|2
(by (3))

J

B.4 Further Details to Remark 12

In order to show hardness of the equivalence problem for context-free commutative gram-
mars, we merge H into G, i.e., define

Ge
def= (NG ∪NH ∪ {S},Σ, S, PG ∪ PH ∪ {S → SG, S → SH}).

It is now clear that φ is valid iff L(Ge) = L(H). Finally, if we, in addition, redefine H as

He def= ({SG, X} ∪NH ∪ {S},Σ, PH ∪ {S → SG, S → XSH , X → ε})

then Ge and He have the same set of non-terminals N def= NG∪NH ∪{S} = {SG, X}∪NH ∪
{S}, and an even stronger statement holds:

φ is valid ⇐⇒ R(Ge) = R(He).

18 Tightening the Complexity of Equivalence Problems for Commutative Grammars

C Missing Proofs from Section 3.1

Here, we provide full details on how the reduction developed in Section 3 can be adapted
in order to prove coNEXP-hardness of the equivalence problem for regular commutative
grammars. As constructed, neither G nor H are regular. In this section, we show how to
obtain regular commutative grammars Gr and Hr from G and H such that L(Gr) ⊆ L(Hr)
iff L(G) ⊆ L(H).

It is actually not difficult to see that H can be made regular. By the construction of H,
both gadgets starting in Y and I are regular, but Fψ is not, and also the initial production
SH → Y FψI is not regular. The latter can be fixed by additionally adding productions
Y → Fψ and Fψ → I to the set of productions P , and replacing SH → Y FψI with SH → Y .
It thus remains to make Fψ regular. The non-regularity of the latter is due to the fact that
we use branching provided by context-free commutative grammars in order to simulate the
Boolean structure of ψ. However, as we show now, it is possible to serialise Fψ.

As a first step, we discuss the serialisation of Rγ for all subformulas γ occurring in the
syntax-tree of ψ. Recall that the task of Rγ is to generate arbitrary amounts of alphabet
symbols t+i and t−i for all ti occurring in γ. We define the set Tγ collecting all t+i and t−i
corresponding to the inequalities appearing in γ:

Tγ
def=
{
{t+i , t

−
i } if γ = ti

Tα ∪ Tβ if γ = α ∧ β or γ = α ∨ β.

We can now redefine Rγ to be the regular grammar corresponding to the following NFA, for
which clearly L(Rγ) = T�γ holds:

ε ε

t+
i
∈ Tγ

t−
i
∈ Tγ

Next, we describe an inductive procedure that when completed yields an NFA that
corresponds to a regular grammar whose language is equivalent to L(H,Fψ). The procedure
constructs in every iteration an NFA with a unique incoming and outgoing state and labels
every transition with the gadget that should replace this transition in the next iteration,
or with an alphabet letter if no more replacement is required. The initial such NFA is the
following:

Fψ

In the induction step, the rewriting of a transition labelled with Fγ depends on the logical
connective. A conjunction γ = α ∧ β is replaced by sequential composition:

Fα∧β =⇒
Fα Fβ

Thus, the outgoing state of the gadget Fα connects to the incoming state of the gadget Fβ .
In the case of a disjunction γ = α ∨ β, the transition is rewritten into three paths that,
informally speaking, correspond to possible truth assignments to the subformulas Fα and
Fβ . If the inequalities appearing in α are allowed to receive arbitrary values, the transition
labelled with Fα∨β is replaced by the sequential composition of two gadgets, Rα and Fβ ;
the other cases are treated in the same way:

C. Haase and P. Hofman 19

Fα∨β =⇒

Fα Rβ

ε

Rα Fβ

Once some Fti is reached, it gets replaced by the empty word:

Fti =⇒ ε

Moreover, if Rγ is reached it gets replaced by the gadget described earlier. From this
construction, it is clear that the regular grammar that can be obtained from the resulting
NFA exactly generates L(H,Fψ), and that in the following we may assume that H is regular.

We now turn towards showing how G can be made regular. Even though the struc-
ture of G already appears to be regular, note that we use the construction of Remark 6
in order to encode the constant c in binary. This is not possible in the case of regular
commutative grammar, at least not in an obvious way. However, we can use an interplay
between G and H in order to, informally speaking, force G to produce alphabet symbols in
exponential quantities. To this end, we introduce additional alphabet symbols and define
Γi

def= {p0, p1, p1, . . . , pi, pi} for every i ∈ N. Before formally providing the construction in
Lemma 16 below, let us discuss how we can achieve our goal on an informal level. Suppose
we wish to produce a word w ∈ Γ�i such that w(pi) = 2i · p0. One way to obtain a language
that contains such a word is to pair alphabet symbols pj and pj and to produce two symbols
pj every time some pj is non-deterministically produced. The pairing is illustrated in the top
of Figure 1, and, more formally, such a language can be generated by the following regular
grammar: C`

def= ({S`},Γi, S`, P`), where

S` → ε

S` → S`p0

S` → S`pjpjpj (0 ≤ j ≤ i).

Clearly, we can find some w ∈ L(C`) such that

w(pi) = 2 · w(pi) = 2 · w(pi−1) = 22 · w(pi−1) = · · · = 2i · w(p0).

