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From numbers to words

Usually integers are represented by finite words while real numbers are represented by
infinite words.

◮ In base 10: 148 → 148, 1
3

→ 0.3333 · · ·, π → 3.141592 · · ·

◮ In base 2: 148 → 10010100, 1
3

→ 0.01010101 · · ·, π → 11.001001000011 · · ·

The basic consideration is as follows: properties of numbers are translated into
combinatorial properties of their representations.
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Recognizable sets of integers

A subset X of N is recognizable with respect to a given numeration system S,
or S-recognizable, if the language

{repS(n) : n ∈ X}

is accepted by a finite automaton.

◮ The set 2N of even non-negative integers is 2-recognizable.

1

1
0

0

1

◮ The set {2n : n ∈ N} of powers of 2 is 2-recognizable.

1

0
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Changing the system

◮ The set 2N of even non-negative integers is 3-recognizable.

2

1

0, 2

1
0, 2

1

In fact, the set 2N is b-recognizable for all integer bases b.

◮ The set {2n : n ∈ N} of powers of 2 is not 3-recognizable.

This is a consequence of Cobham’s theorem.
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Cobham’s theorem

Two integers k and ℓ are multiplicatively independent if km = ℓn and m, n ∈ N implies
m = n = 0.

Theorem (Cobham 1969)

Let b and b′ be multiplicatively independent integer bases. If a subset of N is

simultaneously b-recognizable and b′-recognizable, then it is a finite union of

arithmetic progressions (possibly finite).

2N ∪ (3N + 2) ∪ {3}

• • • • • • • • • • • • • • • • • • • • • • •
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 ...
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Multidimensional version of Cobham’s theorem

Theorem (Semenov 1977)

Let b and b′ be multiplicatively independent integer bases. If a subset of Nd is

simultaneously b-recognizable and b′-recognizable, then it is semi-linear.

A set X ⊆ N
d is linear if there exists v0, v1, · · · , vt ∈ N

d such that

X = {v0 + n1v1 + n2v2 + · · · + ntvt : n1, . . . , nt ∈ N}.

A subset of Nd is semi-linear if it is a finite union of linear sets.
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{(2m, 3n + 1) : m, n ∈ N and 2m ≥ 3n + 1} ∪ {(m, 2n) : m, n ∈ N and m < 2n}

10 b b b b b b b b b b b b

9

8 b b b b b b b b

7 b b b

6 b b b b b b

5

4 b b b b b b b b b

3

2 b b

1 b b b b b b

0

0 1 2 3 4 5 6 7 8 9 10 11 12
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From words to numbers

On the other hand, infinite words may also represent sets of numbers:
the characteristic sequence of a subset of N is a binary infinite word.

◮ The set 2N gives the periodic infinite word 10101010 · · ·

◮ The set {2n : n ∈ N} gives the aperiodic infinite word
011010001000000010000 · · ·

Exercise: Show that the characteristic sequence of a subset of N is ultimately periodic,
that is, of the form uvvv · · · , if and only if it is a finite union of arithmetic progressions
(possibly finite).

2N ∪ (3N + 2) ∪ {3}

• • • • • • • • • • • • • • • • • • • • • • •
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 ...

For this reason, we also talk about ultimately periodic sets of integers.
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Linking recognizable sets and automatic sequences

For an integer base b ≥ 2, a subset X of N is b-recognizable if and only if its
characteristic sequence is b-automatic: there exists a DFAO that on input repb(n)
ouputs 1 if n ∈ X , and outputs 0 otherwise.

For example, the DFAO

1 0

0, 2

1

0, 2

1

generates the periodic sequence

1010101010 · · ·

when reading 3-representations of integers, which corresponds to the subset of even
non-negative integers

{0, 2, 4, 6, 8, . . .}.
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Automatic sequences

A sequence f : N → B is called automatic with respect to a numeration system S, or
S-automatic, if there exists a DFA0 A = (Q, q0, δ, A, τ, B) such that

∀n ∈ N, f (n) = τ (δ(q0, repS(n)))

◮ The Thue-Morse sequence 01101001100101 · · · is generated by the DFAO

0 1

0
1

0

1

when reading integers in base 2.

