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ENFrame: A Framework for Processing Probabilistic Data

Dan Olteanu and Sebastiaan J. van Schaik, University of Oxford

This article introduces ENFrame, a framework for processing probabilistic data. Using ENFrame, users
can write programs in a fragment of Python with constructs such as loops, list comprehension, aggregate
operations on lists, and calls to external database engines. Programs are then interpreted probabilistically
by ENFrame. We exemplify ENFrame on three clustering algorithms: k-means, k-medoids, and Markov
clustering; and one classification algorithm: k-nearest neighbour.

A key component of ENFrame is an event language to succinctly encode correlations, trace the computa-
tion of user programs, and allow for computation of discrete probability distributions for program variables.
We propose a family of sequential and concurrent, exact and approximate algorithms for computing the
probability of interconnected events. Experiments with k-medoids clustering and k-nearest neighbour show
orders-of-magnitude improvements of exact processing using ENFrame over naïve processing in each possi-
ble world, of approximate over exact, and of concurrent over sequential processing.
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1. INTRODUCTION
Probabilistic data management has gone a long, fruitful way in the last decade [Suciu
et al. 2011]. We have a better understanding of the space of possible probabilistic rela-
tional and XML data models and its implication on query tractability. The community
already delivered several open-source systems that exploit the first-order structure of
database queries for scalable inference, e.g., MystiQ [Boulos et al. 2005], Trio [Widom
2008], MayBMS/SPROUT [Huang et al. 2009], and PrDB [Sen et al. 2009] to name
very few, as well as applications in the space of web data management [Fink et al.
2011] and probabilistic knowledge bases [Dong et al. 2014]. Significantly less effort
has been spent on supporting complex data processing beyond mere querying, such as
general-purpose programming or even data mining.

There is a growing need for computing frameworks that allow users to build ap-
plications feeding on uncertain data without worrying about the underlying uncer-
tain nature of such data or the computationally hard inference task that comes along
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Fig. 1. The architecture of ENFrame.

with it. For tasks that only need to query probabilistic data, existing probabilistic
database systems offer a viable solution [Suciu et al. 2011]. Similarly, there are ap-
proaches developed for specific data mining tasks, such as clustering or frequent pat-
tern mining [Aggarwal 2009]. For more complex user-defined tasks, however, existing
approaches are not applicable and successful development requires a high level of ex-
pertise in probabilistic databases, which hinders the adoption of existing technology
as well as communication between potential users and experts.

A similar observation on the growing need for programming with probabilistic data
has been recently made in the areas of machine learning [DARPA 2013] and program-
ming languages [Gordon et al. 2014]. Developing probabilistic programming languages
that allow probabilistic models to be expressed concisely has become a popular re-
search topic [Roy 2015]. Such languages allow to express probability distributions
via generative stochastic models, to draw values at random from such distributions,
and to condition values of program variables on observations. For inference, the pro-
grams are grounded to Bayesian networks and fed to Markov Chain Monte Carlo meth-
ods [Milch and et al 2005]. In the area of databases, MCDB [Jampani et al. 2011] and
SimSQL [Cai et al. 2013] have been visionary in enabling stochastic analytics in the
database by coupling Monte Carlo simulations with declarative SQL extensions and
parallel database techniques. Recent work extends Datalog with probability distribu-
tions for declarative statistical modelling [Bárány et al. 2016].

The thesis of this article is that one can build powerful and useful probabilistic data
programming frameworks that leverage existing work on probabilistic databases. We
describe ENFrame, a framework that aims to fulfil this vision. The architecture of this
framework is depicted in Figure 1. Given an input user program and a probabilistic
database, ENFrame computes a probability distribution over possible program results,
which can then be presented back to the user [Olteanu and van Schaik 2012]. Its main
ingredients are: a language for user programs, a specification of probabilistic events
that capture program traces, and a suite of probabilistic inference algorithms that
take as input the events and output their probability distributions.

ACM Transactions on Database Systems, Vol. 1, No. 1, Article 1, Publication date: January 2015.



ENFrame: A Framework for Processing Probabilistic Data 1:3

ENFrame’s programming language is a fragment of Python with loops, list com-
prehension, aggregates, Boolean and real-valued variables, variable assignments, and
query calls to external database engines. A user program can express tasks such
as clustering and classification intermixed with querying. Section 2 introduces this
Python fragment and exemplifies it using clustering algorithms (k-means, k-medoids,
and Markov clustering) and classification tasks (k-nearest neighbour).

Separation of data and program. The users (programmers) are oblivious to the prob-
abilistic nature of the input data: They program as if the input data were determinis-
tic, with no uncertainty. It is the job of ENFrame to understand probabilities and input
correlations, thus allowing users without expert knowledge of probabilistic models to
program over uncertain data.

Unifying semantics for data and processing. ENFrame adheres to the possible worlds
semantics for its whole processing pipeline. Under this semantics, the input is a prob-
ability distribution over a finite set of possible worlds, with each world defining a data-
base. The result of a user program is equivalent to executing it within each world and
is a probability distribution over possible outcomes of the program variables.

Event language. ENFrame uses a language of probabilistic events over discrete ran-
dom variables to express arbitrary correlations occurring in the input data, e.g., mod-
elled on Bayesian networks [Pearl 1989] and probabilistic c-tables [Suciu et al. 2011],
and in the result of the user program, e.g., co-occurrence of data points in the same
cluster, and trace the program state at any time. By annotating each computation in
the program with events, we effectively translate it into an event program: program
variables become random variables whose possible outcomes are conditioned on events.
Section 3 introduces the event language. It features negation, aggregates, and defini-
tions within an algebraic formalism reminiscent of provenance semimodules [Amster-
damer et al. 2011] and their use in a probabilistic setting [Fink et al. 2012].

Inference algorithms. A key challenge faced by ENFrame is to compute the probabil-
ities of all events capturing the traces of a program. These events are organised in a
directed graph called an event network, where expressions common to several events
are represented once. Event networks for user programs can be very repetitive and
highly interconnected due to the combinatorial nature of the programs. For instance,
for clustering the events at each iteration are expressions over the events at the pre-
vious iteration and have the same structure at each iteration. Moreover, the event
networks can be cyclic, so as to account for program loops.

The complex nature of ENFrame’s event networks sets the inference problem apart
from earlier work in probabilistic databases, e.g., [Fink et al. 2013], which only con-
siders one propositional event in disjunctive normal form at a time. We perform prob-
ability computation for the entire event network by decomposing the network into
simpler networks using repeated elimination of random variables and by incremen-
tally refining lower and upper bounds on the probabilities of all events in the simpler
networks. The approximation algorithms presented in Section 4 use an error budget
to avoid a large number of decomposition steps that can only gain a small probability
mass. We introduce several approximation approaches, each with a different strategy
for spending the error budget. We also present a concurrent approximation approach
that distributes the decomposition task over multiple CPU cores.

While the computation time can grow exponentially in the number of input random
variables in worst case (since the inference problem is #P-hard), the algorithms exploit
the structure of programs, and thus of correlations of events capturing program traces,
for more efficient inference. This is in line with our prior work on query evaluation in
probabilistic databases [Olteanu et al. 2009; Fink et al. 2013].
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Section 5 reports on experiments with k-medoids clustering and k-nearest neigh-
bour classification and shows orders-of-magnitude performance improvements of
ENFrame’s exact algorithm over the naïve approach that executes the user program
in each possible world, of approximate over exact, and of concurrent over sequential
processing. Experiments also confirm that ENFrame’s clustering accuracy is identical
to that of the naïve approach and that clustering in the top-p most probable worlds
for p close to the overall number of worlds does not reach a good accuracy while being
more expensive than ENFrame.

Differences to existing trends. There are key differences that set ENFrame apart
from the myriad of recent probabilistic programming [Roy 2015] and probabilistic data
processing [Aggarwal 2009] approaches:

— ENFrame uses the possible worlds semantics and a complete representation system
for probabilistic data for its entire processing pipeline from the input data to the
program result. This system is compatible with those used for query processing in
probabilistic databases, e.g. [Fink et al. 2013]. ENFrame’s input can consist of data
with arbitrarily correlated (and not only independent) probabilistic events. This en-
ables processing pipelines mixing programming (via ENFrame) and querying (via,
e.g., SPROUT). This is a key difference to the bulk of existing data mining approaches
that use expected values and simple probabilistic models [Aggarwal 2009].

— The users need not be aware of the probabilistic nature of data and their programs
are written as if the input data is plain and not probabilistic. One implication is that
probability distributions can only be supplied as input data and not in the actual
program. This is a key difference to probabilistic programming approaches, where
probability distributions are an essential part of the language. Consequently, the
users are required to understand probabilistic models and semantics.

— In contrast to (Monte Carlo) sampling-based frameworks for inference [Jampani et al.
2011] and in the spirit of intensional query processing in probabilistic databases, the
probabilistic event language used by ENFrame can enable rich and useful computa-
tion beyond inference such as result explanation, sensitivity analysis [Kanagal et al.
2011], and incremental maintenance of the program output in the face of updates to
the input (this is subject to future work). The events used by ENFrame can be (ex-
ponentially) more succinct than the propositional events used so far in probabilistic
database formalisms such as probabilistic c-tables [Suciu et al. 2011].

An extended abstract of this article has been already published [van Schaik et al.
2014; Olteanu and van Schaik 2014]. Besides a more in-depth treatment of each as-
pect of ENFrame, this article also discusses the case of k-nearest neighbour classifi-
cation, introduces a concurrent approximate inference approach, an accuracy measure
for probabilistic clustering, as well as experiments for all these contributions.

2. ENFRAME’S USER LANGUAGE
This section introduces the user language supported by ENFrame. Its design is
grounded in three main desiderata:

(1) It should naturally express common data mining algorithms, allow to issue queries,
and manipulate their results.

(2) User programs must be oblivious to the deterministic or probabilistic nature of the
input data and to the probabilistic formalism considered.

(3) It should be simple enough to allow for an intuitive and straightforward proba-
bilistic interpretation.
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We settled on a subset of Python that can naturally express several clustering al-
gorithms. In line with query languages for probabilistic databases, where a Boolean
query Q is a map Q : D → {true, false} for deterministic databases and a Boolean ran-
dom variable for probabilistic databases, every user program has a sound semantics
for both deterministic and probabilistic input data. In the former case, the result of
a program is a deterministic assignment of values to program variables, in the lat-
ter case it is a probability distribution over possible values for each program variable.
For instance, in a clustering program the user can define a Boolean variable stating
whether two objects belong to the same cluster. In a deterministic setting, the variable
can take values true or false. In a probabilistic setting, its value would be a probability
distribution over the two possible Boolean outcomes, and it would state how likely it
is for the two objects to co-occur together in the same cluster. After program execu-
tion, the program result, i.e., the values of program variables, and can be presented
to the user or serve as input for subsequent processing using a probabilistic DBMS or
ENFrame program.

The user language comprises the following syntactic constructs:
Variables and Assignments. Program variables can be of a scalar type (real, integer,

or Boolean), or a list thereof. We allow assignments of values to variables, e.g., V = 2,
W = V, M[2] = True, or M[i] = W. Scalar variables can be multiplied, exponentiated
(pow(B, r) for Br), and inverted (invert(B) for 1/B). The multiplication of a list with
a scalar yields a list where each component of the list is multiplied with the scalar.
Lists must be initialised, e.g., for list M of length n: M = [None] * n. The expression
range(m, n) specifies the list [m,...,n-1].

Loops. Loops take the form: for i in range(b,e), where b and e are constants or
variables of type integer.

Reduce. Lists of scalar values can be reduced to a scalar value using one of the pre-
defined functions reduce_or, reduce_and, reduce_sum, reduce_mult, reduce_count. For
instance, for a list B of Booleans, the expression reduce_and(B) computes the conjunc-
tion of the truth values in B, and the expression reduce_count(B) computes the number
of elements in B.

List comprehension. Inside a reduce-function, anonymous lists may be defined using
list comprehension. For example, given a list B of Booleans of size n, the expression
reduce_sum([1 for i in range(0,n) if B[i]]) counts the true values in B.

User-defined functions. We allow user-defined functions (udfs) that take as input
(possibly empty tuples of) program variables and return scalar or list values, or tu-
ples of such values. For instance, the function dist(A,B) is a distance measure on the
feature space between the lists A and B of reals. The function loadData() can be used
to load the records from a file or to issue queries to an external database. ENFrame
supports positive relational algebra queries with aggregates on probabilistic data via
a user-defined function that calls the SPROUT probabilistic query engine [Fink et al.
2012]. The functions loadParams() and init() can be used to set parameters such as
the number of iterations and clusters of a clustering algorithm. All user-defined func-
tions are implemented externally to ENFrame.

The clustering programs discussed later in this section exemplify user-defined func-
tions for breaking ties. Many data mining tasks require explicit handling of ties: For
instance, if two objects are equidistant to two cluster medoids in k-medoids, we have
to decide which cluster the object will be assigned to. For instance, the membership of
objects to clusters can be encoded using a list InCl such that InCl[i][l] is true if and
only if object l is in cluster i. A tie would be a configuration of InCl in which for a fixed
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〈loop〉 ::= {〈decl〉} { for 〈var〉 in 〈range〉 : { 〈loop〉 } }

〈decl〉 ::= 〈var〉 = (〈expr〉 | [None]* 〈var〉) | [( {〈var〉,} 〈var〉 ) =] 〈udf 〉

〈expr〉 ::= 〈const〉 | 〈var〉 | 〈reduce〉 ( 〈lcompr〉 )
| Boolean or arithmetic expression over 〈expr〉
| numerical comparison of two 〈expr〉
| user-defined function 〈udf 〉 over 〈expr〉 returning scalar values

〈lcompr〉 ::= [ 〈expr〉 for 〈var〉 in 〈range〉 if 〈expr〉 [ else 〈expr〉 ] ]

〈range〉 ::= range( 〈var〉, 〈var〉 )

〈reduce〉 ::= reduce_and | reduce_or | reduce_sum | reduce_mult | reduce_count

〈var〉 ::= a variable identifier for scalars and list entries

〈const〉 ::= a scalar (Boolean, integer, float)

Fig. 2. High-level grammar of the user language supported by ENFrame.

object l, InCl[i][l] is true for more than one cluster i. We explicitly break such ties
using the (user-defined) function breakTies2(M). For each fixed value i of the second
dimension (hence the ‘2’ in the function name) of the 2-dimensional list M, we iterate
over the first dimension of M and sets all but the first true value of M[i][l] to false.
Similarly, the function breakTies1(M) fixes the first dimension and breaks ties in the
second dimension of M, while breakTies(M) breaks ties in a one-dimensional list.

