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Abstract

Symbolic approaches to the analysis of Markov models, i.e. those that use BDD-

based data structures, have proved to be an effective method of combating the state

space explosion problem. One such example is the use of offset-labelled MTBDDs (multi-

terminal BDDs). However, a major disadvantage of this data structure is that it cannot

be used with efficient iterative methods, in particular, Gauss-Seidel. In this paper, we

propose a solution that permits the use of this numerical method by introducing a data

structure derived from an offset-labelled MTBDD. This approach provides significant

improvements in terms of both time and memory consumption. We present and analyse

experimental results for both in-core and out-of-core versions of this implementation on a

standard workstation, and successfully perform steady-state probability computation for

CTMCs with as many as 600 million states and 7.7 billion transitions.
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1 Introduction

Continuous-time Markov chains (CTMCs) are a widely used model for the performance evalu-

ation of communication networks and computer systems. A large variety of useful performance

measures can be derived from a CTMC via the computation of its steady-state probabilities.

This reduces to the more general problem of solving a linear equation system Ax = b of

size equal to the number of states in the CTMC. Unfortunately, these models tend to grow

extremely large, a phenomenon often known as the state space explosion problem.

A great deal of effort has gone into developing efficient implementations of this process,

with particular emphasis on the problem of storing large CTMCs. The various approaches

can be broadly classified as: (i) explicit , where the CTMC is kept in a data structure of

size proportional to the number of states and transitions, typically a sparse matrix ; or (ii)

implicit , where this explicit storage is avoided. The latter includes symbolic (BDD-based)

methods [HMKS99, CM99, KNP02b], on-the-fly methods [DS98b] and Kronecker methods

[Pla85]. Implicit techniques offer compact storage by exploiting structure and regularity in the

CTMCs, usually derived from their description in some high-level specification formalism, and

can hence be applied to larger CTMCs than explicit methods. Another classification is into

in-core approaches, where data is stored in the main memory of a computer, and out-of-core

approaches, where it is stored on disk (see e.g. [DS98a]).

Steady-state probability computation for large CTMCs is usually performed using iter-

ative numerical solution methods, which generate successive approximations to the solution

vector until the desired level of accuracy has been achieved. Two commonly used iterative

methods are Jacobi and Gauss-Seidel. The latter is considerably more efficient since it typ-

ically converges much faster and requires less storage for the solution vector. In this paper
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we consider a symbolic implementation of these iterative techniques, specifically using multi-

terminal binary decision diagrams (MTBDDs). A major weakness of the MTBDD approach,

not shared by other implicit methods, is that, although the Jacobi method is supported,

Gauss-Seidel is not practical. In this paper, we propose a number of modifications to the

MTBDD approach which remedy this situation. We have developed both in-core and out-of-

core implementations of our technique and present experimental results to demonstrate that

they provide a significant improvement in time and memory efficiency.

This work is part of the ongoing development of the probabilistic model checker PRISM

[KNP02a]. PRISM supports CSL model checking [BKH99] of CTMCs, a crucial part of which

is the computation of steady-state probabilities. MTBDD-based techniques are particularly

attractive in a model checking context because they integrate easily with BDDs, which are

efficient for computing reachable state spaces, identifying strongly connected components, and

other graph-based analyses required for model checking. An efficient symbolic implementation

for solving linear equation systems is also desirable for other functions of PRISM, such as

model checking of discrete-time Markov chains.

The paper is organised as follows. Section 2 describes the MTBDD data structure and its

application to the representation and numerical solution of CTMCs. In Section 3, we explain

our modifications to this approach. In Section 4, we present and analyse experimental results

from our implementation. Finally, Section 5 concludes the paper.
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2 MTBDD-Based Techniques

2.1 Representing CTMCs with MTBDDs

Multi-terminal binary decision diagrams (MTBDDs) [CFM+93, BFG+93] are an extension of

binary decision diagrams (BDDs). An MTBDD is a rooted, directed acyclic graph (DAG),

which represents a function mapping Boolean variables to real numbers. MTBDDs can be

used to encode real-valued vectors and matrices by encoding their indices as Boolean variables.

