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Cerebras Wafer-Scale Engine 
(WSE-2) 

The Largest Chip in the World

850,000 cores optimized for sparse linear algebra

46,225 mm2 silicon

2.6 trillion transistors

40 Gigabytes of on-chip memory

20 PByte/s memory bandwidth

220 Pbit/s fabric bandwidth

7nm process technology

Cluster-scale acceleration on a single chip



Automatic Code Generation
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Given

• high-level algorithm description

• size of PE rectangle

• description of input and output

generate low-level (C) code exploiting hardware features

• powerful SIMD engine

• filtering

• FIFOs

• …

⇒ Cerebras DTG tool

[15]

(for kernels for which no hand-written code is available)



Automatic Code Generation
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lair MV<T=float16 >(M, N): T W[M][N], T x[N] -> T y[M] {
all (i, j) in (M, N)

y[i] += W[i][j] * x[j]
}

Mapping of 32× 16 matrix vector multiplication

to 4× 4 PEs.

PEx

PEy

x

y

size: { PE[4, 4] }
compute_map: { MV[i, j] -> PE[j//4, i//8] }
iport_map: { x[i=0:15] -> [PE[i//4, -1] -> index[i%4]] }
oport_map: { y[i=0:31] -> [PE[4, i//8] -> index[i%8]] }

[15]



Affine Constraints
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Computation instances, tensor elements, PE coordinates, ordering

⇒ represented by a tuple of integers

• Set of computation instances {MV[i , j] : 0 ≤ i < M ∧ 0 ≤ j < N }
⇒ rectangle of fixed size

• Accesses {MV[i , j] → x[j] } ∪ {MV[i , j] → y[i ] } ∪ {MV[i , j] → W[i , j] }
⇒ affine in instance identifiers

• Placement {MV[i , j] → PE[bj/4c , bi/8c] }
⇒ quasi affine (may involve integer divisions)

• Communication { x[i = 0:15] → [PE[bi/4c ,−1] → index[i mod 4]] }
⇒ quasi affine

Sets and relations of integer tuples bounded by (quasi) affine constraints



Code Generation Process
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Decision process involves questions of the form

• which tensor elements are needed on which PEs?

• which tensor elements are computed on which PEs?

• which computation instances can be performed on the arrival of a tensor element?

• do these computation instances form a box?

• can they be approximated by a box?

• …

Manipulation of sets and relations of integer tuples bounded by (quasi) affine constraints

⇒ Polyhedral Compilation
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Polyhedral Compilation

Polyhedral Compilation
Analyzing and/or transforming programs using the polyhedral model

Polyhedral Model
Abstract representation of a program

instance based
⇒ statement instances
⇒ array elements

compact representation based on polyhedra or similar objects
⇒ integer points in unions of parametric polyhedra
⇒ Presburger sets and relations

parametric
⇒ description may depend on constant symbols
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Polyhedral Model

Typical constituents of program representation
Instance Set
⇒ the set of all statement instances

Access Relations
⇒ the array elements accessed by a statement instance

Dependences
⇒ the statement instances that depend on a statement instance

Schedule
⇒ the relative execution order of statement instances
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Illustrative Example: Matrix Multiplication
for (int i = 0; i < M; i++)

for (int j = 0; j < N; j++) {
S1: C[i][j] = 0;

for (int k = 0; k < K; k++)
S2: C[i][j] = C[i][j] + A[i][k] * B[k][j];

}
Instance Set (set of statement instances)
{ S1[i , j] : 0 ≤ i < M ∧ 0 ≤ j < N; S2[i , j, k] : 0 ≤ i < M ∧ 0 ≤ j < N ∧ 0 ≤ k < K }

Access Relations (accessed array elements; W : write, R : read)
W = { S1[i , j] → C[i , j]; S2[i , j, k] → C[i , j] }
R = { S2[i , j, k] → C[i , j]; S2[i , j, k] → A[i , k]; S2[i , j, k] → B[k, j] }

Schedule (relative execution order)
{ S1[i , j] → [i , j, 0, 0]; S2[i , j, k] → [i , j, 1, k] }
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Presburger Sets and Relations
Examples

