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Outline

Aim: Unifying name generation & probabilistic programming

1. Names and their relation to PPLs

2. ν-calculus: A higher-order language for name generation

3. Denotation semantics

3.1 Classical semantics (nominal sets)

3.2 Probabilistic semantics (higher-order probability)

4. Quasi-Borel spaces and the full abstraction problem
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What are names?

Examples

1. α-equivalence

λx.x z ≈α λy.y z

2. memory locations

int∗ x = new int;

let y = ref() : unit ref

3. metaprogramming

(defmacro (while condition . body)

( let ((loop (gensym)))

‘( let , loop ()

(cond (,condition (begin . ,body) (, loop ))))))

Key properties

• atomic – only comparable

for identity

• freshly generated

• usually: stateful effect
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Names in PPL

gensym: exchangeable random primitive (XRP) in Bayesian

nonparametrics.

Base distribution for clustering with Dirichlet process

(define draw−class

(DPmem 1.0 gensym))

(define class

(mem (λ (obj) (draw−class))))

(define class−weight

(mem (λ (obj−class feature) (beta 1.0 1.0))))

In practice, gensym is used like a probability distribution
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Names vs. random numbers

Names

let x : name = new() in

let y : name = new() in

x == y

≡ false

Random samples

let x : real = rnd() in

let y : real = rnd() in

x == y

≡ false

Formal analogy (program equations)

1. commutative and discardable effects

2. fresh samples are almost surely distinct (continuous

distributions: uniform, gaussian)
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Names vs. random numbers

Question: “Is name generation just random sampling?”

If so:

• probability theory includes name generation

• prove things about name-generating programs using

probability

Difficulty: Interaction of names & higher-order functions
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Names & higher-order functions

Names & Closures

val f , g : name → bool

let f = (let x = new() in fun y → (y == x))

let g = fun y → false

The functions f and g are contextually equivalent.

• x is private inside the closure f

• garbage collection, escape analysis

• how to prove such equivalences?
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Names & higher-order functions

Privacy equation:

( let x = new() in fun y → (y == x)) ≡ fun y → false

What about the analogous statement for random numbers?

let x = rnd() in fun y → (y == x) ≡ fun y → false

This is a statement about random functions R→ 2.

Later

• Make sense of this statement (requires a model of

probability w/ higher-order functions)

• Prove that it’s true
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ν-calculus

Stark’s ν-calculus [’93]: Simply-typed call-by-value λ-calculus

1. types ν (name), o (bool) and τ1 → τ2

2. equality tests & conditionals

3. construct νa.M to allocate a fresh name a

Used to study observational equivalence ≈

Freshness:

νx .νy .(x = y) ≈ false.

Privacy equation:

νx .λy .(x = y) ≈ λy .false.
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ν-calculus

Name generation is suble

νx .λy .x 6≈ λy .νx .x

νa.νb.λx .if (x = a) then a else b ≈ νb.λx .b

νa.νb.λx .if (x = b) then a else b 6≈ νb.λx .b

9



Denotational semantics

Classical semantics: Nominal sets [Pitts]

• set theory with atoms A, all constructions equivariant

under renaming

• name abstraction monad T

〈a〉(a, b) = 〈c〉(c , b) ∈ T (A× A).

• Full abstraction: do observationally equivalent programs

have the same semantics?

• No
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Failure of full abstraction

Privacy equation does not hold in Nom

[[νx .λy .(y = x)]] = 〈x〉{x} ∈ T (2A)

[[λy .false]] = 〈〉∅

are distinct because the nonemptyness check

∃ : 2A → 2

is equivariant.

⇒ Logical relations to remedy this

11



Privacy equation

Theorem (Probabilistic privacy equation)

It holds that

[[νx .λy .(y = x)]] = [[λy .false]] ∈ P(2R)

In stats terms, if

X ∼ U [0, 1]

A = {X}
B = ∅

then A and B have the same distribution!
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Beyond measure theory

1. Continuous distributions ⇒ Measure theory. Which

σ-algebra to put on 2R?

2. Equality checks are discontinuous maps; spaces of

continuous functions not sufficient

3. General higher-order functions don’t combine with

measure theory [Aumann ’61]

Quasi-Borel spaces [Staton & al, ’17] are a model of all of the

above.
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Theorem

Theorem

Quasi-Borel spaces are a sound and correct probabilistic

model of the ν-calculus.

Next

Qbs semantics is fully abstract up to first-order function

types τ1 → · · · → τn, τi ∈ {o, ν}.

Proof for τn = o. All names are private, eliminate sampling

(privacy equation only).

Sketch for τn = ν. Normalize to see which names are private.

Eliminate those (few more equations).
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Random singleton vs emptyset

Let X ∼ U [0, 1],A = {X}.

1. for any x0 ∈ R

x0 ∈ A⇔ x0 ∈ ∅ a.s.

2. if µ σ-finite then

µ(A) = 0 = µ(∅) a.s.
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Random singleton vs emptyset

Let X ∼ U [0, 1],A = {X}. Assume that

∃ : 2R → 2

was a morphism in Qbs.

1. Let B ⊆ R2 be any Borel set

2. χB : R→ R→ 2 is a morphism

3. λx .∃(χB(x)) : R→ 2 is a morphism

4. that is, the projection π(B) ⊆ R is Borel.  

16



Proof of the privacy equation

Let X ∼ U [0, 1],A = {X}.

1. The law of A is a measure on the space 2R = ΣR of Borel

sets. σ-algebra Σ2R induced from qbs structure; U ∈ Σ2R

iff “Borel on Borel” [Kechris ’87]

∀B ⊆ R2 Borel , {x : Bx ∈ U} ∈ ΣR.

2. Thm For any Borel on Borel U

∅ ∈ U ⇔ {x} ∈ U for almost all x .

Elegant proof using descriptive set theory.

3. We cannot measurably distinguish A and ∅!
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Takeaway

• Are names random numbers? Yes (in a precise way)

• Out-of-the-box probabilistic semantics is more abstract

than Nom

• Unify PPL and name generation

• Justify program equations about name generation using

probability

• New understanding of Qbs function spaces

• Tool: Descriptive set theory

• Measurability as abstraction: Randomization is

anonymization (differential privacy)
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Future directions

• Descriptive set theory ⇔ computability theory

• Borel & Turing inseparability

• Connections to logical relations

• Qbs structure MX ⊆ XR is an R-ary relation
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