Since a CTMC is described by a real-valued matrix, it can also be represented as an MTBDD.

The advantage of using MTBDDs (and other symbolic data structures) to store CTMCs

is that they can often give extremely compact storage, provided that the CTMCs exhibit a

certain degree of structure and regularity. In practice, this is very often the case since they

will have been specified in some (inherently structured) high-level description formalism.

Intuitively, the reason that MTBDDs can exploit such regularity is that the data structure is

stored in a reduced form, with redundant (identical) nodes of the graph being merged. This

means that, where possible, identical portions of the matrix are stored only once.

In fact, in this paper we use a variant of the data structure called an offset-labelled

MTBDD . The principal difference is the addition of offsets to each node of the graph, used to

allow conversion between the potential and actual (reachable) state spaces, the former often

being significantly larger than the latter and hence inefficient to deal with. For brevity, in

this paper we will simply refer to this data structure as an MTBDD.

Figure 1 illustrates the MTBDD representation of an 8×8 matrix, which might occur in the

numerical solution of a CTMC. Note that, to preserve structure in the symbolic representation,

the diagonal elements are stored separately as an array. Hence, the diagonal entries of the

matrix in Figure 1 are all zero. The MTBDD comprises two types of nodes: non-terminal
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Figure 1: Representing an 8× 8 matrix as an (offset-labelled) MTBDD

nodes, drawn as circles, and terminal nodes, drawn as squares. Non-terminal nodes are

labelled with integer offsets, terminal nodes with real values. Each row of nodes in the data

structure is associated with a Boolean variable which is written on the far left of the row. The

MTBDD represents a function over these Boolean variables. For the example in Figure 1, the

function is over the variables x1, y1, x2, y2, x3, y3. For a given valuation of these variables, the

value of the function can be computed by tracing a path from the top of the MTBDD to the

bottom, at each node taking the dotted edge if the associated Boolean variable is 0 and the

solid edge if it is 1. The value can be read from the label of the terminal node reached. If

there is no such path, the value is 0. For example, if (x1, y1, x2, y2, x3, y3) = (0, 1, 0, 1, 1, 0), the

function returns 3.7 (as highlighted in the figure). If (x1, y1, x2, y2, x3, y3) = (0, 1, 0, 1, 1, 1),

however, the function returns zero.

The matrix represented by the MTBDD is encoded by this function as follows. The

xi variables are for row indices, and the yi variables are for column indices. Since these

variables are all Boolean, but the row and column indices are integers in the range 0 . . . 7, the
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information has to be encoded. We assume the standard binary representation of integers for

this purpose. Consider the matrix entry (1, 6) = 3.7. The row index is 1 so we code this as 001

(x1 = 0, x2 = 0, x3 = 1). The column index is 6 so we code this as 110 (y1 = 1, y2 = 1, y3 = 0).

Note that the xi and yi variables are interleaved in the MTBDD (this is a common heuristic

in BDD-based representations to reduce their size) so the entry (1, 6) is represented by the

path 010110 which, as we have seen above, leads to the value 3.7. In the left portion of the

table in Figure 1, we illustrate this encoding for the first five non-zero entries of the matrix.

The actual row index (in terms of reachable states only) is determined by summing the

offsets on xi nodes from which the solid edge is taken (i.e. if xi = 1). The actual column index

is computed similarly for yi nodes. In the example in Figure 1, state 5 is not reachable. For

the previous example of matrix entry (1, 6), the actual row index is 1 and the actual column

index is 4 + 1 = 5, i.e. (1, 6) becomes (1, 5).

