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New insights into probability on function types

Aim: Study the nature of probability on function spaces

Outline:

1. The Model
• Quasi-Borel spaces
• Descriptive Set Theory

2. A surprising connection
• H/o probability ↔ Name generation

3. Structural consequences
• Non-positive probability
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Higher-order probability

General-purpose probabilistic programming:

• Continuous probability distributions ⇒ Measurable
spaces

• Higher-order constructs are useful
• Compositional semantics? Meas is not cartesian closed

Theorem [Aumann’61]
Let 2R denote the space of Borel measurable maps R→ 2.
Then there is no σ-algebra on 2R that makes the evaluation
map

(∋) : 2R × R→ 2

measurable.
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Higher-order probability

Some models of higher-order probability

• Spaces of continuous functions
• Measurable cones [Ehrhard,Pagani,Tasson’17]
• Ordered Banach Spaces [Dahlqvist,Kozen’19]
• Quasi-Borel spaces [Heunen,Kammar,Staton,Yang’17]
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What’s a quasi-Borel space?



Standard Borel spaces

Standard Borel spaces (Sbs):

• Well-behaved subcategory of Meas

S ::= 0 | 1 |R |ΠωS |ΣωS |G(S)

• Every sbs is countable&discrete or isomorphic to R.
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Quasi-Borel spaces

Quasi-Borel spaces (Qbs)

• conservative extension of Sbs
• achieve cartesian closure
• nice properties (Fubini, randomization lemma, de Finetti)
• “Denotational Validation of Higher-Order Bayesian

Inference” [Ścibior & al.’18]
• “Trace types and denotational semantics for sound

programmable inference in probabilistic languages”
[Lew & al.’19]
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Quasi-Borel spaces

Definition: A qbs is a pair (X,MX) where MX ⊆ [R→ X] is
a collection of distinguished maps (satisfying some conditions)

• call α ∈ MX “random element”

A morphism f : (X,MX)→ (Y,MY) is a map

R
∀α∈MX

��

f◦α∈MY

��
X f

// Y

E.g. MR = Meas(R,R). Note that MX = Qbs(R,X).

6



Quasi-Borel spaces

There is an idempotent adjunction

Qbs

Σ

''
⊥ Meas

M

gg

Where

M(Ω) = (|Ω|,MΩ) MΩ = Meas(R,Ω)
Σ(X) = (|X|,ΣX) ΣX ∼= Qbs(X, 2)

ΣMΣX = ΣX MΣMΩ = MΩ
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Quasi-Borel spaces

We say a qbs is standard if its qbs structure comes from
a/can be recovered from its σ-algebra.

Qbs conservatively extends Sbs
Thm: Function spaces 2R,RR, . . . are non-standard qbs
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Function spaces

Examples:

• We identify 2R ∼= B, the qbs of Borel sets,
• A random element R→ 2R must come from currying

A : R× R→ 2, i.e.
x 7→ Ax = {y : (x, y) ∈ A}

for some A ⊆ R2 Borel.
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Function spaces

• Evaluation (∋) : 2R × R→ 2 is a valid morphism
⇒ (∋) ∈ Σ2R×R

• but (∋) /∈ Σ2R ⊗ ΣR [Aumann]
⇒ Σ : Qbs→Meas does not preserve products

When do we need ΣX at all?
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Measures on qbs

Given a random element α : R→ X, we can pushforward
probability from R to X.

P(X) = {α∗µ : α ∈ MX, µ ∈ G(R)} ⊆ G(X,ΣX).

Equality of measures is extensional equality on ΣX.

• P(R) = M(G(R))
• P is a strong, affine, commutative monad on Qbs
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What are distributions on
function spaces?



Distributions on function spaces

Easy to use

let a← N (0, 1) in
let b← N (0, 1) in
let f = λx. a · x + b in . . .

observe yi from N (f(xi), ϵ)

but difficult to analyse directly. So let’s do that now!
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Crucial example



Random singleton equals emptyset

Theorem (Privacy equation)
Consider the random singleton set

X ∼ U [0, 1]
A = {X}

Then A ≡d ∅.

More formally in P(2R)

(let x← U [0, 1] in δ(λy.(y = x))) = δ(λy.false)
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Privacy equation

Computer scientist (works with name generation): Not
surprised

Privacy equation [Stark’93]

Jlet x = new in λy.(x = y)K = Jλy.falseK
• the name x is private
• doesn’t get leaked from the closure λy.(x = y)

But names aren’t random numbers, are they?
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Privacy equation

Theorem (Privacy equation)
Consider the random singleton set

X ∼ U [0, 1]
A = {X}

Then A ≡d ∅.

Mathematican (surprised) Wait . . . Surely, every sample of A
is non-empty. Can’t I tell?

But can you tell measurably?
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Measurable properties of functions

What are measurable properties of Borel sets?

• morphisms 2R → 2 (second-order type!)

Examples: Let X ∼ U [0, 1] and A = {X}

1. membership tests; for any x0 ∈ R,

x0 ∈ A⇔ x0 ∈ ∅ a.s.

2. ρ σ-finite measure, then

ρ(A) = 0 = ρ(∅) a.s.

