
The Power of Priority Channel Systems?

Christoph Haase, Sylvain Schmitz, and Philippe Schnoebelen

LSV, ENS Cachan & CNRS, France

Abstract. We introduce Priority Channel Systems, a new natural class
of channel systems where messages carry a numeric priority and where
higher-priority messages can supersede lower-priority messages preced-
ing them in the fifo communication buffers. The decidability of safety
and inevitability properties is shown via the introduction of a priority
embedding, a well-quasi-ordering that has not previously been used in
well-structured systems. We then show how Priority Channel Systems
can compute Fast-Growing functions and prove that the aforementioned
verification problems are Fε0 -complete.

1 Introduction

Channel systems are a family of distributed models where concurrent agents
communicate via (usually unbounded) fifo communication buffers, called “chan-
nels”. These models are well-suited for the formal specification and algorithmic
analysis of communication protocols and concurrent programs [6, 7, 9]. They are
also a fundamental model of computation, closely related to Post’s tag systems.

A particularly interesting class of channel systems are the so-called lossy
channel systems (LCSs), where channels are unreliable and may lose messages [10,
4, 8]. For LCSs, several important behavioral properties, like safety or inevitabil-
ity, are decidable. This is because these systems are well-structured : transi-
tions are monotonic wrt. a (decidable) well-quasi-ordering of the configuration
space [2, 14]. Beyond their applications in verification, LCSs have turned out to
be an important automata-theoretic tool for decidability or hardness in areas like
Timed Automata, Metric Temporal Logic, modal logics, etc. [3, 18, 23, 19]. They
are also a fundamental model of computation capturing the Fωω -complexity level
in Wainer et al.’s Fast-Growing Hierarchy, see [11, 24, 25].

Lossy channel systems do not provide a natural way to model systems or
protocols that treat messages discriminatingly according to some specified rule
set. An example is the prioritization of messages, which is central to ensuring
quality of service (QoS) in networking architectures, and is usually implemented
by allowing for tagging messages with some relative priority. For instance, the
Differentiated Services (DiffServ) architecture described in RFC 2475, which
enables QoS on modern IP networks, allows for a field specifying the relative
priority of an IP packet with respect to a finite set of priorities, and network
links may decide to arbitrarily drop IP packets of lower priority in favor of higher
priority packets once the network congestion reaches a critical point.

? Work supported by the ReacHard project, ANR grant 11-BS02-001-01.

p q
c ! 1

c ? 3
c ! 0 c ! 3

Fig. 1. A simple single-channel 3-PCS.

Our contributions. We introduce priority channel systems (PCSs), a family
of channel systems where each message is equipped with a priority level, and
where higher-priority messages can supersede lower-priority messages by drop-
ping them. For technical simplicity, our model abstracts from the contents of
messages by just considering the priority levels (but see the full version of this
work at http://arxiv.org/abs/1301.5500 for a general setting allowing arbitrary
message contents and priorities).

Priority channel systems rely on the (prioritized) superseding ordering, a
new ordering that has not been considered before in well-structured systems
(though it is related to the gap-embedding of [28]). Showing that it is a well-
quasi-ordering entails the decidability of safety and termination (among others)
for PCSs. We also show the aforementioned problems to become undecidable for
channel systems that build upon more restrictive priority mechanisms.

Using techniques from [24, 28], we show in Sec. 5 an Fε0 upper bound on the
complexity of PCS verification, far higher than the Fωω -complete complexity of
LCSs. We then prove in Sec. 6 a matching lower bound and this is the main tech-
nical result of the paper: building upon techniques developed for less powerful
models [11, 27, 17], we show how PCSs can robustly simulate the computation
of the fast growing functions Fα and their inverses for all ordinals α up to ε0.
This gives a precise measure of the expressive power of PCSs.

Along the way, we show how other well-quasi-ordered data structures from
the literature, e.g. trees with (strong) embedding, can be reflected in the super-
seding ordering (Sec. 4). This paves the way to new Fε0 upper bounds for prob-
lems in other areas of algorithmic verification, whose complexity is wide open.

2 Priority Channel Systems

We define Priority Channel Systems as consisting of a single process since this
is sufficient for our purposes in this paper.1 For every d ∈ N, the level-d priority

alphabet is Σd
def
= {0, 1, . . . , d}. A level-d priority channel system (a “d-PCS”)

is a tuple S = (Σd, Ch, Q,∆) where Σd is as above, Ch = {c1, . . . , cm} is a
set of m channel names, Q = {q1, q2, . . .} is a finite set of control states, and
∆ ⊆ Q× Ch× {!, ?} ×Σd ×Q is a set of transition rules (see below).

2.1 Semantics

The operational semantics of a PCS S is given in the form of a transition system.

We let ConfS
def
= Q×(Σ∗d)m be the set of all configurations of S, denoted C,D, . . .

1 Systems made of several concurrent components can be represented by a single
process obtained as an asynchronous product of the components.

http://arxiv.org/abs/1301.5500

A configuration C = (q, x1, . . . , xm) records an instantaneous control point (a
state in Q) and the contents of the m channels, i.e., sequences of messages
from Σd. A sequence x ∈ Σ∗d has the form x = a1 . . . a` and we let ` = |x|.
Concatenation is denoted multiplicatively, with ε denoting the empty sequence.

The labeled transition relation between configurations, denoted C
δ−→ C ′, is

generated by the rules in ∆ = {δ1, . . . , δk}. From a technical perspective, it is
convenient to define two such transition relations, denoted −→rel and −→#.