◮ The Fibonacci sequence 0100101001001 · · · is generated by the DFAO

0 1

0
1

0

when reading the Zeckendorf representations of the integers.
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◮ The characteristic sequence 110010000100000010 · · · of the set of squares
{0, 1, 4, 9, 16, 25, . . .} is generated by the DFAO

1 0

a

b, c

b, c

when reading integers in the abstract numeration system
(a∗b∗ ∪ a∗c∗, a < b < c).

However, this sequence isn’t b-automatic for any integer base b (Eilenberg 1974).
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A range of numeration systems

◮ Unary representations

A natural number n is represented by the finite word rep1(n) = an where a is any
fixed symbol.

Exercise: Show that the 1-recognizable subsets of N are exactly the ultimately
periodic sets.

◮ Binary representations

· · · 16 8 4 2 1
· · · c4 c3 c2 c1 c0 n

0
1 1

1 0 2
1 1 3

1 0 0 4
1 0 1 5
1 1 0 6
1 1 1 7

1 0 0 0 8

We have n =
∑ℓ−1

i=0
ci2i with cℓ−1 = 1, and we write rep2(n) = cℓ−1 · · · c0.
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◮ Integer base representations

Let b ≥ 2 be an integer. A natural number n is represented by the finite word
repb(n) = cℓ−1 · · · c0 obtained from the greedy algorithm:

n =
ℓ−1
∑

i=0

ci b
i
.

The greedy algorithm only imposes to have a nonzero leading digit cℓ−1.

Thus, the set of all greedy representations is

{1, . . . , b − 1}{0, · · · , b − 1}∗ ∪ {ε}.
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◮ Zeckendorf representations

Let F = (Fi )i≥0 = (1, 2, 3, 5, 8, . . .) be the sequence obtained from the rules:

F0 = 1, F1 = 2 and Fi+2 = Fi+1 + Fi for i ≥ 0.

Again, we can use the greedy algorithm in order to get digits cℓ−1 · · · c0 such
that n =

∑ℓ−1

i=0
ciFi :

· · · 8 5 3 2 1
· · · c4 c3 c2 c1 c0 n

0
1 1

1 0 2
1 0 0 3
1 0 1 4

1 0 0 0 5
1 0 0 1 6
1 0 1 0 7

1 0 0 0 0 8

In addition to having a nonzero leading digit cℓ−1, the greedy algorithm imposes
that the valid representations do not contain two consecutive 1’s.

The set of all greedy representations is

1{0, 01}∗ ∪ {ε}.
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◮ Positional representations

Let U = (Ui)i≥0 be a base sequence, that is, an increasing sequence of positive
integers such that U0 = 1 and the quotients Ui+1

Ui
are bounded.

A natural number n is represented by the finite word repU(n) = cℓ−1 · · · c0

obtained from the greedy algorithm:

n =
ℓ

∑

i=0

ci Ui .

A description of the numeration language {repU(n) : n ∈ N} strongly depends on
the base sequence U.

Given such a system U, other choices of representations could be made, such as
the lazy algorithm for instance.
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Abstract numeration systems

In all the previous settings, the representations of the integers are ordered thanks to
the radix order.

An ANS is a triple S = (L, A, <) where L is an infinite regular language over a totally
ordered alphabet (A, <).

The S-representation function repS : N → L maps n onto the nth word of L in the
radix order.