3. But what about checking nonemptyness?
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Measurable properties of functions

Borel on Borel [Kechris ’87]
Every morphism U : 2R → 2 must satisfy

∀A ∈ ΣR2 , {x : Ax ∈ U} Borel.
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Measurable properties of functions

Borel on Borel [Kechris ’87]
U Borel on Borel iff ∀A ∈ ΣR2 , {x : Ax ∈ U} ∈ ΣR.

Can ∃ : 2R → 2 be a morphism? Then for all A ⊆ R2 Borel,

π(A) = {x : Ax ̸= ∅} must be Borel.
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Measurable properties of functions

Borel on Borel [Kechris ’87]
U Borel on Borel iff ∀A ∈ ΣR2 , {x : Ax ∈ U} ∈ ΣR.

Can ∃ : 2R → 2 be a morphism? Then for all A ⊆ R2 Borel,

π(A) = {x : Ax ̸= ∅} must be Borel.

Theorem [Lebesgue]: For all A ⊆ R2 Borel, π(A) is Borel.
Theorem [Suslin]: For A ⊆ R2 Borel, π(A) need not be
Borel  (Birthplace of Descriptive Set Theory)
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No U : 2R → 2 can distinguish
between {X} and ∅ with positive
probability



Into descriptive set theory

Theorem
For all Borel on Borel U , ∅ ∈ U ⇔ {x} ∈ U for almost all x.

Idea “Borel inseparability”.

• A,B are Borel inseparable if there is no Borel C with

• There is a Borel set C ⊆ R2 such that
C0 = {x : Cx empty} and C1 = {x : Cx singleton} are
Borel inseparable [Becker].
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Into descriptive set theory

Theorem
For all Borel on Borel U , ∅ ∈ U ⇔ {x} ∈ U for almost all x.

Sketch. Assume ∅ ∈ U but S = {x : {x} /∈ U} has positive
measure. Do some encoding to let Becker’s set C lie in R× S.
Then B = {x : Cx ∈ U} is Borel and

1. if x ∈ C0 then Cx = ∅ ∈ U , so x ∈ B.
2. if x ∈ C1 then Cx = {s} for some s ∈ S, so x /∈ B.

Thus B separates C0 and C1  
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Generalizing

Random transposition = identity
Consider the transposition map τ : R2 → RR

τ(a, b)(x) = (a b)(x).

Then we have(
let (a, b)← U [0, 1]2 in δ(τ(a, b))

)
= δ(idR) ∈ P(RR)

Descriptive Set Theory: More sophisticated encoding
Name-generation: Swapping two private names is not
observable

22



Names & Probability



Name generation & probability

Name-generation is a synthetic∗ probabilistic effect.

• commutative & discardable
• models: e.g nominal sets & name-generation monad

[Stark’96, Pitts’13]

We can interpret it as an actual probabilistic effect.
Theorem
Higher-order PPLs are a sound and correct models for
Stark’s ν-calculus

1. names are interpreted in R
2. name-generation is sampling a continuous distribution
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Stark’s ν-calculus

Name ideas inevitably show up in higher-order PPL, but
Name generation is subtle

νx.λy.x ̸≈ λy.νx.x

νa.νb.λx.if (x = a) then a else b ≈ νb.λx.b

νa.νb.λx.if (x = b) then a else b ̸≈ νb.λx.b

Which equivalences are verified in probabilistic semantics?
24



Full abstraction problem
Theorem
Let M,M′ be ν-calculus expressions of type

• τ1 → · · · → τn → bool
• or τ1, . . . , τn → name, τi ∈ {bool, name}

then M ≈ M′ ⇔ JMK = JM′K in Qbs.

Conjecture
Full abstraction at all iterated function types

τ1 → · · · τn → τ

This is more abstract than traditional semantics! (nominal
sets don’t validate the Privacy equation). 25



Structural consequences



Structural consequences

Synthetic probability theory [Fritz’19]

• categorical axiomatization of probabilistic systems
• high-level comparison of properties

Example: Deterministic marginals
Given a joint distribution (X,Y) with X deterministic. Then
X and Y are independent.

• True for discrete probability
• True on Meas (product-σ-algebras!)
• blantantly fails with negative probabilities (D±)
• axiomatized by a property called “positivity”
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Non-positivity
Name generation is non-positive
Name-generation violates deterministic marginals:

Jlet x = new in (λy.(y = x), x)K ∈ T(2A × A)

By Privacy equation:

• first marginal is deterministically λy.false.
• not independent of x, which is leaked

Qbs is non-positive for the same reason

• requires failure of product-preservation (Meas is positive)
• this shows Σ(2R × R) ̸= Σ(2R)⊗ Σ(R) [Aumann]
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Conclusion

1. Qbs is a convenient category to work in
• Usual probability theory at ground types
• Descriptive set theory at function types
• Random singleton = ∅
• Conjecture: Full abstraction at first-order for ν-calculus

(Already more abstract than nominal sets)

2. Higher-order probability (model independent)
• Measures on function types are interesting to study
• Inevitable connection with name generation
• H/o measurability ↔ second-order programs 2R → 2
• Non-positivity is a feature
• Randomization is anonymization (diff. privacy)
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Takeaway
If you have a model of higher-order probability supporting

1. continuous distributions
2. equality checks R× R→ 2

⇒ Test it against ν-calculus and tell me what
happens!
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