
SeLoger: A Tool for Graph-Based Reasoning in
Separation Logic

Christoph Haase?1, Samin Ishtiaq2, Joël Ouaknine3, and
Matthew J. Parkinson2

1 LSV – CNRS & ENS Cachan, France
2 Microsoft Research Cambridge, UK

3 Department of Computer Science, University of Oxford, UK

Abstract. This paper introduces the tool SeLoger, which is a rea-
soner for satisfiability and entailment in a fragment of separation logic
with pointers and linked lists. SeLoger builds upon and extends graph-
based algorithms that have recently been introduced in order to settle
both decision problems in polynomial time. Running SeLoger on stan-
dard benchmarks shows that the tool outperforms current state-of-the-
art tools by orders of magnitude.

1 Introduction

Tools based on separation logic [4,6] have shown tremendous promise when ap-
plied to the problem of formal verification in the presence of mutable data-
structures. For example, shape analysis tools such as SpaceInvader, Thor,
SLAyer or Infer are nowadays being applied to a range of low-level indus-
trial systems code. Inside, these shape analysis tools mix traditional abstract
interpretation techniques (e.g. custom abstract joins) combined with entailment
procedures for restricted subsets of separation logic. Thus, one method for im-
proving the scalability and applicability of these tools is to improve the under-
lying entailment or other decision procedures. This has been an active area of
recent research, see e.g. [2,3,5].

Recently, we have shown in [3] that entailment in the fragment of separation
logic with pointers and linked lists can be decided in polynomial time. This
fragment was introduced in [1], and it forms the basis of a number of tools such as
Smallfoot, SpaceInvader, and SLAyer. Traditionally, the separation logic
reasoners integrated in those tools decide entailment via a syntactic proof search.
In contrast, the decision procedure presented in [3] takes a different approach
which is based on graph-theoretical methods.

In this paper, we introduce the tool SeLoger (SEparation LOgic Graph-
basEd Reasoner) which implements an extension of the decision procedures pre-
sented in [3]. In Section 4, we compare SeLoger to the tool SLP by Navarro

?
Parts of the research were carried out while the author was an intern at Microsoft Research
Cambridge, UK, and while the author held an EPSRC PhD+ fellowship at the Department of
Computer Science, University of Oxford, UK. The author is supported by the French Agence
Nationale de la Recherche, ReacHard (grant ANR-11-BS02-001).

Peréz and Rybalchenko [5]. They show that SLP outperforms the reasoners in
Smallfoot and jStar by several orders of magnitude, and we can show that
SeLoger outperforms SLP by orders of magnitude.

Recently, in [2] Bouajjani et al. have introduced the tool SLAD which also
builds upon some of the ideas presented in [3]. One difference to our tool is that
it decides entailment under intuitionistic semantics, which is also the semantic
model considered in [3]. In contrast, the semantic model dealt with in [1] is non-
intuitionistic, and the decision procedure implemented in SeLoger extends the
one presented in [3] in a non-trivial way in order to decide entailment under
this semantic model. We also fixed in our implementation some subtle issues we
discovered in the algorithm from [3]. Although SeLoger can decide entailment
under intuitionistic semantics, since our target semantic model is the one pre-
sented in [1], we do not compare SeLoger to SLAD. We do not expect major
differences to arise when comparing SLAD to SeLoger on the intersection of
the logical languages supported by the tools.

2 Separation Logic

SeLoger decides satisfiability and entailment in the fragment of separation logic
introduced in [1]. The syntax of the assertion language of this fragment is given
by the following grammar, where x and y range over an infinite set of variables:

φ ::= > | ⊥ | x = y | x 6= y | φ ∧ φ (pure formulas)

σ ::= emp | true | pt(x, y) | ls(x, y) | σ ∗ σ (spatial formulas)

α ::= (φ;σ) (assertions)