The map repS is a bijection and its reciprocal map is the S-value function
valS : L → N.
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Enumerate the words in a∗b∗ ∪ a∗c∗ thanks to the radix order induced by a < b < c:

n repS(n) n repS(n) n repS(n)
0 ε 9 aaa 18 aaac
1 a 10 aab 19 aabb
2 b 11 aac 20 aacc
3 c 12 abb 21 abbb
4 aa 13 acc 22 accc
5 ab 14 bbb 23 bbbb
6 ac 15 ccc 24 cccc
7 bb 16 aaaa 25 aaaaa
8 cc 17 aaab 26 aaaab
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Enumerate the words in a∗b∗ ∪ a∗c∗ thanks to the radix order induced by a < b < c:

n repS(n) n repS(n) n repS(n)
0 ε 9 aaa 18 aaac
1 a 10 aab 19 aabb
2 b 11 aac 20 aacc
3 c 12 abb 21 abbb
4 aa 13 acc 22 accc
5 ab 14 bbb 23 bbbb
6 ac 15 ccc 24 cccc
7 bb 16 aaaa 25 aaaaa
8 cc 17 aaab 26 aaaab

For this ANS, it can be checked that repS(n2) = an for all n ∈ N.
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Enumerate the words in a∗b∗ ∪ a∗c∗ thanks to the radix order induced by a < b < c:

n repS(n) n repS(n) n repS(n)
0 ε 9 aaa 18 aaac
1 a 10 aab 19 aabb
2 b 11 aac 20 aacc
3 c 12 abb 21 abbb
4 aa 13 acc 22 accc
5 ab 14 bbb 23 bbbb
6 ac 15 ccc 24 cccc
7 bb 16 aaaa 25 aaaaa
8 cc 17 aaab 26 aaaab

For this ANS, it can be checked that repS(n2) = an for all n ∈ N.

Theorem (Rigo 2002)

For all k ∈ N, the set {nk : n ∈ N} is S-recognizable for ANS S.
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Morphic sequences

◮ Apply the rules 0 7→ 01 and 1 7→ 10 iteratively from 0:

01
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Morphic sequences

◮ Apply the rules 0 7→ 01 and 1 7→ 10 iteratively from 0:

0110
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Morphic sequences

◮ Apply the rules 0 7→ 01 and 1 7→ 10 iteratively from 0:

011010
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Morphic sequences

◮ Apply the rules 0 7→ 01 and 1 7→ 10 iteratively from 0:

01101001
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Morphic sequences

◮ Apply the rules 0 7→ 01 and 1 7→ 10 iteratively from 0:

0110100110
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Morphic sequences

◮ Apply the rules 0 7→ 01 and 1 7→ 10 iteratively from 0:

011010011001

18/46



Morphic sequences

◮ Apply the rules 0 7→ 01 and 1 7→ 10 iteratively from 0:

01101001100101
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Morphic sequences

◮ Apply the rules 0 7→ 01 and 1 7→ 10 iteratively from 0:

0110100110010110 · · ·
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Morphic sequences

◮ Apply the rules 0 7→ 01 and 1 7→ 10 iteratively from 0:

0110100110010110 · · ·

The so-obtained limit infinite word is the called Thue-Morse sequence.
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Morphic sequences

◮ Apply the rules 0 7→ 01 and 1 7→ 10 iteratively from 0:

0110100110010110 · · ·

The so-obtained limit infinite word is the called Thue-Morse sequence.

◮ Apply the rules 0 7→ 01 and 1 7→ 0 from 0:

01
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Morphic sequences

◮ Apply the rules 0 7→ 01 and 1 7→ 10 iteratively from 0:

0110100110010110 · · ·

The so-obtained limit infinite word is the called Thue-Morse sequence.

◮ Apply the rules 0 7→ 01 and 1 7→ 0 from 0:

010
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Morphic sequences

◮ Apply the rules 0 7→ 01 and 1 7→ 10 iteratively from 0:

0110100110010110 · · ·

The so-obtained limit infinite word is the called Thue-Morse sequence.

◮ Apply the rules 0 7→ 01 and 1 7→ 0 from 0:

01001

18/46



Morphic sequences

◮ Apply the rules 0 7→ 01 and 1 7→ 10 iteratively from 0:

0110100110010110 · · ·

The so-obtained limit infinite word is the called Thue-Morse sequence.