{ S1[i , j] : 0 ≤ i < M ∧ 0 ≤ j < N; S2[i , j, k] : 0 ≤ i < M ∧ 0 ≤ j < N ∧ 0 ≤ k < K }
{ S1[i , j] → C[i , j]; S2[i , j, k] → C[i , j] }

General form

Sets
{S1[i] : f1(i);S2[i] : f2(i); . . . },

with fk Presburger formulas
⇒ set of elements of the form S1[i], one for each i satisfying f1(i), …

Binary relations
{S1[i] → T1[j] : f1(i, j);S2[i] → T2[j] : f2(i, j); . . . }

⇒ set of pairs of elements of the form S1[i] → T1[j]
Note: despite “→”, not necessarily (single valued) functions
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Quasi-affine Expressions and Presburger Formulas
quasi-affine expression (no multiplication; only constant functions)

I variable x
I constant integer number 3
I constant symbol N
I addition (+), subtraction (−) x + 3
I integer division by integer constant d (b·/dc) b(x + 3)/16c

Presburger formula
I true
I quasi-affine expression
I less-than-or-equal relation (≤) 0 ≤ x
I equality (=)
I first order logic connectives: ∧, ∨, ¬, ∃, ∀ 0 ≤ x ∧ x < N

not allowed: multiplication, functions with arity greater than zero
x ∗ x , x ∗ N, f(x)
allowed: repeated addition
3 ∗ x ≡ x + x + x
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Presburger Sets and Relations
General form

Sets
{S1[i] : f1(i);S2[i] : f2(i); . . . },

where fk(i) are Presburger formulas with i as only free variables
⇒ set of elements of the form S1[i], one for each i such that f1(i) is true, …

Note: may depend on interpretation of symbolic constants

{S[i ] : 0 ≤ i ≤ n }

is equal to 

∅ if n < 0

{S[0] } if n = 0

{S[0];S[1] } if n = 1

{S[0];S[1];S[2] } if n = 2

. . .
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Overview of isl
isl is a thread-safe C library for manipulating integer sets and relations

bounded by affine constraints
involving symbolic constants and
existentially quantified variables

plus quasi-affine and quasi-polynomial functions on such domains
Supported operations by core library include

intersection
union
set difference
integer projection
coalescing
closed convex hull

sampling, scanning
integer affine hull
lexicographic optimization
transitive closure (approx.)
parametric vertex enumeration
bounds on quasi polynomials

Polyhedral compilation library
schedule trees
dataflow analysis

scheduling
AST generation
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Connection with other Libraries and Tools

LLVM imath GMP

clang isl NTL PolyLib

Polly DTG pet barvinok

PPCG isa iscc

Licenses:
BSD/MIT/
Apache
LGPL
GPL

isl: manipulates parametric affine sets and relations
barvinok: counts elements in Presburger sets and relations
pet: extracts polyhedral model from clang AST
PPCG: Polyhedral Parallel Code Generator
iscc: interactive calculator
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Set Representation [10]

S: A[0] = 1;
for (i = 1; i < N; ++i)

T: A[i] = 2 * A[i - 1];
isl: named (and nested) spaces
[N] -> { S[]; T[i]: 1 <= i < N }

Omega:
symbolic N;
{ [0, 0] } union { [1, i]: 1 <= i < N}

S Tpadding

PolyLib: (deals with rational sets, polyhedra)
2
2 5
0 1 0 0 0
0 0 1 0 0
3 5
0 1 0 0 -1
1 0 1 0 -1
1 0 -1 1 -1

equality/inequality N
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Spaces
Recall general form

Sets
{S1[i] : f1(i);S2[i] : f2(i); . . . },

Binary relations

{S1[i] → T1[j] : f1(i, j);S2[i] → T2[j] : f2(i, j); . . . }

Tuple space:
the identifier (e.g., S1, S2, T1, T2), combined with
the size, i.e., the number of elements in the tuple (e.g., i, j)

A statement S2[i] = T1[j] means
the identifiers S2 and T1 are the same, and
the sizes of i and j are the same

