
Counting Problems for Parikh Images
Christoph Haase1, Stefan Kiefer1, and Markus Lohrey2

1 University of Oxford, UK
2 University of Siegen, Germany

Abstract
Given finite-state automata (or context-free grammars) A,B over the same alphabet and a Parikh
vector p, we study the complexity of deciding whether the number of words in the language of
A with Parikh image p is greater than the number of such words in the language of B. Recently,
this problem turned out to be tightly related to the cost problem for weighted Markov chains. We
classify the complexity according to whether A and B are deterministic, the size of the alphabet,
and the encoding of p (binary or unary).

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Parikh images, finite automata, counting problems

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

1 Introduction

In our recent papers [6, 8], the authors started an investigation of the so called cost problem:
Given a Markov chain whose transitions are labelled with non-negative integers and which
has a designated target state t, a probability threshold τ , and a Boolean combination of
linear inequalities over one variable ϕ(x), the cost problem asks whether the accumulated
probability pϕ of paths achieving a value consistent with ϕ when reaching t is at least τ .
It has been shown in [6] by the first two authors that the cost problem can be decided in
PSPACE. In [8] the upper bound was improved to membership in the counting hierarchy
CH, and the same upper bound has been shown for the related problem of computing a
certain bit of the aforementioned probability pϕ. At the algorithmic core of those complexity
results [6, 8] are the following two counting problems: Given a finite-state automaton A over
a finite alphabet Σ and a Parikh vector p (i.e., a function mapping every alphabet symbol
from Σ to N), we denote by N(A,p) the number of words accepted by A whose Parikh
image is p. Then BitParikh is the problem of computing a certain bit of the number
N(A,p) for a given finite-state automaton A and a Parikh vector p. Further, PosParikh
is the problem of checking whether N(A,p) > N(B,p) for two given automata A and B
(over the same alphabet) and a Parikh vector p. We proved in [8] that BitParikh and
PosParikh both belong to the counting hierarchy if the input automata are deterministic
and the Parikh vectors are encoded in binary, and we used these results to show that the
cost problem belongs to CH.

The counting hierarchy is defined similarly to the polynomial-time hierarchy using count-
ing quantifiers, see [2] or Section 2.3 for more details. It is contained in PSPACE and this
inclusion is believed to be strict. In recent years, several numerical problems, for which only
PSPACE upper bounds had been known, have been shown to be in CH. Two of the most
important and fundamental problems of this kind are PosSLP and BitSLP: PosSLP is
the problem of deciding whether a given arithmetic circuit over the operations +, − and ×
evaluates to a positive number, and BitSLP asks whether a certain bit of the computed

© Christoph Haase and Stefan Kiefer and Markus Lohrey;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Acces; Article No. 23; pp. 23:1–23:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CVIT.2016.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Counting Problems for Parikh Images

number is equal to 1. Note that an arithmetic circuit with n gates can evaluate to a number
in the order of 22n ; hence the number of output bits can be exponential and a certain bit of
the output number can be specified with polynomially many bits. It has been shown in [6,
Prop. 5] that the cost problem is hard for both PosSLP and PP (probabilistic polynomial
time).

The tight relationship between the cost problem and counting problems for Parikh images
motivates the investigation of the complexity of BitParikh and PosParikh also for other
variants: Instead of a DFA, one can specify the language by an NFA or even a context-free
grammar (CFG). Indeed, Kopczyński [13] recently asked about the complexity of computing
the number of words with a given Parikh image accepted by a CFG. Other natural input
parameters are the alphabet size (variable size, fixed size or even singleton) and the encoding
of Parikh vectors (unary or binary). In this paper we carry out a detailed complexity analysis
of BitParikh and PosParikh for the different settings. Our results on the complexity of
PosParikh are collected in Table 1, and similar results also hold for BitParikh.

Interestingly, we show that PosParikh for DFA over a two-letter alphabet and Parikh
vectors encoded in binary is hard for PosMatPow. The latter problem was recently
introduced by Galby, Ouaknine and Worrell [4] and asks, given a square integer matrix
M ∈ Zm×m, a linear function f : Zm×m → Z with integer coefficients, and a positive inte-
ger n, whether f(Mn) ≥ 0, where all numbers in M , f and n are encoded in binary. Note
that the entries of Mn are generally of size exponential in the size of n. It is shown in [4]
that PosMatPow can be decided in polynomial time for fixed dimension m = 2. The
same holds for m = 3 provided that M is given in unary [4]. The general PosMatPow
problem is in CH; in fact, it is is reducible to PosSLP, but the complexity of PosMatPow
is left open in [4]. In particular, it is not known whether PosMatPow is easier to decide
than PosSLP. Our result that PosParikh is PosMatPow-hard already for a fixed-size
alphabet while PosSLP-hardness seems to require an alphabet of variable size [6] could be
seen as an indication that PosMatPow is easier to decide than PosSLP.

Due to space constraints, we can only sketch some proofs in the main part. Full proofs
of all statements can be found in the appendix.

1.1 Related Work
A problem related to the problem PosParikh is the computation of the number of all
words of a given length n in a language L. If n is given in unary encoding, then this
problem can be solved in NC2 for every fixed unambiguous context-free language L [3]. On
the other hand, there exists a fixed context-free language L ⊆ Σ∗ (of ambiguity degree
two) such that if the function an 7→ #(L ∩ Σn) can be computed in polynomial time, then
EXPTIME = NEXPTIME [3]. Counting the number of words of a given length encoded in
unary that are accepted by a given NFA (which is part of the input in contrast to the results
of [3]) is #P-complete [14, Remark 3.4]. The corresponding problem for DFA is equivalent
to counting the number of paths between two nodes in a directed acyclic graph, which is the
canonical #L-complete problem. Note that for a fixed alphabet and Parikh vectors encoded
in unary, the computation of N(A,p) for an NFA (resp. DFA) A can be reduced to the
computation of the number of words of a given length encoded in unary accepted by an
NFA (resp. DFA) A′: In that case, one can easily compute in logspace a DFA Ap for the set
of all words with Parikh image p and then construct the product automaton of A and Ap.

There exist several results related to the PosMatPow problem: Matrix powers An

with n given in unary and A of constant dimension can be computed in DLOGTIME-uniform
TC0 [9, 1]. If n is given in binary (and A has again constant dimension) then the computation

C. Haase, S. Kiefer, M. Lohrey 23:3

Parikh vector size of Σ DFA NFA CFG

unary encoding
unary in L (12) NL-compl. (12) P-compl. (12)
fixed PL-compl.(2)

variable PP-compl. (2, 8, 9)

binary encoding

unary in L (12) NL-compl. (12) DP-compl. (12)

fixed PosMatPow-hard,
in CH (1, 2) PSPACE-compl.

(8, 9)
PEXP-compl.

(8, 9)
variable

PosSLP-hard [6],
in CH (1)

Table 1 The complexity landscape of PosParikh. References to propositions proving the stated
complexity bounds are in parentheses.

of a certain bit of An can be done in PHPPPPPP

[1].

2 Preliminaries

2.1 Counting Problems for Parikh Images
Let Σ = {a1, . . . , am} be a finite alphabet. A Parikh vector is vector of m non-negative
integers, i.e., an element of Nm. Let u ∈ Σ∗ be a word. For a ∈ Σ, we denote by |u|a the
number of times a occurs in u. The Parikh image Ψ(u) ∈ Nm of u is the Parikh vector
counting how often every alphabet symbol of Σ occurs in u, i.e., Ψ(u) := (|u|a1 , . . . , |u|am).
The Parikh image of a language L ⊆ Σ∗ is defined as Ψ(L) := {Ψ(u) : u ∈ L} ⊆ Nm.

We use standard language accepting devices in this paper. A non-deterministic finite-
state automaton (NFA) is a tuple A = (Q,Σ, q0, F,∆), where Q is a finite set of control
states, Σ is a finite alphabet, q0 ∈ Q is an initial state, F ⊆ Q is a set of final states,
and ∆ ⊆ Q × Σ × Q is a set of transitions. We write p a−→ q whenever (p, a, q) ∈ ∆.
For convenience, we sometimes label transitions with words w ∈ Σ+. Such a transition
corresponds to a chain of transitions that are consecutively labelled with the symbols of w.
We call A a deterministic finite-state automaton (DFA) if for all p ∈ Q and all a ∈ Σ there
is at most one state q ∈ Q with p a−→ q. Given u = a1a2 · · · an ∈ Σ∗, a run % of A on u is
a finite sequence of control states % = p0p1 · · · pn such that p0 = q0 and pi−1

ai−→ pi for all
1 ≤ i ≤ n. We call % accepting whenever pn ∈ F and define the language accepted by A
as L(A) := {u ∈ Σ∗ : A has an accepting run on u}. Finally, context-free grammars (CFG)
are defined as usual.