2.2 Numerical Solution with MTBDDs

Numerical solution of CTMCs performed entirely using MTBDDs (i.e. for both matrices and

vectors) [HMPS96, HMKS99] has proved to be inefficient due to the lack of structure in the

solution vector. The solution usually adopted is to combine symbolic (MTBDD-based) storage

of the matrix with explicit (array-based) storage of the solution vector [KNP02b, Par02]. For

some iterative methods, notably Jacobi, each iteration is based essentially on a matrix-vector

multiplication operation. This requires access to each matrix element exactly once (and in

any order). When using MTBDD matrix storage, this can be achieved via a single depth-first

traversal of the data structure since each matrix element corresponds to a path through the

MTBDD. Unfortunately, the overhead associated with this process makes it slower than the

equivalent operation with sparse matrices since it it is significantly easier to read the matrix
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entries directly from array-based storage.

Fortunately, significant optimisation of the process is possible [KNP02b, Par02]. Note

that each non-terminal node of an MTBDD represents a submatrix of the matrix represented

by the whole MTBDD. In Figure 1, for example, x2 nodes and x3 nodes represent 4 × 4

and 2 × 2 submatrices, respectively, of the 8 × 8 matrix (see Figure 2(a)). The nodes near

the bottom of the MTBDD, in particular, are visited many times during its traversal. It is

much faster to extract entries of the matrix if we replace some of these nodes with an explicit

representation of their corresponding submatrix, eliminating the need to traverse the nodes

below this point.

We define a level of an MTBDD to be an adjacent pair of rows of nodes. We count levels

from the top of the MTBDD, i.e. level i contains all the xi and yi nodes. The total number

of levels is denoted ltotal . Our strategy for the scheme outlined above is to select a value

lsm ≤ ltotal and replace the xi nodes in layer ltotal − lsm + 1 with an explicit representation

of their corresponding submatrices. This means that nodes in the bottom lsm levels do not

need to be traversed and can be removed entirely. For this explicit storage, we employ the

compressed sparse row (CSR) sparse matrix scheme, which uses three arrays: Val and Col,

which contain the value and column index, respectively, of each non-zero matrix entry, stored

row by row, and Starts, which contains indices into Val and Col, indicating where the entries

for each row are stored. We illustrate this idea in Figure 2 on the MTBDD from Figure 1

using lsm = 1 (ltotal = 3); the three arrays for CSR are denoted V, C and S, respectively.

Generally, as lsm is increased, the time for each iteration of numerical solution (i.e. a single

traversal) decreases, but the required memory increases. Our strategy is to choose lsm as high

as possible without exceeding some predefined memory limit (here, we use 1MB).

A problem with the MTBDD approach described above is that, although the Jacobi
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Figure 2: Optimisations to the MTBDD storage scheme

iterative method can be efficiently implemented, Gauss-Seidel cannot because it requires row-

wise access to matrix entries. A depth-first traversal of the MTBDD does not allow matrix

entries to be extracted in this order. Of course, it would be possible to access each element

of each row individually, going from top to bottom of the MTBDD each time, but this would

be very inefficient.

A solution can be found by again making use of the fact that MTBDDs allow convenient

access to matrix blocks. Descending one level from the top of an MTBDD splits the matrix

which it represents into 4 blocks. Descending lb levels, for some lb ≤ ltotal , gives a decom-

position into B2 blocks, where B = 2lb . If we explicitly store pointers to the nodes which

represent these blocks, we can quickly access them without having to traverse the top part

of the MTBDD. For large lb, many of the matrix blocks will actually be empty so we can

use a sparse matrix (again, the CSR scheme, but storing node pointers instead of numerical

values). Nodes in the top lb levels of the MTBDD (like the bottom lsm levels) can now be

removed entirely. This is illustrated in Figure 2(c) for lb = 1, i.e. B = 2. Note that there

are only 3 node pointers stored, not B2 = 4, since one block is empty. We also require an

additional array Offsets which gives us the (global) index of the first row of each block in
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terms of reachable states. This information replaces the offsets on the top layer of MTBDD

nodes which have now become obsolete. Note that, because the rows and columns of the ma-

trix which correspond to reachable states of the CTMC are distributed unevenly, the matrix

blocks are of varying (and unpredictable) size.