◮ Apply the rules 0 7→ 01 and 1 7→ 0 from 0:

0100101
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Morphic sequences

◮ Apply the rules 0 7→ 01 and 1 7→ 10 iteratively from 0:

0110100110010110 · · ·

The so-obtained limit infinite word is the called Thue-Morse sequence.

◮ Apply the rules 0 7→ 01 and 1 7→ 0 from 0:

01001010
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Morphic sequences

◮ Apply the rules 0 7→ 01 and 1 7→ 10 iteratively from 0:

0110100110010110 · · ·

The so-obtained limit infinite word is the called Thue-Morse sequence.

◮ Apply the rules 0 7→ 01 and 1 7→ 0 from 0:

0100101001
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Morphic sequences

◮ Apply the rules 0 7→ 01 and 1 7→ 10 iteratively from 0:

0110100110010110 · · ·

The so-obtained limit infinite word is the called Thue-Morse sequence.

◮ Apply the rules 0 7→ 01 and 1 7→ 0 from 0:

01001010010
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Morphic sequences

◮ Apply the rules 0 7→ 01 and 1 7→ 10 iteratively from 0:

0110100110010110 · · ·

The so-obtained limit infinite word is the called Thue-Morse sequence.

◮ Apply the rules 0 7→ 01 and 1 7→ 0 from 0:

0100101001001 · · ·
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Morphic sequences

◮ Apply the rules 0 7→ 01 and 1 7→ 10 iteratively from 0:

0110100110010110 · · ·

The so-obtained limit infinite word is the called Thue-Morse sequence.

◮ Apply the rules 0 7→ 01 and 1 7→ 0 from 0:

0100101001001 · · ·

The so-obtained limit infinite word is the called Fibonacci sequence.
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Morphic sequences

◮ Apply the rules 0 7→ 01 and 1 7→ 10 iteratively from 0:

0110100110010110 · · ·

The so-obtained limit infinite word is the called Thue-Morse sequence.

◮ Apply the rules 0 7→ 01 and 1 7→ 0 from 0:

0100101001001 · · ·

The so-obtained limit infinite word is the called Fibonacci sequence.

A morphism σ : A∗ → A∗ is said to be prolongable on a letter a ∈ A if σ(a) = au for
some nonempty word u such that σn(u) is nonempty for all n ≥ 0.

In this case, when iterating σ on a, we get longer and longer words and for each
n ∈ N, the word σn(a) is a prefix of σn+1(a).

An infinite sequence obtained as the limit aσ(u)σ2(u)σ3(u) · · · of such a process is
said to be pure morphic or the fixed point of the morphism σ.

A morphic sequence is the image under a letter-to-letter morphism of a pure morphic
sequence.
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Automatic versus morphic

Theorem (Cobham 1972)

Let b be an integer base. A sequence if b-automatic if and only if it is the image under

a letter-to-letter morphism of a fixed point of a b-uniform morphism.

◮ The Thue-Morse sequence is 2-automatic and it is also the fixed point of the
2-uniform morphim 0 7→ 01, 1 7→ 10.

Theorem (Maes & Rigo 2002)

A sequence if S-automatic for some abstract numeration system S if and only if it is

morphic.

◮ The set of primes is never S-recognizable, since its characteristic sequence is not
morphic (Mauduit 1988).

◮ The Fibonacci sequence is Zeckendorf-automatic and it is the fixed point of the
non-uniform morphim 0 7→ 01, 1 7→ 0.
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◮ For S = (a∗b∗ ∪ a∗c∗, a < b < c), the set of squares is S-recognizable since
{repS(n2) : n ∈ N} = a∗. Hence its characteristic sequence
110010000100000010 · · · is S-automatic.
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◮ For S = (a∗b∗ ∪ a∗c∗, a < b < c), the set of squares is S-recognizable since
{repS(n2) : n ∈ N} = a∗. Hence its characteristic sequence
110010000100000010 · · · is S-automatic.