Let Σ be an alphabet of size m and p ∈ Nm be a Parikh vector. For a language acceptor
A (a DFA, NFA, or CFG), we denote by N(A,p) the number of words in L(A) with Parikh
image p, i.e.,

N(A,p) := #{u ∈ L(A) : Ψ(u) = p}.

We denote the counting function that maps (A,p) to N(A,p) by #Parikh. For complexity
considerations, we have to specify

(i) the type of A (DFA, NFA, CFG),
(ii) the encoding of (the numbers in) p (unary or binary), and
(iii) whether the underlying alphabet is fixed or part of the input (variable).

CVIT 2016

23:4 Counting Problems for Parikh Images

For instance, we speak of #Parikh for DFA over a fixed alphabet and Parikh vectors
encoded in binary. The same terminology is used for the following computational problems:

PosParikh
INPUT: Language acceptors A,B over an alphabet Σ of size m and a Parikh vector

p ∈ Nm.
QUESTION: Is N(A,p) > N(B,p)?

BitParikh
INPUT: Language acceptor A over an alphabet Σ of size m, a Parikh vector p ∈ Nm,

and a number i ∈ N encoded binary.
QUESTION: Is the i-th bit of N(A,p) equal to one?

Note that for a Parikh vector p encoded in binary, the number N(A,p) is at most doubly
exponential in the input length (size of A plus number of bits in p), and this bound can be
reached. Hence, the number of bits in N(A,p) is at most exponential, and a certain position
in the binary encoding of N(A,p) can be specified with polynomially many bits.

The following two results from [6, 8] are the starting point for our further investigations
in this paper (see Section 2.3 below for the formal definition of the counting hierarchy):

I Theorem 1 ([6, 8]). For DFA over a variable alphabet and Parikh vectors encoded in bi-
nary, the problems BitParikh and PosParikh belong to the counting hierarchy. Moreover,
the problem PosParikh (resp., BitParikh) is PosSLP-hard (resp., BitSLP-hard).1

2.2 Graphs
A (finite directed) multi-graph is a tuple G = (V,E, s, t), where V is a finite set of nodes,
E is a finite set of edges, and the mapping s : E → V (resp., t : E → V) assigns to each
edge its source node (resp., target node). A loop is an edge e ∈ E with s(e) = t(e). A
path (of length n) in G from u to v is a sequence of edges e1, e2, . . . , en such that s(e1) = u,
t(en) = v, and t(ei) = s(ei+1) for all 1 ≤ i ≤ n− 1. The out-degree of a node v ∈ V is the
number #s−1(v) of outgoing edges of v.

An edge-weighted multi-graph is a tuple G = (V,E, s, t, w), where (V,E, s, t) is a multi-
graph and w : E → N assigns a weight to every edge. We can define the ordinary multi-graph
G̃ induced by G by replacing every edge e ∈ E by k = w(e) many edges e1, . . . , ek with
s(ei) = s(e) and t(ei) = t(e). For u, v ∈ V and n ∈ N, define N(G, u, v, n) as the number
of paths in G̃ from u to v of length n. Note that the different edges e1, . . . , ek that replaced
an edge e with w(e) = k are distinguished in paths.

2.3 Computational Complexity
We assume familiarity with basic complexity classes such as L (deterministic logspace), NL,
P, NP, PH (the polynomial time hierarchy) and PSPACE. The class DP is the class of all
intersections K∩L with K ∈ NP and L ∈ coNP. Hardness for a complexity class will always
refer to logspace reductions.

A counting problem is a function f : Σ∗ → N for a finite alphabet Σ. A counting class
is a set of counting problems. A logspace reduction from a counting problem f : Σ∗ → N to
a counting problem g : Γ∗ → N is a logspace computable function h : Σ∗ → Γ∗ such that for

1 In [6] only the PosSLP-hardness of PosParikh is explicitly shown, but the construction from [6]
implies that BitParikh is BitSLP-hard.

C. Haase, S. Kiefer, M. Lohrey 23:5

all x ∈ Σ∗: f(x) = g(h(x)). Note that no post-computation is allowed. Such reductions are
also called parsimonious. Hardness for a counting class will always refer to parsimonious
logspace reductions.

The counting class #P contains all functions f : Σ∗ → N for which there exists a non-
deterministic polynomial-time Turing machine M such that for every x ∈ Σ∗, f(x) is the
number of accepting computation paths of M on input x. The class PP (probabilistic poly-
nomial time) contains all problems A for which there exists a non-deterministic polynomial-
time Turing machine M such that for every input x, x ∈ A if and only if more than half
of all computation paths of M on input x are accepting. By a famous result of Toda [20],
PH ⊆ PPP, where PPP is the class of all languages that can be decided in deterministic poly-
nomial time with the help of an oracle from PP. Hence, if a problem is PP-hard, then this can
be seen as a strong indication that the problem does not belong to PH (otherwise PH would
collapse). If we replace in the definitions of #P and PP non-deterministic polynomial-time
Turing machines by non-deterministic logspace Turing machines (resp., non-deterministic
polynomial-space Turing machines; non-deterministic exponential-time Turing machines),
we obtain the classes #L and PL (resp., #PSPACE and PPSPACE; #EXP and PEXP). Lad-
ner [15] has shown that a function f belongs to #PSPACE if and only if for a given input x
and a binary encoded number i the i-th bit of f(x) can be computed in PSPACE. It follows
that PPSPACE = PSPACE. It is well known that PP can be also defined as the class of all
languages L for which there exist two #P-functions f1 and f2 such that x ∈ L if and only
if f1(x) > f2(x), and similarly for PL and PEXP.

The levels of the counting hierarchy Cp
i (i ≥ 0) are inductively defined as follows: Cp

0 = P
and Cp

i+1 = PPCp
i (the set of languages accepted by a PP-machine as above with an oracle

from Cp
i) for all i ≥ 0. Let CH =

⋃
i≥0 Cp

i be the counting hierarchy. It is not difficult to
show that CH ⊆ PSPACE, and most complexity theorists conjecture that CH (PSPACE.
Hence, if a problem belongs to the counting hierarchy, then the problem is probably not
PSPACE-complete. More details on the counting hierarchy can be found in [2].

3 Parikh Counting Problems for DFA

Recall that PosParikh (resp., BitParikh) is PosSLP-hard (resp., BitSLP-hard), see
Theorem 1. The variable alphabet and binary encoding of Parikh vectors are crucial for the
proof of the lower bound. In this section, we complement Theorem 1 by showing further
results for DFA when the alphabet is not unary. The results of this section are collected in
the following proposition.

I Proposition 2. For DFA, we have:

(i) #Parikh (resp. PosParikh) is #L-complete (resp. PL-complete) for a fixed alphabet
of size at least two and Parikh vectors encoded in unary.

(ii) #Parikh (resp. PosParikh) is #P-complete (resp. PP-complete) for a variable al-
phabet and Parikh vectors encoded in unary.

(iii) PosParikh is PosMatPow-hard for a fixed binary alphabet and Parikh vectors en-
coded in binary.

Proof sketch of Proposition 2(i) and (ii). We only sketch the main ideas, all details can
be found in the appendix. Regarding (i), the lower bound for #L follows via a reduction
from the canonical #L-complete problem of computing the number of paths between two
nodes in a directed acyclic graph [16], and for the PL lower bound one reduces from the
problem whether the number of paths from s to t0 is larger than the number of paths from

CVIT 2016

23:6 Counting Problems for Parikh Images

s to t1. For the upper bound, let A be a DFA over a fixed alphabet and p be a Parikh
vector encoded in unary. A non-deterministic logspace machine can guess an input word for
A symbol by symbol. Thereby, the machine only stores the current state of A (which needs
logspace) and the binary encoding of the Parikh image of the word produced so far. The
machine stops when the Parikh image reaches the input vector p and accepts iff the current
state is final. Note that since the input Parikh vector p is encoded in unary notation, all
numbers that appear in the accumulated Parikh image stored by the machine need only
logarithmic space. Moreover, since the alphabet has fixed size, logarithmic space suffices
to store the whole Parikh image. The number of accepting computations of the machine is
exactly N(A,p), which yields the upper bound for #L as well as for PL.