Figure 2(c) also shows that the divisions of a matrix into submatrices (by ascending from

the bottom of the MTBDD) and into blocks1 (by descending from the top of the MTBDD) can

happily coexist, provided that the top and bottom layers do not overlap, i.e. lsm + lb ≤ ltotal .

We can now efficiently access matrix elements, if not by individual rows, then at least

by rows of blocks. This facilitates the implementation of iterative solution methods which

access the matrix a block at a time. In [Par02, KMNP02], a compromise between Jacobi and

Gauss-Seidel called Pseudo Gauss-Seidel is used (see Section 3.1 for details of this method).

Using this method, increasing the value of lb reduces both the number of iterations required

and the amount of memory for vector storage, although not to the same extent as (standard)

Gauss-Seidel. Increasing lb does, however, also lead to exponential growth in the amount of

memory required for storage of the top layer of the data structure. Hence, we choose lb as

high as possible such that the memory does not exceed some limit (here, we use 1MB).

3 Two-Layer Matrix Storage

We now propose improvements to the techniques described in the previous section. Recall that

the MTBDD storage scheme has three layers, the top and bottom layers of which comprise

sparse matrices, and the middle layer of which contains MTBDD nodes. We consider first

the top layer. As before, we assume that this layer constitutes lb levels of the MTBDD, that
1Although the two terms are in general interchangeable, for convenience we will consistently distinguish

between “submatrices” and “blocks” in this way.
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B = 2lb , and that the sparse storage scheme used is CSR (compressed sparse row). We assume

also that only nnzBmat of the B2 matrix blocks are non-empty. Hence, the top layer of the

data structure comprises four arrays: Val (nnzBmat node pointers), Col (nnzBmat integers),

Starts (B integers), and Offsets (B integers).

The bottleneck in the storage of the top layer is the two arrays Starts and Offsets, the

size of which (4B bytes each) is exponential in lb. Since the matrix is sparse, structured,

and contains many unreachable states, it is more efficient to make these two arrays of length

nnzB , where nnzB is the number of non-zero rows of blocks in the matrix (or, equivalently,

blocks in the vector). Furthermore, we use the compact modified sparse row (compact MSR)

format [KM02], instead of CSR. This results in the following changes to our top-layer storage

scheme. Firstly, we store each distinct MTBDD node pointer once only, in a separate array

Dist of size d. The array Val can now store indices into this array, instead of actual pointers.

Since d is typically small, each index Val[i] into Dist can actually be stored in spare bits

of Col[i], eradicating the need for the array Val entirely (see [KM02, Meh03] for details).

Secondly, the array Starts now stores the number of non-zero blocks in each row of matrix

blocks, which is equivalent to the information stored previously, but requires only one byte

per entry instead of four bytes. In total, we now have four arrays: Dist (d node pointers),

Col (nnzBmat integers), Starts (nnzB bytes), Offsets (nnzB integers).

Further reductions in memory can also be made by using compact MSR instead of CSR

for the storage of the bottom layer of the data structure. Together, these savings mean that

we are now able to select much larger values for lb and lsm . In fact, we can actually choose

values such that lb + lsm = ltotal , i.e. the blocks indexed by the top layer and the submatrices

described on the bottom layer coincide, the middle layer of the data structure being removed

entirely. In Figure 3(a), we show this new two-layer data structure for the running example
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Figure 3: (a) The two-layer data structure (b) Block partitioning of the 8× 8 matrix

of Figures 1 and 2. For clarity of presentation, the sparse matrix scheme used for both the

top and bottom layers in this figure is actually CSR, rather than compact MSR. Figure 3(b)

illustrates the resulting partitioning of the 8× 8 example matrix.

Although, the new data structure is made up entirely of sparse matrix storage, it should

still be seen as a symbolic approach. The data structure is constructed directly from the

MTBDD representation and is completely reliant on the exploitation of regularity that this

provides. We also observe here that the resulting storage scheme can actually be thought of as

a special case of the matrix diagram data structure of [CM99] (where the number of levels is

restricted to two and the single top-level matrix contains only ones and zeros). We speculate

that the two-layer matrix could also be constructed from a matrix diagram (or some other

implicit) representation of a CTMC.