Examples: S[] 6= S[i ], S[a] = S[b], S[] 6= T[]
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Nested Relations
isl currently supports

sets
{S1[i] : f1(i);S2[i] : f2(i); . . . },

binary relations
{S1[i] → T1[j] : f1(i, j);S2[i] → T2[j] : f2(i, j); . . . }

but not
n-ary relations

{A[i] → B[j] → C [k] → . . . }

However, nested relations are supported
For example: statement instance specific memory map

{ [S[i , j] → A[i ]] → Mem[i , j] }

In some cases, there is no clear binary decomposition and a real n-ary relation would be useful
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Polyhedral Objects

Array

Order

Statement

Processor Memory

Acces
s

Dependence

Schedule

Placement

Storage

+ many more
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Polyhedral Compiler and Types
A sufficiently advanced polyhedral compiler needs to handle many kinds of polyhedral objects

This can cause confusion:
exactly what kind of object does this function expect?
does this operation on these objects make sense?

In statically typed languages (such as C++)
⇒ use types

In PolyLib, every set or binary relation is represented by a Polyhedron.
⇒ no differentiation at compile time
⇒ even at run time, only dimensionality can be checked

In Omega, every set or binary relation is represented by a Relation.
⇒ no differentiation at compile time
⇒ at run time, differentiation between tuple size(s) as well as between

I sets, and
I binary relations
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Types Offered by Plain C++ Interface to isl
In isl, every set is represented by an isl::set or an isl::union_set and
every binary relation is represented by an isl::map or an isl::union_map.

⇒ differentiation between sets and binary relations at compile time
⇒ at run time, differentiation between tuple size(s) and tuple name(s)

(for isl::set and isl::map)
{ S2[i, j, k] : 0 <= i < M and 0 <= j < N and 0 <= k < K }
{ S1[i, j] -> C[i, j] }

isl::union_set and isl::union_map objects may contain
elements with different tuple sizes and/or names.
{ S1[i, j] -> C[i, j]; S2[i, j, k] -> C[i, j] }

⇒ no run-time checks
⇒ still maps statement instances to array elements
⇒ need for more fine-grained types
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Types Offered by Templated C++ Interface to isl [17]

Template type for each plain type involving tuples
Every type has 0 or more template parameters, one for each tuple,
Template arguments are specified by application specifying tuple kind

For example,
struct ST {}; // statement
struct AR {}; // array

isl::typed::map<ST, AR> access_relation;
isl::typed::map<ST, ST> dependence_relation;

Benefits compile-time checks
documentation

Drawbacks increase in compilation time
increase in binary size
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Internal Representation of Sets and Relations
Each set or relation is stored as disjunction of conjunctions (with local variables)

R =
⋃

i
Ri Ri = {S[i] → T [j] : ∃k : A0c + A1i + A2j + A3k ≥ a }

Each disjunct consists of
affine equality and inequality constraints
symbolic constants c
local variables k

I existentially quantified, or,
I integer division ki = bei/dic

Conversion to disjunction of conjunctions

¬(∃a : f (x, a)) → ¬f (x, g(x))

⇒ determine a single value of a satisfying f (x, a) and
write it as an explicit piecewise quasi affine expression g(x) of x

⇒ using parametric integer linear programming



Integer Set Library (isl) Internal Representation and Parametric Integer Programming July 4, 2022 27 / 45

Lexicographical Order
#define N 5
for (i = 1; i <= N; ++i)

for (j = 1; j <= i; ++j)
a[i][j] =

i

j

S = { [i , j] : 1 ≤ j ≤ i ≤ N }

Execution order:
[1,1], [2,1], [2,2], [3,1], [3,2], [3,3], [4,1], [4,2], [4,3], [4,4] [5,1], [5,2], [5,3], [5,4], [5,5]
Lexicographical order:

a ≺ b ≡
n∨

i=1

ai < bi ∧
i−1∧
j=1

aj = bj


⇒ smaller in first position where tuples differ
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Parametric Integer Programming [3]

Given a parametric polyhedron (no disjunction; no local variables),
give a description in terms of the parameters
of the lexicographically minimal (or maximal) integer point
E.g., first/last iteration of a loop nest satisfying some constraints