Regarding (ii), the #P-lower bound for #Parikh follows from a more or less straight
forward reduction from #3SAT [17, p. 442], where the unfixed alphabet allows for repre-
senting assignments of Boolean variables via individual alphabet symbols. For the #P-upper
bound, let A be a DFA and p be a Parikh vector encoded in unary. A non-deterministic
polynomial-time Turing machine can first non-deterministically produce an arbitrary word
w with Ψ(w) = p. Then, it checks in polynomial time whether w ∈ L(A), in which case
it accepts. The proof that PosParikh is PP-complete is similar and can be found in the
appendix. J

Statement (iii) is the most difficult part of Proposition 2. We split the proof into several
lemmas below. As stated in Section 1, the PosMatPow problem asks, given a square
integer matrix M ∈ Zm×m, a linear function f : Zm×m → Z with integer coefficients, and a
positive integer n, whether f(Mn) ≥ 0. Unless stated otherwise, subsequently we assume
that all numbers are encoded in binary. Here, we show that PosParikh is PosMatPow-
hard for DFA over two-letter alphabets and Parikh vectors encoded in binary. We first
establish several lemmas that will enable us to prove this proposition. The following variant
of the well-known correspondence between matrix powering and counting paths in a directed
graph. In the following, by Mi,j we denote the entry at position (i, j) of the matrix M .

I Lemma 3. Given a matrixM ∈ Zm×m, and i, j ∈ {1, . . . ,m}, one can compute in logspace
an edge-weighted multi-graph G = (V,E, s, t, w) and v+

i , v
+
j , v

−
j ∈ V such that for all n ∈ N

we have (Mn)i,j = N(G, v+
i , v

+
j , n)−N(G, v+

i , v
−
j , n).

Proof. In the following we writeMn
i,j to mean (Mn)i,j . Define an edge-weighted multi-graph

G = (V,E, s, t, w) as follows. Let V := {v+
k , v

−
k : 1 ≤ k ≤ m}. For all k, ` ∈ {1, . . . ,m},

if Mk,` > 0 then include in E an edge e from v+
k to v+

` with w(e) = Mk,`, and an edge e
from v−k to v−` with w(e) = Mk,`. Similarly, ifMk,` < 0 then include in E an edge e from v+

k

to v−` with w(e) = −Mk,`, and an edge e from v−k to v+
` with w(e) = −Mk,`. We prove by

induction on n that we have for all k, ` ∈ {1, . . . ,m}:

Mn
k,` = N(G, v+

k , v
+
` , n)−N(G, v+

k , v
−
` , n)

Note that this implies the statement of the lemma. For the induction base, let n = 0.
If k = ` then Mn

k,` = 1, N(G, v+
k , v

+
` , 0) = 1, and N(G, v+

k , v
−
` , 0) = 0. If k 6= ` then

Mn
k,` = 0 = N(G, v+

k , v
+
` , 0) = N(G, v+

k , v
−
` , 0). For the inductive step, let n ∈ N and

suppose Mn
k,` = N(G, v+

k , v
+
` , n) − N(G, v+

k , v
−
` , n) for all k, `. For s ∈ {1, . . . ,m} write

I+(s) := {` ∈ {1, . . . ,m} : M`,s > 0} and I−(s) := {` ∈ {1, . . . ,m} : M`,s < 0}. For
v, v′, v′′ ∈ V write Ñ(G, v, v′, v′′, n + 1) for the number of paths in G̃ (the unweighted
version of G) from v to v′′ of length n + 1 such that v′ is the vertex visited after n steps.

C. Haase, S. Kiefer, M. Lohrey 23:7

We have for all k, s ∈ {1, . . . ,m}:

Mn+1
k,s =

m∑
`=1

Mn
k,`M`,s

(ind. hyp.)=
m∑

`=1
N(G, v+

k , v
+
` , n)M`,s −

m∑
`=1

N(G, v+
k , v

−
` , n)M`,s

=
∑

`∈I+(s)

N(G, v+
k , v

+
` , n)M`,s +

∑
`∈I−(s)

N(G, v+
k , v

−
` , n)(−M`,s) −

∑
`∈I+(s)

N(G, v+
k , v

−
` , n)M`,s −

∑
`∈I−(s)

N(G, v+
k , v

+
` , n)(−M`,s)

=
∑

`∈I+(s)

Ñ(G, v+
k , v

+
` , v

+
s , n+ 1) +

∑
`∈I−(s)

Ñ(G, v+
k , v

−
` , v

+
s , n+ 1) −

∑
`∈I+(s)

Ñ(G, v+
k , v

−
` , v

−
s , n+ 1) −

∑
`∈I−(s)

Ñ(G, v+
k , v

+
` , v

−
s , n+ 1)

= N(G, v+
k , v

+
s , n+ 1)−N(G, v+

k , v
−
s , n+ 1)

This completes the induction proof. J

In a next step, we extend the previous lemma to matrix powering followed by the application
of a linear function:

I Lemma 4. Given a matrix M ∈ Zm×m and a linear function f : Zm×m → Z with integer
coefficients, one can compute in logspace an edge-weighted multi-graph G = (V,E, s, t, w)
and v0, v

+, v− ∈ V such that f(Mn) = N(G, v0, v
+, n + 2) − N(G, v0, v

−, n + 2) for all
n ∈ N.

Proof. Denote by bi,j ∈ Z the coefficients of f , i.e., for i, j ∈ {1, . . . ,m} let bi,j ∈ Z such
that for all A ∈ Zm×m we have f(A) =

∑m
i=1

∑m
j=1 bi,jAi,j . By Lemma 3, one can compute

in logspace for all i, j ∈ {1, . . . ,m} an edge-weighted multi-graph Gi,j with vertex set Vi,j ,
and vertices v0

i,j , v
+
i,j , v

−
i,j ∈ Vi,j such that for all n ∈ N we have:

Mn
i,j = N(Gi,j , v

0
i,j , v

+
i,j , n)−N(Gi,j , v

0
i,j , v

−
i,j , n) (1)

Compute the desired edge-weighted multi-graph G as follows. For each i, j ∈ {1, . . . ,m}
include in G (a fresh copy of) the edge-weighted multi-graph Gi,j . Further, include in G

fresh vertices v0, v
+, v−, and edges with weight 1 from v0 to v0

i,j , for each i, j ∈ {1, . . . ,m}.
Further, for each i, j ∈ {1, . . . ,m} with bi,j > 0, include in G an edge from v+

i,j to v+ with
weight bi,j , and an edge from v−i,j to v− with weight bi,j . Similarly, for each i, j ∈ {1, . . . ,m}
with bi,j < 0, include in G an edge from v+

i,j to v− with weight −bi,j , and an edge from
v−i,j to v+ with weight −bi,j . It remains to show that f(Mn) = N(G, v0, v

+, n + 2) −
N(G, v0, v

−, n+ 2) for all n ∈ N. Indeed, any path of length n+ 2 from v0 to v+ must start
with an edge from v0 to v0

i,j for some i, j, continue with a path of length n from v0
i,j to either

v+
i,j or v−i,j , and finish with an edge to v+. Hence, writing I+ := {(i, j) : 1 ≤ i, j ≤ m, bi,j >

0} and I− := {(i, j) : 1 ≤ i, j ≤ m, bi,j < 0} we have

N(G, v0, v
+, n+ 2) =

∑
(i,j)∈I+

N(G, v0
i,j , v

+
i,j , n) · bi,j +

∑
(i,j)∈I−

N(G, v0
i,j , v

−
i,j , n) · (−bi,j).

CVIT 2016

23:8 Counting Problems for Parikh Images

u v
13 =⇒

10101 1010 101 10 1

u v

Figure 1 Illustration of the construction of the unweighted multi-graph from Lemma 5. We
assume k = 6. The binary representation of 13 is 10101. The binary numbers over the nodes on
the right hand side correspond to w-values that occur during the construction, but are not part of
the output. Each binary number over a node indicates the number of paths to v.

