New insights into probability on function types

PIHOC 2020, IRIF, Paris

Dario Stein¹, Sam Staton¹, Michael Wolman² February 26, 2020

¹University of Oxford ²McGill University

New insights into probability on function types

Aim: Study the nature of probability on function spaces **Outline:**

- 1. The Model
 - Quasi-Borel spaces
 - Descriptive Set Theory
- 2. A surprising connection
 - H/o probability \leftrightarrow Name generation
- 3. Structural consequences
 - Non-positive probability

Higher-order probability

General-purpose probabilistic programming:

- Continuous probability distributions \Rightarrow Measurable spaces
- Higher-order constructs are useful
- Compositional semantics? Meas is not cartesian closed

Theorem [Aumann'61]

Let $2^{\mathbb{R}}$ denote the space of Borel measurable maps $\mathbb{R} \to 2$. Then there is no σ -algebra on $2^{\mathbb{R}}$ that makes the evaluation map

$$(\ni): 2^{\mathbb{R}} \times \mathbb{R} \to 2$$

measurable.

Some models of higher-order probability

- Spaces of continuous functions
- Measurable cones [Ehrhard, Pagani, Tasson'17]
- Ordered Banach Spaces [Dahlqvist,Kozen'19]
- Quasi-Borel spaces [Heunen,Kammar,Staton,Yang'17]

What's a quasi-Borel space?

Standard Borel spaces (Sbs):

Well-behaved subcategory of Meas

$$S ::= 0 | 1 | \mathbb{R} | \Pi_{\omega} S | \Sigma_{\omega} S | G(S)$$

■ Every sbs is countable&discrete or isomorphic to ℝ.

Quasi-Borel spaces

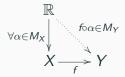
Quasi-Borel spaces (Qbs)

- conservative extension of Sbs
- achieve cartesian closure
- nice properties (Fubini, randomization lemma, de Finetti)
- "Denotational Validation of Higher-Order Bayesian Inference" [Ścibior & al.'18]
- "Trace types and denotational semantics for sound programmable inference in probabilistic languages" [Lew & al.'19]

Definition: A qbs is a pair (X, M_X) where $M_X \subseteq [\mathbb{R} \to X]$ is a collection of distinguished maps (satisfying some conditions)

• call $\alpha \in M_X$ "random element"

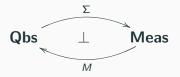
A morphism $f: (X, M_X) \rightarrow (Y, M_Y)$ is a map



E.g. $M_{\underline{\mathbb{R}}} = \mathbf{Meas}(\mathbb{R}, \mathbb{R})$. Note that $M_X = \mathbf{Qbs}(\underline{\mathbb{R}}, X)$.

Quasi-Borel spaces

There is an idempotent adjunction

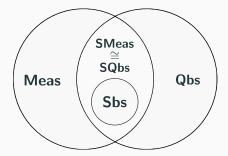


Where

$$\begin{aligned} M(\Omega) &= (|\Omega|, M_{\Omega}) & M_{\Omega} &= \mathsf{Meas}(\mathbb{R}, \Omega) \\ \Sigma(X) &= (|X|, \Sigma_X) & \Sigma_X \cong \mathsf{Qbs}(X, 2) \end{aligned}$$

 $\Sigma M \Sigma X = \Sigma X \qquad \qquad M \Sigma M \Omega = M \Omega$

We say a qbs is **standard** if its qbs structure comes from a/can be recovered from its σ -algebra.



Qbs conservatively extends **Sbs Thm:** Function spaces $2^{\mathbb{R}}, \mathbb{R}^{\mathbb{R}}, \dots$ are *non-standard* qbs

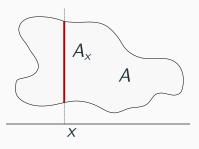
Function spaces

Examples:

- We identify $2^{\mathbb{R}} \cong \mathcal{B}$, the qbs of Borel sets,
- A random element ℝ → 2^ℝ must come from currying
 A : ℝ × ℝ → 2, i.e.

$$x \mapsto A_x = \{y : (x, y) \in A\}$$

for some $A \subseteq \mathbb{R}^2$ Borel.