Let us see why it is also morphic.
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a

b c

b c
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◮ For S = (a∗b∗ ∪ a∗c∗, a < b < c), the set of squares is S-recognizable since
{repS(n2) : n ∈ N} = a∗. Hence its characteristic sequence
110010000100000010 · · · is S-automatic.

Let us see why it is also morphic.

B A C

0
1

0

a

b c

b c
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◮ For S = (a∗b∗ ∪ a∗c∗, a < b < c), the set of squares is S-recognizable since
{repS(n2) : n ∈ N} = a∗. Hence its characteristic sequence
110010000100000010 · · · is S-automatic.

Let us see why it is also morphic.

B A C

0
1

0

a

b c

b c

We compute the (non uniform) morphism

α 7→ αA, A 7→ ABC , B 7→ B, C 7→ C
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◮ For S = (a∗b∗ ∪ a∗c∗, a < b < c), the set of squares is S-recognizable since
{repS(n2) : n ∈ N} = a∗. Hence its characteristic sequence
110010000100000010 · · · is S-automatic.

Let us see why it is also morphic.

B A C

0
1

0

a

b c

b c

We compute the (non uniform) morphism

α 7→ αA, A 7→ ABC , B 7→ B, C 7→ C

Iterating this morphism from α, we get the sequence

αAABCABCBCABCBCBCABC · · ·
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◮ For S = (a∗b∗ ∪ a∗c∗, a < b < c), the set of squares is S-recognizable since
{repS(n2) : n ∈ N} = a∗. Hence its characteristic sequence
110010000100000010 · · · is S-automatic.

Let us see why it is also morphic.

B A C

0
1

0

a

b c

b c

We compute the (non uniform) morphism

α 7→ αA, A 7→ ABC , B 7→ B, C 7→ C

Iterating this morphism from α, we get the sequence

αAABCABCBCABCBCBCABC · · ·

Finally, applying the morphism

α 7→ ε, A 7→ 1, B 7→ 0, C 7→ 0

we obtain the desired sequence

1100100001000000100 · · ·
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Alternative definitions of b-recognizable sets

There exist several equivalent definitions of b-recognizable sets of integers using

◮ automata

◮ uniform morphisms

◮ logic

◮ finiteness of the b-kernel

◮ formal series

There are also multidimensional versions of the previous definitions.

See the survey of Bruyère, Hansel, Michaux & Villemaire 1996.
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Definable sets
Let S be a logical structure whose domain is H and let d ≥ 1. A set X ⊆ Hd is
definable in S if there exists a first-order formula ϕ(x1, . . . , xd ) of S such that

X = {(h1, . . . , hd) ∈ Hd : ϕ(h1, . . . , hd) is true}.

Let Vb : N → N be the function mapping n ≥ 1 to the largest power of b dividing n,
and mapping 0 to 1.

◮ The set {bn : n ∈ N} is definable in 〈N, +, Vb〉 by the formula Vb(x) = x .

Theorem (Büchi 1960, Bruyère 1985)

Let b be an integer base. A subset X of Nd is b-recognizable if and only if it is

definable in 〈N, +, Vb〉. Moreover, both directions are effective.

We may now reformulate the Cobham-Semenov theorem in logical terms:

Theorem (Cobham-Semenov)

Let b and b′ be multiplicatively independent integer bases. If a subset of Nd is

simultinaeously definable in 〈N, +, Vb〉 and in 〈N, +, Vb′ 〉, then it is definable in 〈N, +〉.

22/46



Sets that are S-recognizable for all S

As linear sets are b-recognizable for all b ≥ 2, we obtain:

Corollary

A subset of Nd is b-recognizable for all b ≥ 2 if and only if it is semi-linear.
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Sets that are S-recognizable for all S

As linear sets are b-recognizable for all b ≥ 2, we obtain:

Corollary

A subset of Nd is b-recognizable for all b ≥ 2 if and only if it is semi-linear.

