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Abstract. Probabilistic model checking is an automated technique to
verify whether a probabilistic system, e.g., a distributed network protocol
which can exhibit failures, satisfies a temporal logic property, for exam-
ple, “the minimum probability of the network recovering from a fault in
a given time period is above 0.98”. Dually, we can also synthesise, from a
model and a property specification, a strategy for controlling the system
in order to satisfy or optimise the property, but this aspect has received
less attention to date. In this paper, we give an overview of methods for
automated verification and strategy synthesis for probabilistic systems.
Primarily, we focus on the model of Markov decision processes and use
property specifications based on probabilistic LTL and expected reward
objectives. We also describe how to apply multi-objective model check-
ing to investigate trade-offs between several properties, and extensions
to stochastic multi-player games. The paper concludes with a summary
of future challenges in this area.

1 Introduction

Probabilistic model checking is an automated technique for verifying quantita-
tive properties of stochastic systems. Like conventional model checking, it uses a
systematic exploration and analysis of a system model to verify that certain re-
quirements, specified in temporal logic, are satisfied by the model. In probabilis-
tic model checking, models incorporate information about the likelihood and/or
timing of the system’s evolution, to represent uncertainty arising from, for exam-
ple, component failures, unreliable sensors, or randomisation. Commonly used
models include Markov chains and Markov decision processes.

Properties to be verified against these models are specified in probabilistic
temporal logics such as PCTL, CSL and probabilistic LTL. These capture a vari-
ety of quantitative correctness, reliability or performance properties, for example,
“the maximum probability of the airbag failing to deploy within 0.02 seconds is
at most 10−6”. Tool support, in the form of probabilistic model checkers such as
PRISM [29] and MRMC [27], has been used to verify quantitative properties of
a wide variety of real-life systems, from wireless communication protocols [19],
to aerospace designs [9], to DNA circuits [32].

One of the key strengths of probabilistic model checking, in contrast to, for
example, approximate analysis techniques based on Monte Carlo simulation, is
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the ability to analyse quantitative properties in an exhaustive manner. A prime
example of this is when analysing models that incorporate both probabilistic
and nondeterministic behaviour, such as Markov decision processes (MDPs). In
an MDP, certain unknown aspects of a system’s behaviour, e.g., the scheduling
between components executing in parallel, or the instructions issued by a con-
troller at runtime, are modelled as nondeterministic choices. Each possible way
of resolving these choices is referred to as a strategy. To verify a property φ on
an MDP M, we check that φ holds for all possible strategies of M.

Alternatively, we can consider the dual problem of strategy synthesis, which
finds some strategy ofM that satisfies a property φ, or which optimises a spec-
ified objective. This is more in line with the way that MDPs are used in other
fields, such as planning under uncertainty [34], reinforcement learning [42] or
optimal control [8]. In the context of probabilistic model checking, the strategy
synthesis problem has generally received less attention than the dual problem of
verification, despite being solved in essentially the same way. Strategy synthesis,
however, has many uses; examples of its application to date include:

(i) Robotics. In recent years, temporal logics such as LTL have grown increas-
ingly popular as a means to specify tasks when synthesising controllers for
robots or embedded systems [47]. In the presence of uncertainty, e.g. due to
unreliable sensors or actuators, optimal controller synthesis can be performed
using MDP model checking techniques [31].

(ii) Security. In the context of computer security, model checking has been used
to synthesise strategies for malicious attackers, which represent flaws in se-
curity systems or protocols. Probability is also often a key ingredient of
security; for example, in [41], probabilistic model checking of MDPs was
used to generate PIN guessing attacks against hardware security modules.

(iii) Dynamic power management. The problem of synthesising optimal (ran-
domised) control strategies to switch between power states in electronic
devices can be solved using optimisation problems on MDPs [7] or, alter-
natively, with multi-objective strategy synthesis for MDPs [21].

In application domains such as these, probabilistic model checking offers vari-
ous benefits. Firstly, as mentioned above, temporal logics provide an expressive
means of formally specifying the goals of, for example, a controller or a malicious
attacker. Secondly, thanks to formal specifications for models and properties,
rigorous mathematical underpinnings, and the use of exact, exhaustive solution
methods, strategy synthesis yields controllers that are guaranteed to be correct
(at least with respect to the specified model and property). Such guarantees may
be essential in the context of safety-critical systems.