Reliable Semantics. We start with −→rel that corresponds to “reliable” steps,
or more correctly steps with no superseding of lower-priority messages. As is
standard, for a reading rule of the form δ = (q, ci, ?, a, q

′) ∈ ∆, there is a

step C
δ−→rel C

′ if C = (q, x1, . . . , xm) and C ′ = (q′, y1, . . . , ym) for some
x1, y1, . . . , xm, ym such that xi = ayi and xj = yj for all j 6= i, while for a

writing rule δ = (q, ci, !, a, q
′) ∈ ∆, there is a step C

δ−→rel C
′ if yi = xia (and

xj = yj for all j 6= i). These “reliable” steps correspond to the behavior of queue
automata, or (reliable) channel systems, a Turing-powerful computation model.

Internal-Superseding. The actual behavior of PCSs is obtained by extending

reliable steps with internal superseding steps, denoted C
ci#k−−→# C ′, which can

be performed at any time in an uncontrolled manner.

Formally, for two words x, y ∈ Σ∗d and k ∈ N, we write x
#k−→# y

def⇔ x is some
a1 . . . a`, 1 ≤ k < |x| = `, ak ≤ ak+1 and y = a1 . . . ak−1ak+1 . . . a`. In other
words, the k-th message in x is superseded by its immediate successor ak+1, with

the condition that ak is not of higher priority. We write x −→# y when x
#k−→# y

for some k, and use x←−# y when y −→# x. The transitive reflexive closure
∗←−#

is called the superseding ordering and is denoted by ≤#. Put differently, −→# is
a rewrite relation over Σ∗d according to the rules {aa′ → a′ | 0 ≤ a ≤ a′ ≤ d}.

This is extended to steps between configurations by C = (q, x1, . . . , xm)
ci#k−−→#

C ′ = (q′, y1, . . . , ym)
def⇔ q = q′ and xi

#k−→# yi (and xj = yj for j 6= i). Further-

more, every reliable step is a valid step: for any rule δ, C
δ−→# C ′ iff C

δ−→rel C
′,

giving rise to a second transition system associated with S: S#
def
= (ConfS ,−→#).

E.g., the PCS from Fig. 1 can perform

p, 0200
!1−→# q, 02001

#3−→# q, 0201
#1−→# q, 201

#2−→# q, 21 .

The internal-superseding semantics allows superseding to occur at any time
and anywhere in the channel. It is appropriate when abstracting from situations
where end-to-end communication actually goes through a series of consecutive
relays, network switches, and buffers, each of them possibly handling the incom-
ing traffic with a so-called write-superseding policy, where writes immediately
“consume” the congested messages in front of them in the buffer. We develop
this aspect in the full version, where we also prove the two semantics to be
essentially equivalent.

2.2 Related Models

It is possible to consider a stricter policy for priorities where a higher-priority
message may only supersede messages with strictly lower priority. Another pri-
ority mechanism one could envision sees higher-priority messages overtake those
of lower priority without dropping them. These two mechanisms are more re-
strictive, i.e., drop fewer messages, but they may be powerless in case of network
congestion: for instance, they offer no solutions if all the messages in the con-
gested buffers have the same priority. From a more theoretical standpoint, both
semantics also yield Turing-powerful models; details are provided in the full
version.

Theorem 1. Reachability in PCSs is undecidable both for strict superseding and
overtaking semantics.

We conclude by observing that PCSs can simulate lossy channel systems. In
fact they can simulate the dynamic lossy channel systems and the timed lossy
channel systems from [1], see the full version. Hence reachability and termination
(see Thm. 3) are at least Fωω -hard for PCSs, and problems like boundedness or
repeated control-state reachability (see [26] for more) are undecidable for them.

2.3 Priority Channel Systems are Well-Structured

Our main result regarding the verification of PCSs is that they are well-structured

systems. Recall that C ≤# D
def⇔ C is some (p, y1, . . . , ym) andD is (p, x1, . . . , xm)

with xi ≤# yi for i = 1, . . . ,m, or equivalently, C can be obtained from D by
internal superseding steps.

Theorem 2 (PCSs are WSTSs). For any PCS S, the transition system S#
with configurations ordered by ≤# is a well-structured transition system (with
stuttering compatibility).

Proof. There are two conditions to check:

1. wqo: (ConfS ,≤#) is a well-quasi-ordering as will be shown next (see Thm. 7
in Sec. 3).

2. monotonicity: Checking stuttering compatibility (see [14, def. 4.4]) is triv-
ial with the ≤# ordering. Indeed, assume that C ≤# D and that C −→# C ′

is a step from the “smaller” configuration. Then in particular D
∗−→# C by

definition of −→#, so that clearly D
+−→# C ′ and D can simulate any step

from C.

A consequence of the well-structuredness of PCSs is the decidability of several
natural verification problems. In this paper we focus on “Reachability”2 (given
a PCS, an initial configuration C0, and a set of configurations G ⊆ ConfS , does

C0
∗−→# D for some D ∈ G?), and “Inevitability” (do all maximal runs from C0

eventually visit G?) which includes “Termination” as a special case.

2 Also called “Safety” when we want to check that G is not reachable.

Theorem 3. Reachability and Inevitability are decidable for PCSs.

Proof (Sketch). The generic WSTS algorithms [14] apply after we check the
minimal effectiveness requirements: the ordering ≤# between configurations is
decidable (in NLogSpace, see Sec. 3.2) and the operational semantics is finitely
branching and effective (one can compute the immediate successors of a config-
uration, and the minimal immediate predecessors of an upward-closed set).