Technique: dual simplex + Gomory cuts

Result:
Subdivision of parameter domain
For each cell in subdivision an affine expression in terms of the parameters
May include “new parameters”

q =

⌊∑
i aipi + c

d

⌋
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Parametric Integer Programming Example

R = { [i , j] : 0 ≤ −i ≤ N ∧ 0 ≤ −j ≤ −i ∧ 0 ≤ k ≤ 3N ∧ k = −i − 2j }

i

j

k
=

0

k
=

1

k
=

2

k
=

3

k
=

4

k
=

5

k
=

6

k
=

7

k
=

8

k
=

9

k
=

1
0

k
=

1
1

k
=

1
2

N = 4
lexmin R =

if k < N
[−k, 0]

else
if 3

⌊k+N
2

⌋
≥ 2k[

k − 2
⌊k+N

2

⌋
,−k +

⌊k+N
2

⌋]
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Parametric Integer Programming on Presburger Sets and Relations

R =
⋃

i
Ri Ri = {S[i] → T [j] : ∃k : A0c + A1i + A2j + A3k ≥ a }

Compute lexmin R
⇒ treat Ri as a parametric polyhedron with

I parameters c and i
I variables j and k

⇒ combine results over multiple disjuncts
Quantifier elimination
⇒ treat Ri as a parametric polyhedron with

I parameters c, i and j
I variables k
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Internal Structure of isl [1, 2, 3, 8, 9, 13]

scheduler

incremental LP solver

ILP solver (GBR)

PILP solver

core

operations on sets and relations

operations on piecewise expressions

operations on reductions of piecewise quasi polynomials

parametric vertex enumeration
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The Importance of Heuristics
Heuristics are used on top of core algorithms to avoid computation or produce simpler results

Parametric Integer Programming
tighten constraints: 2x − 5 ≥ 0 ⇒ x − 3 ≥ 0

detect implicit equality constraints
exploit equality constraints to reduce dimension of tableau
look for variables with fixed value in terms of parameters
{ [i ] → [j, k] : i − 3 ≤ 4j ≤ i ∧ j ≤ k ≤ j + 1 }

I j has fixed value bi/4c
I compute minimum of k in terms of i and j and plug in j = bi/4c

⇒ avoid potentially splitting up domain
detect symmetries

∑
i aixi ≤ fj(n)

⇒ replace by
∑

i aixi ≤ u with u ≤ fj(n) extra parameter
⇒ avoid considering all orderings of fj(n)
combine cells with same expression for minimum
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Choice of Internal Representation
Quantifier elimination

isl uses b·/dc function symbols for quantifier elimination
(obtained from parametric integer programming)
traditionally, divisibility predicate symbols “d | ·” used instead (e.g., Omega)

Decomposition
isl uses disjunction of conjunctions
tree can be alternative (e.g., obtained from parametric integer programming)

[7]

I single constraint used to separate two groups of cells
I forces further subdivisions

a graph?
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Constraints
isl (like other polyhedral libraries) has explicit representation for equality constraints

In theory, equality constraint can be represented by pair of inequality constraints

f (i) = 0 ⇒ f (i) ≥ 0 ∧ f (i) ≤ 0

However, explicit equality constraint more easily exploited to reduce dimensionality

Other “redundant” types of constraints could also be useful
disequality constraint

f (i) 6= 0 ⇐ f (i) ≥ 1 ∨ f (i) ≤ −1

lexicographic constraint

a ≺ b ⇐
n∨

i=1

ai < bi ∧
i−1∧
j=1

aj = bj


⇒ adjust core algorithms or expand before applying
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Piecewise Expressions
Integer quasi affine expression bx/2c+ 3N
⇒ Presburger term

That is, a term constructed from variables, symbolic constants,
integer constants, addition (+), subtraction (−) and
integer division by a constant (b·/dc)