The grammar in Figure 2 highlights the major syntactic constructs of the user lan-
guage currently supported by ENFrame. An ENFrame user program consists of a se-
quence of declarations and loop blocks. The language allows to define variables whose
values can be scalar, are given by expressions, or lists. An expression can be: a Boolean,
integer, or floating-point constant; a variable identifier; the Boolean result of a com-
parison between two expressions; a propositional formula on expressions with logi-
cal connectors and, or, not; the numerical result of an operation such as summation,
multiplication, inversion, and exponentiation of expressions; the numerical result of a
reduce operation on an anonymous list of scalars created via list comprehension; the
numerical result of the application of user-defined functions on expressions, e.g., for
breaking ties or selecting the top-k largest values in a list.

To keep it simple, typing and standard semantic constraints are not modelled in the
grammar, though, e.g., Boolean and number expressions cannot be freely mixed and
certain operators and functions only make sense for either Booleans, numbers, or lists.
In addition, programs have to satisfy the following restrictions specific to ENFrame,
which are imposed by ENFrame’s capability for probabilistic interpretation of user
programs:

— The variables used to initialise, specify, or iterate over lists can only be integers and
bounded to constants from the input data that are the same in all possible worlds;
in particular, they cannot be the result of program computation, since such results
can become probabilistic.

— List comprehension can only be used to construct one-dimensional lists of scalar
types.

— The implementation of user-defined functions is required to work on both deter-
ministic and probabilistic inputs. For instance, the distance-measure function dist
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1 (O, n) = loadData() # list and no. of objects

2 (k, it) = loadParams() # no. of clusters and it.

3 M = init() # initialise centroids

4

5 for t in range(0,it): # clustering iterations

6 InCl = [None] * k # assignment phase:

7 for i in range(0,k): # for every cluster i ...

8 InCl[i] = [None] * n

9 for l in range(0,n): # and for every object l:

10 InCl[i][l] = reduce_and( # assign l to closest centroid

11 [dist(O[l],M[i]) <= dist(O[l],M[j])

12 for j in range(0,k)]

13 )

14 InCl = breakTies2(InCl) # each object in one cluster

15

16 M = [None] * k # update phase:

17 for i in range(0,k): # for every cluster i ...

18 M[i] = scalar_mult( # centroid at cluster centre

19 invert(reduce_count(

20 [1 for l in range(0,n) if InCl[i][l]]

21 )), reduce2_sum(

22 [O[l] for l in range(0,n) if InCl[i][l]]

23 )

# ~o0 . . . ~on−1: n object vectors in the feature space
# Φ(o0) . . . Φ(on−1): n propositional object events
# k, it: number of clusters and iterations

∀i in 0..n− 1 : Oi ≡ Φ(oi)⊗ ~oi

M0
−1 ≡ ~o0; . . . ; Mk−1

−1 ≡ ~o(k−1)

∀t in 0..it− 1 :

∀i in 0..k − 1 :

∀l in 0..n− 1 :

InCli,lt ≡
k−1∧
j=0

[
dist

(
O
l
,M

i
t−1

)
≤ dist

(
O
l
,M

j
t−1

)]

# Encoding of breakTies2 omitted

∀i in 0..k − 1 :

Mi
t ≡

n−1∑
l=0

InCli,lt ⊗ 1

−1

·

n−1∑
l=0

InCli,lt ⊗ O
l



Fig. 3. User and event programs for k-means clustering

mentioned above would return a real for deterministic input lists and a probability
distribution over reals for inputs representing probability distributions over lists.

2.1. Data Mining Algorithms in ENFrame
We illustrate ENFrame’s user language with four data mining algorithms: k-means,
k-medoids, Markov clustering, and k-nearest neighbour classification. Figures 3–6 list
user programs for these algorithms; we next discuss each of them. The event programs
listed alongside the user programs are discussed in Section 3.

k-means clustering. The k-means algorithm partitions a set of n records, or data points,
o0, . . . , on−1 into k groups of similar data points. We initially choose a centroid M i for
every cluster (0 ≤ i < k), i.e., a data point representing the cluster centre (initialisation
phase). In successive iterations, each data point is assigned to the cluster with the
closest centroid (assignment phase), after which the centroid is recomputed for each
cluster (update phase). The algorithm terminates after a given number of iterations
or after reaching convergence. Note that our user language does not support fixpoint
computation, and hence checking convergence.

Figure 3 gives the user program for k-means. The set O of n input objects is re-
trieved using a loadData call. Each object is represented by a feature vector (i.e., list)
of reals. We then load the parameters k, the number it of iterations, and initialise
cluster centroids M. The initialisation phase has a significant influence on the cluster-
ing outcome and convergence. We assume that initial centroids have been chosen, for
example by using a heuristic. Subsequently, a list InCl of Booleans is computed such
that InCl[i][l] is True if and only if M[i] is the closest centroid to object O[l]; every
object is then assigned to its closest cluster. Since two clusters may be equidistant to
an object, ties are broken using the breakTies2 call; it fixes an order of the clusters and
enforces that each object is only assigned to the first of its potentially multiple closest
clusters. Next, the new cluster centroids M[i] are computed as the centroids of each
cluster. The assignment and update phases are repeated it times.
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1 (O, n) = loadData() # list of objects

2 (k, it) = loadParams() # no. of clusters and it.

3 M = init() # initialise medoids

4

5 for t in range(0,it): # clustering iterations

6 InCl = [None] * k # assignment phase:

7 for i in range(0,k): # for every cluster i ...

8 InCl[i] = [None] * n

9 for l in range(0,n): # and for every object l:

10 InCl[i][l] = reduce_and( # closest medoid to l

11 [(dist(O[l],M[i]) <= dist(O[l],M[j]))

12 for j in range(0,k)]

13 )

14 InCl = breakTies2(InCl) # one cluster per object

15

16 M = [None] * k # update phase:

17 for i in range(0,k): # for every cluster i ...

18 DistSum = [None] * n

19 for l in range(0,n): # and every object l:

20 DistSum[l] = reduce_sum( # compute distance sum

21 [dist(O[l],O[p]) for p in range(0,n) if InCl[i][p]]

22 )

23

24 IsMedoid = [None] * n;

25 for l in range(0,n): # object with min. sum ...

26 IsMedoid[l] = reduce_and( # is medoid of cluster i ...

27 [DistSum[i][l] <= DistSum[i][p]

28 for p in range(0,n) if InCl[i][p]]

29 ) and InCl[i][l] # if l is in cluster i

30 IsMedoid = breakTies(IsMedoid)

31

32 M[i] = reduce_sum(

33 [O[l] for l in range(0,n) if IsMedoid[l]]

34 )

# ~o0 . . . ~on−1: n object vectors in the feature space
# Φ(o0) . . . Φ(on−1): n propositional object events
# k, it: number of clusters and iterations

∀i in 0..n− 1 : Oi ≡ Φ(oi)⊗ ~oi
M−1 ≡ initialiseMedoids()

∀t in 0..it− 1 :

∀i in 0..k − 1 :

∀l in 0..n− 1 :

InCli,lt ≡
k−1∧
j=0

[
dist

(
O
l
,M

i
t−1

)
≤ dist

(
O
l
,M

j
t−1

)]

# Encoding of breakTies2 omitted

∀i in 0..k − 1 :

∀l in 0..n− 1 :

DistSumi,lt ≡
n−1∑
p=0

[
InCli,pt ⊗ dist

(
O
l
, O

p
)]

∀l in 0..n− 1 :

IsMedoidi,lt ≡
n−1∧
p=0

[
DistSumi,lt ≤

(
InCli,pt ⊗ DistSumi,pt

)]
∧ InCli,lt

# Encoding of breakTies omitted

Mi
t ≡

n−1∑
l=0

[
IsMedoidi,lt ⊗ O

l
]

Fig. 4. User and event programs for k-medoids clustering

k-medoids clustering. The k-medoids algorithm is almost identical to k-means, but
elects k cluster medoids rather than centroids: these are cluster members that min-
imise the sum of distances to all other objects in the cluster. Figure 4 gives the user
program for k-medoids clustering. The assignment phase is the same as for k-means,
while the update phase is more involved: we first compute a list DistSum of sums of dis-
tances between each cluster medoid and all other objects in its cluster, then find one
object in each cluster that minimises this sum, and finally elect these objects as the
new cluster medoids M. The last step uses reduce_sum to select exactly one of the ob-
jects in a cluster as the new medoid, since for each cluster i only one value in IsMedoid,
which corresponds to one object, is True due to the tie-breaker.

Markov clustering. The Markov clustering algorithm (MCL) is a fast and scalable un-
supervised cluster algorithm for graphs based on simulation of stochastic flow [van
Dongen 2000]. Natural clusters in a graph are characterised by the presence of many
edges within a cluster and few edges across clusters. MCL simulates random walks
within a graph by alternating two operations: expansion and inflation. Expansion cor-
responds to computing random walks of higher length. It associates new probabilities
with all pairs of nodes, where one node is the point of departure and the other is the
destination. Since higher length paths are more common within clusters than between
different clusters, the probabilities associated with node pairs lying in the same clus-
ter will, in general, be relatively large as there are many ways of going from one to
the other. Inflation has the effect of boosting the probabilities of intra-cluster walks
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1 (n, M) = loadData() # M: stoch. n*n matrix

2 (r, it) = loadParams() # r: inflation parm.

3

4 for t in range(0,it):

5 N = [None] * n # expansion phase

6 for i in range(0,n):

7 N[i] = [None] * n

8 for j in range(0,n): # square matrix:

9 N[i][j] = reduce_sum(

10 [M[i][k] * M[k][j] for k in range(0,n)]

11 )

12

13 M = [None] * n # inflation phase

14 for i in range(0,n):

15 M[i] = [None] * n

16 for j in range(0,n): # inflate and re-normalise

17 M[i][j] = pow(N[i][j],r) *

18 invert(reduce_sum(

19 [pow(N[i][k],r) for k in range(0,n)]))

20

21 InCl = [None] * n # interpret M

22 for i in range (0,n):

23 InCl[i] = [None] * n

24 for j in range (0,n): # determine cluster for j

25 InCl[i][j] = M[i][j] > 0

#M: stochastic n× n matrix with edge weights
# Φ(o0) . . . Φ(on−1): n propositional object (vertex) events
# r, it: inflation parameter and number of iterations
∀i in 0..n− 1 : ∀j in 0..n− 1 : M

i,j
−2 ≡

(
Φ(oi) ∧ Φ(oj)

)
⊗Mi,j

∀i in 0..n− 1 : ∀j in 0..n− 1 : M
i,j
−1 ≡ M

i,j
−2 ·

(∑n−1
k=0

M
i,k
−2

)−1

∀t in 0..it− 1 :

∀i in 0..n− 1 :

∀j in 0..n− 1 :

N
i,j
t ≡

n−1∑
k=0

[
M
i,k
t−1 ·M

k,j
t−1

]

∀i in 0..n− 1 :

∀j in 0..n− 1 :

M
i,j
t ≡

(
N
i,j
t

)r
·

n−1∑
k=0

(
N
i,k
t

)r−1

∀i in 0..n− 1 :

∀j in 0..n− 1 :

InCli,j ≡ M
i,j
it−1

> 0

Fig. 5. User and event programs for Markov clustering

1 # nu = no. of unlabelled points

2 # nl = no. of labelled points

3 # C = classes of labelled points, nc = no. of classes

4 # SLN[u] = sorted list of labelled neighb. for unlabelled u

5 (nu, nl, C, SLN) = loadData()

6 (k) = loadParams() # k: no. of neighb. to consider

7

8 Votes = [None] * nl; # votes from labelled objects

9 for l in range (0, nl): # iterate over labelled objects

10 Votes[l] = [None] * nc # votes from object l

11 for i in range (0, nc): # iterate over possible classes

12 Votes[l][i] = 1 + (1 if C[l] == i else 0) # vote for class i

13

14 ClassAssign = [None] * nu; # stores class assignments

15 for u in range (0, nu): # iterate over unlabelled points

16 VoteSum = [None] * nc # sum of votes neighbours

17 for i in range (0, nc): # iterate over possible classes

18 NearestVotes = [None] * nc # sort votes:

19 for m in range (0, nl): # vote from mth nearest neighbour

20 NearestVotes[m] = Votes[SLN[u][m]][i]

21

22 # sum first k votes

23 VoteSum[i] = reduce_sum(select_first(k, NearestVotes))

24

25 ClassAssign[u] = [None] * k # class assignm. for u

26 for i in range (0, nc): # iterate over classes

27 ClassAssign[u][i] = reduce_and( # assignment to class i

28 VoteSum[i] >= VoteSum[p] for p in range (0, nc)

29 )

30 ClassAssign[u] = breakTies(ClassAssign[u]) # break ties

# nu = number of unlabelled data points
# nl = number of labelled data points
# nc = number of classes
# Cl = class of labelled data point l (0 ≤ Cl < nc)
# Nmu = mth closest neighbour of unlabelled point ou

∀l in 0 . . . (nl − 1) :

∀i in 0 . . . (nc − 1) :

Votesl,i ≡ Φ [ol]⊗
(
1 +

((
C
l

= i
)
⊗ 1

))

∀u in 0 . . . (nu − 1) :

∀i in 0 . . . (nc − 1) :

∀m in 0 . . . (nl − 1) :

NearestVotesmu ≡ VotesN
m
u ,i

VoteSumiu ≡
∑
Fk (NearestVotesu)

∀i in 0 . . . (nc − 1) :

ClassAssigniu ≡
nc−1∧
p=0

[
VoteSumiu ≥ VoteSumpu

]
# definition of breakTies omitted

Fig. 6. User and event programs for k-nearest neighbour classification
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1:10 D. Olteanu & S.J. van Schaik

〈eid〉 ::= event identifier | x = i for random variable x and possible outcome i

〈bool〉 ::= 〈eid〉 | Boolean expression over 〈bool〉 | 〈val〉 comp. operator 〈val〉
〈val〉 ::= constant | 〈bool〉 ⊗ 〈val〉 | arithmetic or Boolean expression over 〈val〉

| F ( {〈val〉,} 〈val〉 ) for user-defined function F | [ {〈val〉,} 〈val〉 ]

Fig. 7. High-level grammar of event expressions supported by ENFrame.

and demoting inter-cluster walks. This is achieved without a priori knowledge of clus-
ter structure. Figure 5 presents the user and event programs for Markov clustering.
Expansion coincides with taking the power of a stochastic matrix M using the normal
matrix product (i.e. matrix squaring). Inflation corresponds to taking the Hadamard
power of a matrix (taking powers entry-wise). It is followed by a scaling step to main-
tain the stochastic property, i.e., the matrix elements correspond to probabilities that
sum up to 1 in each column.

k-nearest neighbour classification. The k-nearest neighbour classification algorithm (or
simply: k-nn) is a supervised data mining technique that assigns a class to one or
more unlabelled data points ol, based on the class labels of the k labelled data points
that are closest to ol. The unlabelled data point is assigned the class which occurs most
in its direct neighbourhood.