Lastly, advantage can be drawn from the significant body of both past and
ongoing work to improve the efficiency and scalability of probabilistic verifica-
tion and strategy synthesis. This includes methods developed specifically for
probabilistic model checking, such as symbolic techniques, abstraction or sym-
metry reduction, and also advances from other areas of computer science. For
example, renewed interest in the area of synthesis for reactive systems has led to
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significantly improved methods for generating the automata needed to synthe-
sise strategies for temporal logics such as LTL. Parallels can also be drawn with
verification techniques for timed systems: for example, UPPAAL [33], a model
checker developed for verifying timed automata, has been used to great success
for synthesising solutions to real-time task scheduling problems, and is in many
cases superior to alternative state-of-the-art methods [1].

In this paper, we give an overview of methods for performing verification and
strategy synthesis on probabilistic systems. Our focus is primarily on algorith-
mic issues: we introduce the basic ideas, illustrate them with examples and then
summarise the techniques required to perform them. For space reasons, we re-
strict our attention to finite-state models with a discrete notion of time. We also
only consider complete information scenarios, i.e. where the state of the model
is fully observable to the strategy that is controlling it.

Primarily, we describe techniques for Markov decision processes. The first
two sections provide some background material, introduce the strategy synthesis
problem and summarise methods to solve it. In subsequent sections, we describe
extensions to multi-objective verification and stochastic multi-player games. We
conclude the paper with a discussion of some of the important topics of ongoing
and future research in this area.

An extended version of this paper, which includes full details of the algorithms
needed to perform strategy synthesis and additional worked examples, is avail-
able as [30]. The examples in both versions of the paper can be run using PRISM
(and its extensions [15]). Accompanying PRISM files are available online [49].

2 Markov Decision Processes

In the majority of this paper, we focus on Markov decision processes (MDPs),
which model systems that exhibit both probabilistic and nondeterministic be-
haviour. Probability can be used to model uncertainty from a variety of sources,
e.g., the unreliable behaviour of an actuator, the failure of a system component
or the use of randomisation to break symmetry.

Nondeterminism, on the other hand, models unknown behaviour. Again, this
has many uses, depending on the context. When using an MDP to model and
verify a randomised distributed algorithm or network protocol, nondeterminism
might represent concurrency between multiple components operating in parallel,
or underspecification, where some parameter or behaviour of the system is only
partially defined. In this paper, where we focus mainly on the problem of strategy
synthesis for MDPs, nondeterminism is more likely to represent the possible
decisions that can be taken by a controller of the system.

Formally, we define an MDP as follows.

Definition 1 (Markov decision process). A Markov decision process (MDP)
is a tuple M=(S, s,A, δM, Lab) where S is a finite set of states, s ∈ S is an
initial state, A is a finite set of actions, δM : S×A → Dist(S) is a (partial)
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probabilistic transition function, mapping state-action pairs to probability distri-
butions over S, and Lab : S → 2AP is a labelling function assigning to each state
a set of atomic propositions taken from a set AP.

An MDP models how the state of a system can evolve, starting from an initial
state s. In each state s, there is a choice between a set of enabled actions A(s) ⊆
A, where A(s)

def
= {a ∈ A | δM(s, a) is defined}. The choice of an action a ∈ A is

assumed to be nondeterministic. Once selected, a transition to a successor state
s′ occurs randomly, according to the probability distribution δM(s, a), i.e., the
probability that a transition to s′ occurs is δM(s, a)(s′).

A path is a (finite or infinite) sequence of transitions π = s0
a0−→s1

a1−→· · ·
through MDP M, i.e., where si ∈ S, ai ∈ A(si) and δM(si, ai)(si+1)>0 for all
i ∈ N. The (i+1)th state si of path π is denoted π(i) and, if π is finite, last(π)
denotes its final state. We write FPathM,s and IPathM,s, respectively, for the set
of all finite and infinite paths of M starting in state s, and denote by FPathM
and IPathM the sets of all such paths.

Example 1. Fig. 1 shows an MDPM, which we will use as a running example.
It represents a robot moving through terrain that is divided up into a 3 × 2
grid, with each grid section represented as one state. In each of the 6 states, one
or more actions from the set A = {north, east , south,west , stuck} are available,
which move the robot between grid sections. Due to the presence of obstacles,
certain actions are unavailable in some states or probabilistically move the robot
to an alternative state. Action stuck , in states s2 and s3, indicates that the robot
is unable to move. In Fig. 1, the probabilistic transition function is drawn as
grouped, labelled arrows; where the probability is 1, it is omitted. We also show
labels for the states, taken from the set AP = {hazard , goal1, goal2}.