3.1 Implementing Gauss-Seidel

Our focus is on the steady-state solution of CTMCs, which reduces to the problem of solving

a linear equation system Ax = b where b = 0. We now show how the data structure from the

previous section allows us to apply well-known block iterative techniques (see e.g. [Ste94]) to

do this and how, consequently, this provides us with a way to implement Gauss-Seidel. We

assume a block partitioning of A into B2 blocks, Aij , for 0 ≤ i, j < B. Vectors are split into
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partitions of matching sizes; e.g. the solution vector at the kth iteration, x(k), is split up into

sub-vectors X
(k)
i for 0 ≤ i < B. Given this partitioning, an iteration of the block Gauss-Seidel

method is formulated as follows:

X
(k)
i = A−1

ii X̃, where X̃ = −
∑
j<i

Aij X
(k)
j −

∑
j>i

Aij X
(k−1)
j (1)

Each phase of the kth iteration requires us to first compute the vector X̃ and then solve

(or partially solve) the linear equation system X
(k)
i = A−1

ii X̃. In fact, if we apply just a

single iteration of Gauss-Seidel to this (inner) linear equation system, then the block Gauss-

Seidel method reduces to (standard) Gauss-Seidel. Since the two-level data structure provides

efficient access both to each row of matrix blocks, and to each individual row within these

blocks, we can now use it to implement Gauss-Seidel in this way. The standard MTBDD

approach, on the other hand, provides a division into matrix blocks, but not access to each

individual row of these blocks (because we still have to perform traversal of MTBDD nodes

in the middle layer). The approach taken in [KNP02b, Par02] is to instead perform a single

iteration of Jacobi to the (inner) linear equation system; the resulting numerical method is

referred to in [KNP02b, Par02] as Pseudo Gauss-Seidel (PGS).

4 Experimental Results

In this section, we analyse the performance of the two-layer approach described in the previous

section. We performed steady-state probability computation on three sets of widely used

benchmark CTMCs: a flexible manufacturing system (FMS) [CT93], a Kanban system [CT96]

and a cyclic server polling system [IT90]. These models were generated using the probabilistic

model checker PRISM [KNP02a]. Experiments were run on a 440MHz 512MB UltraSPARC-

II workstation running SunOS 5.8. Iterative methods were terminated when the maximum
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Figure 4: Performance for different values of lb: (a) Memory (b) Time per iteration

relative difference between vector entries reached 10−6. In all cases, the time taken to generate

the symbolic CTMC matrix representation was negligible compared to numerical solution, and

hence we present results solely for the latter.

4.1 An Optimal Choice for the Parameter lb

The selection of lb (which also determines lsm) controls the size of the top and bottom parts

of the two-layer data structure and is a crucial factor for its performance. In this section,

we analyse the issue in more detail. Although determining the optimal value is likely to be

expensive or infeasible, we seek a heuristic which provides good performance. In Figure 4, we

plot both the memory required to store the matrix using our data structure and average time

per iteration, observed when using a range of values of lb on three representative CTMCs.

Consider first the plot for memory usage (Figure 4(a)). We see that, for all three examples,

the minimum and maximum values of lb result in very high memory usage. This is unsurprising

since, in these extreme cases, the sparse matrix storage for either the bottom or top layers,

respectively, constitutes almost the whole of the data structure. In these cases, none of the

regularity and compactness of the original MTBDD is exploited, and hence the memory usage

is high. However, we see that for values of lb in the middle of this range, we can easily find
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a compromise between storage on the top and bottom layers which gives a dramatic drop in

memory. For times per iteration (Figure 4(b)), we see that there are some fluctuations as lb

is varied and a consistent increase as it reaches its maximum. Overall, though, the variations

in time are not nearly as significant as for the memory. Based on these statistics, we adopt

the heuristic lb = 0.6× ltotal for the results presented in the next two sections.