Figure 6 contains the user and event programs for k-nn classification. The algorithm
requires, amongst other parameters, the classes of all labelled data points, and a sorted
list of nearest neighbours for every unlabelled object. Every object is allowed to cast
votes for every single of the the nc classes. An object l contributes a vote value of
Votes[l][i] = 1 if it does not belong to class i, and votes Votes[l][i] = 2 in case it
does have class label i.

Every unlabelled object u considers the votes from its k nearest neighbours. For every
possible class label, the votes from the nearest neighbours are added up. Subsequently,
object u is the class label with the largest number of votes.

3. TRACING COMPUTATION BY EVENTS
To evaluate the user program on probabilistic data, we first ground the program by
computing its execution traces on the input data and then use these traces to compute
the probability distribution of the program result. This section shows how to capture
the execution traces of user programs on probabilistic data using probabilistic events.
Section 4 then shows how to compute the probability distributions of entire collections
of such events.

We next introduce ENFrame’s language of events and connect it with existing prob-
abilistic database formalisms, give examples of events and explain the event programs
for the clustering and k-nn user programs from Section 2.1, and finally show how to
derive the event program from a user program.

3.1. Event Expressions
In our probabilistic model, the input data is a list of probabilistic events, where each
event is a discrete random variable with Boolean, integer, or real-valued outcomes.

Syntax of Events Expressions. Syntactically, an event is an expression over a finite set
of independent discrete random variables. The grammar for event expressions is high-
lighted in Figure 7. For the sake of notational clarity, it does not distinguish between
scalars and lists and assumes that expressions are well-typed.
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Boolean events are denoted by 〈bool〉. In their simplest form, they are assignments of
random variables, e.g., x = i, and Boolean expressions over such assignments. Besides
Boolean events, ENFrame uses so-called conditioned values, or c-values for short; they
are denoted by 〈val〉 in the grammar. The c-value Φ⊗ v represents a (Boolean, numer-
ical, or list) value v conditioned on the Boolean event Φ in the sense that it takes the
value v in the possible worlds where Φ is true and a “neutral” value otherwise; by con-
vention, the neutral value does not occur in the input data. Additionally, user-defined
functions and arithmetic and Boolean expressions on c-values and lists of c-values are
supported. Our example programs (Figures 3–6) use functions to compute the distance
between c-values and to select the k closest c-values to a given value. Furthermore,
Boolean events may refer to previously-defined events by their identifiers and may
encode comparisons between c-values.

Semantics of Events Expressions. The semantics of event expressions follows the possi-
ble worlds semantics. This is standard for Boolean propositional events over discrete
random variables [Suciu et al. 2011]: Each total assignment ν of the input variables
defines a possible world and any Boolean event is either true or false in any given
world. Variable assignments can be extended to c-values. A c-value Φ⊗ v for a Boolean
event Φ and a value v has the value v in those worlds defined by variable assignments
that map Φ to true and a neutral value otherwise. By convention, the neutral value
does not occur in the input data. Like scalars and lists, c-values can be added, mul-
tiplied, or exponentiated. We extend the domains of numerical (Boolean) values and
their operations +, ·, ()−1 by a special element u to stand for the neutral value such
that 0−1 = u. The meaning of summation, multiplication, and neutral value depend
on the value domain. For numbers (Booleans), the neutral value would be 0 (false),
whereas summation (disjunction) and multiplication (conjunction) are the standard
ones for numbers (Booleans). Operators +, · propagate u as u+ x = x and u · x = u for
any value x. For any other values x, y, the operators + and · are as usual. Similarly,
we extend the lists by an element u. For lists of numbers (Booleans), we use pointwise
summation (disjunction) and multiplication (conjunction). For any scalar value a and
list x, u and u are propagated as follows: u · x = u, u + x = x, a · u = u, and u · x = u.
For instance, the sum of c-values Φ⊗ v + Ψ⊗ w evaluates to v + w if Φ and Ψ are true,
to v if Φ is true and Ψ is false, to w if Φ is false and Ψ is true, and to the neutral value
u in the domain of v and w otherwise.

We extend an assignment ν from variables to c-values and Boolean events as follows
(the equations for neutral values are given above and not repeated below):

ν(Φ⊗ v) =

{
v, if ν(Φ) = >
u (u, resp.) otherwise

ν(Φ1 ⊗ v1 op Φ2 ⊗ v2) = ν(Φ1 ⊗ v1) op ν(Φ2 ⊗ v2), where op ∈ {+, ·}
ν((Φ⊗ v)w) = (ν(Φ⊗ v))w

ν(Ψ op (Φ⊗ v)) = ν(Ψ) op ν(Φ⊗ v), where op ∈ {∧,∨}

ν(Φ1 ⊗ v1 θ Φ2 ⊗ v2) =

{
>, if ν(Φ1 ⊗ v1) = u or ν(Φ2 ⊗ v2) = u or ν(Φ1 ⊗ v1) θ ν(Φ2 ⊗ v2)

⊥, otherwise

where θ ∈ {≤,≥,=, <,>}

ν(dist(Φ1 ⊗ v1,Φ2 ⊗ v2)) =

{
u, if ν(Φ1 ⊗ v1) = u or ν(Φ2 ⊗ v2) = u

dist(ν(Φ1 ⊗ v1), ν(Φ2 ⊗ v2)), otherwise

The last equation is an example of how user-defined functions can be added to our
framework; the function dist computes the (Euclidean) distance between two c-values.
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1:12 D. Olteanu & S.J. van Schaik

We next give a probabilistic interpretation of event expressions that explains how
they can be understood as random variables: Boolean event expressions give rise to
Boolean random variables, and c-values give rise to random variables with numerical
outcomes.

Let us fix a set of random variables X. For every random variable x ∈ X, we denote
by P [x = i] the probability that x takes the value i from the set of its possible outcomes
outcomes(x). Let Ω = {ν : x 7→ outcomes(x) | x ∈ X} be the set of possible mappings
from the random variables in X to their outcomes.

Definition 3.1. The probability mass function Pr(ν) =
∏
x∈X P [x = ν(x)] for every

sample ν ∈ Ω, and the probability measure Pr(E) =
∑
ν∈E Pr(ν) for E ⊆ Ω define a

probability space (Ω, 2Ω,Pr) that we call the probability space induced by X.

An event expression E is a random variable over the probability space induced by X
with probability distribution

P [E = s] = Pr
(
{ν ∈ Ω | ν(E)=s}

)
=

∑
ν∈Ω:ν(E)=s

Pr(ν).

By virtue of this definition, every Boolean event expression becomes a Boolean ran-
dom variable, and real-valued (list-valued) c-values become random variables over the
reals (the lists).

Examples of Events and Event Programs for Clustering. Consider an example of k-medoids
clustering with objects o0, . . . , o3 as depicted below. They can be clustered into two
clusters with medoids o1 and o3:

o0 o1 o2 o3

Now assume a probability space defined by a set of independent Boolean random
variables x1, . . . , x4. Each of the 24 total assignments of these variables to possible out-
comes true (>) and false (⊥) defines a possible world whose probability is the product
of the probabilities of the individual variable assignments.

A simple example of a probabilistic event is the propositional formula Φ0 = (x1 =
>∧x3 = >) with outcomes {>,⊥}. The probability of this formula being true is given by
the sum of probabilities of the total assignments that satisfy it: Pr[Φ0 = >] = Pr[x1 =
>] · Pr[x3 = >]. The event Φ0 can be associated with the object o0 in the following
sense: o0 exists in exactly those possible worlds where Φ0 = > and its probability of
existence is Pr[Φ0 = >]. In all other worlds, o0 does not exist (technically, its value is
neutral for the given domain of objects). We write down this association between the
Boolean event Φ0 and the value o0 as the c-value Φ ⊗ v. In the probabilistic database
literature [Suciu et al. 2011], this association is implicit and not denoted by an explicit
algebraic construct as in ENFrame. A scenario where such a c-value may occur con-
siders a value v aggregated from readings of two different sensors whose reliability is
approximated by the Boolean random variables x1 and x3.

We consider the following events for the objects o0, . . . , o3:

Φ0 = (x1 = > ∧ x3 = >) Φ2 = (x3 = >)

Φ1 = (x2 = >) Φ3 = (x2 = ⊥ ∧ x4 = >)

Distinct worlds can have different clustering results. For instance, the world defined
by the assignment {x1 = >, x2 = ⊥, x3 = >, x4 = >} consists of objects o0, o2, and o3,
for which k-medoids clustering yields:
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o0 o1 o2 o3

The worlds defined by {x1 = >, x2 = >, x3 = >} and any assignment for x4 yield:

o0 o1 o2 o3

Equipped with c-values, an initialisation of k-means with k = 2 can be written in
terms of two expressions M0 = Φ0⊗ o0 +¬Φ0⊗ o2 and M1 = >⊗ 0.5 · (o1 + o3): centroid
M0 is set to object o0 if Φ0 is true and to o2 if Φ0 is false; M1 is the geometric centre of
o1 and o3.

In the assignment phase, each object is assigned to its nearest centroid. The condi-
tion InCli,l, which states whether ol is closest to M i, can be written as the following
Boolean event, which encodes that the distance from ol to centroid M0 is smaller than
the distance to centroid M1:

InCli,l ≡
1∧
j=0

[
dist

(
Φ(ol)⊗ ol,M i

)
≤ dist

(
Φ(ol)⊗ ol,M j

)]
Given the Boolean events InCli,l, we can represent the centroid of cluster i for the

next iteration by the following expression:( 3∑
l=0

InCli,l ⊗ 1
)−1

·
( 3∑
l=0

InCli,l ⊗ ol
)

This specifies a random variable over possible cluster centroids conditioned on the
assignments of objects to clusters as encoded by InCli,l. For n objects, this expression
is exponentially more succinct than an equivalent purely propositional encoding of
centroids, since the latter would require one Boolean expression for each subset of the
objects.

The event programs corresponding to the four user programs for k-means, k-
medoids, MCL, and k-nn are given on the right side of Figures 3–6.

3.2. Connection to existing probabilistic database formalisms
Boolean and c-value events are commonplace in mainstream probabilistic database
models, such as the tuple-independent, block-independent disjoint, the probabilistic
c-table, and the probabilistic vc-table models [Suciu et al. 2011; Fink et al. 2012].

The probabilistic web data repositories such as NELL [Carlson et al. 2010] and
Knowledge Vault (KV) [Dong et al. 2014] consist of tuple-independent tables, where
each record is an explicit representation of a probability distribution of an independent
random variable. For instance, the record (t, p) encodes that the represented random
variable takes the value t with probability p and is otherwise undefined, i.e., it does
not appear in the table, with probability 1− p. We can capture this information in our
formalism using a c-value x⊗ t, where x is a Boolean random variable whose probabil-
ity for true is p and the interpretation of the neutral value for the domain of t is that
of a record not appearing in the database.

The block-independent disjoint tables [Suciu et al. 2011] and x-relations [Agrawal
et al. 2006] represent sets of blocks of alternative values. Any data source with con-
flicting data yields this type of probabilistic data, e.g., geolocation data [Mokbel et al.
2006], optical character recognition, and automated data extraction [Dong et al. 2009;
Bleiholder and Naumann 2009]. An example of a block is {(t1, p1), . . . , (tn, pn)}, where
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the values p1 to pn are probabilities such that
∑n
i=1 pi ≤ 1 and the values t1 to tn are

mutually exclusive. In other words, at most one of these values ti can exist in any of
the possible worlds and it does so with probability pi. If the sum of the probabilities
is less than 1, then there are worlds where this block is undefined and their over-
all probability is 1 −∑n

i=1 pi. Such a block encodes a discrete probability distribution.
An important use of c-values is to explicitly define such input probability distribu-
tions. The above distribution can be modelled in our formalism using a sum of c-values
(x = 1) ⊗ t1 + · · · + (x = n) ⊗ tn, where x is an integer-valued random variable and
the Boolean events x = 1, . . . , x = n are by definition mutually exclusive and have
probabilities p1, . . . , pn.

The results of relational queries on tuple-independent or block-independent dis-
joint tables encode more complex events that are conjunctions or disjunctions of input
events in the spirit of c-tables [Suciu et al. 2011]. A restricted form of c-values has
been previously used to capture events representing aggregates in probabilistic value-
conditioned tables [Fink et al. 2012], where the c-values adhere to algebraic laws of
semi-modules representing the tensor product between a semiring, e.g., the Boolean
semiring, and an aggregate monoid, e.g., the monoid of reals with the count operation.