We note that Reachability and Coverability coincide (even for zero-length

runs when C0 has empty channels) since
+−→# coincides with ≥# ◦

+−→#, and
that the answer to a Reachability question only depends on the (finitely many)
minimal elements of G. One can even compute Pre∗(G) for G given, e.g., as a
regular subset of ConfS .

For Inevitability, the algorithms in [2, 14] assume that G is downward-closed

but, in our case where
+−→# and ≥# ◦

+−→# coincide, decidability can be shown
for arbitrary (recursive) G, as in [26, Thm. 4.4].

3 Priority Embedding

This section focuses on the superseding ordering ≤# on words and establishes the

fundamental properties we use for reasoning about PCSs. Recall that ≤#
def
=
∗←−#,

the reflexive transitive closure of the inverse of −→#; we prove that (Σ∗p ,≤#) is a
well-quasi-ordering (a wqo). Recall that a quasi-ordering (X,4) is a wqo if any
infinite sequence x0, x1, x2, . . . over X contains an infinite increasing subsequence
xi0 4 xi1 4 xi2 4 · · ·

3.1 Embedding with Priorities

For two words x, y ∈ Σ∗d , we let x vp y
def⇔ x = a1 · · · a` and y can be factored as

y = z1a1z2a2 · · · z`a` with zi ∈ Σ∗ai for i = 1, . . . , `. For example, 201 vp 22011
but 120 6vp 10210 (factoring 10210 as z11z22z30 needs z3 = 1 6∈ Σ∗0). If x vp y
then x is a subword of y and x can be obtained from y by removing factors of
messages with priority not above the first preserved message to the right of the
factor. In particular, x vp y implies y

∗−→# x, i.e., x ≤# y. This immediately
yields:

ε vp y iff y = ε , (1)

x1 vp y1 and x2 vp y2 imply x1x2 vp y1y2 , (2)

x1x2 vp y imply ∃y1 wp x1 : ∃y2 wp x2 : y = y1y2 . (3)

Lemma 4. (Σ∗d ,vp) is a quasi-ordering (i.e., is reflexive and transitive).

Proof. Reflexivity is obvious from the definition. For transitivity, consider x′ vp

x vp y with x = a1 · · · a` and y = z1a1 · · · z`a`. In view of Eqs. (1–3) it is
enough to show x′ vp y in the case where |x′| = 1. Consider then x′ = a. Now
x′ vp x implies a = a` and a ≥ ai, hence Σ∗ai ⊆ Σ∗a , for all i = 1, . . . , `. Letting

z
def
= z1a1 · · · z`−1a`−1z` yields y = za for z ∈ Σ∗a . Hence x′ vp z.

We can now relate superseding and priority orderings with:

Proposition 5. For all x, y ∈ Σ∗d , x vp y iff x≤# y.

Proof. Obviously, y
#k−→# x allows x vp y with zk being the superseded message

(and zi = ε for i 6= k), so that ≤# is included in vp by Lem. 4. In the other
direction x vp y entails x≤# y as noted earlier.

3.2 Canonical Factorizations and Well-quasi-ordering

For our next development, we define the height, written h(x), of a sequence
x ∈ Σ∗d as being the highest priority occurring in x (by convention, we let

h(ε)
def
= −1). Thus, x ∈ Σ∗h iff h ≥ h(x). (We further let Σ−1

def
= ∅.) Any x ∈ Σ∗d

has a unique canonical factorization x = x0hx1h · · ·xk−1hxk where k is the
number of occurrences of h = h(x) in x and where the k + 1 residuals x0,
x1, . . . , xk are in Σ∗h−1. The point of this decomposition is the following sufficient
condition for x vp y.

Lemma 6. Let x = x0h · · ·hxk and y = y0h · · ·hym be canonical factorizations
with h = h(x) = h(y). If there is a sequence 0 = j0 < j1 < j2 < · · · < jk−1 <
jk = m of indexes s.t. xi vp yji for all i = 0, . . . , k then x vp y.

Proof. We show x≤# y. Note that hyih
∗−→# h for all i = 1, . . . ,m, so y

∗−→# y′
def
=

yj0hyj1hyj2 · · ·hyjk (recall that 0 = j0 and m = jk). From xi vp yji we deduce

yji
∗−→# xi for all i = 0, . . . , k, hence y′

∗−→# x0h · · ·hxk = x.

The condition in the statement of Lemma 6 is usually written 〈x0, . . . , xk〉 �∗
〈y0, . . . , ym〉, using the sequence extension of vp on sequences of residuals.

Theorem 7. (Σ∗d ,vp) is a well-quasi-ordering (a wqo).

Proof. By induction on d. The base case d = −1 is trivial since Σ∗−1 is ∅∗ = {ε},
a singleton. For the induction step, consider an infinite sequence x0, x1, . . .
over Σ∗d . We can extract an infinite subsequence, where all xi’s have the same
height h (since h(xi) is in a finite set) and, since the residuals are in Σ∗d−1,
a wqo by ind. hyp., further extract an infinite subsequence where the first
and the last residuals are increasing, i.e., xi0,0 vp xi1,0 vp xi2,0 vp · · · and
xi0,k0 vp xi1,k1 vp xi2,k2 vp · · · . Now recall that, by Higman’s Lemma, the se-
quence extension ((Σ∗d−1)∗,�∗) is a wqo since, by ind. hyp., (Σ∗d−1,vp) is a wqo.
We may thus further extract an infinite subsequence that is increasing for �∗
on the residuals, i.e., with 〈xi0,0, xi0,1, . . . , xi0,k0〉 �∗ 〈xi1,0, xi1,1, . . . , xi1,k1〉 �∗
〈xi2,0, xi2,1, . . . , xi2,k2〉 �∗ · · · With Lemma 6 we deduce xi0 vp xi1 vp xi2 vp

· · · . Hence (Σ∗d ,vp) is a wqo.