4.2 Speed of Numerical Solution

We now compare our technique against implementations based on two existing data structures:

sparse matrices (compact MSR) and MTBDDs (as implemented in PRISM). In each case,

we use the most efficient numerical solution method available, i.e. Gauss-Seidel and Pseudo

Gauss-Seidel, respectively. Table 1 reports timing results. The first four columns give details

of each CTMC used, its size n (reachable states) and average number of non-zeros per row

(a/n). For each implementation, we give the average time per iteration, the number of

iterations and the total time. To give a better indication of the trends in these statistics,

in Figures 5(a) and (b), we plot time per iteration and total time against number of states,

respectively.2

Our first observation is that the average time per iteration for the two-layer approach

represents an improvement over the original MTBDD implementation. The principal reason

for this is that, in the former, we avoid the traversal of MTBDD nodes in the middle layer

of the data structure. This also means that the two-layer approach provides a much more

consistent performance across the three examples (see Figure 5(a)). MTBDDs are more reliant

on structure in the CTMCs; the FMS models, for example, exhibit less regularity, and hence
2For these plots we have collated results on a machine with equivalent CPU (440MHz) but with more RAM

(5GB), in order to illustrate trends over a larger range of state spaces.
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Model k States a/n Time/iter. (secs) Iterations Total time (secs)
(n) Sparse MTBDD Two-layer PGS GS Sparse MTBDD Two-layer

(GS) (PGS) (GS) (GS) (PGS) (GS)

6 537,768 7.8 0.3 0.72 0.50 1,027 812 244 739 406
7 1,639,440 8.3 1.1 3.44 1.61 1,207 966 1063 4,152 1,555

FMS 8 4,459,455 8.6 3.2 11.8 4.68 1,392 1,125 3600 16,426 5,265
9 11,058,190 8.9 – 37.7 12.3 1,581 1,287 – 59,604 15,830
10 25,397,658 9.2 – 100 29.2 1,775 1,454 – 177,500 42,457
4 454,475 8.8 0.3 0.52 0.44 414 323 96.9 215 142

Kanban 5 2,546,432 9.6 1.8 3.13 2.71 590 461 830 1,847 1,249
6 11,261,376 10.3 – 15.9 12.9 794 622 – 12,625 8,024
15 737,280 8.3 0.5 0.69 0.62 179 32 16.0 124 19.8
16 1,572,864 8.8 1.1 1.57 1.45 196 33 36.3 308 47.9

Polling 17 3,342,336 9.3 2.4 3.78 3.23 213 34 81.6 805 110
system 18 7,077,888 9.8 5.5 8.11 7.17 229 34 187 1,857 244

19 14,942,208 10.3 – 19.3 16.3 255 35 – 4,922 571
20 31,457,280 10.8 – – 36.8 – 36 – – 1,325

Table 1: Timing results: A comparison with existing implementations
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Figure 5: Timing results, plotted against number of states

show a greater improvement between the two approaches. Secondly, since using Gauss-Seidel

over Pseudo Gauss-Seidel reduces the number of iterations required, the total solution times

show an even more impressive improvement.

Making a comparison with sparse matrices, we see that the total times for the two-level

approach are now much closer than MTBDDs were previously. We also note that the two-

layer approach can handle CTMCs approximately an order of magnitude larger than sparse

matrices, due to the relatively compact memory requirements. Note also that it can also be

applied to slightly larger CTMCs than MTBDDs. This is because its implementation uses
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Figure 6: Memory usage, plotted against number of states: (a) Matrix (b) Matrix and vector

two bytes for each element of the diagonal vector, instead of eight bytes, exploiting the small

number of distinct values (see [KM02, Meh03] for details).

4.3 Memory Consumption

Now, we consider memory requirements in more detail. For both the MTBDD and two-layer

approaches, the memory requirements comprise the matrix, the iteration vector (n doubles),

the diagonals vector, and the vector X̃ (see Section 3.1). The storage for diagonal and

iteration vectors is, in fact, independent of the approach used, and is thus ignored in our

analysis. Clearly, the memory for the matrix will depend heavily on the data structure used.