Machine learning approaches also generate probabilistic data and as long as their
output can be formulated as instances of our probabilistic model, ENFrame can work
on them. The two approaches mentioned above, NELL (Never Ending Language
Learner) and KV (Knowledge Vault) are prime examples. Furthermore, Markov chains
and Bayesian networks can be encoded straightforwardly as event programs. For in-
stance, consider a Markov chain of n nodes o1, . . . , on: o1 → · · · → on. We can express
this using a sequence of events Φ1, . . . ,Φn as follows. The event Φi for node oi for
1 < i ≤ n is defined as

Φi = (Φi−1 ∧ xt
i = >) ∨ (¬Φi−1 ∧ xf

i = >)

and Φ1 = (xt
1 = >). This is a disjunction of two Boolean events, for the cases that

oi−1 exists or not. Consequently, two new Boolean random variables xt
i and xf

i are
introduced for every node oi.

To sum up, all these existing probabilistic models are subsumed by our event lan-
guage and instances of these models can readily serve as input to ENFrame programs.

3.3. From User Programs to Event Programs
In this section, we explain how to translate a user program into an event program.
An event program is an imperative specification of a sequence of event declarations
of the form 〈eid〉≡〈val〉 or 〈eid〉≡〈bool〉. The semantics of an event program is that of
the set of all events declared in the program, where occurrences of event identifiers in
expressions are recursively resolved and replaced by the referenced expressions.

To mirror the language for user programs, ENFrame also supports higher-order
events with loops. However, loops are not necessary as they can be unfolded and events
can be generated for each loop iteration. This is possible since the range for each loop
is given by a constant (following our restriction for loop ranges in user programs). We
require that event declarations are immutable, i.e., each distinct event identifier may
only be declared once.

The translation of user to event programs needs to consider:

(1) Resolving user defined functions for loading the data and the various parameters
of the program;

(2) Translating mutable variables and lists in the user program to immutable events
in the event program;

(3) Translating function calls such as reduce_*;
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Loading the data. We first resolve the user defined functions for loading the data and
various parameters, e.g., loadData(), loadParams(), and init() in our example pro-
grams. By this, we populate a list of c-values of the form Φi⊗ oi, where Φi is a Boolean
event with a known probability distribution (also given in the input) and oi is usually
a multi-dimensional data point (record of arbitrary arity). The parameters needed for
the program are also loaded from the input; these are constants that stay the same in
all possible worlds.

From Mutable Variables to Immutable Events. It is natural to reassign variables in user
language programs, for example when updating k-means centroids in each iteration
based on the cluster configuration of the previous iteration. In contrast, events in event
programs are immutable, i.e., can be assigned only once. The translation from the
user program to the event program generates for each user program variable M a
sequence of unique event identifiers whose lexicographic order reflects the sequence
of assignments of M . The idea is to first unfold the nested loop blocks of the user
program (the loop ranges are restricted to allow this). We then maintain a counter for
each distinct variable symbol M and each assignment of that variable.

Since lists in user programs have a known fixed size, their translation is straight-
forward: A k-dimensional array M [n1], . . . , [nk], which can be encoded using lists in
ENFrame, translates to

∏
i ni distinct identifiers M0,...,0, . . . ,Mn1−1,...,nk−1.

Reduce operations can only be applied to anonymous lists created via list compre-
hension. The expression reduce_and([Ψ for v in range(b, e) if Φ] is translated
to the Boolean event

∧e−1
v=b Φ ∧ Ψ. Similarly, reduce_or translates to

∨
, reduce_sum to∑

, and reduce_mult to
∏

. The expression reduce_count([Ψ for v in range(b, e)
if Φ]) translates to the event

∑e−1
v=b Φ⊗ 1.

3.4. Event Networks
We represent the interconnected events from an event program in an event network.
This is a graph representation of the event program, in which nodes are random vari-
ables, Boolean connectives, comparisons, aggregates, and c-values. The advantage of
this representation is that common sub-expressions are shared among the events,
which means less storage needed for the event program and also shared probability
computation.

Example 3.2. Consider the list of four input events Φ[o0]⊗ o0, . . . ,Φ[o3]⊗ o3, where

Φ[o0] = (x0 = > ∨ x2 = >) Φ[o1] = (x1 = >)

Φ[o2] = (x3 = >) Φ[o3] = (x1 = ⊥ ∧ x3 = >).

The following event network depicts in the bottom layer the graph representation of
the Boolean events associated with the four objects o0, . . . , o3. The upper layer depicts
(an excerpt of) the initialisation phase of 2-medoids clustering for these objects using
the program in Figure 4. A directed edge from a node A to a node B means that A is
used to express B. For instance, the node Φ[M0 = o0], which defines the Boolean event
stating that the object o0 is the medoid M0, is only pointed at by Φ0, which means
that Φ[M0 = o0] = Φ[o0] and that we initialise the medoid M0 with o0; clearly, the
medoid M0 can be only be initialised with o0 in those worlds where Φ[o0] is true. The
event Φ[M0 = o1] states that the object o1 is the initial medoid M0 and is defined
by the network fragment rooted at its corresponding node: Φ[M0 = o1] = (¬Φ[M0 =
o0] ∧ Φ[o1]). This reads as follows: The medoid M0 can be initialised with o1 in those
worlds where it is not initialised with o0 and where o1’s condition Φ[o1] is satisfied. The
remaining initialisations follow a similar pattern.
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There are further layers for each assignment and update steps of the k-medoid clus-
tering algorithm; these are not depicted here for lack of space.

initialisation phase

network
foundation

x0 = > x2 = > x1 = > x3 = >

Φ[o0] : ∨ Φ[o1] Φ[o2] Φ[o3] : ∧

¬

Φ[M0 = o0] Φ[M0 = o3] : ∧Φ[M0 = o1] : ∧ Φ[M0 = o2] : ∧

¬ ¬ ¬ ¬

Φ[M1 = o0] : ∧ Φ[M1 = o1] : ∧ Φ[M1 = o2] : ∧ Φ[M1 = o3] : ∧

¬ ¬ ¬

2

Section 4 introduces probability computation algorithms for event programs repre-
sented as event networks.

4. PROBABILISTIC INFERENCE FOR EVENT NETWORKS
The inference problem is #P-hard already for simple classes of events and uniform
distributions, such as positive bipartite propositional formulas in disjunctive normal
form over Boolean random variables with uniform probability distributions [Provan
and Ball 1983]. In ENFrame, we need to compute probabilities of a large number of
interconnected events that are beyond propositional ones. We approach this problem
with three complementary techniques, which are presented in this section: (1) bulk-
compilation of an event network into a decomposition tree that allows for efficient
probability computation, (2) approximation techniques to prune large, not-yet-explored
fragments of the tree, and (3) a recipe for concurrent compilation that assigns disjoint
fragments of the tree to workers running on distinct cores of a machine. These tech-
niques bring increasingly larger performance benefits, as presented in Section 5.

4.1. Bulk-compilation of event networks
Recall that all events of a program are represented by an event network, which is a
graph representation shared between the parse trees of the events in the program.
The goal of the ENFrame probabilistic inference is to compute exact or approximate
probabilities for the top nodes in the network; we subsequently refer to these nodes
as targets. These nodes represent events such as “objects oi and oj occur in the same
cluster” or “object oi is the closest to object oj .”

The bulk-compilation procedure is based on Boole’s expansion theorem [Boole 1854],
which is also referred to as Shannon expansion [Shannon 1949] or simply decompo-
sition: select an input Boolean random variable x and partially evaluate a Boolean
target Φ to Φ|x=> by setting x to true (>) and to Φ|x=⊥ by setting x to false (⊥). Then,
we have that

Φ = (x = >) ∧ Φ|x=> ∨ (x = ⊥) ∧ Φ|x=⊥

and the probability of Φ is defined by

P [Φ] = P [x = >] · P [Φ|x=>] + P [x = ⊥] · P [Φ|x=⊥].
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where Φ|x=> and Φ|x=⊥ are simpler events since they do not contain occurrences of x.
Furthermore, standard simplifications involving constants are applied to Φ|x=> and
Φ|x=⊥: > ∧ φ = φ, ⊥ ∨ φ = φ, > ∨ φ = >, and ⊥ ∧ φ = ⊥ for any Boolean event φ.

This decomposition procedure can be trivially generalised to networks of discrete
events. Given a network Ψ and a random variable x with a finite set D of possible
(Boolean or real-valued) outcomes, we have that

Ψ =
∑
i∈D

(x = i) ·Ψ|x=i

where the sum is interpreted as disjunction for Booleans and as standard addition for
reals. The probability of an outcome v for Ψ is then given by:

P [Ψ = v] =
∑
i∈D

P [x = i] · P [Ψ|x=i = v].

By repeating this decomposition and thus incrementally eliminating variables, we
eventually end up with events that are constants and have probability 1. The trace of
this repeated decomposition is a tree, which we call a decomposition tree; for Boolean
variables, this would be a decision tree. A decomposition tree for an event network Ψ is
defined by Ψ and the order of elimination of its variables along each branch. Different
decomposition trees may be obtained for different variable elimination orders. In worst
case, the tree has one branch for each possible assignment of the variables and there
can be exponentially many such assignments in the number of variables. The probabil-
ity of an event Φ is the probability of any of its decomposition trees, which is the sum
of the probabilities of its branches. Since a branch is a (possibly partial) assignment ν
of random variables, its probability is the product of the probabilities of the individual
variable assignments in ν.

All our inference algorithms rely on decomposition trees of event networks, though
with two key improvements of practical relevance: the decomposition tree is not mate-
rialised and the (partially evaluated) networks Φ|x=i are not constructed explicitly. Al-
gorithm 1 sketches the main idea behind these algorithms. Exact inference is obtained
by calling the main procedure with error ε = 0 and would correspond to a simplified al-
gorithm without the framed, blue pseudocode. We next explain this simpler algorithm
and later return to approximate inference.

Instead of materialising the tree, we explore it in some order, e.g., in depth-first order
in Algorithm 1, and collect the probabilities of all visited branches as well as record
for each event Φ and outcome v the probability L(Φ = v) of those visited branches that
satisfy Φ = v; initially, L(Φ = v) = 0 for any possible outcome1 v of Φ. At any time,
L(Φ = v) and 1 − Σv′∈outcomes(Φ),v′ 6=vL(Φ = v′) represent lower and respectively upper
bounds on the probability of Φ = v. These bounds eventually converge to the exact
probability when the tree is explored completely. If approximate probabilities suffice,
then the bounds need not meet and potentially large fragments of the tree remain
unexplored. This can improve the performance of bulk-compilation significantly.

Instead of constructing the (partially-evaluated) network Φ|x=i explicitly, we record
the value of each node in the network for any variable assignment x = i. This together
with the original network uniquely defines the network for Φ|x=i. The process of com-
puting this information is called masking, cf. Algorithm 2. We perform masking by
traversing the original network bottom-up and recording which nodes are masked,
i.e., evaluated to constants given the values of their children. Initially, all nodes in

1The implementation only records lower bounds for outcomes that are actually computed during compilation
and not for all permissible values in the domain as that would be impractical.
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ALGORITHM 1: Inference algorithm for event networks (framed code is for approximation).

BULKCOMPILE(NETWORK D ,ERROR ε )
foreach n ∈ D do
M [n].val← unknown � initial value of n is unknown, which is not a possible outcome
M [n].lval← min(n) � for R-valued nodes n, initial lval is the lowest value that n can get
M [n].uval← max(n) � for R-valued nodes n, initial uval is the highest value that n can get

end
foreach Φ ∈ targets(D) do

foreach v ∈ outcomes(Φ) do L(Φ = v)← 0 � initial probability lower bound of 0 for target Φ

B[Φ]← 2ε � initial error budget for target Φ

end
DFS(D,M, ∅ , B ) � start exploring the decomposition tree with empty assignment of probability 1

DFS(NETWORK D, MASKS M , ASSIGNMENT ν , ERROR BUDGETS B )

if ∀Φ ∈ targets(D) : Σv∈outcomes(Φ)L(Φ = v) ≤ 2ε then
return B � approximation reached for all targets; we are done

end
if ∀Φ ∈ targets(D) : (B[Φ] ≥ Pr[ν] or M [Φ].val 6= unknown) then � sufficient error budget to trim branch ν

foreach Φ ∈ targets(D) do � decrease available budget for unmasked targets Φ
if M [Φ].val = unknown then B[Φ]← B[Φ]− Pr[ν]

end
return B � return updated error budgets

end
R← 0 � initial residual error budget from one branch to the next

x← nextVariable(D, ν) � select next variable to eliminate
foreach i ∈ outcomes(x) do
ν′ ← ν ∪ {x = i} � extend the current assignment
Mν′ ← copy(M) � get a working copy of the current mask
Mν′ [x].val← i � extend the current mask with the assignment for x
Mν′ ← MASK

(
D,Mν′ , ν

′, x, NULL
)

� propagate the mask Mν′ in the network D

foreach Φ ∈ targets(D) do Bν′ [Φ]← B[Φ]
|outcomes(x)| + R � error budget for branch ν′

R← DFS(D,Mν′ , ν
′ , Bν′ ) � recurse on branch ν′ and return the residual error budget R

end
return R

the network have an unknown value, i.e., they are unmasked. Nodes that represent
monotonically-increasing real-valued events (e.g., conditional values and sums of non-
negative numbers such as distance-sums in clustering) are masked using lower and
upper bound values that will eventually converge as more variables are eliminated.
Bounds on real-valued events can also help to evaluate quickly the Boolean outcomes
of comparison events such as r1 < r2.