We call assertions of our assertion language SL formulas. For brevity, we only
informally introduce the semantics of SL formulas. In [1], SL formulas are in-
terpreted over memory models consisting of a heap and a stack. A heap is a
function mapping a finite subset of an infinite domain of heap cells (usually the
naturals) to heap cells. The elements of the domain of a heap are called allocated
heap cells. A stack maps a finite subset of variables to heap cells, i.e., it labels
heap cells with variables. Pure formulas make Boolean judgements about stacks
in the obvious way, e.g. a stack models x = y if x and y are mapped to the same
heap cell. Spatial formulas on the other hand make judgements about the shape
of the heap. With emp a heap is required to have no allocated heap cells; true
holds always; the points-to relation pt(x, y) requires that the heap consists of a
single allocated cell labelled with x that maps to the heap cell labelled with y;
and the list relation ls(x, y) requires that there be a chain of connected allocated
heap cells starting in x and ending in y with no repetitions. Finally, σ1 ∗σ2 holds
for a heap if the set of allocated heap cells can be partitioned into disjoint sets
such that σ1 holds on the first partition and σ2 on the second. Last, given a
memory model, an assertion (φ;σ) holds if the stack is a model of φ and the
heap a model of σ.

Given SL formulas α, α′, satisfiability asks whether there is a memory model
in which α holds, and entailment is to decide whether α′ holds in every memory

x2

x4

x3

x5

x6

x7

x9

x1

x4

x10

x2

x3

x8

x5

x6

x7

x9

Fig. 1. Example of two SL graphs G1 and G2 and a graph homomorphism between
them witnessing entailment between the corresponding SL formulas.

model in which α holds, written α |= α′. We call α the assumption and α′ the
goal of the entailment.

3 A Sketch of the Graph-Based Entailment Algorithm

The key idea of the algorithm presented in [3] is to represent SL formulas as
directed labelled coloured graphs (SL graphs). Entailment can then be decided
by checking whether a canonical mapping from the set of nodes of the graph
representing the goal to the set of nodes representing the assumption fulfils
certain homomorphism conditions.

For brevity, instead of providing formal definitions, let us illustrate the rep-
resentation of SL formulas as SL graphs and a homomorphism witnessing en-
tailment between the formulas with the help of an example which can be found
in Figure 1. The graph G1 in the left-hand side box represents the SL for-
mula α1 = (>;σ1) and the graph G2 in the right-hand side box the SL formula
α2 = (>;σ2), where

σ1 = pt(x7, x10) ∗ pt(x2, x1) ∗ pt(x10, x4) ∗ pt(x5, x4) ∗ pt(x1, x4) ∗ pt(x4, x3)∗
∗ pt(x9, x3) ∗ pt(x8, x4) ∗ ls(x6, x3) ∗ ls(x3, x8); and

σ2 = ls(x2, x4) ∗ ls(x5, x4) ∗ ls(x7, x4) ∗ ls(x4, x3) ∗ ls(x3, x4) ∗ ls(x6, x3) ∗ ls(x9, x3).

Both SL formulas belong to an actual entailment instance found in the bench-
mark suite used in this paper and have been generated by SeLoger using
GraphViz. The points-to relation is represented by solid arrows and the list re-
lations by dashed arrows, nodes of the graphs correspond to equivalence classes
of variables (here, each equivalence class is a singleton). The canonical mapping

h is represented by dotted arrows and witnesses that each list edge in G2 has a
corresponding path in G1. For example, there is a path from the node labelled
with x3 to the node labelled with x4 in G1, which is required by the list edge
from x3 to x4 in G2. Furthermore, no edge in G1 occurs along two paths that
are induced by two different list edges of G2 under h, and all edges in G1 occur
along a path that is induced by a list edge of G2 under h. Together with some
further technical conditions, we can show that h is a homomorphism and that
consequently α1 entails α2.