However, semi-linear sets are not always S-recognizable!

For example, the linear set X = {(n, 2n) : n ∈ N} = (1, 2)N is not 1-recognizable since
the language

rep1(X) = {(#nan
, a2n) : n ∈ N} = {(#, a)n(a, a)n : n ∈ N}

is not regular (apply the pumping lemma).
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Sets that are S-recognizable for all S

As linear sets are b-recognizable for all b ≥ 2, we obtain:

Corollary

A subset of Nd is b-recognizable for all b ≥ 2 if and only if it is semi-linear.

However, semi-linear sets are not always S-recognizable!

For example, the linear set X = {(n, 2n) : n ∈ N} = (1, 2)N is not 1-recognizable since
the language

rep1(X) = {(#nan
, a2n) : n ∈ N} = {(#, a)n(a, a)n : n ∈ N}

is not regular (apply the pumping lemma).

Theorem (Charlier, Lacroix & Rampersad 2010)

A subset X of Nd is S-recognizable for all S if and only if it is 1-recognizable.
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Applications to decidability questions for automatic sequences

By using the following corollary of the Büchi-Bruyère theorem, we can automatically
prove many properties of automatic sequences.

Corollary

The first order theory of 〈N, +, Vb〉 is decidable.

For example, the fact that the Thue-Morse sequence T : N → {0, 1} is aperiodic
translates as

∃N, ∃p ≥ 1, ∀n ≥ N, T (n) = T (n + p).

Since T is a 2-automatic sequence, the previous formula is a closed first-order formula
of 〈N, +, V2〉.

This means that we can decide whether this formula is true or is false.
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In practice

This method for deciding first-order expressible properties of b-automatic sequences
has worst case complexity

22
·
·
·
2n

where n is the number of states of the given DFAO and the height of the tower is the
number of alternating quantifiers in the first-order formula.

Nevertheless, this procedure was implemented by Mousavi, and Shallit and his
coauthors were able to run their programs in order to prove (and reprove) many results
about b-automatic sequences, in a purely mechanical way.
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From automatic sequences to regular sequences

In what follows, K designates an arbitrary commutative semiring and S = (L, A, <) is
an arbitrary ANS.

A sequence f : N → K is called (S,K)-regular if there exist a morphism of monoids
µ : A∗ → K

r×r , and vectors λ ∈ K
1×r and γ ∈ K

r×1 such that

∀w ∈ L, λµ(w)γ = f (valS(w)).

In this case, the triple (λ, µ, γ) is called a linear representation of the sequence f .

Theorem (Charlier, Cisternino & Stipulanti 2020)

Let f : N → K.

◮ If f is S-automatic then it is (S,K)-regular.

◮ If f is (S,K)-regular and takes only finitely many values, and if moreover K is

finite or is a ring, then f is S-automatic.

We also have a multidimensional version of this result.
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Enumerating recognizable properties of automatic sequences

gives rise to regular sequences

In this part, we focus on the semirings N and N∞ = N ∪ {∞}.

Theorem (Charlier, Cisternino & Stipulanti 2020)

If X is an S-recognizable subset of Nd+d′

, then the sequence

f : Nd → N∞, n 7→ Card{n
′ ∈ N

d′

: ( n

n
′ ) ∈ X}

is (S,N∞)-regular. If moreover f (N) ⊆ N then f is (S,N)-regular.

27/46



S-recognizable predicates
A predicate P on N

d is S-recognizable if the set

{(n1, . . . , nd) ∈ N
d : P(n1, . . . , nd) is true}

is S-recognizable.

◮ The binary predicates x = y and x < y are always S-recognizable since the
languages

◮ repS{(n, n) : n ∈ N} = {(w , w) : w ∈ L}

◮ repS{(m, n) ∈ N
2 : m < n} = {(u, v)# : u, v ∈ L, u <rad v}

are both regular.