When a target Φ is eventually masked to a value v by a variable assignment ν, the
probability Pr(ν) is added to the probability lower bound of the event Φ = v, which also
means that it is subtracted from the probability upper bounds for all events Φ = v′ with
v′ 6= v. If one or more targets are left unmasked, a next variable x′ is eliminated and the
masking process is repeated with ν′ = ν ∪ {x′ = c}, where c is a possible outcome of x′.
In case ν already masked the target Φ, then its extension ν′ cannot contribute anymore
to the probability Φ (as it already did via ν), although it may contribute to further
targets. Once all targets are masked, we backtrack and select a different outcome for
the most recently chosen variable whose outcomes are not exhausted. If all branches of
the tree have been investigated, the probability bounds of the targets have necessarily
converged and we terminate.
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ALGORITHM 2: Masking an event network.
MASK(NETWORK D, MASKS M , VARIABLE ASSIGNMENT ν , NODE n, CHILD c)

if M [n].val = unknown then � n is not yet masked
switch nodetype(n) do

case ¬ : M [n].val← not M [c].val �M [c].val ∈ B, M [n].val ∈ B
case ∧ : �M [n].val ∈ B

if ν 6|= (c = M [c].val) then M [n].val← ⊥
else if (∀c ∈ children(n) : ν |= (c = M [c].val)) then M [n].val← >

end
case ∨ : �M [n].val ∈ B

if ν |= (c = M [c].val) then M [n].val← >
else if (∀c ∈ children(n) : ν 6|= (c = M [c].val)) then M [n].val← ⊥

end
case ⊗ : � c-value: M [n].val, v ∈ R

Let n = Φ⊗ v � Φ and v are children of n
if ν |= Φ then � update lower and upper bound and value of c-value
M [n].lval← v; M [n].uval← v; M [n].val← v

end
end
case Σ : � sum of c-values: M [n].val ∈ R

Let n = c1 + . . .+ ck � c1, . . . , ck are c-values and children of n
M [n].lval←M [c1].lval + . . .+M [ck].lval � update lower bound of n
M [n].uval←M [c1].uval + . . .+M [ck].uval � update upper bound of n
if M [n].lval = M [n].uval then M [n].val←M [n].lval � lower and upper bound coincide

end
case < : �M [n].val ∈ B, Similarly for Θ ∈ {<,≤, >,≥,=}

Let n = (cl < cr) � cl and cr are the left and resp. right children of n
if M [cl].uval < M [cr].lval then
M [n].val← >

else
if M [cl].lval ≥M [cr].uval then M [n].val← ⊥

end
end

endsw
if n ∈ targets(D) and M [n].val 6= unknown then � n is a target and has just been masked
L(n = M [n].val)← L(n = M [n].val) + Pr[ν] � add probability mass to the masked node

end
end
foreach p ∈ parents(n) do � propagate mask to yet unmasked parents of n

if M [p].val = unknown then M ←MASK(D,M, ν, p, n)
end
return M

Variable order for decomposition trees. Decomposition trees may not be necessarily
balanced and the order in which the variables are processed has a significant influence
on their size and height. For instance, the tree for the Boolean event Φ = (x0 = > ∨
x1 = > ∨ x2 = >) ∧ x2 = > has height three, if constructed using the variable order
x0, x1, x2 for all branches, and height one if x2 comes first in the order (since Φ is
equivalent to x2 = >). ENFrame employs a heuristic to find a good variable ordering
that aims to choose a next variable x′ such that it affects (and thus partially evaluates)
as many events as possible. Whenever a node n is reached during masking, yet it
cannot be masked to a constant, we initiate a back-propagation procedure (top-down
in the network) via its unmasked descendants to select the next variable to eliminate.
We select a variable that is reached most times during back-propagation from all such
unmasked nodes.

Example 4.1. Recall the event network from Example 3.2, consisting of the founda-
tion and initialisation phase for k-medoids clustering and assume the medoid selection
events as targets. We next illustrate the consecutive masking for assignments ν1 and
ν2 from the following decomposition tree with the variable order x1, x0, x2, x3:
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ν0 = {}

ν1 = {x1 = >}

ν2 = {x1 = >, x0 = >} ν3 = {x1 = >, x0 = ⊥}

. . . . . .

ν4 = {x1 = ⊥}

. . . . . .

After masking for ν1, we obtain the following network:

initialisation phase

network
foundation

x0 = > x2 = > x1 = > x3 = >

Φ[o0] : ∨ Φ[o1] Φ[o2] Φ[o3] : ∧

¬

Φ[M0 = o0] Φ[M0 = o3] : ∧Φ[M0 = o1] : ∧ Φ[M0 = o2] : ∧

¬ ¬ ¬ ¬

Φ[M1 = o0] : ∧ Φ[M1 = o1] : ∧ Φ[M1 = o2] : ∧ Φ[M1 = o3] : ∧

¬ ¬ ¬

The assignment ν1 = {x1 = >} propagates to the node Φ[o1] masking it true (green
background) and to its parents, which remain unmasked since they are conjunctions
with multiple children not yet masked. The assignment is also propagated to its sec-
ond parent node, which is a negation and gets masked false (red background). This
masking further propagates upwards to conjunctions that also get masked false. As a
consequence, the object o3 cannot be an initial medoid to any cluster in the possible
worlds defined by the assignment ν1. We next extend the assignment ν1 to ν2 with
x0 = > and obtain the following masked network:

initialisation phase

network
foundation

x0 = > x2 = > x1 = > x3 = >

Φ[o0] : ∨ Φ[o1] Φ[o2] Φ[o3] : ∧

¬

Φ[M0 = o0] Φ[M0 = o3] : ∧Φ[M0 = o1] : ∧ Φ[M0 = o2] : ∧

¬ ¬ ¬ ¬

Φ[M1 = o0] : ∧ Φ[M1 = o1] : ∧ Φ[M1 = o2] : ∧ Φ[M1 = o3] : ∧

¬ ¬ ¬
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The propagation of the assignment x0 = > triggers a wave of new masks in the
network, which results in all initial medoid nodes being masked. It is now established
that, in the possible worlds defined by ν2, the objects o0 and o1 are the initial medoids
M0 of cluster C0 and respectively M1 of cluster C1.

In this particular example, there is no need to further explore the tree branch by
extending ν2: all targets (i.e., the initial medoid nodes) have been masked, the as-
signments of x2 and x3 (and, by extension, the existence of o2) are irrelevant. When
compared with the naïve approach of running the user program in each world, our
decomposition-based approach can be much faster as it shares computation across
worlds: all four worlds defined by ν2, i.e., all four possible assignments to x2 and x3,
yield the same medoids.

The exploration of the decomposition tree then continues with ν3 = {x1 = >, x0 = ⊥}
and the masking of ν2 is discarded.

2

4.2. Approximate inference with error guarantees
We previously explained how to compute the exact probabilities of targets in an event
network. Algorithm 1 can also compute approximate probabilities with error guaran-
tees. Recall that while exploring the decomposition tree, we add the probabilities of the
visited branches to the lower bounds of targets. For each target Φ and possible outcome
vi of Φ, Algorithm 1 incrementally refines lower bounds for Φ = vi. As explained before,
L(Φ = vi) and U(Φ = vi) = 1 − Σ1≤j≤l,j 6=iL(Φ = vj) represent lower and respectively
upper bounds on the probability of Φ = vi. At any time we thus have correct intervals
for the probabilities of these targets. We can stop the exploration once the bounds of
all targets are sufficiently tight.

We use the following notion of approximate probability distribution.

Definition 4.2. Given a fixed error 0 ≤ ε ≤ 1 and an event Φ with probability
distribution (v1 : p1, . . . , vn : pl) where pi = P [Φ = vi], an absolute ε-approximation is a
distribution (v1 : p̂1, . . . , vn : p̂n) such that ∀1 ≤ i ≤ l : pi − ε ≤ p̂i ≤ pi + ε. 2

We can further adapt Definition 4.2 to our needs and derive a relationship between
the pair (L,U) of lower and upper bounds for a given event Φ = vi and the given error
ε. We next depict this relationship [Olteanu et al. 2010]:

0 1

L U

L+ εU − ε p

U − L ≤ 2ε

ε

ε

∀p̂ ∈ [U − ε, L+ ε] : |p̂− p| ≤ ε

As depicted, any probability p̂ in the interval [U − ε, L + ε] is an ε-approximation of
the true probability p: indeed, when U − L = 2ε and thus p̂ = U − ε = L + ε at one
extreme, then p̂ is not further than ε away from p, which sits between L and L + ε or
U and U − ε; likewise, when U − L = 0 and thus p̂ = U = L at the other extreme, then
p̂ = p. When lifting this condition to the entire distribution of Φ, we obtain that an
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absolute ε-approximation can be defined by any distribution (v1 : p̂1, . . . , vn : p̂n) such
that ∀1 ≤ i ≤ n : U(Φ = vi)− ε ≤ p̂i ≤ L(Φ = vi) + ε.

We thus need to run the algorithm until U(Φ = vi) − L(Φ = vi) ≤ 2ε for each target
Φ; once this condition is achieved for any outcome vi of Φ, it will also be achieved by
all other outcomes of Φ, since contributions to the lower bound L(Φ = vi) must be
subtracted from the upper bounds U(Φ = vj) of all other outcomes vj for j 6= i.

We denote by B[Φ] = 2ε the error budget of Φ. Algorithm 1 trims unexplored frag-
ments of the decomposition tree whose probability mass is less than the current error
budget. With every such trimming, the error budget decreases accordingly.

There exist multiple strategies for investing this error budget for every target. At
each branching point, i.e., when choosing outcomes for a new variable x to eliminate,
Algorithm 1 evenly divides the current error budget over all branches, i.e., over all
possible outcomes of x. Before descending along a branch ν, we first check whether
the approximation precision has been reached. If not, we check whether the current
branch need not be explored since the upper bound Pr[ν] on its probability is smaller
than the current error budget. If this is the case, then we can just discard that branch
and subtract its upper bound Pr[ν] from the error budget. Any residual error budget R
is added to the budget of the next branch.

We denote by BALANCED this strategy for investing the error budget. To better un-
derstand it, we contrast it with two simpler strategies (see the experiments in Sec-
tion 5): GREEDY, an eager strategy that uses the error budget as soon as possible; and
POSTPONED, a lazy strategy that saves the error budget until the end and uses it to
trim the last branches in the decomposition tree.

GREEDY is effective for unbalanced decomposition trees with long branches on the
left-hand side since it eagerly cuts such branches that would otherwise provide a very
small probability mass (recall that the longer a branch the smaller its probability,
which is the product of the variable assignments along the branch). This strategy can
also benefit from prioritising for each variable its outcomes with small probability over
the other outcomes as it again leads to branches of small probability first.

POSTPONED spends the error budgets by pruning the last (rightmost) branches of
the decomposition tree. It works well for unbalanced trees with relatively short left
branches and longer right branches. Such trees can be obtained for instance for posi-
tively correlated events, such as when each event is a disjunction x1 = >∨· · ·∨xk = >.
The branches representing satisfying assignments are of increasing length and de-
creasing probability: {x1 = >}, {x1 = ⊥, x2 = >}, . . . , {x1 = ⊥, . . . , xk−1 = ⊥, xk = >}.
POSTPONED performs poorly if the decomposition tree is deeper on the left than on the
right (reverse mirroring the poor scenario for GREEDY).

Both GREEDY and POSTPONED perform rather poorly on balanced trees, such as for
sets of conditional events and for events that are grouped into sets such that any two
events are mutually exclusive within a set and independent across sets. BALANCED
strikes a balance between GREEDY and POSTPONED by distributing the error budget
evenly over the branches of the tree. Other approximation techniques can be added
to ENFrame, e.g., the randomised ε-approximation Oracle average, and probability
computation using top-p most probable worlds.

Example 4.3. Consider the decomposition tree and distribution of error budgets
illustrated in Figure 8. Furthermore, assume that there is one target Φ = (x0 = > ∧
x1 = >) ∨ x0 = ⊥, and P [x0 = >] = 0.9, P [x1 = >] = 0.05, ε = 0.1.

We start by initialising the lower bounds L[Φ = >] = 0 and L[Φ = ⊥] = 0. Algorithm 1
explores the decomposition tree as following:
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ν0 = {}

B = 2 · ε

ν1 = {x0 = >} ν4 = {x0 = ⊥}

Bν1 = B
2

Rν1 = Rν3

Bν4 = B
2
+Rν1

ν2 = {x0 = >, x1 = >} ν3 = {x0 = >, x1 = ⊥}

Bν2 =
Bν1
2

Rν2

Bν3 =
Bν1
2

+Rν2

Rν3

Fig. 8. Schematic error budget distribution in a decomposition tree for a Boolean event Φ = (x0 = >∧x1 =
>)∨x0 = ⊥ as done by BALANCED. Forward (downwards) edges indicate budget assignment to a child node,
back edges represent the residual error budget returned to parent nodes.

ν0: The probability of the tree rooted at this node is Pr[ν0] = 1 by definition. The budget
Bν0 = 2ε = 0.2 is not sufficient to prune this tree. The assignment ν0 = {} does not
satisfy Φ either. We choose to eliminate the variable x0:
ν1: The budget Bν1 =

Bν0
2 = 0.1 is not sufficient to prune the subtree rooted at ν1,

since Pr[ν1] = 0.9. The assignment ν1 does not satisfy Φ. We next eliminate the
variable x1:
ν2: The budget Bν2

=
Bν1

2 = 0.05 is sufficient to prune the subtree rooted at ν2,
since Pr[ν2] = 0.9 · 0.05 = 0.045. The branch is pruned, and the residual budget
Rν2

= Bν2
− Pr[ν2] = 0.005 is returned. Under ν2, Φ is satisfied so instead of

using the error budget to prune this branch, we could have contributed with
the quantity Pr[ν2] to Pr[Φ]. This was indeed our initial approach, i.e., first
check (un)satisfiability of the event and then use the error budget. However,
for large event networks, such as those we used in the experiments, masking
is the most expensive operation and required to check (un)satisfiability. We
therefore use the error budget, if possible, before masking.

ν3: The budget Bν3 =
Bν1

2 + Rν2 = 0.05 + 0.005 = 0.055 is not sufficient to prune
the subtree rooted at ν3 since Pr[ν3] = 0.855. The assignment ν3 falsifies Φ,
therefore L[Φ = ⊥] is increased by Pr[ν3] and thus the upper bound of U [Φ = >]
is decreased to 1 − 0.855 = 0.145. The residual error budget Rν3

= Bν3
= 0.055

is returned.
The residual error budget Rν1

is equal to the residual budget of its right child:
Rν1 = Rν3 = 0.055. Observe that this is equal to the original budget Bν1 for the
subtree rooted by ν1, minus the budget used in this subtree (0.045, for pruning
ν2): Rν1 = Bν1 − 0.045 = 0.1− 0.045 = 0.055.