- $\begin{array}{l} \bullet \quad \mbox{Evaluation } (\ni): 2^{\mathbb{R}} \times \mathbb{R} \to 2 \mbox{ is a valid morphism} \\ \\ \Rightarrow \ (\ni) \in \Sigma_{2^{\mathbb{R}} \times \mathbb{R}} \end{array}$
- but $(\ni) \notin \Sigma_{2^{\mathbb{R}}} \otimes \Sigma_{\mathbb{R}}$ [Aumann]

 $\Rightarrow \ \Sigma: \textbf{Qbs} \rightarrow \textbf{Meas} \text{ does not preserve products}$

When do we need Σ_X at all?

Given a random element $\alpha : \mathbb{R} \to X$, we can pushforward probability from \mathbb{R} to X.

$$P(X) = \{ \alpha_* \mu : \alpha \in M_X, \mu \in G(\mathbb{R}) \} \subseteq G(X, \Sigma_X).$$

Equality of measures is extensional equality on Σ_X .

- $P(\mathbb{R}) = M(G(\mathbb{R}))$
- *P* is a strong, affine, commutative monad on **Qbs**

What are distributions on function spaces?

Easy to use

let $a \leftarrow \mathcal{N}(0, 1)$ in let $b \leftarrow \mathcal{N}(0, 1)$ in let $f = \lambda x. a \cdot x + b$ in ... observe y_i from $\mathcal{N}(f(x_i), \epsilon)$ Easy to use

let $a \leftarrow \mathcal{N}(0, 1)$ in let $b \leftarrow \mathcal{N}(0, 1)$ in let $f = \lambda x. a \cdot x + b$ in ... observe y_i from $\mathcal{N}(f(x_i), \epsilon)$

but difficult to analyse directly. So let's do that now!

Crucial example

Random singleton equals emptyset

Theorem (Privacy equation)

Consider the random singleton set

 $\begin{aligned} X \sim \mathcal{U}[0,1] \\ A = \{X\} \end{aligned}$

Random singleton equals emptyset

Theorem (Privacy equation)

Consider the random singleton set

 $X \sim \mathcal{U}[0, 1]$ $A = \{X\}$

Then $A \equiv^d \emptyset$.

More formally in $P(2^{\mathbb{R}})$

(let $x \leftarrow \mathcal{U}[0, 1]$ in $\delta(\lambda y.(y = x))) = \delta(\lambda y.\text{false})$

Computer scientist (works with name generation): *Not surprised*

Privacy equation [Stark'93]

$$\llbracket \text{let } x = \mathbf{new} \text{ in } \lambda y.(x = y) \rrbracket = \llbracket \lambda y.\text{false} \rrbracket$$

- the name x is private
- doesn't get *leaked* from the closure $\lambda y.(x = y)$

But names aren't random numbers, are they?

Privacy equation

Theorem (Privacy equation)

Consider the random singleton set

 $X \sim \mathcal{U}[0, 1]$ $A = \{X\}$

Then $A \equiv^d \emptyset$.

Mathematican (surprised) *Wait* ... *Surely, every sample of A is non-empty. Can't I tell?*

Privacy equation

Theorem (Privacy equation)

Consider the random singleton set

 $X \sim \mathcal{U}[0, 1]$ $A = \{X\}$

Then $A \equiv^d \emptyset$.

Mathematican (surprised) *Wait . . . Surely, every sample of A is non-empty. Can't I tell?* But can you tell **measurably**?

Measurable properties of functions

What are measurable properties of Borel sets?

• morphisms $2^{\mathbb{R}} \rightarrow 2$ (second-order type!)

Measurable properties of functions

What are measurable properties of Borel sets?

• morphisms $2^{\mathbb{R}} \rightarrow 2$ (second-order type!)

Examples: Let $X \sim \mathcal{U}[0,1]$ and $A = \{X\}$

1. membership tests; for any $x_0 \in \mathbb{R}$,

$$x_0 \in A \Leftrightarrow x_0 \in \emptyset$$
 a.s.

2. $\rho~\sigma\text{-finite}$ measure, then

$$\rho(A) = 0 = \rho(\emptyset)$$
 a.s.