Such a w implicitly requires another pairing, namely that w(pj+1) = w(pj) for all 0 ≤ j < i,
which is illustrated in the bottom of Figure 1. If we can rule out all words of L(C`) that
violate this pairing, we obtain a language containing the desired w ∈ Γ�i such that w(pi) =
2i ·w(p0). This is the task of the regular grammar Cr constructed in the following lemma.

I Lemma 16. For every i ∈ N, there are logarithmic-space computable regular commutative
grammars C` and Cr such that:

(i) L(C`) = {w ∈ Γ�i : w(pj) = 2 · w(pj) for every 1 ≤ j ≤ i}; and
(ii) L(Cr) = {w ∈ Γ�i : w(pj) 6= w(pj+1) for some 0 ≤ j < i}.
In particular, for every v ∈ L(C`) \ L(Cr), v(pi) = 2i · v(p0).

Proof. Regarding Part (i), clearly C` as defined above has the desired properties. In order to
prove Part (ii), we define Cr

def= (Nr,Γi, Sr, Pr), where Nr
def= {Sr} ∪ {Nj , Nj+1 : 0 ≤ j < i}

20 Tightening the Complexity of Equivalence Problems for Commutative Grammars

and

Sr → Srpi

Sr → Njpj Sr → Nj+1 pj+1 (0 ≤ j < i)
Nj → Njpj Nj+1 → Nj+1pj+1 (0 ≤ j < i)
Nj → Njpjpj+1 Nj+1 → Nj+1pjpj+1 (0 ≤ j < i)
Nj → Njpg Nj → Njpg (0 ≤ g, j < i, g 6= j)
Nj → Njpg+1 Nj → Njpg+1 (0 ≤ g, j < i, g 6= j)
Nj → ε Nj → ε (0 ≤ j < i).

Informally speaking, after non-deterministically producing alphabet symbols pi starting from
Sr, we can then non-deterministically choose an index 0 ≤ j < i such that either pj > pj+1
(when switching to Nj) or pj+1 > pj (when switching to Nj), and for any choice of j all
other alphabet symbols pg and pg+1 such that g 6= j can be produced in arbitrary quantities.
It is easily checked that L(Cr) has the desired properties. Now, we have

v ∈ L(C`) \ L(Cr)

⇐⇒ v ∈ L(C`) ∩ L(Cr)
⇐⇒ v ∈ L(C`) ∩ {w ∈ Γ�i : w(pj) = w(pj+1) for all 0 ≤ j < i}
⇐⇒ v ∈ {w ∈ Γ�i : w(pj+1) = 2 · w(pj+1) and w(pj) = w(pj+1) for all 0 ≤ j < i}
=⇒ v ∈ {w ∈ Γ�i : w(pj+1) = 2 · w(pj) for all 0 ≤ j < i}
=⇒ v(pi) = 2i · v(p0).

J

Let Σ = {t+1 , t
−
1 , . . . , t

+
k , t
−
k } be as defined in the previous section. The following corollary

is an immediate consequence of Lemma 16 and enables us to construct an exponential number
of t+i and t−i .

I Corollary 17. For every i ∈ N, there are logarithmic-space computable regular commutative
grammars CΣ

` and CΣ
r over Σ ∪ Γi such that

(i) L(CΣ
`) = L(C`) · Σ� ∩ {w ∈ (Σ ∪ Γi)� : w(t+j) = w(t−j) = w(pi)}; and

(ii) L(CΣ
r) = L(Cr) · Σ�.

where C` and Cr are defined as in Lemma 16.

Recall that H already is a regular commutative grammar, and let c be the constant
from (3) and j def= log c. We can now define regular versions Gr and Hr over Σ ∪ Γj of G
and H, respectively, such that L(Gr) ⊆ L(Hr) iff L(G) ⊆ L(H). Let u and vi be defined as
in (4), and let CΣ

` and CΣ
r be as defined in Corollary 17 for the alphabet Γj , the axiom of

Gr is SrG and the transitions of Gr are given by

SrG → Xp0u X → Xp0vj (1 ≤ j ≤ m)
X → CΣ

`

Moreover, Hr is the regular commutative grammar such that

L(Hr) = L(CΣ
r) ∪ L(H) · Γ�j .

The correctness of the construction can be seen as follows. Let w ∈ L(Gr), we distinguish
two cases:

C. Haase and P. Hofman 21

(i) If w(pi) 6= c · w(p0) then w ∈ L(CΣ
r) ⊆ L(Hr).

(ii) Otherwise, w(pi) = c · w(p0) and w 6∈ L(CΣ
r). Consequently, w ∈ L(Hr) iff w ∈

L(H) · Γ�j thus πΣ(w) ∈ L(H). But we know that πΣ(w) ∈ L(G).
Concluding, we have L(Gr) ⊆ L(Hr) if L(G) ⊆ L(H). The implication in the opposite
direction is obvious, which completes our proof.