ν4: The budget Bν4
=

Bν0
2 +Rν1

= 0.1+0.055 = 0.155 is sufficient to prune the subtree
rooted at ν4 since Pr[ν4] = 0.1. The branch is pruned, the residual error budget
is irrelevant as this was the last branch of the tree. The algorithm finishes with
probability bounds L[Φ = >] = 0 and U [Φ = >] = 0.145; they also translate into
the probability bounds L[Φ = ⊥] = 0.855 and U [Φ = ⊥] = 1.

We thus have that any probability in the interval [0.145 − 0.1, 0 + 0.1] = [0.045, 0.1] is
within 0.1 from the true probability P [Φ = >] = 0.045 + 0.1 = 0.145. The algorithm
would actually have terminated after the assignment ν3 resulted in a sufficiently tight
pair of probability bounds: U(Φ = >)− L(Φ = >) = 0.145 ≤ 2 · ε = 0.2.
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2

4.3. Concurrent inference
In this section we show how the inference algorithms introduced in the previous sec-
tions can be distributed on many-core architectures. The key idea is to split the task
of exploring the decomposition tree in subtasks that can be executed concurrently by
threads on different cores of the underlying hardware.

A major challenge when introducing concurrency to algorithms is dealing with
thread synchronisation [Dijkstra 1965; Pacheco 2011], critical sections of code that re-
quire mutual exclusion amongst the threads. Decomposition-based probabilistic infer-
ence is naturally suitable for concurrent computation: the branches (ν1, . . . , νk) rooted
at a node ν can be explored independently of each other. However, ENFrame’s approx-
imation algorithms introduce a dependency between tree branches: the error budget
of νj ’s branch depends on the residual error budgets of the previous branches. Syn-
chronisation of the threads that process such branches would completely undo any
possible gain from multi-core processing, as threads would end up spending most time
waiting for each other. By modifying the way error budgets are calculated, the depen-
dency between threads can be broken – this gives rise to the BALANCED-C algorithm
for concurrent approximate probabilistic inference.

We first introduce notation useful to define our strategy for concurrently spending
the error budget of a target Φ. This strategy assumes the decomposition tree for Φ be
balanced, i.e., it has depth given by the number |X| of variables in Φ and also k|X|

leaves, where k is the maximum domain size for a variable in Φ. This simplification
makes it easy to distribute the error budget over several threads in a way that does
not require too much synchronisation.

— Let ρ[Φ] denote the total remaining error budget for target Φ, i.e., initially ρ[Φ] =
B[Φ] = 2ε and is reduced whenever some of Φ’s error budget is used.

— Let π denote the progress of the exploration of the decomposition tree in terms of
the fraction of leaf nodes that have been considered (pruned or visited, 0 ≤ π ≤ 1).
The value of π is continuously updated.

— Let also d(ν) denote the depth of branch ν in the decomposition tree.
— The size of the subtree rooted at ν is then defined as treesize(ν) = k|X|−d(ν), which is

an upper bound on the number of leaves in the full subtree rooted at ν.
— The number of leaves that still need to be considered depends on the progress π. An

upper bound is given by λ = (1− π) · k|X|.
— Furthermore, σν expresses the size of the subtree of ν relative to λ: σν = treesize(ν)

λ .
— Then, the error budget Bν [Φ] available to a node rooted at ν for approximating Φ at

any time during the bulk-compilation procedure is defined as follows:

Bν [Φ] = ρ[Φ] · σν = ρ[Φ] · treesize(ν)

λ
= ρ[Φ] · k|X|−d(ν)

(1− π) · k|X| = ρ[Φ] · k
−d(ν)

1− π .

Using the above error budget Bν for a node rooted at any variable assignment ν,
BALANCED-C computes the approximate probability distributions of all targets with
an absolute error of ε. This error budget is now a closed-form expression that no longer
depends directly on the result and residual error budgets of other branches of the
decomposition tree. Instead, the remaining budget ρν [Φ] for a target Φ is divided over
the nodes of the decomposition tree. A node defined by an assignment ν receives a
budget that depends on (i) the potential maximum size of its subtree, (ii) the progress
of the inference algorithm, and (iii) the remaining error budget. A few small critical
sections remain:
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Fig. 9. Schematic illustration for concurrent processing of a decomposition tree using BALANCED-C .

— Verifying whether sufficient budget is available to prune a branch and subsequently
updating the remaining error budgets ρ.

— Updating π whenever a branch is pruned or a leaf node is identified.
— Updating probability bounds during the masking process.
— Queuing and dequeueing processing jobs.

Every single one of these critical sections are limited to updating one (or a constant
number) of variables, rather than containing computationally complex instructions.

BALANCED-C employs a combination of the producer-consumer pattern [Ben-Ari
1990] and the recursive split pattern for concurrent computation (sometimes referred
to as the ‘divide and conquer’ pattern). Whenever a node defined by an assignment ν
in the tree is split by some thread Ta to construct branches ν1 to νk, all but the first
of these branches are pushed onto a queue as independent jobs to be picked up by
idle consumer threads Tb (Ta = Tb is possible). In the meantime, Ta continues down
the branch ν1. A thread Ti becomes idle when the branch it works on is not extended
further because either all targets are masked or the branch is pruned. When a thread
becomes idle, it picks up the next job from the queue or waits for one to be queued. This
strategy for concurrent processing is illustrated in Figure 9. The coloured jobs j0, . . . , j4
are listed in the order in which they are generated and illustrate how the tree is split
up into tasks that can be processed independently. The threads can propagate masks
into the event networks simultaneously; the progress and budget variables σ and ρ are
updated by all threads in synchronised code blocks.

4.4. Extensions
In the end of this section, we cover several extensions of the proposed inference algo-
rithms: how to deal with certain data, how to encode and process iterations in event
networks, and finally masking of higher-order events.

Certain data. Input certain data, i.e., data that occurs in all possible worlds, is as-
sociated with events represented by Boolean random variables whose probability for
true is 1. Before running the inference algorithms presented in this section, ENFrame
identifies such events (by inspecting the probability distributions of all input variables)
and masks the network for an assignment that maps all these variables to >. If all in-
put data is certain, then this initial masking completely evaluates the network and
computes the result of the user program. If only some input data is certain, then this
initial masking corresponds to a partial evaluation of the user program that is done
once for all possible worlds.

Iterations in user programs. User programs encoding data mining tasks and the
corresponding event programs often contain loops. Event networks for event programs
with loops can be represented in two distinct ways.
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The default representation is unfolded: all events that occur inside loops are explic-
itly represented as distinct nodes in the event network. For instance, a for-loop with
i iterations (e.g., in k-means or k-medoids clustering) and m events in every iteration
leads to i ·m events in the resulting event network.

For bounded-range loops, the repetitive events are amenable to a folded encoding.
All events in the body of such a for-loop are captured in a single group of nodes in the
event network. Bulk-compilation of event networks with such iterative groups requires
to simulate looping for inference computation.

Algorithm 1 for inference and Algorithm 2 for masking assume unfolded networks.
Several minor modifications are required to make them aware of folded event net-
works. Firstly, the masks data structure M becomes two-dimensional to allow for stor-
ing masks for all nodes n in any loop iteration i: M [i][n]. Secondly, to facilitate the tran-
sition between different iterations of a loop, a loop node type O is introduced: When the
current node n is such a loop node, then in Algorithm 2 its masking is propagated to
its corresponding node at the next iteration. Finally, a target in an iterative group is
only considered reached when the group has reached its final iteration. For iterative
programs, a folded event network results in a smaller memory footprint for the event
network. The overhead of probability computation remains however the same.

Masking of higher-order events. Higher-order events can be used to reduce the size of
the event network by transferring logic from event expressions into native C++ code.
Regular network nodes can be masked using Boolean or real-valued masks, following
the semantics of the events. Higher-order nodes require higher-order masks, which
are propagated following a distinct mechanism, which is often more complex than for
the simple network nodes supported by default. This mechanism needs to be manually
predefined by the programmer in native C++ code.

For instance, a single higher-order event can represent the assignment of objects to
a cluster i in k-means or k-medoids, rather than explicitly representing one event for
every combination of object and cluster. The mask information for such a higher order
event is more complex as it needs to encode (i) which objects are definitely assigned to
cluster i; (ii) objects that cannot yet be assigned due to a currently incomplete variable
assignment. This information needs to be passed on to the parent nodes in the event
network each time a change occurs.

ENFrame is extensible by design so new types of complex nodes can be added to
event networks. Further work is however required on better understanding when to
encapsulate groups of events into a higher-order node versus when to expose these
events in the network. The trade-off is space, which can be orders of magnitude less in
case of higher-order nodes, versus functionality, which decreases once the events are
hidden behind complex nodes.

5. EXPERIMENTAL EVALUATION
This section describes an experimental evaluation of the performance of ENFrame.
The focus of this evaluation is a performance benchmark of the probabilistic inference
algorithms introduced in Section 4, used for two programs: k-medoids clustering and
k-nearest neighbours classification.

ENFrame’s output for any input program is the same as if the program would be
executed in each of the possible worlds. Our focus in this section is on probabilistic
inference for user programs and not on quality of data mining. As such, we do not
aim to compare the quality of data mining tasks implemented in ENFrame to other
single-purpose algorithms for mining of uncertain data. Such a comparison would in-
variably yield discriminatory associations. Firstly, ENFrame is a generic framework
for expressing a variety of data mining tasks and not a specific data mining algorithm,
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as investigated in the literature. Secondly, the framework’s support for correlations
and possible worlds semantics sets it apart from the bulk of single-purpose data min-
ing algorithms presented in the literature, which rely on (over)simplifying indepen-
dence assumptions (e.g., [Chau et al. 2006; Ngai et al. 2006b], surveyed in [Volk et al.
2009]) and expected values for e.g., nearest neighbours and cluster medoids. Specific
solutions reported in the literature might outperform implementations of data mining
algorithms in ENFrame, at the cost of producing results that are possibly inaccurate
when compared to mining in every possible world, due to a fundamental difference in
probabilistic semantics.

This section does, however, introduce the first steps towards quality evaluation of
clustering probabilistic data. We used it to empirically verify the claims regarding the
error bounds for the approximation algorithms and to compare ENFrame’s approxi-
mations to the quality of probability computation in the top-p most probable possible
worlds. In the following, we describe the experimental setup, summarise our findings,
and present these findings in more detail.

5.1. Experimental setup
5.1.1. Data and correlations. The data used in the experimental evaluation was obtained

from sensors in energy distribution networks, kindly provided by UK Power Networks
(UKPN) as part of the HiPerDNO FP7 research project [Taylor et al. 2011]. The data
describes network load and occurrences of partial discharge in energy distribution net-
works. Partial discharge is an electrical discharge that does not fully bridge the insu-
lation between two conducting electrodes, and has recently been identified as one of
the major causes of long-term degradation and eventual failure of cables.

In order to minimise the number of lost customer-minutes, energy distribution net-
work operators are currently deploying sensors to monitor partial discharge activity
in the distribution network to be able to act preemptively [Michel 2007; Michel and
Eastham 2011]. Unfortunately, monitoring partial discharge is not a straightforward
task: the phenomenon is hard to detect, sensors often report spurious measurements
and are prone to failure (as are the transmission channels).

The partial discharge occurrence count is aggregated over the duration of an hour,
and subsequently paired with average network load readings (or records) during that
time. The resulting data set consists of 1300 records, which is used to demonstrate the
framework’s ability to process non-synthetic data.

To experimentally evaluate ENFrame’s ability to operate on various types of corre-
lations, the data set has been augmented with three commonly occurring correlation
patterns [Agrawal et al. 2006; Sen and Deshpande 2007; Suciu et al. 2011]. All three
schemes consider correlated events Φ(oi) (or lineage) associated with records oi that
are built up using Boolean random variables and define the worlds containing oi. We
further partitioned the records in groups of four with identical events.

— Positive correlations, in which any two records oi and oj are either positively corre-
lated or independent. Queries (union, projection, or aggregates) often produce this
type of correlated events [Koch and Olteanu 2008], as does time-series data from
sensor networks [Lian and Chen 2010]. In this correlation scheme, each event Φ(oi)
for a record oi is Boolean and a disjunction of l distinct positive Boolean variable
assignments, e.g., x1 = > ∨ · · · ∨ xl = >. In the experiments, we vary the number of
variables v to study its effect on performance.

— Mutually exclusive correlations, in which the records are partitioned in mutex sets of
cardinality (at most)m such that any two records are mutually exclusive within a set
and independent across sets. Any data source with conflicting data yields this type of
correlation, e.g., geolocation data [Mokbel et al. 2006], optical character recognition,
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and automated data extraction [Dong et al. 2009; Bleiholder and Naumann 2009].
The number of variables v depends on the number of objects and on the size of the
mutex sets.

— Conditional correlations, which model uncertainty as a Markov chain with one node
per record: o1 → · · · → on. The event Φ(oi) of record oi for 1 < i ≤ n is defined as

Φ(oi) = (Φ(oi−1) ∧ xt
i = >) ∨ (¬Φ(oi−1) ∧ xf

i = >)

and Φ(o1) = (xt
1 = >). This is a disjunction of two Boolean events, for the cases that

oi−1 exists or not. Consequently, two new Boolean random variables xt
i and xf

i are
introduced for every record oi. The number of variables v depends on the number of
objects.

The Boolean random variables used in the various correlation schemes have ran-
domly generated probabilities for true in the range [0.5, 0.8] (the case of [0.2, 0.5] is
symmetric). This range was chosen to prevent events with probabilities too close to (or,
for approximation, within the used absolute error from) either zero or one, which are
not representative for the non-trivial work regime of the proposed probabilistic infer-
ence algorithms as they can be approximated much faster than in the general case.

5.1.2. Probabilistic inference algorithms. We report on performance benchmarks for prob-
ability computation for k-medoids clustering and k-nearest neighbour classification
using five algorithms:

— The sequential (i.e., single-threaded) exact algorithm EXACT;
— The sequential approximation algorithms: GREEDY, POSTPONED, and BALANCED;
— The concurrent approximation algorithm BALANCED-C.