Rational polynomial expression x2 − N/2
⇒ a term constructed from variables, symbolic constants,

rational constants, addition (+), subtraction (−) and multiplication (·)
Quasi polynomial expression (bx/2c+ 3N)2 − N/2
⇒ a rational polynomial expression with variables replaced by

integer quasi affine expressions
Piecewise quasi affine/polynomial expression
⇒ a list of pairs of Presburger sets and

quasi affine/polynomial expressions E = (Si , ei)i , with Si disjoint

E(j) =
{

ei(j) if j ∈ Si

⊥/0 otherwise
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Piecewise Expressions
Piecewise quasi affine/polynomial expression
⇒ a list of pairs of Presburger sets and

quasi affine/polynomial expressions E = (Si , ei)i , with Si disjoint

E(j) =
{

ei(j) if j ∈ Si

⊥/0 otherwise

Piecewise quasi affine expression typically represents element of set (e.g., lexmin)
⇒ undefined when set is empty
Piecewise quasi polynomial expression typically represents cardinality of set
⇒ zero when set is empty

But: faithful conversion from partially defined piecewise quasi affine expression
to piecewise quasi polynomial expression is currently not possible in isl
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Value Semantics

Conceptually, each isl operation produces new object, leaving inputs untouched

However, internally,
objects are reference counted
an operation may return (a copy of) one of its inputs
an input with a single reference may be reused and modified for result
representation of shared object may get changed (not meaning)
For example,

I redundant constraints
I implicit equality constraints
I coalescing

properties are shared among copies of same object (e.g., emptiness)
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Deltas

R = {S[i] → S[j] : P(i, j) }

∆R = {S[k] : ∃i, j : S[i] → S[j] ∈ R ∧ k = j − i }
Example:

R = {S[i1, i2] → S[0, j2] : 0 ≤ i1 ≤ 10 ∧ 0 ≤ i2 ≤ 10 ∧ i2 ≤ j2 ≤ i2 + 2 }

∆R = {S[k1, k2] : −10 ≤ k1 ≤ 0 ∧ 0 ≤ k2 ≤ 2 }

Elements of ∆R live in same space as domain and range of R
Does it make sense to intersect ∆R with dom R?
In templated interface, method only available for relations with two identical tuple kinds

I result has same tuple kind
I does not guarantee that tuple spaces are the same

{S1[i1, i2] → S2[j1, j2] : . . . }
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Set Coalescing [11]

After many applications of projection, set difference, union,
a set may be represented as a union of many disjuncts
⇒ try to combine several disjuncts into a single disjunct

S1 = { x : Ax ≥ c } S2 = { x : Bx ≥ d }
PolyLib way:

1 Compute H = conv.hull(S1 ∪ S2)
2 Replace S1 ∪ S2 by H \ (H \ (S1 ∪ S2))

isl way:
1 Classify constraints

I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints of S1

I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2; special cases:

F adjacent to equality: 〈ai , x〉 = ci − 1 over S2

F adjacent to inequality: 〈(ai + bj), x〉 = (ci + dj)− 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1

2 no separating constraints and cut constraints of S2 are valid for cut facets of S1

3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ inequality and equality can be wrapped to include union
6 S2 extends beyond S1 by at most one and all cut constraints of S1 and parallel slices of S2

can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints
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Set Coalescing [11]

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints of S1

I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2; special cases:

F adjacent to equality: 〈ai , x〉 = ci − 1 over S2

F adjacent to inequality: 〈(ai + bj), x〉 = (ci + dj)− 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1

⇒ S2 can be dropped

2 no separating constraints and cut constraints of S2 are valid for cut facets of S1

3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ inequality and equality can be wrapped to include union
6 S2 extends beyond S1 by at most one and all cut constraints of S1 and parallel slices of S2

can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints
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Set Coalescing [11]

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints of S1

I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2; special cases:

F adjacent to equality: 〈ai , x〉 = ci − 1 over S2

F adjacent to inequality: 〈(ai + bj), x〉 = (ci + dj)− 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1

2 no separating constraints and cut constraints of S2 are valid for cut facets of S1

⇒ replace S1 and S2 by disjunct with all valid constraints

3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ constraints of S2 valid for facet of relaxed inequality
5 single adjacent pair of an inequality (S1) and an equality (S2)