D Missing Proofs from Section 4

Here, we present the full details and show that language inclusion for exponent-sensitive
commutative grammars is in co-2NEXP. Let G and H be exponent-sensitive commutative
grammars, and let s def= #G, t def= #H and L(G),L(H) ⊆ Σ�. We begin with stating
the relevant facts about the semi-linear representation of the reachability set of exponent-
sensitive commutative grammars. The subsequent proposition is derived from [22, Lem. 5.4],
which is stated in terms of generalised communication-free Petri nets, but as argued in
the proof of [22, Thm. 6.1], there is a logarithmic-space reduction from exponent-sensitive
commutative grammars to such Petri nets which preserves reachability sets, and hence allows
us to apply [22, Lem. 5.4].

I Proposition 18 ([22]). There exists a fixed polynomial p such that the reachability set
R(G) =

⋃
i∈I L(bi, Qi) is computable in DTIME(22poly(s)) such that for every i ∈ I,

|I| ≤ 22p(s) and |Qi| ≤ 2p(s); and
#bi ≤ p(s) and #q ≤ p(s) for every q ∈ Qi.

Next, we introduce Huynh’s decomposition of linear sets as described above. The following
proposition is a consequence and a summary of Proposition 2.6 and Lemmas 2.7 and 2.8
in [14].

I Proposition 19 ([14]). Let M = L(b, Q) be a linear set. There is a fixed polynomial p
such that M =

⋃
i∈IMi and for every i ∈ I, Mi = L(bi, Qi) with

bi ∈ L(b, Q) and #bi ≤ p(#M); and
Qi ⊆ Q is has full column rank and |Qi| = rank(Q).

Subsequently, for a givenM = L(b, Q), whenever
⋃
i∈I L(bi, Qi) has the properties described

in Proposition 19, we say that it is the Huynh representation of M .

I Lemma 20. Let M = L(b, Q) be a linear set. The Huynh representation of M can be
computed DTIME(2poly(#M)).

Proof. Let p be the polynomial from Proposition 19. First, we compute the set of bi as
follows: we enumerate all candidates bi such that #bi ≤ p(#M), there is at most an
exponential number of them. For every candidate we check if bi ∈ L(b, Q), which can be
done in NP. Next, we enumerate all subsets Qi ⊆ Q of full column rank and cardinality
rank(Q), again there are at most exponentially many of them. Finally, we output the all
possible combinations of the bi with the Qi. J

I Lemma 21. The Huynh representation of R(G) can be computed in DTIME(22poly(s)).

Proof. First, we apply Proposition 18 in order to compute a semi-linear representation⋃
i∈I L(bi, Qi) of R(G) such that |I| ≤ 22p(s) , |Qi| ≤ 2p(s), and #bi ≤ p(s) and #q ≤

p(s) for every q ∈ Qi for some fixed polynomial p. By Lemma 20, from every Mi =
L(bi, Qi) we can compute an equivalent Huynh representation Ni =

⋃
j∈Ji L(ci,j , Ri,j)

of Mi in DTIME(2poly(#Mi)) = DTIME(22poly(s)). Thus, the overall procedure also runs in
DTIME(22poly(s)). J

22 Tightening the Complexity of Equivalence Problems for Commutative Grammars

As the final ingredient, we state Huynh’s result that whenever inclusion between two
semi-linear sets does not hold then there exists a witness of polynomial bit-size.

I Proposition 22 ([15]). Let M,N ⊆ Nm be semi-linear sets. There is a fixed polynomial p
such that whenever M 6⊆ N then there exists some v ∈M \N such that #v ≤ p(#M+#N).

We are now fully prepared to prove the main statement of this section, which immediately
yields the upper bound for Theorem 2.

I Proposition 23. Deciding L(G) ⊆ L(H) is in co-2NEXP.

Proof. We describe a co-2NEXP-algorithm. First, by combining Proposition 18 with Propo-
sition 22, if L(G) 6⊆ L(H) then there is some w ∈ Σ� such that #w ≤ 22p(s+t) for some
fixed polynomial p. The algorithm non-deterministically chooses such a w. Now the al-
gorithm computes the Huynh representations of R(G) and R(H) in DTIME(22poly(s+t)) =
DTIME(poly(#w)). For every linear set M = L(b, Q) in the Huynh representation of R(G)
and R(H), #b ≤ p(s + t), #q ≤ p(s + t) for all q ∈ Q and some fixed polynomial p, and
Q has full column rank and hence |Q| ≤ |Σ|. Thanks to those properties, w ∈ L(b, Q)
can be decided in DTIME(poly(#M)) using Gaussian elimination. Consequently, checking
w ∈ L(G) \ L(H) can be performed in DTIME(poly(#w)). J

	Introduction
	Preliminaries
	Commutative Grammars.
	Presburger Arithmetic, Linear Diophantine Inequalities and Semi-Linear Sets.

	Lower Bounds
	Hardness for Regular Commutative Grammars

	Exponent-Sensitive Commutative Grammars
	Applications to Further Equivalence Problems
	Conclusion
	Missing Proofs from Section ??
	Missing Proofs from Section ??
	Proof of Lemma ??
	Proof of Lemma ??
	Further Details to the Proof of Lemma ??
	Further Details to Remark ??

	Missing Proofs from Section ??
	Missing Proofs from Section ??