Similarly we have:

N(G, v0, v
−, n+ 2) =

∑
(i,j)∈I+

N(G, v0
i,j , v

−
i,j , n) · bi,j +

∑
(i,j)∈I−

N(G, v0
i,j , v

+
i,j , n) · (−bi,j).

Hence we have:

f(Mn) =
m∑

i=1

m∑
j=1

Mn
i,j · bi,j

(1)=
m∑

i=1

m∑
j=1

N(G, v0
i,j , v

+
i,j , n) · bi,j −

m∑
i=1

m∑
j=1

N(G, v0
i,j , v

−
i,j , n) · bi,j

= N(G, v0, v
+, n+ 2)−N(G, v0, v

−, n+ 2)

This proves the lemma. J

Next, we show that one can obtain from an edge-weighted multi-graph a corresponding
DFA such that the number of paths in the graph corresponds to the number of words with a
certain Parikh image accepted by the DFA. The proof is split into a couple of intermediate
steps.

I Lemma 5. Given an edge-weighted multi-graph G = (V,E, s, t, w) (with w in binary),
v0, v1 ∈ V and a number k ∈ N in unary such that k ≥ 1 + maxe∈Eblog2 w(e)c, one can
compute in logspace an unweighted multi-graph G′ := (V ′, E′, s′, t′) with V ′ ⊇ V such that
for all n ∈ N we have N(G, v0, v1, n) = N(G′, v0, v1, n · k).

Proof. Note that k is at least the size of the binary representation of the largest weight in
G. Define a mapping b : E → N with b(e) = k for all e ∈ E. Define G′ so that it is obtained
from G by iterating the following construction. Let e ∈ E with b(e) > 1. If w(e) = 1 then
replace e by a fresh path of length b(e) (with w(e′) = b(e′) = 1 for all edges e′ on that path).
If w(e) = 2j for some j ∈ N then introduce a fresh vertex v and two fresh edges e1, e2 from
s(e) to v with b(e1) = b(e2) = w(e1) = w(e2) = 1 and another fresh edge e3 from v to t(e)
with b(e3) = b(e)− 1 and w(e3) = j. Finally, if w(e) = 2j + 1 for some j ∈ N then proceed
similarly, but additionally introduce fresh vertices that create a new path of length b(e) from
s(e) to t(e) (with w(e′) = b(e′) = 1 for all edges e′ on that path). By this construction,
every edge e is eventually replaced by w(e) paths of length k. The construction is illustrated
in Figure 1.

For the logspace claim, note that it is not necessary to store the whole graph for this
construction. The binary representation of k has logarithmic size and can be stored, and

C. Haase, S. Kiefer, M. Lohrey 23:9

v

v1

v2

v3

v4

=⇒ v

v1

v2

v3

v4

a

b

b b b

a
b b

b

a

b

b

a

Figure 2 Illustration of the construction of the DFA from Lemma 7. We assume d = 4.

a copy of k can be counted down, keeping track of the b-values in the construction. The
edges can be dealt with one by one. It is not necessary to store the values w(e′) = j for
the created fresh edges; rather those values can be derived from the binary representation
of the original weight w(e) and the current b-value (acting as a “pointer” into the binary
representation of w(e)). J

I Lemma 6. Given an unweighted multi-graph G = (V,E, s, t) and v0, v1 ∈ V , one can
compute in logspace unweighted multi-graphs G0 = (V0, E0, s0, t0) and G1 = (V1, E1, s1, t1)
with V0 ⊇ V and V1 ⊇ V such that for all n ∈ N we have N(G0, v0, v1, n+2) = N(G, v0, v1, n)
and N(G1, v0, v1, n+ 2) = N(G, v0, v1, n) + 1.

Proof. For G0 redirect all edges adjacent to v0 to a fresh vertex v∗0 , and similarly redirect
all edges adjacent to v1 to a fresh vertex v∗1 . Then add an edge from v0 to v∗0 , and an edge
from v∗1 to v1.

For G1 do the same, and in addition add a fresh vertex v, and add edges from v0 to v,
and from v to v1, and a loop on v. This adds a path from v0 to v1 of length n+ 2. J

I Lemma 7. Given an unweighted multi-graph G = (V,E, s, t), v0, v1 ∈ V and a number d
in unary so that d is at least the maximal out-degree of any node in G, one can compute
in logspace a DFA A = (Q,Σ, q0, F,∆) with Σ = {a, b} such that for all n ∈ N we have
N(G, v0, v1, n) = N(A,p) where p(a) = n and p(b) = n · (d− 1).

Proof. Define A so that Q ⊇ V , q0 = v0, and F = {v1}. Include states and transitions
in A so that for every edge e (from v to v′, say) in G there is a run from v to v′ in A of
length d so that exactly one transition on this run is labelled with a, and the other d − 1
transitions are labelled with b. Importantly, each edge e is associated to exactly one such
run. The construction is illustrated in Figure 2. The DFA A is of quadratic size and can
be computed in logspace. It follows from the construction that any path of length n in G
corresponds to a run of length n · d in A, with n transitions labelled with a, and n · (d− 1)
transitions labelled with b. This implies the statement of the lemma. J

Proof of Proposition 2(iii). The above lemmas enable us to prove part (iii) from Proposi-
tion 2. Consider an instance of PosMatPow, i.e., a square integer matrix M ∈ Zm×m,
a linear function f : Zm×m → Z with integer coefficients, and a positive integer n. Using
Lemma 4 we can compute in logspace edge-weighted multi-graphs G+ with vertices v+

0 , v
+

and G− with vertices v−0 , v− such that

f(Mn) = N(G+, v
+
0 , v

+, n+ 2)−N(G−, v−0 , v−, n+ 2) .

CVIT 2016

23:10 Counting Problems for Parikh Images

Let k := 1+maxe∈Eblog2 w(e)c, where E is the union of the edge sets of G+ and G−. Using
Lemma 5 we can compute unweighted multi-graphs G′+, G′− such that

N(G+, v
+
0 , v

+, n+ 2) = N(G′+, v+
0 , v

+, (n+ 2) · k) and
N(G−, v−0 , v−, n+ 2) = N(G′−, v−0 , v−, (n+ 2) · k) .

Hence,

f(Mn) = N(G′+, v+
0 , v

+, (n+ 2) · k)−N(G′−, v−0 , v−, (n+ 2) · k) .

Using Lemma 6 we can compute unweighted multi-graphs G′′+, G′′− such that

1 +N(G′+, v+
0 , v

+, (n+ 2) · k) = N(G′′+, v+
0 , v

+, (n+ 2) · k + 2) and
N(G′−, v−0 , v−, (n+ 2) · k) = N(G′′−, v−0 , v−, (n+ 2) · k + 2) .

Hence,

f(Mn) + 1 = N(G′′+, v+
0 , v

+, (n+ 2) · k + 2)−N(G′′−, v−0 , v−, (n+ 2) · k + 2) .

Let d denote the maximal out-degree of any node in G′′+ or G′′−. Let p : {a, b} → N with
p(a) = (n+ 2) · k+ 2 and p(b) = ((n+ 2) · k+ 2) · (d− 1). Using Lemma 7 we can compute
DFA A,B over the alphabet {a, b} such that

N(G′′+, v+
0 , v

+, (n+2)·k+2) = N(A,p) and N(G′′−, v−0 , v−, (n+2)·k+2) = N(B,p) .

Hence, f(Mn) + 1 = N(A,p)−N(B,p). So f(Mn) ≥ 0 if and only if f(Mn) + 1 > 0 if and
only if N(A,p) > N(B,p). All mentioned computations can be performed in logspace. J

4 Parikh Counting Problems for NFA and CFG

In this section, we show the remaining results for NFA and CFG from Table 1 when the
alphabet is not unary. The following theorem states upper bounds for PosParikh and
#Parikh for NFA and CFG.

I Proposition 8. For an alphabet of variable size, #Parikh (resp., PosParikh) is in

(i) #P (resp., PP) for CFG with Parikh vectors encoded in unary;
(ii) #PSPACE (resp., PSPACE) for NFA with Parikh vectors encoded in binary; and
(iii) #EXP (resp., PEXP) for CFG with Parikh vectors encoded in binary.

