Name Generation and Higher-order
Probabilistic Programming
(Or is new=rnd?)

LAFI 2020, New Orleans

Dario Stein!, Sam Staton!, Michael Wolman?

January 21, 2020

LUniversity of Oxford ?McGill University



Aim: Unifying name generation & probabilistic programming

1. Names and their relation to PPLs
2. v-calculus: A higher-order language for name generation

3. Denotation semantics

3.1 Classical semantics (nominal sets)
3.2 Probabilistic semantics (higher-order probability)

4. Quasi-Borel spaces and the full abstraction problem



What are names?

Examples Key properties
1. a-equivalence e atomic — only comparable
AX.XZ Ry AY.y Z for identity
2. memory locations e freshly generated
intsx x = new int: e usually: stateful effect

let y = ref() : unit ref

3. metaprogramming

(defmacro (while condition . body)
(let ((loop (gensym)))
‘(let ,loop ()
(cond (,condition (begin . ,body) (,loop))))))



Names in PPL

gensym: exchangeable random primitive (XRP) in Bayesian
nonparametrics.

Base distribution for clustering with Dirichlet process

(define draw—class
(DPmem 1.0 gensym))
(define class

(mem (A (obj) (draw—class))))
(define class—weight

(mem (A (obj—class feature) (beta 1.0 1.0))))

In practice, gensym is used like a probability distribution



Names vs. random numbers

Names Random samples

let x : name = new() in let x : real = rnd() in
let y : name = new() in let y : real =rnd() in
X ==Y X ==Y

= false = false

Formal analogy (program equations)

1. commutative and discardable effects

2. fresh samples are almost surely distinct (continuous

distributions: uniform, gaussian)



Names vs. random numbers

Question: “Is name generation just random sampling?”

If so:

e probability theory includes name generation

e prove things about name-generating programs using
probability

Difficulty: Interaction of names & higher-order functions



Names & higher-order functions

Names & Closures

val f, g : name — bool
let f = (let x = new() in funy — (y == x))
let g = funy — false

The functions f and g are contextually equivalent.

e x is private inside the closure f
e garbage collection, escape analysis

e how to prove such equivalences?



Names & higher-order functions

Privacy equation:

(let x = new() in funy — (y == x)) = fun y — false

What about the analogous statement for random numbers?

let x =rnd() in funy — (y == x) = fun y — false

This is a statement about random functions R — 2.

Make sense of this statement (requires a model of
probability w/ higher-order functions)

Prove that it's true



v-calculus

Stark’s v-calculus ['93]: Simply-typed call-by-value A-calculus

1. types v (name), o (bool) and 71 — 7
2. equality tests & conditionals

3. construct va.M to allocate a fresh name a
Used to study observational equivalence ~

Freshness:
vx.vy.(x = y) = false.

Privacy equation:

vx\y.(x = y) = \y.false.



v-calculus

Name generation is suble

UX.AY.X % A\y.UX.X
va.vb.\x.if (x = a) then a else b ~ vb.\x.b

va.vb.Ax.if (x = b) then a else b % vb.Ax.b



Denotational semantics

Classical semantics: Nominal sets [Pitts]

e set theory with atoms A, all constructions equivariant
under renaming

e name abstraction monad T
(a)(a,b) = (c)(c,b) € T(A x A).

e Full abstraction: do observationally equivalent programs
have the same semantics?

e No

10



Failure of full abstraction

Privacy equation does not hold in Nom

[[vxAy.(y = x)]] = (x){x} € T(2*)
[[\y false]] = ()0

are distinct because the nonemptyness check
3:2% =52

is equivariant.

= Logical relations to remedy this

11



Privacy equation

It holds that
[[vxAy.(y = x)]] = [[\y false]] € P(2%)

In stats terms, if

X ~ U[0,1]
A={X}
B=1

then A and B have the same distribution!

12



Beyond measure theory

1. Continuous distributions = Measure theory. Which
o-algebra to put on 28?7

2. Equality checks are discontinuous maps; spaces of
continuous functions not sufficient

3. General higher-order functions don't combine with
measure theory [Aumann '61]

Quasi-Borel spaces [Staton & al, '17] are a model of all of the
above.

13



Quasi-Borel spaces are a sound and correct probabilistic

model of the v-calculus.

Qbs semantics is fully abstract up to first-order function

types 71 — -+ — 7, 7; € {0, V}.

Proof for 7, = o. All names are private, eliminate sampling

(privacy equation only).
Sketch for 7, = v. Normalize to see which names are private.

Eliminate those (few more equations).

14



Random singleton vs emptyset

Let X ~U[0,1],A = {X}.
1. for any xp € R
XA xED as.
2. if u o-finite then

w(A) =0=pu(d) as.

ii5)



Random singleton vs emptyset

Let X ~ U[0,1], A= {X}. Assume that
3:28 52
was a morphism in Qbs.

1. Let B C R? be any Borel set

2. xg: R — R — 2 is a morphism

3. M. 3(xs(x)) : R — 2 is a morphism

4. that is, the projection w(B) C R is Borel. 4

16



Proof of the privacy equation

Let X ~ U[0,1],A = {X).

1. The law of A is a measure on the space 2% = Y of Borel
sets. o-algebra Y ,r induced from gbs structure; U € ¥z
iff “Borel on Borel" [Kechris '87]

VB C R? Borel ,{x: B, € U} € Lp.
2. Thm For any Borel on Borel U/
) e U < {x} €U for almost all x.

Elegant proof using descriptive set theory.

3. We cannot measurably distinguish A and (!

17



e Are names random numbers? Yes (in a precise way)

e Qut-of-the-box probabilistic semantics is more abstract
than Nom
e Unify PPL and name generation
e Justify program equations about name generation using
probability
e New understanding of Qbs function spaces

e Tool: Descriptive set theory

e Measurability as abstraction: Randomization is
anonymization (differential privacy)

18



Future directions

e Descriptive set theory < computability theory
e Borel & Turing inseparability
e Connections to logical relations

e Qbs structure My C X% is an R-ary relation

19