Furthermore, two reference implementations are used:

— The NAÏVE algorithm iterates over all possible worlds and executes the program in
every world.

— The TOP-P algorithm iterates over the top-p most probable worlds and executes the
program in each of these worlds.

The approximation algorithms were set to compute probabilities within an (abso-
lute) error bound of ε = 0.1. For k-medoids clustering, the targets are the events that
represent medoid selection; for k-nn, the classification events are used as targets. To
facilitate comparison, k-medoids clustering experiments were run with three iterations
and k = 3 clusters. The experiments with k-medoids used a folded event network with
higher-order events.

5.1.3. Machines. With the exception of Figure 14, all experiments were carried out on
an Intel Xeon X5660 (2.80GHz, 4 cores) machine with 4GB of RAM, running Ubuntu
with Linux kernel 3.5. The results of thread-scalability presented in Figure 14 were
obtained on an Intel Xeon E5-2690 (2.90GHz, 16 cores).

The framework was implemented in C++ and compiled using GCC 4.7.2. Each of
the plots depicts averages (with min/max ranges where applicable) of five runs with
randomly generated event expressions and variable probabilities.

5.2. Observations on performance
5.2.1. Sequential algorithms. Figures 10 and 11 show that all of ENFrame’s inference

algorithms outperform NAÏVE by up to six orders of magnitude for each data set with
more than 10 variables. Furthermore, BALANCED can be up to four orders of magni-
tude faster than EXACT. NAÏVE is only competitive for a very small number of possi-
ble worlds, in particular as defined by up to ten Boolean random variables. For more
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Fig. 10. Probability computation for k-medoids on positively correlated data. Top: scalability in terms of
variables. Bottom: scalability of approximations in terms of size of the data set (BALANCED-C not shown for
readability reasons).

worlds, ENFrame performs better as it exploits commonalities among possible worlds
and executes fragments of the program once for many worlds. NAÏVE results in a time-
out for over 20 variables (≈ 1 million possible worlds) regardless of the correlation
scheme.

The reason why the approximation algorithms outperform EXACT is as follows. For
a given depth d, there are up to 2d nodes in the decomposition tree that contribute to
the probability mass of values of targets in the event network. The contributed mass
decreases exponentially with an increase in depth, reflecting that most nodes in the
tree only contribute a small fraction of the total mass. Depending on the desired error
bound, a shallow exploration of the tree may be enough to obtain a sufficiently large
probability mass.

Among the approximation algorithms, BALANCED performs best; it outperforms EX-
ACT for clustering (Figures 10 and 11) and classification (Figures 12 and 13) by up to
four orders of magnitude since it does not traverse the decomposition tree to its full
depth. The other two methods (GREEDY and POSTPONED, only used for k-medoids clus-
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Fig. 11. Probability computation for k-medoids on data with mutually exclusive (top) and conditional cor-
relations (bottom). GREEDY and POSTPONED overlap with EXACT and are not shown. Grey dashed line
indicates number of variables v on right y-axis (depends on number n of objects). Legend: see Figure 10.

tering in the experiments) use the available error budget to respectively cut the first
and last branches, while exploring other branches in full depth.

POSTPONED performs remarkably well for positive correlations, because the decom-
position tree for the disjunctive events is unbalanced. The left branches of the tree
correspond to assignments of variables to true, which immediately satisfies the dis-
junctive events, and thus allows for targets to be masked quickly. Further to the right
of the tree, branches correspond to assignments of variables to false. More variables
need to be set to fully evaluate a disjunctive event, thus leading to longer branches.
POSTPONED invests the error budget towards the end of its exploration of the decom-
position tree and can therefore prune the deep right branches whilst maintaining the
ε-approximation. The decomposition trees for the mutex and conditional correlation
schemes are more balanced. As a result, the performance of POSTPONED and GREEDY
degrades and is within a factor two of EXACT. To improve the readability of the plots,
POSTPONED and GREEDY are not shown in Figure 11.

5.2.2. Concurrent algorithm. By distributing the probability computation over multiple
CPU cores, ENFrame’s performance improves significantly. Figures 10, 11, 12, and 13
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Fig. 12. Probability computation for k-nearest neighbour on positively correlated data, and varying values
for n (number of records), v (number of variables) and k.

show timings for BALANCED-C, the algorithm for concurrent probability computation.
Regardless of the type of program (clustering or classification), a smaller number of
variables yield fewer possible worlds and hence a more shallow decision tree. Under
those circumstances, concurrent probability computation only yields a factor 2-3 im-
provement over BALANCED due to the fact that a sufficiently large number of jobs
cannot be generated quickly enough to fully use all four available workers (threads).
However, as soon as the number of variables approaches 30, the efficiency of the con-
current algorithm becomes clear: for almost all data sets and algorithms, regardless
of their parameters, the improvement over BALANCED ranges from a factor 3.5 to a
factor 10 (e.g. k-medoids in Figure 10 for v = 50, and k-nearest neighbour in Figure 12
for v = 100).

This large performance gain (factor 10, using only 4 threads) can be attributed to
two causes. The first reason is a better collaborative use of the error allowance by
threads that investigate concurrently multiple branches of the decision tree. The avail-
able error allowance for a thread traversing a long branch b1 can be increased due to a
simultaneous successful traversal of a shallow branch b2 by a different thread. The se-
quential algorithm BALANCED spends time traversing b1 to its full depth first, leaving
some of the error budget unused after a quick traversal of b2. This effect is especially
relevant for positive correlations, which have unbalanced trees. The second cause is
BALANCED’s approach to keeping track of the error budgets: the sequential algorithm
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Fig. 13. Probability computation for k-nn classification on data with mutex and conditional correlations for
varying values of n (objects) and k.

explicitly stores the error budgets for all targets for the current branch at each depth
of the tree to be able to transfer the budget from one branch to another, and spend un-
used budget locally. The BALANCED-C algorithm recalculates the budget at every depth
using the overall progress to minimise the need for thread synchronisation. This effect
is not significant for shallow trees, but becomes apparent for deeper trees when the
number of variables increases (e.g. v = 100).

The thread scalability of BALANCED-C has been evaluated using k-nn clustering, the
results of which are presented in Figure 14. For large numbers of variables (v = 150,
left), the actual scalability in the number of threads t is near optimal (i.e. t threads
yield a factor t performance improvement). For reasons explained above, the perfor-
mance improvement is sometimes more than a factor t. On the right, experiments
with different values for v (number of variables) and k are shown.

5.3. Experiments with k-medoids clustering
A synthetically generated data set was used to investigate the influence of certain
(i.e. with probability 1) objects (or records) on the scalability of probability computa-
tion of k-medoids clustering. Figure 15 presents the performance of BALANCED and
BALANCED-C probability computation on this data for 0% certain objects (i.e., fully
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Fig. 15. Probability computation for k-medoids with BALANCED and BALANCED-C on large-scale generated
data sets with certain data points.

probabilistic data), 95% certain objects, and 100% certain objects (i.e., fully certain
data for which v = 0).

For both algorithms, the performance improves slightly when the fraction of certain
objects is increased from 0% to 95%. The marginal speed-up in such cases is explained
by the fact that the distance-sums of medoids to data points in a cluster become less
complex and can be initialised using the distances to objects that are certain. Conse-
quently, fewer variable assignments are needed to decide on a cluster medoid, resulting
in a shallower decomposition tree and improved performance.

Performance of BALANCED on a data set with 100% certain objects is provided as a
reference point. For fully certain data (i.e., v = 0 variables), no decomposition tree is
constructed. Therefore, only one thread is used for computation, and BALANCED and
BALANCED-C have identical performance.

Further experiments investigated the influence of program-specific parameters
(such as the number of dimensions, data point coordinates, the numbers of iterations)
on performance. The number of dimensions has no influence on the computation time,
as the algorithm uses a precomputed distance measure on the feature space. The num-
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ber of clustering iterations has a linear effect on the running time of the algorithm in
ENFrame.

The number of targets (including those representing co-occurrence queries) has a
minor influence on performance. Due to the combinatorial nature of k-medoids, events
are mostly satisfied in bulk. It is thus very rare that one event alone is satisfied at
any one time. This also explains why experiments with other types of targets (e.g.,
object-cluster assignment, pairwise object-cluster assignment) show no difference in
performance.

The memory footprint of the event networks was monitored during probability com-
putation and was up to 1GB for the experiments presented in this section.

5.4. Experiments with k-nn classification
The k-nn classification problem shows a more localised complexity than clustering:
only the k nearest objects are of importance. As can be seen in Figures 12 and 13,
the correlation scheme has a large influence on which objects are considered to be
possible k-nearest neighbours in an uncertain setting. For positive correlations, as the
distance between the unlabelled object and a possible nearest neighbour increases, the
probability of that neighbour being one of the k nearest neighbours rapidly decreases.
As a result, BALANCED performs up to four orders of magnitude better than EXACT on
positive correlations (Figure 12 for n = 1000, k = 10), and both algorithms scale sub-
linearly in n. BALANCED-C (with four threads) yields yet another order of magnitude
performance improvement.

Figure 12 (bottom) shows that the value of k has a significant influence on perfor-
mance: increasing the number of nearest neighbours increases the size of the search
space for possible candidates, which in turn increases the probabilistic inference time.
There are many techniques to determine the right value of k for a data set [Devroye
et al. 1996], all of which can be applied directly to k-nn in ENFrame. For our experi-
ments we decided to use a wide range of values to investigate their influence on the
performance of probability computation. Investigating the influence of k on the quality
of k-nn classification is beyond the scope of this work.

The mutex and conditional correlation schemes yield a rather different behaviour,
cf. Figure 13. Under both schemes, the probability of a distant object being one of the
k nearest neighbours is larger, which dramatically increases the number of objects
that need to be considered. As a result, BALANCED cannot trim as many branches of
the decomposition tree as in the case of positive correlations. Concurrent probability
computation with four threads yields a consistently better performance with very little
synchronisation overhead.

5.5. Quality evaluators for processing probabilistic data
There is a wealth of literature on techniques for measuring the quality of clustering
and classification of traditional certain data. We introduce here a quality evaluator for
probabilistic clustering and refer the reader to the thesis of the second author for a
similar evaluator for classification [van Schaik 2015].

Quality evaluators for clustering can be divided into two categories:

— External evaluators, which compare an output (e.g. clustering) against an oracle
that defines the desired output. Examples of external evaluators include the Rand
measure [Rand 1971], and the F-measure.

— Internal evaluators which measure notions of compactness and separation of clus-
ters. Examples include the Davies-Bouldin Index [Davies and Bouldin 1979] and the
Dunn Index [Dunn 1973].
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Fig. 16. Effect of parameter β in PAPM calculations

Probabilistic clustering results are fundamentally different from traditional (cer-
tain) results: the output is a probability distribution over the possible results. One
way of using the existing evaluators on a probabilistic result might be to apply them
in every possible world and then use a meaningful aggregator over the exponentially
many results. The computational effort required by such an approach make it rather
impractical for very large sets of possible worlds.

Our quality evaluator for probabilistic clustering can take the correlations in the in-
put probabilistic data into account. Furthermore, it does not make assumptions about
the number of objects and clusters, as not all k clusters and n objects are guaranteed
to exist in all possible worlds. Finally, it does not rely on cluster labels, because some
cluster j in some possible world w might contain the exact same set of objects as a
cluster j′ in another world w′.

Many of the (internal and external) clustering quality evaluators described in the
literature are based on some measure of the assignment of objects to clusters. For
example, such quality measures use the intra-cluster distances as a measure of sep-
aration, or the inter-cluster distances as a measure of compactness, or compare clus-
terings based on the cluster assignment of objects. These evaluators do not share the
properties listed above. The pairwise assignment of objects to clusters, however, is a
suitable measure: it is defined for both probabilistic and deterministic clusterings, it
allows for taking correlations between objects into account, and it does not rely on the
number of clusters or their labels.

The Pairwise Assignment Probability Measure (PAPM) is an external evaluator for
probabilistic clustering, inspired by the Rand measure [Rand 1971]: it compares two
clusterings, D1 and D2, using the pairwise assignment probabilities of objects to clus-
ters. PAPM has two variants: PAPMavg and PAPMmax.

Definition 5.1. Let D1 and D2 be clustering results, with k clusters C0, . . . , Ck−1 for
a data set with n objects o0, . . . , on−1. We define PAPMavg and PAPMmax as follows:

PrD[oa ∼ ob] =
∑

0≤i<k

PrD[oa ∈ Ci ∧ ob ∈ Ci]

∆D1,D2
(oa, ob) =

∣∣PrD1
[oa∼ob]− PrD2

[oa∼ob]
∣∣

PAPMavg(D1,D2) = avg
oa,ob

(
β∆D1,D2

(oa,ob) − 1

β − 1

)
, where β > 1

PAPMmax(D1,D2) = max
oa,ob

(
β∆D1,D2

(oa,ob) − 1

β − 1

)
, where β > 1.
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Fig. 17. Accuracy experiment with k-medoids: comparing NAÏVE (golden standard) to EXACT, BALANCED,
and TOP-P clustering (β ≈ 1). The dotted lines indicate the performance (in seconds, on the right y-axis) of
TOP-P, BALANCED, EXACT, respectively.

The values of both PAPM measures range from zero to one. A score close to zero
indicates that two clustering results D1 and D2 are very similar: the average (in case
of PAPMavg) or maximum (PAPMmax) difference between pairwise assignment proba-
bilities is small. A score close to 1 means that the two clusterings are very dissimilar,
with large differences in pairwise assignment probabilities.

The term Pr[oa ∼ ob] represents the probability of pairwise assignment of two objects
oa and ob to the same cluster. The events for the object-to-cluster assignment for one
object oa for multiple clusters Ci are mutually exclusive; consequently, the pairwise
assignment probability can be computed as the sum of the events in which both objects
oa and ob are assigned to the same cluster. The term ∆D1,D2

(oa, ob) represents the
difference in pairwise assignment probability Pr[oa ∼ ob] between two clusterings D1

and D2 with regard to objects oa and ob.
The constant β > 1 is a non-linear scaling constant similar to the constant used in

the F-measure. It has no influence when set close to 1, but for larger values it reduces
the contribution of object pairs with small differences in assignment probabilities to
the overall score. The effect of this optional correction is illustrated in Figure 16.