Proof (sketch). In all cases, the proof is a straightforward adaption of the proof for the
upper bounds in Proposition 2(i), see the appendix. J

The following proposition states matching lower bounds for PosParikh for the cases
considered in Proposition 8:

I Proposition 9. For a fixed alphabet of size two, PosParikh is hard for

(i) PP for NFA and Parikh vectors encoded in unary;
(ii) PSPACE for NFA and Parikh vectors encoded in binary; and
(iii) PEXP for CFG and Parikh vectors encoded in binary.

C. Haase, S. Kiefer, M. Lohrey 23:11

Proof (sketch). We only provide the main ideas for the lower bounds, all details can be
found in the appendix. Let us sketch the proof for (i). The proof is based on the fact that
those strings (over an alphabet Σ) that do not encode a valid computation (called erroneous
below) of a polynomial-time bounded non-deterministic Turing machine M started on an
input x (with |x| = n) can be produced by a small NFA [19] (and this holds also for
polynomial-space bounded machines, which is important for (ii)). Suppose the NFA A
generates all words that end in an accepting configuration ofM, or that are erroneous and
end in a rejecting configuration. Symmetrically, suppose that B generates all words that are
erroneous and end in an accepting configuration, or that end in a rejecting configuration. We
then have that #(L(A)∩Σg(n))−#(L(B)∩Σg(n)) equals the difference between the number
of accepting paths and rejecting paths ofM. Here, g(n) is a suitably chosen polynomial.

Let h : Σ∗ → {0, 1}∗ be the morphism that maps the i-th element of Σ (in some enu-
meration) to 0i−110#Σ−i. Moreover, let Ah and Bh be NFA for h(L(A)) and h(L(B)),
respectively, and let p be the Parikh vector with p(0) := g(n) · (#Σ− 1) and p(1) := g(n).
Then N(Ah,p) − N(Bh,p) = #(L(A) ∩ Σg(n)) − #(L(B) ∩ Σg(n)) equals the difference
between the number of accepting paths and rejecting paths ofM.

The proof for (ii) is similar. For (iii) we use the fact that those strings that do not encode a
valid computation of an exponential-time bounded non-deterministic Turing machine started
on an input x can be produced by a small CFG [12]. J
In our construction above, we do not construct an NFA (resp., CFG) A and a Parikh vector p

such that N(A,p) is exactly the number of accepting computations ofM on the given input.
This is the reason for not stating hardness for #P (resp., #PSPACE #EXP) in the above
proposition (we could only show hardness under Turing reductions, but not parsimonious
reductions).

5 Unary alphabets

A special case of PosParikh that has been ignored so far is the case of a unary alphabet.
Of course, for a unary alphabet a word is determined by its length, and a Parikh vector is a
single number. Moreover, there is not much to count: Either a language L ⊆ {a}∗ contains
no word of length n or exactly one word of length n. Thus, PosParikh reduces to the
question whether for a given length n (encoded in unary or binary) the word an is accepted
by A and rejected by B. In this section we clarify the complexity of this problem for (i)
unary DFA, NFA, and CFG, and (ii) lengths encoded in unary and binary. In the case of
lengths encoded in binary, PosParikh is tightly connected to the compressed word problem:
Given a unary DFA (resp., NFA, CFG) A and a number n in binary encoding, determine if
an ∈ L(A). In particular, if this problem belongs to a complexity class that is closed under
complement (e.g. L, NL, P), then PosParikh belongs to the same class.

For a, b ∈ N we write a + bN for the set {a + b · i : i ∈ N}. Given a unary NFA
A = (Q, {a}, q0, F,∆) with p, q ∈ Q and n ∈ N we write p n−→ q if there is a run of length n
from p to q. A simple algorithm follows from recent work by Sawa [18]:

I Lemma 10 ([18, Lemma 3.1]). Let A = (Q, {a}, q0, F,∆) be a unary NFA with m := |Q| ≥
2. Let n ≥ m2. Then an ∈ L(A) if and only if there are q ∈ Q, qf ∈ F , b ∈ {1, . . . ,m}, and
c ∈ {m2 − b− 1, . . . ,m2 − 2} with n ∈ c+ bN and q0

m−1−−−→ q
b−→ q

c−(m−1)−−−−−−→ qf .

We use this lemma to show the following:

I Proposition 11. The compressed word problem for unary NFA is in NL. Hence, PosParikh
is in NL for unary NFA with Parikh vectors encoded in binary.

CVIT 2016

23:12 Counting Problems for Parikh Images

Proof. Let A = (Q, {a}, q0, F,∆) be the given unary NFA, and let n ∈ N be given in binary.
We claim that, given two states p1, p2 ∈ Q and a number c ∈ N whose binary representation
is of size logarithmic in the input size, we can check in NL whether p1

c−→ p2 holds. To prove
the claim, consider the directed graph G with vertex set Q × {0, . . . , c} and an edge from
(q1, i) to (q2, j) if and only if q1

1−→ q2 and j = i + 1. The graph G can be computed by a
logspace transducer. Then p1

c−→ p2 holds if and only if (p2, c) is reachable from (p1, 0) in G.
The claim follows as graph reachability is in NL.

Now we give an NL algorithm for the compressed word problem. If n < m2 then guess
qf ∈ F and check, using the claim above, in NL whether q0

n−→ qf . If n ≥ m2 we use
Lemma 13 as follows. We run over all q ∈ Q, qf ∈ F , b ∈ {1, . . . ,m}, and c ∈ {m2 − b −
1, . . . ,m2 − 2} (all four values can be stored in logspace), and check (i) whether n ∈ c+ bN
and (ii) q0

m−1−−−→ q
b−→ q

c−(m−1)−−−−−−→ qf holds. Condition (i) can be checked in logspace (as in
the proof of Proposition 12), and condition (ii) can be checked in NL by the above claim. J

I Proposition 12. For unary alphabets, PosParikh is

(i) in L for DFA with Parikh vectors encoded in binary;
(ii) NL-complete for NFA irrespective of the encoding of the Parikh vector; and
(iii) P-complete for CFG with Parikh vectors encoded in unary.
(iv) DP-complete for CFG with Parikh vectors encoded in binary.

Proof. We only give the upper bound for Part (ii), all remaining proofs are given in the
appendix.

It follows that PosParikh is in NL for unary NFA with Parikh vectors encoded in
binary: Given NFA A,B and n ∈ N in binary, we have N(A, n) > N(B, n) (where we
identify the mapping p : {a} → N with the single number p(a)) if and only if N(A, n) = 1
and N(B, n) = 0, which holds if and only if an ∈ L(A) and an 6∈ L(B). Since NL is closed
under complement, the latter condition can be checked in NL. J

6 Open problems

Our PEXP-hardness proof for PosParikh on context-free languages and binary encoded
Parikh vectors requires non-deterministic context-free languages. It might be interesting
to see whether this problem belongs to the counting hierarchy for deterministic pushdown
automata or the subclass of visibly pushdown automata. For this, one might try to generalize
our techniques for DFA from [8], which rely on results from algebraic graph theory (Tutte’s
matrix tree theorem and the BEST theorem for counting Eulerian cycles in digraphs), to
deterministic pushdown automata or visibly pushdown automata.

References
1 E. Allender, N. Balaji, and S. Datta. Low-depth uniform threshold circuits and the bit-

complexity of straight line programs. In Proc. MFCS 2014, Part II, volume 8635 of LNCS,
pages 13–24. Springer, 2014.

2 E. Allender and K. W. Wagner. Counting hierarchies: Polynomial time and constant depth
circuits. Bulletin of the EATCS, 40:182–194, 1990.

3 A. Bertoni, M. Goldwurm, and N. Sabadini. The complexity of computing the number
of strings of given length in context-free languages. Theor. Comput. Sci., 86(2):325–342,
1991.

C. Haase, S. Kiefer, M. Lohrey 23:13

4 E. Galby, J. Ouaknine, and J. Worrell. On matrix powering in low dimensions. In
Proc. STACS 2015, volume 30 of LIPIcs, pages 329–340, 2015.

5 R. Greenlaw, H. J. Hoover, and W. L. Ruzzo. Limits to parallel computation: P-
completeness theory. Oxford University Press, 1995.