Remark 8. Thm. 7 and Prop. 5 prove that ≤# is a wqo on configurations of
PCSs, as we assumed in Sec. 2.3. There we also assumed that ≤# is decidable.
We can now see that it is in NLogSpace, since, in view of Prop. 5, one can
check whether x≤# y by reading x and y simultaneously while guessing nonde-
terministically a factorization z1a1 · · · z`a` of y, and checking that zi ∈ Σ∗ai .

Fig. 2. Two trees in T2.

4 Applications of the Priority Embedding to Trees

In this section we show how tree orderings can be reflected into sequences over
a priority alphabet. This serves two purposes. First, it illustrates the “power” of
priority embeddings, giving a simple proof that strong tree embeddings form a
wqo as a byproduct. Second, the reflection defined will subsequently be used in
Sec. 6 to provide an encoding of ordinals that PCSs can manipulate “robustly.”

4.1 Encoding Bounded Depth Trees

Given an alphabet Γ , the set of finite, ordered, unranked labeled trees (aka
variadic terms) over Γ , noted T (Γ), is the smallest set such that, if f is in Γ
and t1, . . . , tn are n ≥ 0 trees in T (Γ), then the tree f(t1 · · · tn) is in T (Γ). A
context C is defined as usual as a tree with a single occurrence of a leaf labeled
by a distinguished variable x. Given a context C and a tree t, we can form a
tree C[t] by plugging t instead of that x-labeled leaf.

Let d be a depth in N and • be a node label. We consider the set Td = Td({•})
of trees of depth at most d with • as single possible label; for instance, T0 = {•()}
contains a single tree, and the two trees shown in Fig. 2 are in T2:

It is a folklore result that one can encode bounded depth trees into finite
sequences using canonical factorizations. Here we present a natural variant that
is rather well-suited for our constructions in Sec. 6. We encode trees of bounded
depth using the mapping sd:Td+1→Σ∗d defined by induction on d as

sd(•(t1 · · · tn))
def
=

{
ε if n = 0,

sd−1(t1)d · · · sd−1(tn)d otherwise.
(4)

For instance, if we fix d = 1, the left tree in Fig. 2 is encoded as “111” and the
right one as “0011”. Note that the encoding depends on the choice of d: for d = 2
we would have encoded the trees in Fig. 2 as “222” and “1122”, respectively.

Not every string in Σ∗d is the encoding of a tree according to sd: for −1 ≤
a ≤ d, we let Pa

def
= (Pa−1{a})∗ be the set of proper encodings of height a, with

further P−1
def
= {ε}. Then P

def
=
⋃
a≤d Pa is the set of proper words in Σ∗d . A

proper word x is either empty or belongs to a unique Pa with a = h(x), and
has then a canonical factorization of the form x = x1a · · ·xma with every xj in
Pa−1. Put differently, a non-empty x = a1 · · · a` is in Pa if and only if a` = h(x)
and ai+1− ai ≤ 1 for all i < ` (we say that x has no jumps: along proper words,
priorities only increase smoothly, but can decrease sharply). For example, 02 is
not proper (it has a jump) while 012 is proper; 233123401234 is proper too.

Given a depth a, we see that sa is a bijection between Ta+1 and Pa, with the
inverse defined by

τ(ε)
def
= •() , τ(x = x1h(x) · · ·xmh(x))

def
= •(τ(x1) · · · τ(xm)) . (5)

4.2 Strong Tree Embeddings

One can provide a formal meaning to the notion of a wqo (B,4B) being more
powerful than another one (A,4A) through order reflections, i.e. through the
existence of a mapping r:A → B such that r(x) 4B r(y) implies x 4A y for
all x, y in A. Observe that if B reflects A and (B,4B) is a wqo, then (A,4A)
is necessarily a wqo. We show here that (Σ∗d ,vp) reflects bounded-depth trees
endowed with the strong tree-embedding relation.

Let t and t′ be two trees in Td. We say that t strongly embeds into t′, written
t vT t′, if it can be obtained from t′ by deleting whole subtrees, i.e. vT is the

reflexive transitive closure of the relation t @1
T t
′ def⇔ t = C[•(t1 · · · ti−1ti+1 · · · tn)]

and t′ = C[•(t1 · · · ti−1titi+1 · · · tn)] for some context C and subtrees t1, . . . , tn.
Strong tree embeddings refine the homeomorphic tree embeddings used in Kruskal’s
Tree Theorem; in general they do not give rise to a wqo, but in the case of
bounded depth trees they do. The two trees in Fig. 2 are not related by any
homeomorphic tree embedding, and thus neither by strong tree embedding. See
the full version for the proofs of the following results:

Proposition 9. The map sd is an order reflection from (Td+1,vT) to (Σ∗d ,vp).

Corollary 10. For each d, (Td,vT) is a wqo.