Rewards and costs. We use rewards as a general way of modelling various
additional quantitative measures of an MDP. Although the name “reward” sug-
gests a quantity that it is desirable to maximise (e.g., profit), we will often use
the same mechanism for costs, which would typically be minimised (e.g. energy
consumption). In this paper, rewards are values attached to the actions available
in each state, and we assume that these rewards are accumulated over time.

Definition 2 (Reward structure). A reward structure for an MDP M =
(S, s,A, δM, Lab) is a function of the form r : S ×A→ R>0.

Strategies. We reason about the behaviour of MDPs using strategies (which,
depending on the context, are also known as policies, adversaries or schedulers).
A strategy resolves nondeterminism in an MDP, i.e., it chooses which action (or
actions) to take in each state. In general, this choice can depend on the history
of the MDP’s execution so far and can be randomised.

Definition 3 (Strategy). A strategy of an MDP M = (S, s,A, δM, Lab) is a
function σ : FPathM→Dist(A) such that σ(π)(a)>0 only if a ∈ A(last(π)).
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Fig. 1. Running example: an MDPM representing a robot moving about a 3 × 2 grid.

We denote by ΣM the set of all strategies ofM, but in many cases we can restrict
our attention to certain subclasses. In particular, we can classify strategies in
terms of their use of randomisation and memory.

1. randomisation: we say that strategy σ is deterministic (or pure) if σ(π) is
a point distribution for all π ∈ FPathM, and randomised otherwise;

2. memory: a strategy σ is memoryless if σ(π) depends only on last(π) and
finite-memory if there are finitely many modes such that σ(π) depends only
on last(π) and the current mode, which is updated each time an action is
performed; otherwise, it is infinite-memory.

Under a particular strategy σ of M, all nondeterminism is resolved and the
behaviour of M is fully probabilistic. Formally, we can represent this using an
(infinite) induced discrete-time Markov chain, whose states are finite paths of
M. This leads us, using a standard construction [28], to the definition of a
probability measure PrσM,s over infinite paths IPathM,s, capturing the behaviour
of M from state s under strategy σ. We will also use, for a random variable
X : IPathM,s → R>0, the expected value of X from state s inM under strategy
σ, denoted EσM,s(X). If s is the initial state s, we omit it and write PrσM or EσM.

3 Strategy Synthesis for MDPs

We now explain the strategy synthesis problem for Markov decision processes
and give a brief overview of the algorithms that can be used to solve it. From
now on, unless stated otherwise, we assume a fixed MDPM = (S, s,A, δM, Lab).

3.1 Property Specification

First, we need a way to formally specify a property of the MDP that we wish
to hold under the strategy to be synthesised. We follow the approach usually
adopted in probabilistic verification and specify properties using temporal logic.
More precisely, we will use a fragment of the property specification language
from the PRISM model checker [29], the full version of which subsumes logics
such as PCTL, probabilistic LTL, PCTL* and others.
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For any MDP M, state s ∈ S and strategy σ:

M, s, σ |= P./ p[ψ ] ⇐⇒ PrσM,s({π ∈ IPathM,s | π |=ψ}) ./ p
M, s, σ |= Rr./ x[ ρ ] ⇐⇒ EσM,s(rew(r, ρ)) ./ x

For any path π = s0
a0−→s1

a1−→s2 . . . ∈ IPathM:

π |= true always
π |= b ⇐⇒ b ∈ L(s0)
π |=ψ1 ∧ ψ2 ⇐⇒ π |=ψ1 ∧ π |=ψ2

π |=¬ψ ⇐⇒ π 6|=ψ
π |= Xψ ⇐⇒ s1s2 . . . |=ψ

π |=ψ1 U6k ψ2 ⇐⇒ ∃i 6 k .
(
sisi+1 . . . |=ψ2 ∧ (∀j<i . sjsj+1 . . . |=ψ1 )

)
π |=ψ1 U ψ2 ⇐⇒ ∃i > 0 .