+ inequality and equality can be wrapped to include union
6 S2 extends beyond S1 by at most one and all cut constraints of S1 and parallel slices of S2

can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints
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Set Coalescing [11]

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints of S1

I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2; special cases:

F adjacent to equality: 〈ai , x〉 = ci − 1 over S2

F adjacent to inequality: 〈(ai + bj), x〉 = (ci + dj)− 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1

2 no separating constraints and cut constraints of S2 are valid for cut facets of S1

3 single pair of adjacent inequalities (other constraints valid)
⇒ replace S1 and S2 by disjunct with all valid constraints

4 single adjacent pair of an inequality (S1) and an equality (S2)
+ constraints of S2 valid for facet of relaxed inequality

5 single adjacent pair of an inequality (S1) and an equality (S2)
+ inequality and equality can be wrapped to include union

6 S2 extends beyond S1 by at most one and all cut constraints of S1 and parallel slices of S2

can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints
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Set Coalescing [11]

1 Classify constraints
I redundant: min 〈ai , x〉 > ci − 1 over remaining constraints of S1

I valid: min 〈ai , x〉 > ci − 1 over S2
I separating: max 〈ai , x〉 < ci over S2; special cases:

F adjacent to equality: 〈ai , x〉 = ci − 1 over S2

F adjacent to inequality: 〈(ai + bj), x〉 = (ci + dj)− 1 over S2

I cut: otherwise

2 Case distinction
1 non-redundant constraints of S1 are valid for S2, i.e., S2 ⊆ S1

2 no separating constraints and cut constraints of S2 are valid for cut facets of S1

3 single pair of adjacent inequalities (other constraints valid)
4 single adjacent pair of an inequality (S1) and an equality (S2)

+ other constraints of S1 are valid
+ constraints of S2 valid for facet of relaxed inequality
⇒ drop S2 and relax adjacent inequality of S1

5 single adjacent pair of an inequality (S1) and an equality (S2)
+ inequality and equality can be wrapped to include union

6 S2 extends beyond S1 by at most one and all cut constraints of S1 and parallel slices of S2

can be wrapped to include union
⇒ replace S1 and S2 by valid and wrapping constraints
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Positive Powers

Definition (Power of a Relation)
Let R be a Presburger relation and k a positive integer, then power k of relation R is defined as

Rk :=

{
R if k = 1

R ◦ Rk−1 if k ≥ 2.

Example
R = { [x ] → [x + 1] }

Rk = { [x ] → [x + k] : k ≥ 1 }
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Transitive Closures
Definition (Transitive Closure of a Relation)
Let R be a Presburger relation, then the transitive closure R+ of R is the union of all positive
powers of R ,

R+ :=
⋃
k≥1

Rk .

Example
R = { [x ] → [x + 1] }

Rk = { [x ] → [x + k] : k ≥ 1 }
R+ = { [x ] → [y ] : ∃k ≥ 1 : y = x + k } = { [x ] → [y ] : y ≥ x + 1 }

Definition (Transitive Closure of a Relation, Alternative)
Inductive definition:

R+ := R ∪
(
R ◦ R+

)
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Transitive Closures — Approximation
Fact
Given a Presburger relation R, the power Rk (with k a parameter) and
the transitive closure R+ may not be Presburger relations.

Example
R = { [x ] → [2 x ] }

Rk = { [x ] → [2k x ] }

⇒ need for approximation
I overapproximation R+

I underapproximation R+

Note
Do not use transitive closures if there is an alternative.

[6]
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Transitive Closures — Graph Example
Given a graph (represented as a Presburger relation)

M = {A[i ] → A[i + 1] : 0 ≤ i ≤ 3;B[] → A[2] }

A

B

What is the transitive closure?
⇒ M+ = {A[i ] → A[i ′] : 0 ≤ i < i ′ ≤ 4;B[] → A[i ] : 2 ≤ i ≤ 4 }

A

B
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Conclusion
isl is a versatile tool for polyhedral compilation and beyond

Combination of
high-level interface
core algorithms
heuristics

Possible future extensions
function symbols
n-ary relations
other constraint types
partially defined piecewise quasi polynomial expression
cardinality
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