4.3 Further Applications

As stated in the introduction to this section, our main interest in strong tree
embeddings is in connection with structural orderings of ordinals; see Sec. 6.
Bounded depth trees are also used in the verification of infinite-state systems
as a means to obtain decidability results, in particular for tree pattern rewrit-
ing systems [15] in XML processing, and, using elimination trees [see 21], for
bounded-depth graphs used e.g. in the verification of ad-hoc networks [12], the
π-calculus [22], and programs [5]. These applications consider labeled trees, which
are dealt with thanks to a generalization of vp to pairs (a,w) where a is a priority
and w a symbol from some wqo (Γ,≤); see the full version.

This generalization of vp also allows to treat another wqo on trees, the tree
minor ordering, using the techniques of Gupta [16] to encode them in prioritized
alphabets. The tree minor ordering is coarser than the homeomorphic embedding
(e.g. in Fig. 2, the left tree is a minor of the right tree), but the upside is that
trees of unbounded depth can be encoded into strings.

The exact complexity of verification problems in the aforementioned models
is currently unknown [15, 12, 22, 5]. Our encoding suggests them to be Fε0 -
complete. We hope to see PCS Reachability employed as a “master” problem
for Fε0 , like LCS Reachability for Fωω , which is used in reductions instead of
more difficult proofs based on Turing machines and Hardy computations.

5 Fast-Growing Upper Bounds

The verification of infinite-state systems and WSTSs in particular turns out
to require astronomic computational resources expressed as subrecursive func-
tions [20, 13] of the input size. We show in this section how to bound the com-
plexity of the algorithms presented in Sec. 2.3 and classify the Reachability and
Inevitability problems using fast-growing complexity classes [25].

5.1 Subrecursive Hierarchies

Throughout this paper, we use ordinal terms inductively defined by the following
grammar

(Ω 3) α, β, γ ::= 0 | ωα | α+ β

where addition is associative, with 0 as the neutral element (the empty sum).
Equivalently, we can then see a term other than 0 as a tree over the alphabet
{+}; for instance the two trees in Fig. 2 represent 3 and ω2 + 1 respectively,

when putting the ordinal terms under the form α =
∑k
i=1 ω

αi . Such a term is 0
if k = 0, otherwise a successor if αk = 0 and a limit otherwise. We often write
1 as short-hand for ω0, and ω for ω1. The symbol λ is reserved for limits.

We can associate a set-theoretic ordinal o(α) to each term α by interpreting
+ as the direct sum operator and ω as N; this gives rise to a well-founded quasi-

ordering α < β
def⇔ o(α) < o(β). A term α =

∑k
i=1 ω

αi is in Cantor normal form
(CNF) if α1 ≥ α2 ≥ · · · ≥ αk and each αi is itself in CNF for i = 1, . . . , k. Terms
in CNF and set-theoretic ordinals below ε0 are in bijection; it will however be
convenient later in Sec. 6 to manipulate terms that are not in CNF.

With any limit term λ, we associate a fundamental sequence of terms (λn)n∈N

(γ + ωβ+1)n
def
= γ + ωβ · n = γ +

n︷ ︸︸ ︷
ωβ + · · ·+ ωβ ,

(γ + ωλ
′
)n

def
= γ + ωλ

′
n .

(6)

This yields λ0 < λ1 < · · · < λ for any λ, with furthermore λ = limn∈N λn. For
instance, ωn = n, (ωω)n = ωn, etc. Note that λn is in CNF when λ is.

We need to add a term ε0 to Ω to represent the set-theoretic ε0, i.e. the
smallest solution of x = ωx. We take this term to be a limit term as well; we

define the fundamental sequence for ε0 by (ε0)n
def
= Ωn, where for n ∈ N, we use

Ωn as short-hand notation for the ordinal ωω
···ω
}
n stacked ω’s, i.e., for Ω0

def
= 1

and Ωn+1
def
= ωΩn .

Inner Recursion Hierarchies Our main subrecursive hierarchy is the Hardy hi-
erarchy. Given a monotone expansive unary function h:N → N, it is defined as
an ordinal-indexed hierarchy of unary functions (hα:N→ N)α through

h0(n)
def
= n , hα+1(n)

def
= hα

(
h(n)

)
, hλ(n)

def
= hλn(n) .

Observe that h1 is simply h, and more generally hα is the αth iterate of h, using
diagonalisation to treat limit ordinals.

A case of particular interest is to choose the successor function H(n)
def
= n+1

for h. Then the fast growing hierarchy (Fα)α can be defined by Fα
def
= Hωα ,

resulting in F0(n) = H1(n) = n + 1, F1(n) = Hω(n) = Hn(n) = 2n, F2(n) =

Hω2

(n) = 2nn being exponential, F3 = Hω3

being non-elementary, Fω = Hωω

being an Ackermannian function, Fωk a k-Ackermannian function, and Fε0 =
Hε0 ◦H a function whose totality is not provable in Peano arithmetic [13].

Fast-Growing Complexity Classes Our intention is to establish the “Fε0 com-
pleteness” of verification problems on PCSs. In order to make this statement
more precise, we define the class Fε0 as a specific instance of the fast-growing
complexity classes defined for α ≥ 3 by [see 25, App. B]

Fα
def
=

⋃
p∈

⋃
β<α Fβ

DTime(Fα(p(n))) , Fα =
⋃
c<ω

FDTime(F cα(n)) , (7)

where the class of functions Fα as defined above is the αth level of the extended
Grzegorczyk hierarchy [20] when α ≥ 2; in particular,

⋃
α<ε0

Fα is exactly the
set of ordinal-recursive (aka “provably recursive”) functions [13].