The vector X̃ will also be affected since its size is equal to the maximum dimension of matrix

block used, which is governed by the choice of lb. In Figure 6 we plot memory usage against

number of states: (a) shows memory for the matrix alone; (b) shows memory for the matrix

and X̃ vector combined.

First, we note that the increase in memory for the two-layer data structure over the

MTBDD is reasonably small: the increase in explicit storage is offset by the use of the more

efficient compact MSR format. Furthermore, when we consider the memory for matrix and

vector combined, we see that the two-layer approach actually requires less memory for large
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CTMCs. This is because we are able to select a larger value of lb, making the maximum block

size smaller and reducing the size of X̃. For FMS (k = 13), for example, the total memory

requirements (matrix and vector) for the two-layer and MTBDD approaches are 35MB and

71MB, respectively. For comparison, we mention here that an implementation of Gauss-Seidel

using standard sparse matrix storage, although not needing the X̃ vector, requires 30GB to

store the off-diagonal matrix alone.

4.4 Further Results

We conclude by briefly describing a number of additional experimental results. We have

developed an out-of-core implementation of our technique, where the two-layer storage of the

matrix is kept in RAM, as before, but (iteration and diagonal) vectors are stored on disk

and retrieved as required. This idea has been used previously in [KMNP02], where an out-of-

core version of MTBDD-based numerical solution was implemented in similar fashion. The

approach is particularly promising in the context of these symbolic implementations, where

the limiting factor is usually the storage required for vectors.

In Table 2, we present average times per iteration and numbers of iterations for numerical

solution using the out-of-core implementation of the two-layer approach. We use the same

case studies as in the previous section, for brevity only showing the largest few CTMCs for

each one. Times are presented for two machines: (1) the workstation used in the previous

section (2) a more powerful workstation (2.80GHz, 1GB RAM, 60GB SCSI disk). The results

from the first machine show that using out-of-core instead of in-core storage for the vectors

allows significantly larger (by approximately an order of magnitude) models to be solved on

a standard workstation. The results for the second machine demonstrate the scalability of

the out-of-core implementation: we successfully solved a CTMC with over 600 million states.

17



Model k States a/n Time per iter. (sec.) Iterations
(n) Machine 1 Machine 2

FMS 12 111,414,940 9.7 2,319 170 1,798
13 216 427 680 9.9 6,086 327 1,977

Kanban 8 133,865,325 11.3 558 139 999
9 384,392,800 11.6 2,049 407 1,211
10 1,005,927,208 12.0 – 1,416 >50 *

Polling 23 289,406,976 12.3 1,518 264 38
24 603,979,776 12.8 – 460 38

* Was not run to completion due to excessive time requirements.

Table 2: Timing results for the out-of-core implementation

Computation for the largest model considered (1 billion states) was shown to be feasible but

we were unable to wait for the process to complete.

5 Conclusions and Future Work

In this paper, we have presented improvements to MTBDD-based steady-state solution of

CTMCs which remove one of its main deficiencies. We showed that, by reducing the storage

costs of an MTBDD and then converting it to a two-layer data structure, it is feasible to

implement the Gauss-Seidel iterative method. We have given experimental results from our

implementation, compared them to existing MTBDD-based implementations and shown that

the new approach compares favourably in terms of both time and memory usage. We also

developed an out-of-core version of two-layer compact MSR and demonstrated that it allows

solution of CTMCs with as many as 600 million states on a standard workstation.

We believe that the technique should be equally applicable to other symbolic approaches,

such as those based on the Kronecker representation. The two-level data structure also

provides an ideal basis to implement block iterative methods, a direction we wish to pursue

in the near future. Furthermore, initial investigations suggest that it is well suited to a
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parallel implementation. In addition, we are working both to improve the efficiency of the

implementation and to integrate the techniques into the probabilistic model checker PRISM.
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