In general, the SL graphs corresponding to SL formulas do not exhibit such
a nice structure as the ones presented in Figure 1. However, it is shown in [3]
that any SL formula α is equivalent to an SL formula α′ whose corresponding
SL graph G enjoys some nice structural properties, e.g. that between any two
nodes there is at most one loop-free path. In [3], a saturation procedure (there
called reduction procedure) is presented that given α computes such a graph G
if α is satisfiable, and indicates that α is unsatisfiable otherwise. In summary,
the decision procedure for an entailment α1 |= α2 presented in [3] can be broken
into three parts:

(i) Construction of the SL graphs G1 and G2 representing α1 and α2

(ii) Saturation of α1 and α2 (which gives a satisfiability test as a byproduct)

(iii) Checking whether the canonical mapping from the nodes of G2 to the nodes
of G1 is a homomorphism

4 Experimental Evaluation

We have tested SeLoger against the tool SLP, rev. 13591, by Navarro Peréz
and Rybalchenko [5] on the benchmark suite4 used in the same paper and one
class of benchmarks generated by us. In [5], the authors compare SLP to the
reasoners used in jStar and Smallfoot. Since SLP significantly outperforms
both jStar and Smallfoot on essentially all test cases, we decided to only
benchmark SeLoger against SLP.

The benchmarks suite in [5] consists of three classes of benchmarks called
“spaguetti”, “bolognesa” and “clones”. The class “bolognesa” consists of 11 files,
each containing 1000 entailment checks of the form α |= α′. Both α and α′ are SL
formulas which are generated at random according to some rules specified in [5].
Initially, both SL formulas range over ten variables and this number is increased
in each file by one such that the last “bolognesa” file contains 1000 entailment
checks over formulas with 20 variables. Similarly, the “spaguetti” class contains
11 files with 1000 entailment checks of the form α |= ⊥, where α is generated
at random and the number of variables used in α increases by one starting
from 10. In both classes, the random instances are chosen such that roughly
50% of the entailments are valid. Finally, the “clones” class contains real-world

4 The benchmark suite can be downloaded at http://navarroj.com/research/

tools/slp-benchmarks.tgz

http://navarroj.com/research/tools/slp-benchmarks.tgz
http://navarroj.com/research/tools/slp-benchmarks.tgz

B.mark SLP SeLoger B.mark. SLP SeLoger B.mark SLP SeLoger B.mark SLP SeLoger
bo-10 1410 291 sp-10 1240 255 cl-01 65 14 aw-01 23 1
bo-11 1781 341 sp-11 2214 297 cl-02 67 20 aw-02 25 2
bo-12 2421 439 sp-12 8181 348 cl-03 82 26 aw-03 28 2
bo-13 11.9k 442 sp-13 15.6k 391 cl-04 93 34 aw-04 33 3
bo-14 5862 467 sp-14 15.2k 408 cl-05 117 44 aw-05 43 3
bo-15 3937 495 sp-15 18.6k 438 cl-06 147 52 aw-06 64 4
bo-16 7156 546 sp-16 3503 442 cl-07 207 62 aw-07 127 5
bo-17 14.2k 571 sp-17 94.2k 517 cl-08 364 72 aw-08 345 6
bo-18 20.8k 642 sp-18 5129 525 cl-09 826 84 aw-09 1157 7
bo-19 40.7k 705 sp-19 27.2k 549 cl-10 2466 95 aw-10 4492 8
bo-20 27.0k 752 sp-20 70.7k 595 cl-11 8794 105 aw-11 18.4k 10

cl-12 34.2k 118 aw-12 76.2k 11
cl-13 139.8k 130

Table 1. Comparison of SLP and SeLoger on the benchmark set used in [5] and an
additional class (“awkward”). All times are in ms.

entailments. It consists of 13 files5, each containing 209 entailments that were
extracted from verification conditions generated by Smallfoot when run on
the examples shipped with the tool. Some of the entailments require an enriched
syntax since they include arbitrary data fields. The algorithm presented in [3]
can, however, be straight-forwardly generalised to also allow for data fields as re-
quired by the benchmarks. Since the verification conditions are of a rather simple
nature, in order to increase the complexity the “clones” class incrementally adds
copies of the entailments to each entailment such that in the last benchmark file,
each entailment consists of 13 copies of the original entailment. Last, we gener-
ated a benchmark class called “awkward”, where the n-th instance consists of a
single entailment of the form ∗1≤i≤nls(xi, yi) ∗ ls(xi, zi) ∗ ls(yi, wi) ∗ ls(zi, wi) |=
∗1≤i≤nls(xi, yi) ∗ ls(yi, xi) ∗ ls(xi, zi) ∗ ls(zi, xi).