The complexity classes Fα are naturally equipped with
⋃
β<α Fβ as classes of

reductions. For instance, F2 is the set of elementary functions, and F3 the class
of problems with a tower of exponents of height bounded by some elementary
function of the input as an upper bound.3

5.2 Complexity Upper Bounds

Recall that an alternative characterization of a wqo (X,4) is that any sequence
x0, x1, x2, . . . over X verifying xi 64 xj for all i < j is necessarily finite. Such
sequences are called bad, and in order to bound the complexity of the algo-
rithms from Thm. 3, we can bound the lengths of bad sequences over the wqo
(ConfS ,≤#) using the Length Function Theorem of [24]; see the full version for
details:

Theorem 11 (Complexity of PCS Verification). Reachability and Inevitabil-
ity of PCSs are in Fε0 .

6 Hardy Computations by PCSs

In this section we show how PCSs can weakly compute the Hardy functions
Hα and their inverses for all ordinals α below Ω, which is the key ingredient
for Thm. 15. For this, we develop (Sec. 6.1) encodings s(α) ∈ Σ∗d for ordinals

3 Note that, at such high complexities, the usual distinctions between deterministic
vs. nondeterministic, or time-bounded vs. space-bounded computations become ir-
relevant.

α ∈ Ωd and show how PCSs can compute with these codes, e.g. build the code
for λn from the code of a limit λ. This is used (Sec. 6.2) to design PCSs that
“weakly compute” Hα and (Hα)−1 in the sense of Def. 13 below.

6.1 Encoding Ordinals

Our encoding of ordinal terms as strings in Σ∗d is exactly the encoding of trees
presented in Sec. 4. For 0 ≤ a ≤ d, we use the following equation to define the
language Pa ⊆ Σ∗d of proper encodings, or just codes:

Pa
def
= ε+ PaPa−1a , P−1

def
= ε . (8)

Let P = P−1 +P0 + · · ·+Pd. Each Pa (and then P itself) is a regular language,
with Pa = (Pa−1a)∗ as in Sec. 4; for instance, P0 = 0∗.

Decompositions A code x is either the empty word ε, or belongs to a unique Pa.
If x ∈ Pa is not empty, it has a unique factorization x = yza according to (8)
with y ∈ Pa and z ∈ Pa−1. The factor z ∈ Pa−1 in x = yza can be developed
further, as long as z 6= ε: a non-empty code x ∈ Pd has a unique factorization
as x = yd yd−1 . . . ya a

ad with yi ∈ Pi for i = a, . . . , d, and where for 0 ≤ a ≤ b,
we write aab for the staircase word a(a + 1) · · · (b − 1)b, letting aab = ε when
a > b. We call this the decomposition of x. Note that the value of a is obtained
by looking for the maximal suffix of x that is a staircase word. For example,
x = 23312340121234 ∈ P4 is a code and decomposes as

x =

y4︷ ︸︸ ︷
2331234

y3︷︸︸︷
ε

y2︷︸︸︷
012

y1︷︸︸︷
ε

1a4︷︸︸︷
1234 .

Ordinal Encoding Following the tree encoding of Sec. 4, with a code x ∈ P , we
associate an ordinal term η(x) given by

η(ε)
def
= 0 , η(yza)

def
= η(y) + ωη(z) , (9)

where x = yza is the factorization according to (8) of x ∈ Pa \{ε}. For example,
η(a) = ω0 = 1 for all a ∈ Σd, η(012) = η(234) = ωω, and more generally
η(aab) = Ωb−a. One sees that η(x) < Ωa+1 when x ∈ Pa.

The decoding function η:P → Ωd+1 is onto (or surjective) but it is not
bijective. However, it is a bijection between Pa and Ωa+1 for any a ≤ d. Its
converse is the level-a encoding function sa:Ωa+1 → Pa, defined with

sa

(p∑
i=1

γi

)
def
= sa(γ1) · · · sa(γp) , sa(ωα)

def
= sa−1(α) a .

Thus sa(0) = sa(
∑
∅) = ε and, for example,

s5(1) = 5 , s5(3) = 555 , s5(ω) = 45 ,

s5(ω3) = 4445 , s5(ωω) = 345 , s5(ωω
ω

) = 2345 ,

s5(ω3 + ω2) = 4445445 , s5(ω · 3) = 454545 .

We may omit the subscript when a = d, e.g. writing s(1) = d.

o : 3 3 4 5 4 5 $ the ordinal term ωω2

+ ωω

c : 0 0 0 0 $ the counter value 4

t : $ the temporary storage

Fig. 3. Channels for Hardy computations.

Successors and Limits Let x = yd yd−1 . . . ya a
ad be the decomposition of x ∈

Pd \ ε. By (9), x encodes a successor ordinal η(x) = β + 1 iff a = d, i.e., if x
ends with two d’s (or has length 1). Since then β = η(yd . . . ya), one obtains the
“predecessor of x” by removing the final d.

If a < d, x encodes a limit λ. Combining (6) and (9), one obtains the encoding
(x)n of λn with

(x)n = yd yd−1 . . . ya+1

(
ya(a+ 1)

)n
(a+ 2)ad . (10)

E.g., with d = 5, decomposing x = 333345 = s(ωω
4

) gives a = 3, x = y5y4y33a5,
with y3 = 333 and y5 = y4 = ε. Then (x)n = (3334)n5, agreeing with, e.g.

s(ωω
3·2) = 333433345.