◮ Addition is not always S-recognizable since the subset
{

(m, n, m + n) : m, n ∈ N

}

of N3 is not S-recognizable in general.

The most famous family of ANS for which addition is recognizable is that of
Pisot numeration systems (Frougny & Solomyak 1996).
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The following result generalizes ideas from Bruyère, Hansel, Michaux & Villemaire
1996 and Charlier, Rampersad & Shallit 2012 to ANS.

Proposition

Any predicate on N
d that is defined recursively from S-recognizable predicates by only

using the logical connectives ∧, ∨, ¬, =⇒ , ⇐⇒ and the quantifiers ∀ and ∃ on

variables describing elements of N, is S-recognizable.

Corollary

If P a such a predicate on N then the closed predicates ∀xP(x), ∃xP(x) and ∃∞xP(x)
are decidable.
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Application to factor complexity

The factor complexity of f : N → B is the function ρf : N 7→ N that maps each s ∈ N

to the number of factors of size s occurring in f .

Corollary

Let S be an ANS such that addition is S-recognizable, i.e., the predicate x + y = z is

S-recognizable. Then the factor complexity of an S-automatic sequence is an

(S,N)-regular sequence.

Proof.
Let f be an S-automatic sequence.

For all s ∈ N, one has

ρf (s) = Card{p ∈ N : ∀p′ ∈ N
(

p′
< p =⇒ ∃i < s, f (p′ + i) 6= f (p + i)

)

}.

It now suffices to see that the set

{(s, p) ∈ N
2 : ∀p′ ∈ N

(

p′
< p =⇒ ∃i < s, f (p′ + i) 6= f (p + i)

)

}

is S-recognizable.
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Factor complexity of multidimensional sequence

The factor complexity of f : Nd → B is the function ρf : Nd 7→ N that maps each
s ∈ N

d to the number of rectangular d-dimensional factors of size s occurring in f .

p

s1

s2

Corollary

Let S be an ANS such that addition is S-recognizable, i.e., the predicate x + y = z is

S-recognizable. Then the factor complexity of a multidimensional S-automatic

sequence is an (S,N)-regular sequence.
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Representing real numbers

In general real numbers are represented by infinite words.

In this context, we consider Büchi automata. An infinite word is accepted when the
corresponding path goes infinitely many times through an accepting state.

We talk about ω-languages and ω-regular languages.

Regular and ω-regular languages share some important properties: they both are stable
under

◮ complementation

◮ finite union

◮ finite intersection

◮ morphic image

◮ inverse image under a morphism.

Nevertheless, they differ by some other aspects. One of them is determinism.
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Deterministic Büchi automata

As for DFAs, we can define deterministic Büchi automata.

But one has to be careful as the family of ω-languages that are accepted by
deterministic Büchi automata is strictly included in that of ω-regular languages.

Example

No deterministic Büchi automaton accepts the language accepted by

a, b

b

b
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β-representation of real numbers

Let β > 1 be a real number and let C ⊂ Z be an alphabet. For a real number x , any
infinite word u = uk · · · u1u0 ⋆ u−1u−2 · · · over C ∪ {⋆} such that

∑

−∞<i≤k

ui β
i = x

is a β-representation of x .

In general, this is not unique.

◮ Consider β = 1+
√

5
2

(golden ratio) and x =
∑

i≥1

β
−2i .

As we also have x =
∑

i≥3

β
−i , the words

u = 0 ⋆ 001111 · · ·

and
v = 0 ⋆ 0101010 · · ·

are both β-representations of x .
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β-expansions of real numbers

For x ≥ 0, among all such β-representations of x , we distinguish the β-expansion

dβ(x) = xk · · · x1x0 ⋆ x−1x−2 · · ·

which is the infinite word over Aβ = {0, . . . , ⌈β⌉ − 1} containing exactly one symbol ⋆

and obtained by the greedy algorithm.

Then we may also define the β-expansions of negative real numbers as well as of real
vectors.