6 C. Haase and S. Kiefer. The odds of staying on budget. In Proc. ICALP 2015, Part II,
volume 9135 of LNCS, pages 234–246. Springer, 2015.

7 C. Haase and S. Kiefer. The complexity of the Kth largest subset problem and related
problems. Inf. Process. Lett., 116(2):111–115, 2016.

8 C. Haase, S. Kiefer, and M. Lohrey. Computing quantiles in Markov chains with multi-
dimensional costs. In Proc. LICS 2017. IEEE, 2017. To appear.

9 W. Hesse, E. Allender, and D. A. Mix Barrington. Uniform constant-depth threshold
circuits for division and iterated multiplication. J. Comput. Syst. Sci., 65(4):695–716,
2002.

10 S. Homer and A.L. Selman. Computability and Complexity Theory, Second Edition. Texts
in Computer Science. Springer, 2011.

11 D. T. Huynh. Deciding the inequivalence of context-free grammars with 1-letter terminal
alphabet is ΣP

2 -complete. Theor. Comput. Sci., 33(2–3):305–326, 1984.
12 H. B. Hunt III, D. J. Rosenkrantz, and T. G. Szymanski. On the equivalence, containment,

and covering problems for the regular and context-free languages. J. Comput. Syst. Sci.,
12(2):222–268, 1976.

13 E. Kopczyński. Complexity of problems of commutative grammars. Log. Meth. Comput.
Sci., 11(1), 2015. URL: http://dx.doi.org/10.2168/LMCS-11(1:9)2015, doi:10.2168/
lmcs-11(1:9)2015.

14 D. Kuske and M. Lohrey. First-order and counting theories of omega-automatic structures.
J. Symbolic Logic, 73:129–150, 2008.

15 R. E. Ladner. Polynomial space counting problems. SIAM J. Comput., 18(6):1087–1097,
1989.

16 M. Mahajan and V. Vinay. A combinatorial algorithm for the determinant. In Proc. SODA
1997, pages 730–738. ACM/SIAM, 1997.

17 C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
18 Z. Sawa. Efficient construction of semilinear representations of languages accepted by unary

nondeterministic finite automata. Fundam. Inform., 123(1):97–106, 2013.
19 L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponential time (preliminary

report). In Proc. STOC 1973, pages 1–9. ACM, 1973.
20 S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20(5):865–877,

1991.

A Missing Proofs from Section 3

We prove the following proposition from the main text (part (iii) has already been shown):

I Proposition 2. For DFA, we have:

(i) #Parikh (resp. PosParikh) is #L-complete (resp. PL-complete) for a fixed alphabet
of size at least two and Parikh vectors encoded in unary.

(ii) #Parikh (resp. PosParikh) is #P-complete (resp. PP-complete) for a variable al-
phabet and Parikh vectors encoded in unary.

(iii) PosParikh is PosMatPow-hard for a fixed binary alphabet and Parikh vectors en-
coded in binary.

CVIT 2016

http://dx.doi.org/10.2168/LMCS-11(1:9)2015
http://dx.doi.org/10.2168/lmcs-11(1:9)2015
http://dx.doi.org/10.2168/lmcs-11(1:9)2015

23:14 Counting Problems for Parikh Images

x1c1x1

x1c2x1

x2c2x2

x2c1x2

x3c1x3

x3c2x3

d1,0d1,1d1,2

d1,1c1d1,0d1,2

d1,2c1c1d1,0d1,1

d2,0d2,1d2,2

d2,1c2d2,0d2,2

d2,2c2c2d2,0d2,1

Figure 3 Illustration of the DFA for the reduction from an instance ψ(X1, X2, X3) of #3SAT,
where ψ = C1 ∧ C2 with C1 = X1 ∨ ¬X2 ∨X3 and C2 = ¬X1 ∨X2 ∨ ¬X3.

Further details to Part (i). We deferred showing the lower bounds from Part (i). The clas-
sical #L-hard counting problem is the computation of the number of paths between a source
node s and a target node t in a directed acyclic graph G = (V,E) [16]. Let m = #V and d
be the maximum out-degree of G. Let Gt be the multi-graph obtained by adding a loop at
node t. Then, since every path in G from s to t has length at most m, the number of paths
from s to t in G is N(Gt, s, t,m). Now let A = (Q, {a, b}, s, {t},∆) be the DFA obtained
from Lemma 7 from the main part of the paper. Hence, we have N(Gt, s, t,m) = N(A,p),
where p(a) := m and p(b) := m · (d− 1).

PL-hardness for PosParikh can be shown by a reduction from the following problem:
Given a directed acyclic graph G = (V,E) and three nodes s, t0, t1, is the number of paths
from s to t0 larger than the number of paths from s to t1. We then apply the above reduction
to the triples (G, s, t0) and (G, s, t1). This yields pairs (A,p) and (B, q), where A and B
are DFA over the alphabet {a, b} and p and q are unary coded Parikh vectors, such that
N(A,p) (resp. N(B, q)) is the number of paths in G from s to t0 (resp. t1). Finally, note
that the reduction yields p = q. This concludes the proof. J

Further details to Part (ii). We prove hardness of #Parikh by a reduction from the #P-
complete counting problem #3SAT [17, p. 442]: Given a Boolean formula ψ(X1, . . . , Xn)
in 3-CNF, compute the number of satisfying assignments for ψ. Let ψ be of the form
ψ(X1, . . . , Xn) =

∧
1≤i≤k Ci, where Ci is the clause Ci = `i,1 ∨ `i,2 ∨ `i,3 and each `i,j is a

literal. We define the alphabet Σ used in our reduction as

Σ := {xi, xi : 1 ≤ i ≤ n} ∪ {ci : 1 ≤ i ≤ k} ∪ {di,j : 1 ≤ i ≤ k, 0 ≤ j ≤ 2}.

The informal meaning of the alphabet symbol xi is that it indicates that Xi has been set
to true, and symmetrically xi indicates that Xi has been set to false. Likewise, ci indicates
that clause Ci has been set to true. The di,j will be used as dummy symbols in order to
ensure that the automaton we construct is deterministic.

Let us now describe how to construct a DFA A and a Parikh vector p such that N(A,p) is
the number of satisfying assignments for ψ. The construction of A is illustrated in Figure 3.
We construct A such that it consists of two phases. In its first phase, A guesses for every
1 ≤ i ≤ n a valuation of Xi by producing either (i) xi followed by all cj such that Cj

contains Xi followed by xi or (ii) xi followed by all cj such that Cj contains ¬Xi followed
by xi. Subsequently in its second phase, A may non-deterministically produce at most 2
additional symbols ci for every 1 ≤ i ≤ k by first producing di,j followed by j letters ci and
all di,g such that j 6= g. This ensures that A remains deterministic.

Now define the Parikh vector p over Σ as p(xi) = p(xi) := 1 for all 1 ≤ i ≤ n, p(ci) := 3
for all 1 ≤ i ≤ j, and p(di,j) := 1 for all 1 ≤ i ≤ k and 0 ≤ j ≤ 2. The construction
of A ensures that if A initially guesses a satisfying assignment of ψ then it can produce a

C. Haase, S. Kiefer, M. Lohrey 23:15

word with Parikh image p in a unique way, since then at least one alphabet symbol ci was
produced in the first phase of A, and the second phase of A can be used in order to make
up for missing alphabet symbols.

In order to show the #P-upper bound for #Parikh, let A be a DFA and p be a Parikh
vector encoded in unary. A non-deterministic polynomial-time Turing machine can first
non-deterministically produce an arbitrary word w with Ψ(w) = p. Then, it checks in
polynomial time whether w ∈ L(A), in which case it accepts.