Robustness Translated to ordinals, Prop. 9 means that, whenever x ≤# x′ for
x, x′ ∈ Pa, then the corresponding ordinal η(x) will be “structurally” smaller
than η(x′). This in turn yields that the corresponding Hardy function Hη(x)

grows at most as fast as Hη(x′); see the full version for details:

Proposition 12 (Robustness). Let a ≥ 0 and x, x′ ∈ Pa. If x ≤# x′ then

Hη(x)(n) ≤ Hη(x′)(n′) for all n ≤ n′ in N.

6.2 Robust Hardy Computations in PCSs

Our PCSs for robust Hardy computations use three channels (see Fig. 3), storing
(codes for) a pair α, n on channels o (for “ordinal”) and c (for “counter”), and
employ an extra channel, t, for “temporary” storage. Instead of Σd, we use Σd+1

with d+1 used as a position marker and written $ for clarity: each channel always
contains a single occurrence of $.

Definition 13. A weak Hardy computer for Ωd+1 is a (d + 1)-PCS S with
channels Ch = {o, c, t} and two distinguished states pbeg and pend such that:

if (pbeg, x$, y$, z$)
∗−→# (pend, u, v, w)

then x ∈ Pd, y ∈ 0+, z = ε and u, v, w ∈ Σ∗d$,
(safety)

if (pbeg, s(α)$, 0n$, $)
∗−→# (pend, s(β)$, 0m$, $)

then Hα(n) ≥ Hβ(m) .
(robustness)

Furthermore S is complete if for any α < Ωd+1 and n > 0, (pbeg, s(α)$, 0n$, $)
∗−→#

(pend, $, 0
m$, $) for m = Hα(n), and it is inv-complete if (pbeg, $, 0

m$, $)
∗−→#

(pend, s(α)$, 0n$, $).

simulate
M with

budget B

q0 Sd p0 ph S−1
d

qh

o ! 0ad$
c ! 0n$
t ! $

o ? 0ad$
c ? 0n$
t ? $

Ωd, n H−→# · · ·
H−→# 0, B 0, B′ H-1

−→# · · ·
H-1

−→# α, n′

Fig. 4. Schematics for Thm. 15.

In the full version we prove the following:

Lemma 14 (PCSs weakly compute Hardy functions). For every d ∈ N,
there exists a weak Hardy computer Sd for Ωd+1 that is complete, and a weak S−1d
that is inv-complete. Furthermore Sd and S−1d can be generated in LogSpace
from d.

6.3 Wrapping It Up

With the above weak Hardy computers, we have the essential gadgets required
for our reductions. The wrapping-up is exactly as in [17, 27] (with a different
encoding and a different machine model) and will only be sketched.

Theorem 15 (Verifying PCSs is Hard). Reachability and Termination of
PCSs are Fε0-hard.

Proof. We exhibit a LogSpace reduction from the halting problem of a Turing
machine M working in Fε0 space to the Reachability problem in a PCS. We
assume wlog. M to start in a state p0 with an empty tape and to have a single
halting state ph that can only be reached after clearing the tape.

Figure 4 depicts the PCS S we construct for the reduction. Let n
def
= |M | and

d
def
= n+1. A run in S from the initial configuration to the final one goes through

three stages:

1. The first stage robustly computes Fε0(|M |) = HΩd(n) by first writing s(Ωd)$,
i.e. 0ad$, on o, 0n$ on c, and $ on t, then by using Sd to perform forward
Hardy steps; thus upon reaching state p0, o and t contain $ and c encodes
a budget B ≤ Fε0(|M |).

2. The central component simulates M over c where the symbols 0 act as
blanks—this is easily done by cycling through the channel contents to sim-
ulate the moves of the head of M on its tape. Due to superseding steps, the
outcome upon reaching ph is that c contains B′ ≤ B symbols 0.

3. The last stage robustly computes (Fε0)−1(B′) by running S−1d to perform
backward Hardy steps. This leads to o containing the encoding of some
ordinal α and c of some n′, but we empty these channels and check that
α = Ωd and n′ = n before entering state qh.

Because HΩd(n) ≥ B ≥ B′ ≥ Hα(n′) = HΩd(n), all the inequalities are actually
equalities, and the simulation of M in stage 2 has necessarily employed reliable
steps. Hence, M halts if and only if (qh, ε, ε, ε) is reachable from (q0, ε, ε, ε) in S.

The case of (non-)Termination is similar, but employs a time budget in a
separate channel in addition to the space budget, in order to make sure that the
simulation of M terminates in all cases, and leads to a state qh that is the only
one from which an infinite run can start in S.

7 Concluding Remarks

We introduced Priority Channel Systems, a natural model for protocols and pro-
grams with differentiated, prioritized asynchronous communications, and showed
how they give rise to well-structured systems with decidable model-checking
problems.

We showed that Reachability and Termination for PCSs are Fε0-complete,
and we expect our techniques to be transferable to other models, e.g. models
based on wqos on bounded-depth trees or graphs, whose complexity has not
been analyzed [15, 12, 22, 5]. This is part of our current research agenda on
complexity for well-structured systems [25].

In spite of their enormous worst-case complexity, we expect PCSs to be
amenable to regular model checking techniques à la [4, 6]. This requires investi-
gating the algorithmics of upward- and downward-closed sets of configurations
wrt. the priority ordering. These sets, which are always regular, seem promising
since vp shares some good properties with the better-known subword ordering,
e.g. the upward- or downward-closure of a sequence x ∈ Σ∗d can be represented
by a DFA with |x| states.