(
sisi+1 . . . |=ψ2 ∧ (∀j<i . sjsj+1 . . . |=ψ1 )

)
For any reward structure r and path π = s0

a0−→s1
a1−→s2 . . . ∈ IPathM:

rew(r, C6k)(π)
def
=

∑k−1
j=0 r(sj , aj)

rew(r, C)(π)
def
=

∑∞
j=0 r(sj , aj)

rew(r, F b)(π)
def
=

{
∞ if ∀j ∈ N : b /∈ L(sj),∑k−1
j=0 r(sj , aj) otherwise, where k = min{j | b ∈ L(sj)}

Fig. 2. Inductive definition of the property satisfaction relation |= .

Definition 4 (Properties and objectives). For the purposes of this paper, a
property is a formula φ derived from the following grammar:

φ ::= P./ p[ψ ]
∣∣ Rr./ x[ ρ ]

ψ ::= true | b | ψ ∧ ψ | ¬ψ | Xψ | ψ U6k ψ | ψ U ψ

ρ ::= C6k
∣∣ C ∣∣ F b

where b ∈ AP is an atomic proposition, ./ ∈ {6, <,>, >}, p ∈ [0, 1], r is a
reward structure, x ∈ R>0 and k ∈ N. We refer to ψ and ρ as objectives.

A property is thus a single instance of either the P./ p[ψ ] operator, which asserts
that the probability of a path satisfying (LTL) formula ψ meets the bound
./ p, or the Rr./ x[ ρ ] operator, which asserts that the expected value of a reward
objective ρ, using reward structure r, satisfies ./ x. For now, we forbid multiple
occurrences of the P or R operators in the same property,1 as would typically
be permitted when using branching-time probabilistic logics such as PCTL or
PCTL* for verification of MDPs. This is because our primary focus in this
tutorial is not verification, but strategy synthesis, for which the treatment of
branching-time logics is more challenging [4,10].

For an MDP M, state s and strategy σ of M, and property φ, we write
M, s, σ |=φ to denote that, when starting from s, and operating under σ, M
satisfies φ. Generally, we are interested in the behaviour of M from its initial
state s, and we write M, σ |=φ to denote that M, s, σ |=φ. A formal definition
of the satisfaction relation |= is given in Fig. 2. Below, we identify several key
classes of properties and explain them in more detail.

1 We will relax this restriction, for multi-objective strategy synthesis, in Sec. 4.
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Probabilistic reachability. For probabilistic properties P./ p[ψ ], a simple but
fundamental class of path formulae ψ are “until” formulae of the form b1 U b2,
where b1, b2 are atomic propositions. Intuitively, b1 U b2 is true if a b2-labelled
state is eventually reached, whilst passing only through b1 states. Particularly
useful is the derived operator F b ≡ true U b, representing reachability, i.e., a b
state is eventually reached. Another common derived operator is G b ≡ ¬F ¬b,
which captures invariance, i.e., that b always remains true. Also useful are step-
bounded variants. For example, step-bounded reachability, expressed as F6k b ≡
true U6k b, means that a b-state is reached within k steps.

Probabilistic LTL. More generally, for the probabilistic properties P./ p[ψ ]
defined in Defn. 4, ψ can be any formula in the temporal logic LTL. This allows
a wide variety of useful properties to be expressed. These include, for example:
(i) G F b (infinitely often b); (ii) F G b (eventually always b); (iii) G (b1 → X b2)
(b2 always immediately follows b1); and (iv) G (b1 → F b2) (b2 always eventually
follows b1). Notice that, in order to provide convenient syntax for expressing
step-bounded reachability (discussed above), we explicitly add a step-bounded
until operator U6k . This is not normally included in the syntax of LTL, but does
not add to its expressivity (e.g., b1 U62 b2 ≡ b2 ∨ (b1 ∧ X b2)∨ (b1 ∧ X b1 ∧ X X b2)).

Reward properties. As explained in Sec. 2, rewards (or dually, costs) are
values assigned to state-action pairs that we assume to be accumulated over
time. Properties of the form Rr./ x[ ρ ] refer to the expected accumulated value of
a reward structure r . The period of time over which rewards are accumulated is
specified by the operator ρ: for the first k steps (C6k), indefinitely (C), or until
a state labelled with b is reached (F b). In the final case, if a b-state is never
reached, we assume that the accumulated reward is infinite.

3.2 Verification and Strategy Synthesis

Classically, probabilistic model checking is phrased in terms of verifying that a
model M satisfies a property φ. For an MDP, this means checking that φ holds
for all possible strategies of M.

Definition 5 (Verification). The verification problem is: given an MDP M
and property φ, does M, σ |=φ hold for all possible strategies σ ∈ ΣM?