A set X ⊆ R
d is β-recognizable if the set dβ(X) is accepted by a Büchi automaton.
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First order theory for mixed real and integer variables

Let Xβ be the finite collection of binary predicates {Xβ,a : a ∈ Ãβ} defined by
Xβ,a(x , y) is true whenever y = βi for some i ∈ Z, and

◮ either |x | < y and a = 0,

◮ or |x | ≥ y , i ≤ k and xi = a.

Theorem (Boigelot-Rassart-Wolper 1998)

Let b be an integer base. A subset of Rd is b-recognizable if and only if it is definable

in 〈R, +, ≤,Z, Xb〉.

As the emptiness of an ω-regular language is decidable, we obtain

Corollary

The first order theory of 〈R, +, ≤,Z, Xb〉 is decidable.
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Deciding topological properties

The following properties of b-recognizable subsets X of Rd are decidable:

◮ X has a nonempty interior:

(∃x ∈ X) (∃ε > 0) (∀y) (|x − y | < ε =⇒ y ∈ X).

◮ X is open:

(∀x ∈ X) (∃ε > 0) (∀y) (|x − y | < ε =⇒ y ∈ X).

◮ X is closed: OK as R
d \ X is b-recognizable.

◮ . . .
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A Cobham theorem for real numbers

Theorem (Boigelot-Brusten-Bruyère-Jodogne-Leroux 2001, 2008, 2009)

Let b and b′ be multiplicatively independent integer bases.

A subset X ⊆ R
d is simultaneously weakly b-recognizable and b′-recognizable if and

only if it is definable in 〈R, +, ≤,Z〉.

For d = 1, this result is equivalent to

Theorem (Adamczewski-Bell 2011)

Let b, b′ ≥ 2 be multiplicatively independent integers. A compact set X ⊆ [0, 1] is

simultaneously b-self-similar and b′-self-similar if and only if it is a finite union of

closed intervals with rational endpoints.
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b-self-similarity

Let b ≥ 2 be an integer.

A compact set X ⊂ [0, 1]d is b-self-similar if its b-kernel

{

(bkX − a) ∩ [0, 1]d : k ≥ 0, a = (a1, . . . , ad) ∈ Z
d
, (∀i) 0 ≤ ai < bk

}

is finite.
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Pascal’s triangle modulo 2 is 2-self-similar.
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Menger sponge is 3-self-similar.
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Sets definable in 〈R, +, ≤,Z〉

A rational polyhedron is a region of Rd delimited by a finite number of hyperplanes
whose equations have integer coefficients.

Any finite union of rational polyhedra is b-self-similar.

A bounded subset X ⊆ R
d definable in 〈R, +, ≤,Z〉 is a finite union of rational

polyhedra.

In particular, for d = 1, a subset X ⊆ [0, 1] is definable in 〈R, +, ≤,Z〉 if and only if it
is a finite union of closed intervals with rational endpoints.
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Linking b-self-similarity and b-recognizability

Theorem (Charlier-Leroy-Rigo 2015)

A subset of [0, 1]d is b-self-similar if and only if it is weakly b-recognizable.

Corollary (simultaneously obtained by Chan-Hare 2014)

Let b, b′ ≥ 2 be two multiplicatively independent integers.

A compact set X ⊂ [0, 1]d is simultaneously b-self-similar and b′-self-similar if and

only if it is a finite union of rational polyhedra.

In fact, we proved the above link in the more general case of a real Pisot base β.
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Characterizing β-recognizable sets using logic

Theorem (Charlier-Leroy-Rigo 2015)

◮ If β is Parry then every β-recognizable X ⊆ R
d is β-definable.

◮ If β is Pisot then every β-definable X ⊆ R
d is β-recognizable.

As a consequence of this and the fact that emptiness of an ω-language is decidable, we
obtain

Corollary

If β is a Pisot number, then the first order theory of 〈R, +, ≤,Zβ, Xβ〉 is decidable.
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