References

1. Abdulla, P.A., Atig, M.F., Cederberg, J.: Timed lossy channel systems. FST&TCS
2012. LIPIcs, vol. 18, pp. 374–386. Leibniz-Zentrum für Informatik (2012)

2. Abdulla, P.A., Čerāns, K., Jonsson, B., Tsay, Y.K.: Algorithmic analysis of pro-
grams with well quasi-ordered domains. Inform. and Comput. 160(1–2), 109–127
(2000)

3. Abdulla, P.A., Deneux, J., Ouaknine, J., Worrell, J.: Decidability and complexity
results for timed automata via channel machines. ICALP 2005. LNCS, vol. 3580,
pp. 1089–1101. Springer (2005)

4. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. Inform.
and Comput. 127(2), 91–101 (1996)

5. Bansal, K., Koskinen, E., Wies, T., Zufferey, D.: Structural counter abstraction.
TACAS 2013. LNCS, vol. 7795, pp. 62–77. Springer (2013)

6. Boigelot, B., Godefroid, P.: Symbolic verification of communication protocols with
infinite state spaces using QDDs. Form. Methods in Syst. Des. 14(3), 237–255
(1999)

7. Bouajjani, A., Habermehl, P.: Symbolic reachability analysis of FIFO-channel sys-
tems with nonregular sets of configurations. Theor. Comput. Sci. 221(1–2), 211–250
(1999)

8. Bouyer, P., Markey, N., Ouaknine, J., Schnoebelen, Ph., Worrell, J.: On termi-
nation and invariance for faulty channel machines. Form. Asp. Comput. 24(4–6),
595–607 (2012)

9. Cécé, G., Finkel, A.: Verification of programs with half-duplex communication.
Inform. and Comput. 202(2), 166–190 (2005)

10. Cécé, G., Finkel, A., Purushothaman Iyer, S.: Unreliable channels are easier to
verify than perfect channels. Inform. and Comput. 124(1), 20–31 (1996)

11. Chambart, P., Schnoebelen, Ph.: The ordinal recursive complexity of lossy channel
systems. LICS 2008. pp. 205–216. IEEE Press (2008)

12. Delzanno, G., Sangnier, A., Zavattaro, G.: Parameterized verification of ad hoc
networks. Concur 2010. LNCS, vol. 6269, pp. 313–327. Springer (2010)

13. Fairtlough, M., Wainer, S.S.: Hierarchies of provably recursive functions. Handbook
of Proof Theory, chap. III, pp. 149–207. Elsevier (1998)

14. Finkel, A., Schnoebelen, Ph.: Well-structured transition systems everywhere!
Theor. Comput. Sci. 256(1–2), 63–92 (2001)

15. Genest, B., Muscholl, A., Serre, O., Zeitoun, M.: Tree pattern rewriting systems.
ATVA 2008. LNCS, vol. 5311, pp. 332–346. Springer (2008)

16. Gupta, A.: A constructive proof that trees are well-quasi-ordered under minors.
LFCS 1992. LNCS, vol. 620, pp. 174–185. Springer (1992)

17. Haddad, S., Schmitz, S., Schnoebelen, Ph.: The ordinal-recursive complexity of
timed-arc Petri nets, data nets, and other enriched nets. LICS 2012. pp. 355–364.
IEEE Press (2012)

18. Kurucz, A.: Combining modal logics. Handbook of Modal Logics, chap. 15, pp.
869–926. Elsevier (2006)

19. Lasota, S., Walukiewicz, I.: Alternating timed automata. ACM Trans. Comput.
Logic 9(2) (2008)

20. Löb, M., Wainer, S.: Hierarchies of number theoretic functions, I. Arch. Math.
Logic 13, 39–51 (1970)

21. Ossona de Mendez, P., Nešetřil, J.: Sparsity, chap. 6: Bounded height trees and
tree-depth, pp. 115–144. Springer (2012)

22. Meyer, R.: On boundedness in depth in the π-calculus. IFIP TCS 2008. IFIP, vol.
273, pp. 477–489. Springer (2008)

23. Ouaknine, J., Worrell, J.: On the decidability and complexity of Metric Temporal
Logic over finite words. Logic. Meth. in Comput. Sci. 3(1), 1–27 (2007)

24. Schmitz, S., Schnoebelen, Ph.: Multiply-recursive upper bounds with Higman’s
lemma. ICALP 2011. LNCS, vol. 6756, pp. 441–452. Springer (2011)

25. Schmitz, S., Schnoebelen, Ph.: Algorithmic aspects of WQO theory. Lecture notes
(2012), http://cel.archives-ouvertes.fr/cel-00727025

26. Schnoebelen, Ph.: Lossy counter machines decidability cheat sheet. RP 2010.
LNCS, vol. 6227, pp. 51–75. Springer (2010)

27. Schnoebelen, Ph.: Revisiting Ackermann-hardness for lossy counter machines and
reset Petri nets. MFCS 2010. LNCS, vol. 6281, pp. 616–628. Springer (2010)

28. Schütte, K., Simpson, S.G.: Ein in der reinen Zahlentheorie unbeweisbarer Satz
über endliche Folgen von natürlichen Zahlen. Arch. Math. Logic 25(1), 75–89 (1985)

http://cel.archives-ouvertes.fr/cel-00727025

	The Power of Priority Channel Systems