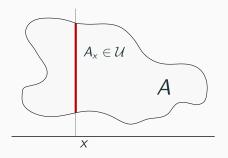
3. But what about checking nonemptyness?

Measurable properties of functions

Borel on Borel [Kechris '87]

Every morphism $\mathcal{U}:2^{\mathbb{R}}\rightarrow 2$ must satisfy

$$\forall A \in \Sigma_{\mathbb{R}^2}, \{x : A_x \in \mathcal{U}\}$$
 Borel.



Borel on Borel [Kechris '87]

 \mathcal{U} Borel on Borel iff $\forall A \in \Sigma_{\mathbb{R}^2}, \{x : A_x \in \mathcal{U}\} \in \Sigma_{\mathbb{R}}.$

Can $\exists : 2^{\mathbb{R}} \to 2$ be a morphism? Then for all $A \subseteq \mathbb{R}^2$ Borel,

 $\pi(A) = \{x : A_x \neq \emptyset\}$ must be Borel.

Borel on Borel [Kechris '87]

 \mathcal{U} Borel on Borel iff $\forall A \in \Sigma_{\mathbb{R}^2}, \{x : A_x \in \mathcal{U}\} \in \Sigma_{\mathbb{R}}.$

Can $\exists : 2^{\mathbb{R}} \to 2$ be a morphism? Then for all $A \subseteq \mathbb{R}^2$ Borel,

 $\pi(A) = \{x : A_x \neq \emptyset\}$ must be Borel.

Theorem [Lebesgue]: For all $A \subseteq \mathbb{R}^2$ Borel, $\pi(A)$ is Borel.

Borel on Borel [Kechris '87]

 \mathcal{U} Borel on Borel iff $\forall A \in \Sigma_{\mathbb{R}^2}, \{x : A_x \in \mathcal{U}\} \in \Sigma_{\mathbb{R}}.$

Can $\exists : 2^{\mathbb{R}} \to 2$ be a morphism? Then for all $A \subseteq \mathbb{R}^2$ Borel,

$$\pi(A) = \{x : A_x \neq \emptyset\}$$
 must be Borel.

Theorem [Lebesgue]: For all $A \subseteq \mathbb{R}^2$ Borel, $\pi(A)$ is Borel. **Theorem [Suslin]:** For $A \subseteq \mathbb{R}^2$ Borel, $\pi(A)$ need not be Borel \notin (Birthplace of Descriptive Set Theory)

No $\mathcal{U} : 2^{\mathbb{R}} \to 2$ can distinguish between $\{X\}$ and \emptyset with positive probability

Into descriptive set theory

Theorem

For all Borel on Borel $\mathcal{U}, \emptyset \in \mathcal{U} \Leftrightarrow \{x\} \in \mathcal{U}$ for almost all x.

Idea "Borel inseparability".

• A, B are Borel inseparable if there is no Borel C with

There is a Borel set C ⊆ ℝ² such that
 C⁰ = {x : C_x empty} and C¹ = {x : C_x singleton} are
 Borel inseparable [Becker].

Theorem

For all Borel on Borel \mathcal{U} , $\emptyset \in \mathcal{U} \Leftrightarrow \{x\} \in \mathcal{U}$ for almost all x.

Sketch. Assume $\emptyset \in \mathcal{U}$ but $S = \{x : \{x\} \notin \mathcal{U}\}$ has positive measure. Do some encoding to let Becker's set C lie in $\mathbb{R} \times S$. Then $B = \{x : C_x \in \mathcal{U}\}$ is Borel and

1. if
$$x \in C^0$$
 then $C_x = \emptyset \in \mathcal{U}$, so $x \in B$.
2. if $x \in C^1$ then $C_x = \{s\}$ for some $s \in S$, so $x \notin B$.

Thus *B* separates C^0 and $C^1 \notin$

Generalizing

Random transposition = identity

Consider the transposition map $\tau:\mathbb{R}^2\to\mathbb{R}^{\mathbb{R}}$

 $\tau(a,b)(x) = (ab)(x).$

Then we have

$$(\mathsf{let}\;(a,b)\leftarrow\mathcal{U}[0,1]^2\;\mathsf{in}\;\delta(\tau(a,b)))=\delta(\mathrm{id}_{\mathbb{R}})\in\mathsf{P}(\mathbb{R}^{\mathbb{R}})$$

Descriptive Set Theory: More sophisticated encoding **Name-generation:** Swapping two private names is not observable

Names & Probability

Name generation & probability

Name-generation is a synthetic* probabilistic effect.