We used PAPM to compare the quality of probabilistic clustering as computed by our
exact and approximate inference algorithms and by NAÏVE and TOP-P, where NAÏVE
produces by definition the best quality as it performs exact clustering in every possible
world. Using PAPMmax (β ≈ 1), we verified that indeed EXACT has the same best qual-
ity as NAÏVE and that the quality of all approximation algorithms is within the given
error bounds and much better than TOP-P. This is shown in Figure 17: the PAPMmax
score of zero (blue plot line) indicates that ENFrame’s EXACT clustering is equivalent
to clustering in all possible worlds (NAÏVE). Furthermore, the difference between BAL-
ANCED and NAÏVE (green plot line) never exceeds 0.1: the average PAPMmax score over
five runs is approximately 0.081. On the other hand, the accuracy of clustering in the
top-p most probable worlds is far off from NAÏVE, even for large p.

The dotted plot lines in Figure 17 indicate the performance (in seconds) of TOP-P,
BALANCED, and EXACT on the right y-axis. Already for p > 1000, TOP-P is outperformed
by BALANCED. Only when p is almost equal to the number of worlds (i.e., p ≈ 2v ≈
1000000), the quality of TOP-P surpasses BALANCED. However, for such large values
of p, ENFrame’s approximation algorithms are about five orders of magnitude faster,
while providing solid error guarantees. The size of the data set for this experiment was
restricted due to the (very) limited scalability of the NAÏVE algorithm.
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6. RELATED WORK
Our work is at the confluence of several research areas: probabilistic data manage-
ment, data analytics platforms, and provenance data management. Section 1 high-
lights the key design differences between ENFrame and existing probabilistic pro-
gramming and data processing approaches, including: the use of possible worlds se-
mantics throughout the whole processing pipeline, from input data to the result prob-
ability distribution; arbitrary correlations in input and computation traces captured
via probabilistic events; separation of probabilistic data and program, which enables
low-entry programming oblivious of probabilistic models and inference. We next high-
light related work in uncertain data mining and querying, data analytics, probabilistic
programming, and provenance.

Probabilistic data mining and querying. Our work adds to a wealth of literature on
this topic [Aggarwal 2009; Suciu et al. 2011] along two directions: distributed prob-
ability computation techniques and a unified formalisation of several clustering and
classification algorithms in line with existing work on probabilistic databases.

Distributed probability computation has been approached in the context of the Sim-
SQL/MCDB system, where approximate query results are computed by Monte Carlo
simulations [Jampani et al. 2011; Cai et al. 2013]. This contrasts with our approach
in that MCDB does not support approximate computation with error guarantees and
does not exploit the type of event correlations supported by ENFrame.

Early approaches to mining uncertain data are based on imprecise (fuzzy) data,
for example using intervals, and produce fuzzy (soft) or hard output. Follow-up work
shifted to representation of uncertainty by (independent) probability density functions
per data point. In contrast, we allow for arbitrarily correlated discrete probability dis-
tributions. The importance of correlations has been previously acknowledged for clus-
tering [Volk et al. 2009] and frequent pattern mining [Sun et al. 2010]. A further key
aspect of our approach that is not shared by existing uncertain data mining approaches
is that we follow the possible worlds semantics throughout the whole mining process.
This allows for exact and approximate computation with error guarantees and sound
semantics of the mining process that is compatible with probabilistic databases. This
is not achieved by existing work; for instance, most existing k-means clustering ap-
proaches for uncertain data define cluster centroids using expected distances between
data points [Chau et al. 2006; Ngai et al. 2006a; Gullo et al. 2008; Kriegel and Pfeifle
2005; Gullo et al. 2008; Kao et al. 2010] or the expected variance of all data points
in the same cluster [Gullo et al. 2010]; they also compute hard clustering where the
centroids are deterministic. The recently introduced UCPC approach to k-means clus-
tering [Gullo and Tagarelli 2012] is the first work to acknowledge the importance of
probabilistic cluster centroids. However, it assumes independence in the input and
does not support correlations.

ENFrame’s approach to approximate inference is based on earlier work on approx-
imate query evaluation in probabilistic databases, which has been shown to be ef-
fective [Olteanu et al. 2010; Fink et al. 2013]. This is directly related to numerous
approaches for (weighted) model counting (#SAT) problem [Gomes et al. 2009]. Main-
stream approaches to model counting use Monte Carlo sampling, e.g., [Wei and Selman
2005]. Although these approaches have been shown to be effective in many cases, they
depend on uniform sampling [Gomes et al. 2006]. Additionally, Monte Carlo sampling
methods only provide probabilistic guarantees (i.e., only with probability p < 1 is a
sampling result an ε-approximation, where p is preset), and do not exploit the struc-
ture of probabilistic events [Olteanu and Wen 2012] as done by ENFrame.

In contrast to sampling, ENFrame’s inference algorithms exploit the structure of
the events and decompose them using Boole’s expansion theorem [Boole 1854], which
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is also referred to as Shannon expansion [Shannon 1949]. A key component of de-
composition is the choice of which variable to eliminate next. The order in which the
variables are eliminated in the decomposition tree has a significant influence on its
depth [Rudell 1993]. The problems of finding the optimal variable order, i.e., an order
under which the decomposition tree has a minimal number of nodes, or even approx-
imating it by a constant factor are NP-hard [Bollig and Wegener 1996; Sieling 2002].
Significant efforts have been made to construct heuristics for finding a favourable vari-
able order for propositional expressions [Rice and Kulhari 2008]. Many such heuristics
rely on topological properties of the expression (circuit) to define a distance measure
on variables, and subsequently try to order variables in such a way that variables at
a short distance from each other are grouped together in the decision tree (e.g., [Aloul
et al. 2004; Drechsler 1996; Fujita et al. 1993]). Other methods attempt to identify the
most influential variables for early processing in the decision tree (e.g., [Malik et al.
1988; Rice and Kulhari 2008]).

Probabilistic programming. There is a significant body of work on extending pro-
gramming languages, and in particular query languages, with probabilistic constructs.
They can be classified into four broad categories [Bárány et al. 2016]: imperative spec-
ifications over logical structures, programming over probabilistic databases, indirect
specifications over the Herbrand base, and purely declarative probabilistic program-
ming languages. Some of these formalisms belong to more than one category.

The first category includes imperative probabilistic programming languages [Roy
2015] and declarative specifications of Bayesian networks, such as BLOG [Milch and
et al 2005] and P-log [Baral et al. 2009] that rely on an imperative execution model.
BLOG can express probability distributions over logical structures via generative
stochastic models that can draw values at random from numerical distributions, and
condition values of program variables on observations. In contrast to closed-universe
languages such as SQL, logic programs, or ENFrame’s user language, BLOG considers
open-universe probability models that allow for uncertainty about the existence and
identity of objects. MCDB [Jampani et al. 2011] and SimSQL [Cai et al. 2013] propose
SQL extensions with for-loops and probability distributions as first class citizens.

The formalisms in the second category assume that the input probabilistic data is
generated by a mechanism external to the program. A user program, such as a Pro-
log [Kimmig et al. 2011] or Datalog [Abiteboul et al. 2014] program, is then evalu-
ated over this input data. This approach has been taken by PRISM [Sato and Kameya
1997], the Independent Choice Logic [Poole 2008], and to a large extent by probabilistic
databases [Suciu et al. 2011] and their semi-structured counterparts [Kimelfeld and
Senellart 2013]. ENFrame is best positioned in this category.

This second category also contains uncertainty-aware query languages for proba-
bilistic data such as TriQL [Widom 2008], I-SQL, and world-set algebra [Antova et al.
2007a; 2007b]. The latter two are natural analogs to SQL and relational algebra for
the case of incomplete information and probabilistic data [Antova et al. 2007a]. Sim-
ilar to ENFrame’s user language, these languages cannot explicitly specify probabil-
ity distributions, yet they may simulate a specific categorical distribution indirectly
using specialised language constructs. Examples of such constructs are repair-key,
choice-of, possible, and group-worlds-by that can construct possible worlds rep-
resenting all repairs of a relation w.r.t. key constraints, close the possible worlds by
unioning or intersecting them, or group the worlds into sets with the same results to
sub-queries. World-set algebra has been extended to (world-set) Datalog, fixpoint, and
while-languages [Deutch et al. 2010] to define Markov chains.

Key properties of world-set algebra are conservativity over relational algebra [An-
tova et al. 2007a], genericity, expressiveness [Koch 2009], and efficient processing [An-
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tova et al. 2007b]. World-set algebra captures exactly second-order logic over finite
structures, or equivalently, the polynomial hierarchy [Koch 2009]. Moreover, it is closed
under composition [Koch 2009]. ENFrame’s user language also shares flavours of these
features: It is generic in the sense that different equivalent representations of the in-
put probabilistic data lead to semantically equivalent program results. It is expressive
in the sense that it features common language constructs such as loops, assignments,
aggregates, which are essential to data mining tasks. It is conservative over the Python
language in the sense that when executed over deterministic data, the ENFrame user
program yield the same result. It is closed under composition in the sense that the
composition of two programs, i.e., the output of the first program becomes the input to
the second program, can be expressed as one large program and their sequential execu-
tion is equivalent to the execution of the large program. Finally, ENFrame’s inference
mechanisms outperform a suite of known approaches, as demonstrated experimentally.

Formalisms in the third category are indirect specifications of probability spaces
over the Herbrand base and includes Markov Logic Networks (MLNs) [Domingos and
Lowd 2009; Niu et al. 2011], where the logical rules are used as a compact and intuitive
way of defining factors. This approach is applied in DeepDive [Niu et al. 2012], where
a database is used for storing relational data and extracted text, and database queries
are used for defining the factors of a factor graph. Further formalisms in this category
are probabilistic Datalog [Fuhr 2000], probabilistic Datalog+/- [Gottlob et al. 2013],
and probabilistic logic programming (ProbLog) [Kimmig et al. 2011].

The fourth category includes a recently developed probabilistic programming Dat-
alog (PPDL), where probabilities are first-class citizens [Bárány et al. 2016]. In con-
trast to the previously mentioned probabilistic Datalog approaches, PPDL has a robust
declarative semantics, i.e., semantic independence from the algorithmic evaluation of
Datalog rules and semantics invariance under logical program transformations.

Data analytics platforms. Support for iterative programs is essential in many appli-
cations including data mining, web ranking, graph analysis, and model fitting. This
has recently led to a surge in data-intensive computing platforms with built-in iter-
ation capability. REX supports iterative distributed computation along database op-
erations in which changes are propagated between iterations [Mihaylov et al. 2012].
MADlib is an open-source library for in-database analytics [Hellerstein et al. 2012].
Similarly, Bismarck is an architecture for in-database analytics [Feng et al. 2012],
while UDA-GIST provides efficient in-database support of probabilistic models and
computation [Li et al. 2015]. ProbKB is a probabilistic knowledge base designed to in-
fer missing facts in a scalable, probabilistic, and principled manner using a relational
DBMS [Chen and Wang 2014]. GraphLab [Low et al. 2010] uses graph representa-
tions for scalable parallel programming. The Iterative Map-Reduce-Update program-
ming abstraction for machine learning compiles programs into declarative Datalog
code [Borkar et al. 2012]. Infer.NET [Minka et al. 2012] is a probabilistic programming
platform with probability distributions as first-class citizen in the user language.

Provenance in database and workflow systems. To enable probability computation,
we trace fine-grained provenance of the user computation. This is in line with a wealth
of work in probabilistic databases [Suciu et al. 2011]. Our event language is influenced
by work on provenance semirings [Green et al. 2007] and semimodules [Amsterdamer
et al. 2011; Fink et al. 2012] that capture provenance for positive queries with aggre-
gates in relational databases. The construct Φ ⊗ v, where Φ is a Boolean formula and
v a real number, is not captured by a semimodule such as those investigated in prior
work [Amsterdamer et al. 2011]. Firstly, we allow negation in Boolean events, which
is not captured by semirings. Secondly, even for positive events, the tensor product
B[X] ⊗ R of the Boolean semiring B[X] freely generated by the variable set X and of
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the SUM monoid over the real numbers R is not a semimodule since it violates the
following law: (Φ1 ∨Φ2)⊗ v = Φ1⊗ v+ Φ2⊗ v. Indeed, under an assignment that maps
both Φ1 and Φ2 to >, the left side of the equality evaluates to v, whereas the right side
becomes v+ v. Furthermore, our event language allows to define events via iterations,
as needed to succinctly trace data mining computation.

7. CONCLUSION
This article introduces ENFrame, a platform for processing probabilistic data. It high-
lights the design principles behind ENFrame and focuses on a family of probabilistic
inference algorithms used by ENFrame to compute the probability distributions over
the possible results of user programs. ENFrame is showcased for clustering and clas-
sification of probabilistic data. Experiments confirm the quality of the proposed infer-
ence algorithms and show that, among these algorithms, the concurrent approximate
one is up to several orders of magnitude faster than sequential exact or approximate
ones, which on their turn exhibit a similar performance gap when compared with naïve
clustering in all possible worlds.

There are several exciting directions for future work. We would like to understand
the trade-offs between the expressiveness of the user language and efficiency of infer-
ence and between the functionality of fine-grained events and performance brought by
compilation of event networks to efficient C++ code. We would also like to investigate
additional constructs in the event language needed to support a library of common
algorithms for data analysis. Although not discussed in this article, current work on
ENFrame looks at how to exploit the structure of the user program, in addition to
query structure, for efficient inference. A first step is static analysis of user programs
to isolate program fragments that are semantically equivalent to known tractable
queries. For practical reasons, it is desirable to better integrate queries and program
constructs with relations and allow program data structures (e.g., multi-dimensional
arrays) that can be used interchangeably in both programs and queries. Finally, the
performance of ENFrame inference needs improvements and one direction of research
is to employ large-scale distributed systems.
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