In practice, this is closely related to the dual problem of strategy synthesis.

Definition 6 (Strategy synthesis). The strategy synthesis problem is: given
MDPM and property φ, find, if it exists, a strategy σ ∈ ΣM such thatM, σ |=φ.

Verification and strategy synthesis for a property φ on MDP M can be done in
essentially the same way, by computing optimal values for either probability or
expected reward objectives, defined as follows:

Prmin
M,s(ψ) = inf

σ∈ΣM
{PrσM,s(ψ)} Emin

M,s(rew(r, ρ)) = inf
σ∈ΣM

{EσM,s(rew(r, ρ))}
Prmax
M,s(ψ) = sup

σ∈ΣM

{PrσM,s(ψ)} Emax
M,s(rew(r, ρ)) = sup

σ∈ΣM

{EσM,s(rew(r, ρ))}
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When s is the initial state s, we omit the subscript s.
Verifying, for example, property φ = P>p[ψ ] against M or, dually, synthe-

sising a strategy for φ′ = P6p[ψ ] can both be done by computing Prmin
M (ψ). For

the former,M satisfies φ if and only if Prmin
M (ψ) > p. For the latter, there exists

a strategy σ satisfying φ′ if and only if Prmin
M (ψ) 6 p, in which case we can

take σ to be a corresponding optimal strategy, i.e., one that achieves the optimal
value. In general, therefore, rather than fix a specific bound p, we often simply
aim to compute an optimal value and accompanying optimal strategy. In this
case, we adapt the syntax of properties to include numerical queries.

Definition 7 (Numerical query). Let ψ, r and ρ be as specified in Defn. 4. A
numerical query takes the form Pmin=?[ψ ], Pmax=?[ψ ], Rrmin=?[ ρ ] or Rrmax=?[ ρ ]
and yields the optimal value for the probability/reward objective.

In the rest of this section, we describe how to compute optimal values and
strategies for the classes of properties described above. We also explain which
class of strategies suffices for optimality in each case (i.e., the smallest class of
strategies which is guaranteed to contain an optimal one). This is important both
in terms of the tractability of the solution methods, and the size and complexity
of the controller that we might wish to construct from the synthesised strategy.
As mentioned earlier, an extended version of this paper, available from [49],
presents full details of these methods. Coverage of this material can also be
found in, for example, [21,5,2] and standard texts on MDPs [6,26,38].

3.3 Strategy Synthesis for Probabilistic Reachability

To synthesise optimal strategies for probabilistic reachability, it suffices to con-
sider memoryless deterministic strategies. For this class of properties, and for
those covered in the following subsections, the bulk of the work for strategy
synthesis actually amounts to computing optimal values. An optimal strategy is
extracted either after or during this computation.

Calculating optimal values proceeds in two phases: the first precomputation
phase performs an analysis of the underlying graph structure of the MDP to
identify states for which the probability is 0 or 1; the second performs numerical
computation to determine values for the remaining states. The latter can be
done using various methods: (i) by solution of a linear programming problem;
(ii) policy iteration, which builds a sequence of strategies (i.e., policies) with in-
creasingly high probabilities until an optimal one is reached; (iii) value iteration,
which computes increasingly precise approximations to the exact probabilities.

The method used to construct an optimal strategy σ∗ depends on how the
probabilities were computed. Policy iteration is the simplest case, since a strategy
is constructed as part of the algorithm. For the others, minimum probabilities
are straightforward – we choose the locally optimal action in each state:

σ∗(s) = arg mina∈A(s)

∑
s′∈S δ(s, a)(s′) · Prmin

M,s′(F b)

Maximum probabilities require more care, but simple adapations to precompu-
tation and value iteration algorithms yield an optimal strategy.
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For step-bounded reachability, memoryless strategies do not suffice: we need
to consider the class of finite-memory deterministic strategies. Computation of
optimal probabilities (and an optimal strategy) for step-bounded reachability
amounts to working backwards through the MDP and determining, at each step,
and for each state, which action yields optimal probabilities. In fact, this amounts
simply to performing a fixed number of steps of value iteration.

Example 2. We return to the MDP M from Fig. 1 and synthesise a strategy
satisfying the property P>0.4[ F goal1 ]. To do so, we compute Prmax

M (F goal1),
which equals 0.5. This is achieved by the memoryless deterministic strategy that
picks east in s0, south in s1 and east in s4 (there is no choice to make in states
s2, s3 and any action can be taken in s5, since goal1 has already been reached).