- commutative & discardable
- models: e.g nominal sets & name-generation monad [Stark'96, Pitts'13]

We can interpret it as an actual probabilistic effect.

Theorem

Higher-order PPLs are a sound and correct models for Stark's ν -calculus

- 1. names are interpreted in $\ensuremath{\mathbb{R}}$
- 2. name-generation is sampling a continuous distribution

Stark's *v*-calculus

Name ideas inevitably show up in higher-order PPL, but

Name generation is subtle

$$\nu x.\lambda y.x \not\approx \lambda y.\nu x.x$$

$$\nu a.\nu b.\lambda x.$$
if $(x = a)$ then a else $b \approx \nu b.\lambda x.b$

 $\nu a.\nu b.\lambda x.$ if (x = b) then a else $b \not\approx \nu b.\lambda x.b$

Which equivalences are verified in probabilistic semantics?

Full abstraction problem

Theorem

Let M, M' be ν -calculus expressions of type

•
$$\tau_1 \to \cdots \to \tau_n \to \text{bool}$$

• or $\tau_1, \ldots, \tau_n \to \text{name}, \tau_i \in \{\text{bool}, \text{name}\}$

then $M \approx M' \Leftrightarrow \llbracket M \rrbracket = \llbracket M' \rrbracket$ in **Qbs**.

Conjecture

Full abstraction at all iterated function types

$$\tau_1 \to \cdots \tau_n \to \tau$$

This is **more abstract** than traditional semantics! (nominal sets don't validate the Privacy equation).

Structural consequences

Structural consequences

Synthetic probability theory [Fritz'19]

- categorical axiomatization of probabilistic systems
- high-level comparison of properties

Structural consequences

Synthetic probability theory [Fritz'19]

- categorical axiomatization of probabilistic systems
- high-level comparison of properties

Example: Deterministic marginals

Given a joint distribution (X, Y) with X deterministic. Then X and Y are independent.

- True for discrete probability
- True on Meas (product-σ-algebras!)
- blantantly fails with negative probabilities (D_{\pm})
- axiomatized by a property called "positivity"

Non-positivity

Name generation is non-positive

Name-generation violates deterministic marginals:

$$\llbracket \text{let } x = \mathbf{new} \text{ in } (\lambda y.(y = x), x) \rrbracket \in T(2^{\mathbb{A}} \times \mathbb{A})$$

By Privacy equation:

- first marginal is deterministically λy .false.
- not independent of x, which is leaked

 $\ensuremath{\boldsymbol{\mathsf{Qbs}}}$ is non-positive for the same reason

- requires failure of product-preservation (Meas is positive)
- this shows $\Sigma(2^{\mathbb{R}} \times \mathbb{R}) \neq \Sigma(2^{\mathbb{R}}) \otimes \Sigma(\mathbb{R})$ [Aumann]

Conclusion

1. \mathbf{Qbs} is a convenient category to work in

- Usual probability theory at ground types
- Descriptive set theory at function types
- Random singleton $= \emptyset$
- Conjecture: Full abstraction at first-order for ν-calculus (Already more abstract than nominal sets)

Conclusion

1. $\ensuremath{\textbf{Qbs}}$ is a convenient category to work in

- Usual probability theory at ground types
- Descriptive set theory at function types
- Random singleton = \emptyset
- Conjecture: Full abstraction at first-order for ν-calculus (Already more abstract than nominal sets)
- 2. Higher-order probability (model independent)
 - Measures on function types are interesting to study
 - Inevitable connection with name generation
 - H/o measurability \leftrightarrow second-order programs $2^{\mathbb{R}} \rightarrow 2$
 - Non-positivity is a feature
 - Randomization is anonymization (diff. privacy)

Takeaway

If you have a model of higher-order probability supporting

- 1. continuous distributions
- 2. equality checks $\mathbb{R}\times\mathbb{R}\to 2$

 \Rightarrow Test it against ν -calculus and tell me what happens!