SeLoger is written in F# and, according to [5], SLP is implemented in
Prolog and was provided to us as a binary file. We ran the SeLoger benchmarks
on a Samsung Series 9 ultrabook with an Intel R© Core

TM

i5-2467M 1.60 GHz
processor with 4 GB DDR3 1066 MHz under Windows R© 7 Home Premium (64-
bit) and the SLP benchmarks on the same machine under Ubuntu Linux 12.04.1.

The results of the benchmarks are shown in Table 1 and illustrated in Figure
2. In Table 1, each column contains the average running time over ten runs.
For SeLoger, the average coefficient of variation encountered was 0.05 with a
standard deviation of 0.05, and for SLP the average coefficient of variation was
0.04 with a standard deviation of 0.07. We observe that SeLoger finishes on
all benchmarks in less than 800ms, that it is up to 1075 times faster on the
benchmarks from [5], and that the running time encountered in praxis appears
almost linear, while it grows exponentially for SLP. We created the “awkward”
benchmarks with the intention of exaggerating this difference. Also note that
SeLoger behaves in general more robustly in the sense that the running times
monotonically increase with the complexity of the benchmarks.

5 In [5], the “clones” class only consists of eight files, however for better comparison
we generated the additional five files using the benchmark generator used in [5]

0 2 4 6 8 10 12
100

1000

10000

100000

Bolognesa

SeLoger
SLP

benchmark

tim
e
in
m
s

0 2 4 6 8 10 12
100

1000

10000

100000

Spaguetti

SeLoger
SLP

benchmark

tim
e
in
m
s

Fig. 2. Graphical illustration of some data from Table 1 on a logarithmic scale.

5 Conclusion

In this paper, we introduced the tool SeLoger which implements and extends
the entailment algorithm for the fragment of separation logic with pointers and
linked lists described in [3]. We compared our tool to the tool SLP by Navarro
Peréz and Rybalchenko [5]. Our benchmarks show that SeLoger outperforms
SLP on all benchmarks considered and is often orders of magnitudes faster.

Together with other tools such as SLAD [2] that are based on the graph-
based approach to entailment checking from [3], this suggests that this approach
not only yields new complexity results, but also delivers practically-usable and
high-performance algorithms. We are confident that SeLoger can serve as a
basis for future work on graph-based algorithms and decision procedures for
even richer fragments of separation logic and will find its way into future program
verifiers.

Acknowledgement. We would like to thank Juan Antonio Navarro Peréz for
making SLP available to us.

References

1. Josh Berdine, Cristiano Calcagno, and Peter O’Hearn. A decidable fragment of
separation logic. In Proceedings of FSTTCS’04, volume 3328 of LNCS, pages 110–
117. Springer, 2005.

2. Ahmed Bouajjani, Cezara Drăgoi, Constantin Enea, and Mihaela Sighireanu. Ac-
curate invariant checking for programs manipulating lists and arrays with infinite
data. In Proceedings of ATVA’12, LNCS, pages 167–182. Springer, 2012.

3. Byron Cook, Christoph Haase, Joël Ouaknine, Matthew Parkinson, and James Wor-
rell. Tractable reasoning in a fragment of separation logic. In Proceedings of CON-
CUR’11, volume 6901 of LNCS, pages 235–249. Springer, 2011.

4. Samin Ishtiaq and Peter O’Hearn. BI as an assertion language for mutable data
structures. In Proceedings of POPL’01, pages 14–26. ACM, 2001.

5. Juan Antonio Navarro Peréz and Andrey Rybalchenko. Separation logic + Super-
position calculus = Heap theorem prover. In Proceedings of PLDI’11, San Jose, CA,
USA, 2011. ACM Press.

6. John C. Reynolds. Separation logic: A logic for shared mutable data structures. In
Proceedings of LICS’02. IEEE Computer Society, 2002.

	SeLoger: A Tool for Graph-Based Reasoning in Separation Logic