We now prove PP-hardness of PosParikh by reusing the reduction from #3SAT to
#Parikh. It is PP-complete to check for two given 3-CNF formulas F and G whether F
has more satisfying assignments than G.2 W.l.o.g. one can assume that F and G use the
same set of Boolean variables (we can add dummy variables if necessary) and the same
number of clauses (we can duplicate clauses if necessary). We now apply to F and G the
reduction from the #P-hardness proof of #Parikh from the main part of the paper. We
obtain two pairs (A,p) and (B, q), where A and B are DFA and p and q are Parikh vectors
encoded in binary, such that N(A,p) (resp. N(B, q)) is the number of satisfying assignments
of F (resp. G). But since F and G are 3-CNF formulas with the same variables and the
same number of clauses, it follows that A and B are DFA over the same alphabet and p = q.
This concludes the proof. J

I Remark. It is worth mentioning that the above PP-lower bound together with the discus-
sion after Proposition 5 in [6] improves the PP-lower bound of the cost problem by yielding
PP-hardness under many-one reductions. In [6], the cost problem is shown PP-hard via a
reduction from the K-th largest subset problem, which is only known to be PP-hard un-
der polynomial-time Turing reductions [7]. In fact, it is not even known if this problem is
NP-hard under many-one reductions [10, p. 148].

B Missing Proofs from Section 4

We prove the following proposition from the main text:

I Proposition 8. For an alphabet of variable size, #Parikh (resp., PosParikh) is in

(i) #P (resp., PP) for CFG with Parikh vectors encoded in unary;
(ii) #PSPACE (resp., PSPACE) for NFA with Parikh vectors encoded in binary; and
(iii) #EXP (resp., PEXP) for CFG with Parikh vectors encoded in binary.

Proof. It suffices to show the statements for the #-classes. Let us consider (i). Let A be the
input CFG and p be the input Parikh vector, which is encoded in unary notation. A non-
deterministic polynomial-time machine can first non-deterministically produce an arbitrary
word w with Ψ(w) = p. Then, it checks in polynomial time whether w ∈ L(A), in which
case it accepts.

For (ii) we argue as in the proof of the #L upper bound from Proposition 2(i), except that
we simulate the deterministic power set automaton for the input NFA. For this, polynomial
space is needed. Moreover, also the accumulated Parikh image of the prefix guessed so far
needs polynomial space.

2 Note that every language in PP is of the form {x : f(x) > g(x)} for two #P-functions f and g. From
x one can construct two 3-CNF formulas F and G such that the number of satisfying assignments of
F (resp. G) is f(x) (resp. g(x)).

CVIT 2016

23:16 Counting Problems for Parikh Images

Finally, for (iii) we can argue as in (i) by using a non-deterministic exponential time
machine. J

We prove the following proposition from the main text:

I Proposition 9. For a fixed alphabet of size two, PosParikh is hard for

(i) PP for NFA and Parikh vectors encoded in unary;
(ii) PSPACE for NFA and Parikh vectors encoded in binary; and
(iii) PEXP for CFG and Parikh vectors encoded in binary.

Proof. We show the hardness results by developing a generic approach that only requires
minor modifications in each case. In general, we simulate computations of space-bounded
Turing machines as words of NFA and CFG, respectively. Let M = (Q,Γ,∆) be a Turing
machine that uses f(n) ≥ n tape cells during a computation on an input of length n, where
∆ ⊆ Q × Γ × Q × Γ × {←,→}. Unsurprisingly, (q, a, q′, a′, d) ∈ ∆ means that if M is
in control state q reading a at the current head position then M can change its control
state to q′ while writing a′ and subsequently moving its head in direction d. Without loss of
generality we may assume thatM uses alphabet symbols 0, 1 ∈ Γ on its working tape as well
as ., / ∈ Γ as delimiters indicating the left respectively right boundary of the working tape.
Consequently, a valid configuration of M is a string of length f(n) + 3 over the alphabet
Σ := {., 0, 1, /} ∪Q from the language

(. · {0, 1}∗ ·Q · {0, 1}∗ · /) ∪ (Q · . · {0, 1}∗ · /).

With no loss of generality, we moreover make the following assumptions onM: (i) the initial
configuration ofM when run on x ∈ {0, 1}∗ with |x| = n is the string . · q0 ·x ·0f(n)−n ·/ for
some designated control state q0 ∈ Q; (ii) delimiters are never changed byM andM adds
no further delimiter symbols during its computation; and (iii) the accepting configuration of
M is . · qf · 0f(n) · / for some designated control state qf ∈ Q, and any other configuration is
rejecting. IfM is f(n)-time bounded (and thus f(n)-space bounded) then we assume that
all computation paths ofM are of length f(n).

We now turn towards proving Proposition 9(i). Let L be a language in PP. Hence,
there exists a polynomial f(n) and an f(n)-time bounded non-deterministic Turing machine
M such that for every input word x ∈ {0, 1}n, we have: x ∈ L if and only if M has on
input x more accepting than rejecting computation paths. Let us fix an input x ∈ {0, 1}n

for M of length n. We encode computations of M as strings over the extended alphabet
Σ$:= Σ ∪ {$} where $ serves as a separator between consecutive configurations. Hence
a valid computation is encoded as a string in the language (Σf(n)+3 · $)∗. Let Lval ⊆ Σ∗$
be the language consisting of all strings that encode valid computations of M when run
on x ∈ {0, 1}n, and let Linv := Σ∗$ \ Lval. It is shown in [19] that an NFA for Linv can
be constructed in logspace from the input x. Moreover, let Lacc ⊆ Σf(n)+3 · $ be the
singleton language containing the string representing the accepting configuration, and let
Lrej ⊆ Σf(n)+3 ·$ be the set of all encodings of rejecting configurations. It is straightforward
to construct NFA for these sets in logspace. Hence, we can also construct in logspace NFA
A and B such that

L(A) = (Σ∗$ · Lacc) ∪ (Linv ∩ (Σ∗$ · Lrej)),

i.e., L(A) contains those strings that end in an accepting configuration and those strings
not representing a valid computation that end in a rejecting configuration, and likewise B

C. Haase, S. Kiefer, M. Lohrey 23:17

is such that

L(B) = (Linv ∩ (Σ∗$ · Lacc)) ∪ (Σ∗$ · Lrej).

Set g(n) := f(n) · (f(n) + 4), which is a polynomial. We then get

#(L(A) ∩ Σg(n)
$)−#(L(B) ∩ Σg(n)

$) = #(Σ∗$ · Lacc ∩ Σg(n)
$) +

#(Linv ∩ Σ∗$ · Lrej ∩ Σg(n)
$) −

#(Linv ∩ Σ∗$ · Lacc ∩ Σg(n)
$) −

#(Σ∗$ · Lrej ∩ Σg(n)
$)

= #(Lval ∩ Σ∗$ · Lacc ∩ Σg(n)
$) −

#(Lval ∩ Σ∗$ · Lrej ∩ Σg(n)
$).

Consequently, #(L(A)∩Σg(n)
$) > #(L(B)∩Σg(n)

$) if and only ifM has more accepting than
rejecting computation paths on input x, which is equivalent to x ∈ L.

Let h : Σ$ → (0∗ · 1 · 0∗ ∩ {0, 1}#Σ$) be a bijection that maps every symbol in Σ$ to a
string consisting of exactly one symbol 1 and #Σ$ − 1 symbols 0. In particular, note that
Ψ(h(a)) = Ψ(h(b)) for all a, b ∈ Σ$. Moreover, let Ah and Bh be the NFA recognising the
homomorphic images of L(A) and L(B) under h. We now have

#(L(A) ∩ Σg(n)
$) = #(L(Ah) ∩ {0, 1}g(n)·#Σ$) = N(Ah,p),

where p(0) := g(n) · (#Σ$ − 1) and p(1) := g(n), and analogously #(L(B) ∩ Σg(n)
$) =

N(Bh,p). Hence,

N(Ah,p) > N(Bh,p) ⇐⇒ #(L(A) ∩ Σg(n)
$) > #(L(B) ∩ Σg(n)

$)
⇐⇒ x ∈ L.

This concludes the proof of Proposition 9(i).
In order to prove Proposition 9(ii), letM be an f(n)-space bounded Turing machine for

a polynomial f(n). In particular, with no loss of generality we can assume that if M has
an accepting run then it has one which accepts after 2f(n) steps. All we have to do in order
to prove PSPACE-hardness of PosParikh is to make two adjustments to the construction
given for Proposition 9(i). First, we redefine A and B such that they recognise the languages

L(A) := Σ∗$ · Lacc and L(B) := Linv ∩ (Σ∗$ · Lacc).

Second, we let g(n) := 2f(n) · (f(n) + 4). Consequently we have

#(L(A) ∩ Σg(n)
$)−#(L(B) ∩ Σg(n)

$) > 0 ⇐⇒ M has at least one accepting run on x.