Next, we consider label goal2 and a numerical query Pmax=?[ F
6k goal2 ] with

a step-bounded reachability objective. We find that Prmax
M (F6k goal2) is 0.8,

0.96 and 0.99 for k = 1, 2 and 3, respectively. Taking k = 3 as an example, the
optimal strategy is deterministic, but finite-memory. For example, if we arrive at
state s4 after 1 step, action east is optimal, since it reaches goal2 with probability
0.9. If, on the other hand, we arrive in s4 after 2 steps, it is better to take west ,
since it would be impossible to reach goal2 within k − 2 = 1 steps.

3.4 Strategy Synthesis for Probabilistic LTL

To synthesise an optimal strategy of MDP M for an LTL formula ψ, we reduce
the problem to the simpler case of a reachability property on the product of
M and an ω-automaton representing ψ. Here, we describe the approach of [2],
which uses deterministic Rabin automata (DRAs) and computes the probability
of reaching accepting end components. Since the minimum probability of an LTL
formula can be expressed as the maximum probability of a negated formula:

Prmin
M (ψ) = 1− Prmax

M (¬ψ)

we only need to consider the computation of maximally optimal probabilities.
A DRA A with alphabet α represents a set of infinite words L(A) ⊆ αω. For

any LTL formula ψ using atomic propositions from AP , we can construct [45,18,5]
a DRA Aψ with alphabet 2AP that represents it, i.e., such that an infinite path
π = s0

a0−→s1
a1−→s2 . . . ofM satisfies ψ if and only if Lab(s0)Lab(s1)Lab(s2) . . . is

in L(Aψ). We then proceed by building the (synchronous) product M⊗Aψ of
M and Aψ. The product is an MDP with state space S ×Q, where Q is the set
of states of the DRA. We then have:

Prmax
M (ψ) = Prmax

M⊗Aψ (F acc)

where acc is an atomic proposition labelling accepting end components ofM⊗Aψ.
An end component [2] is a strongly connected sub-MDP ofM, and whether it is
accepting is dictated by the acceptance condition of Aψ. Computing Prmax

M (ψ)
thus reduces to identifying the set of all end components (see, e.g., [2,5]) and
calculating the maximum probability of reaching the accepting ones.
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To build an optimal strategy maximising the probability of an LTL formula,
we need to consider finite-memory deterministic strategies. An optimal strategy
of this class is constructed in two steps. First, we find a memoryless deterministic
strategy for the product M⊗Aψ, which maximises the probability of reaching
accepting end components (and then stays in those end components, visiting
each state infinitely often). Then, we convert this to a finite-memory strategy,
with one mode for each state q ∈ Q of the DRA Aψ.

Example 3. Again, using the running example (Fig. 1), we synthesise a strat-
egy for the LTL property P>0.05[ (G ¬hazard) ∧ (G F goal1) ], which aims to both
avoid the hazard -labelled state and visit the goal1 state infinitely often. The
maximum probability, from the initial state, is 0.1. In fact, for this example, a
memoryless strategy suffices for optimality: we choose south in state s0, which
leads to state s4 with probability 0.1. We then remain in states s4 and s5 indef-
initely by choosing actions east and west , respectively.

3.5 Strategy Synthesis for Reward Properties

The techniques required to perform strategy synthesis for expected reward prop-
erties Rr./ x[ ρ ] are, in fact, quite similar to those required for the probabilistic
reachability properties, described in Sec. 3.3. For the case where ρ = F b, tech-
niques similar to those for P./ p[ F b ] are used: first, a graph based analysis of
the model (in this case, to identify states of the MDP from which the expected
reward is infinite), and then methods such as value iteration or linear program-
ming. The resulting optimal strategy is again memoryless and deterministic.

For the case ρ = C, where rewards are accumulated indefinitely, we need
to identify end components containing non-zero rewards, since these can result
in the expected reward being infinite. Subsequently, computation is similar to
the case of ρ = F b above. For step-bounded properties ρ = C6k, the situation
is similar to probabilities for step-bounded reachability; optimal strategies are
deterministic, but may need finite memory, and optimal expected reward values
can be computed recursively in k steps.

Example 4. We synthesise an optimal strategy for minimising the number of
moves that the robot makes (i.e., the number of actions taken in the MDP)
before reaching a goal2 state. We use a reward structure moves that maps all
state-action pairs to 1, and a numerical query Rmoves

min=?[ F goal2 ]. This yields the
optimal value 19

15 , achieved by the memoryless deterministic strategy that chooses
south, east , west and north in states s0, s1, s4 and s5 respectively.

4 Multi-objective Strategy Synthesis

In this section, we describe multi-objective strategy synthesis for MDPs, which
generates a strategy σ that simultaneously satisfies multiple properties of the
kind discussed in the previous section. We first describe the case for LTL prop-
erties and then summarise some extensions.
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Definition 8 (Multi-objective LTL). A multi-objective LTL property is a
conjunction φ = P./1p1 [ψ1 ] ∧ . . . ∧ P./npn [ψn ] of probabilistic LTL properties.
For MDP M and strategy σ, M, σ |=φ if M, σ |= P./1p1 [ψ1 ] for all 1 6 i 6 n.

An algorithm for multi-objective LTL strategy synthesis was given in [20],
although here we describe an adapted version, based on [22], using deterministic
Rabin automata. The overall approach is similar to standard (single-objective)
LTL strategy synthesis in that it constructs a product automaton and reduces
the problem to (multi-objective) reachability.

First, we ensure that all n properties P./ipi [ψi ] contain only lower probabil-
ity bounds ./ ∈ {>, >}, by negating LTL formulae as required (e.g., replacing
P<p[ψ ] with P>1−p[¬ψ ]). Next, we build a DRA Aψi for each LTL formula ψi,
and construct the product MDP M′ = M⊗Aψ1

⊗ · · ·⊗Aψn . We then consider
each combination X ⊆ {1, . . . , n} of objectives and find the end components of
M′ that are accepting for all DRAs {Ai | i ∈ X}. We create a special sink state
for X inM′ and add transitions from states in the end components to the sink.

The problem then reduces to a multi-objective problem on M′ for n reach-
ability properties P./1p1 [ F acc1 ], . . . , P./npn [ F accn ], where acci represents the
union of, for each set X containing i, the sink states for X. This can be done by
solving a linear programming (LP) problem [20].

Optimal strategies for multi-objective LTL may be finite-memory and ran-
domised. A strategy can be constructed directly from the solution of the LP
problem. Like for LTL objectives (in Sec. 3.4), we obtain a memoryless strategy
for the product MDP and then convert it to a finite-memory one on M.

We now summarise several useful extensions and improvements.

(i) Boolean combinations of LTL objectives (rather than conjunctions, as in
Defn. 8) can be handled via a translation to disjunctive normal form [20,22].

(ii) expected reward objectives can also be supported, in addition to LTL prop-
erties. The LP-based approach sketched above has beeen extended [22] to
include reward objectives of the form Rr./ x[ C ]. An alternative approach,
based on value iteration, rather than LP [23], allows the addition of step-
bounded reward objectives Rr./ x[ C6k ] (and also provides significant gains in
efficiency for both classes of properties).

(iii) numerical multi-objective queries generalise the numerical queries explained
in Defn. 7. For example, rather than synthesising a strategy satisfying prop-
erty P./1p1 [ψ1 ]∧ P./2p2 [ψ2 ], we can instead synthesise a strategy that max-
imises the probability of ψ1, whilst simultaneously satisfying P./2p2 [ψ2 ]. The
LP-based methods mentioned above are easily extended to handle numerical
queries by adding an objective function to the LP problem.

(iv) Pareto queries [23] produce a Pareto curve (or an approximation of it) illus-
trating the trade-off between multiple objectives. For example, if we want to
maximise the probabilities of two LTL formulae ψ1 and ψ2, the Pareto curve
comprises points (p1, p2) such that there is a strategy σ with PrσM(ψ1) > p1
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Fig. 3. Pareto curve (dashed line) for maximisation of the probabilities of LTL formulae
ψ1 = G ¬hazard and ψ2 = G F goal1 (see Ex. 5).

and PrσM(ψ2) > p2, but, if either bound p1 or p2 is increased, no strategy
exists without decreasing the other bound.

We refer the reader to the references given above for precise details of the
algorithms and any restrictions or assumptions that may apply.

Example 5. Previously, in Ex. 3, we synthesised a strategy for the LTL prop-
erty P>0.05[ (G ¬hazard) ∧ (G F goal1) ] and found that the maximum achievable
probability was 0.1. Let us now consider each conjunct of the LTL formula as a
separate objective and synthesise a strategy satisfying the multi-objective LTL
property P>0.7[ G ¬hazard ]∧ P>0.2[ G F goal1 ]. For convenience, we will abbrevi-
ate the objectives to ψ1 = G ¬hazard and ψ2 = G F goal1.