Hence, by keeping p defined as above with the redefined g(n), we have

N(Ah,p) > N(Bh,p) ⇐⇒ M accepts x.

Note that even though g(n) is exponential, its binary representation requires only polyno-
mially many bits.

Finally, we turn to the proof of the PEXP lower bound in Proposition 9(iii). To this
end, letM be an f(n)-time bounded non-deterministic Turing machine where f(n) = 2p(n)

for some polynomial p(n). We could almost straightforwardly reuse the construction given
for Proposition 9(i) except that we cannot construct an appropriate NFA recognising Linv

CVIT 2016

23:18 Counting Problems for Parikh Images

in logspace. The reason is that the working tape of M has exponential length and we
cannot uniquely determine a string of exponential length with an NFA which, as stated
above, depends on f(n). This can, however, be achieved by exploiting the exponential
succinctness of context-free grammars. More specifically, in [12] it is shown that a CFG for
the language Linv can be constructed in logspace from the machine input x. The PEXP-
hardness result of Proposition 9(iii) can then be shown analogously to the PP-hardness proof
from Proposition 9(i) by encoding p in binary. J

C Missing Proofs from Section 5

We prove the following proposition from the main text:

I Proposition 12. For unary alphabets, PosParikh is

(i) in L for DFA with Parikh vectors encoded in binary;
(ii) NL-complete for NFA irrespective of the encoding of the Parikh vector; and
(iii) P-complete for CFG with Parikh vectors encoded in unary.
(iv) DP-complete for CFG with Parikh vectors encoded in binary.

Proof of Part (i). As explained in the main part of the paper, it suffices to show that the
compressed word problem for unary DFA is in L. Let A = (Q,Σ, q0, F,∆) be the given
unary DFA. W.l.o.g. we can assume that Q = {0, . . . ,m,m + 1, . . . ,m + p − 1}, where
q0 = 0, i a−→ i + 1 for 0 ≤ i < m + p − 1 and m + p − 1 a−→ m. The numbers m and p can
be computed in logspace by following the unique path of states from the initial state. For a
given number n encoded in binary we then have an ∈ L(A) if and only if n ≤ m and n ∈ F
or n > m and ((n −m) mod p) + m ∈ F . This condition can be checked in logspace, since
all arithmetic operations on binary encoded numbers can be done in logspace (division is
the most difficult one [9] but note that here we only have to divide by a number p with a
logarithmic number of bits in the input size). J

Proof of Part (ii). Regarding hardness, one can reduce from the graph reachability prob-
lem, i.e., whether for a given directed graph G = (V,E) there is a path from s to t. By
adding a loop at node t, this is equivalent to the existence of a path in G from s to t of
length n = #V . Let A be the NFA obtained from G by labeling every edge with the terminal
symbol a and making s (resp., t) the initial (resp., unique final) state. Moreover, let B be
an NFA with L(B) = ∅. Then N(A, n) > N(B, n) if and only if an ∈ L(A) if and only if
there is a path in G from s to t of length n = |V |.

We now turn towards the upper bound. For a, b ∈ N we write a + bN for the set
{a + b · i : i ∈ N}. Given a unary NFA A = (Q, {a}, q0, F,∆) with p, q ∈ Q and n ∈ N we
write p n−→ q if there is a run of length n from p to q. A simple algorithm follows from recent
work by Sawa [18]:

I Lemma 13 ([18, Lemma 3.1]). Let A = (Q, {a}, q0, F,∆) be a unary NFA with m := |Q| ≥
2. Let n ≥ m2. Then an ∈ L(A) if and only if there are q ∈ Q, qf ∈ F , b ∈ {1, . . . ,m}, and
c ∈ {m2 − b− 1, . . . ,m2 − 2} with n ∈ c+ bN and q0

m−1−−−→ q
b−→ q

c−(m−1)−−−−−−→ qf .

We use this lemma to show the following:

I Proposition 14. The compressed word problem for unary NFA is in NL. Hence, PosParikh
is in NL for unary NFA with Parikh vectors encoded in binary.

C. Haase, S. Kiefer, M. Lohrey 23:19

Proof. Let A = (Q, {a}, q0, F,∆) be the given unary NFA, and let n ∈ N be given in binary.
We claim that, given two states p1, p2 ∈ Q and a number c ∈ N whose binary representation
is of size logarithmic in the input size, we can check in NL whether p1

c−→ p2 holds. To prove
the claim, consider the directed graph G with vertex set Q × {0, . . . , c} and an edge from
(q1, i) to (q2, j) if and only if q1

1−→ q2 and j = i + 1. The graph G can be computed by a
logspace transducer. Then p1

c−→ p2 holds if and only if (p2, c) is reachable from (p1, 0) in G.
The claim follows as graph reachability is in NL.

Now we give an NL algorithm for the compressed word problem. If n < m2 then guess
qf ∈ F and check, using the claim above, in NL whether q0

n−→ qf . If n ≥ m2 we use
Lemma 13 as follows. We run over all q ∈ Q, qf ∈ F , b ∈ {1, . . . ,m}, and c ∈ {m2 − b −
1, . . . ,m2 − 2} (all four values can be stored in logspace), and check (i) whether n ∈ c+ bN
and (ii) q0

m−1−−−→ q
b−→ q

c−(m−1)−−−−−−→ qf holds. Condition (i) can be checked in logspace (as in
the proof of Proposition 12), and condition (ii) can be checked in NL by the above claim. J

It follows that PosParikh is in NL for unary NFA with Parikh vectors encoded in
binary: Given NFA A,B and n ∈ N in binary, we have N(A, n) > N(B, n) (where we
identify the mapping p : {a} → N with the single number p(a)) if and only if N(A, n) = 1
and N(B, n) = 0, which holds if and only if an ∈ L(A) and an 6∈ L(B). Since NL is closed
under complement, the latter condition can be checked in NL. J

Proof of Part (iii). The P-upper bound is clear since the word problem for CFG is in P. For
the P-lower bound, we reduce from the ε-membership problem for context-free grammars,
which is known to be P-hard even for grammars with no terminal symbol [5, Prob. A.7.2].
Let A be such a grammar, and let B be such that L(B) = ∅. Then N(A, 0) > N(B, 0) if and
only if ε ∈ L(A). J

Proof of Part (iv). Regarding the DP-upper bound, Huynh [11] shows that the uniform
word problem for context-free grammars over a singleton alphabet {a} is NP-complete if the
input word an is given by the binary representation of n. Given CFG A,B over {a} and a
number n, we have that N(A, n) > N(B, n) if and only if an ∈ L(A) and an 6∈ L(B). The
latter is a decision problem in DP by the above result from [11].

The DP-lower bound is shown by a reduction from the following DP-complete problem:
Given two instances (s, v1, . . . , vm), (t, w1, . . . , wn) of SubetSum (all numbers s, v1, . . . , vm,
t, w1, . . . , wn are binary encoded), does the following hold?

There exist a1, . . . , am ∈ {0, 1} with s = a1v1 + · · ·+ amvm.
For all b1, . . . , bn ∈ {0, 1}, t 6= b1w1 + · · ·+ bnwn.

DP-hardness of this problem follows by a reduction from the problem SAT-UNSAT (one can
take the standard reduction from SAT to SubsetSum). Let us assume that s ≥ t (if t > s

we can argue similarly). We then construct in logspace CFG A and B such that A produces
all words of the form aa1v1+···+amvm , where a1, . . . , am ∈ {0, 1}, and B produces all words of
the form a(s−t)+b1w1+···+bnwn , where b1, . . . , bm ∈ {0, 1}. We then have as ∈ L(A) \ L(B) if
and only if there are a1, . . . , am ∈ {0, 1} with s = a1v1 +· · ·+amvm but t 6= b1w1 +· · ·+bnwn

for all b1, . . . , bn ∈ {0, 1}. J

CVIT 2016

	Introduction
	Related Work

	Preliminaries
	Counting Problems for Parikh Images
	Graphs
	Computational Complexity

	Parikh Counting Problems for DFA
	Parikh Counting Problems for NFA and CFG
	Unary alphabets
	Open problems
	Missing Proofs from Section 3
	Missing Proofs from Section 4
	Missing Proofs from Section 5