Following the procedure outlined at the start of this section, we find that
there is a strategy satisfying P>0.7[ψ1 ] ∧ P>0.2[ψ2 ]. To give an example of one
such strategy, we consider a numerical multi-objective query that maximises
the probability of satisfying ψ2 whilst satisfying P>0.7[ψ1 ]. The optimal value
(maximum probability for ψ2) is 41

180 ≈ 0.2278, which is obtained by a randomised
strategy that, in state s0, picks east with probability approximately 0.3226 and
south with probability approximately 0.6774.

Finally, we also show, in Fig. 3, the Pareto curve obtained when maximising
the probabilities of both ψ1 and ψ2. The grey shared area shows all points (x, y)
for which there is a strategy satisfying P>x[ψ1 ] ∧ P>y[ψ2 ]. Points along the
top edge of this region, shown as a dashed line in the figure, form the Pareto
curve. We also mark, as black circles, points (PrσM(ψ1),PrσM(ψ2)) for specific
deterministic strategies of M. The leftmost circle is the strategy described in
the first part of Ex. 2, and the rightmost one is the strategy from Ex. 3.

5 Controller Synthesis with Stochastic Games

So far, we have assumed that the nondeterministic choices in the model represent
the choices available to a single entity, such as a controller. In many situations, it
is important to consider decisions being made by multiple entities, possibly with
conflicting objectives. An example is the classic formulation of the controller
synthesis problem, in which a controller makes decisions about how to control,
for example, a manufacturing plant, and must respond to nondeterministic be-
haviour occurring in the environment of the plant.
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It is natural to model and analyse such systems using game-theoretic meth-
ods, which are designed precisely to reason about the strategic decisions of com-
peting agents. From a modelling point of view, we generalise MDPs to stochastic
games, in which nondeterministic choices are resolved by multiple players and
the resulting behaviour is probabilistic (MDPs can thus be seen as 1-player
stochastic games). We restrict our attention here to turn-based (as opposed to
concurrent) stochastic games, in which a single player is responsible for the non-
deterministic choices available in each state. In line with the rest of the paper,
we assume finite-state models and total information.

Definition 9 (SMG). A (turn-based) stochastic multi-player game (SMG) is
a tuple G = (Π,S, (Si)i∈Π , s, A, δG , Lab), where S, s,A, δG and Lab are as for an
MDP, in Defn. 1, Π is a finite set of players and (Si)i∈Π is a partition of S.

An SMG G evolves in a similar way to an MDP, except that the nondeterministic
choice in each state s is resolved by the player that controls that state (the player
i for which s ∈ Si). Like MDPs, we reason about SMGs using strategies, but
these are defined separately for each player: a strategy σi for player i is a function
mapping finite paths ending in a state from Si to a distribution over actions A.
Given strategies σ1, . . . , σk for multiple players from Π, we can combine them
into a single strategy σ = σ1, . . . , σk. If a strategy σ comprises strategies for all
players of the game (sometimes called a strategy profile), we can construct, like
for an MDP, a probability space PrσG over the infinite paths of G.

For strategy synthesis on SMGs, we generate strategies either for an indi-
vidual player, or for a coalition C ⊆ Π of players. We extend the definition of
properties given in Defn. 4 in the style of the logic rPATL [14].

Definition 10 (Multi-player strategy synthesis). For a property P./ p[ψ ]
or Rr./ x[ ρ ] and a coalition C ⊆ Π of players, (zero-sum) multi-player strategy
synthesis is expressed by a query 〈〈C〉〉P./ p[ψ ] or 〈〈C〉〉Rr./ x[ ρ ]. For example,
〈〈C〉〉P./ p[ψ ] asks “does there exist a strategy σ1 for the players in C such that,
for all strategies σ2 for the players Π\C, we have Prσ1,σ2

G (ψ) ./ p?”.

Intuitively, if 〈〈C〉〉P./ p[ψ ] is true, then the players in C can collectively guaran-
tee that P./ p[ψ ] holds, regardless of what the other players do. Like for the other
classes of strategy synthesis described in this paper, we can also use numerical
queries for stochastic multi-player games. We write, for example, 〈〈C〉〉Pmax=?[ψ ]
to denote the maximum probability of ψ that players in C can guarantee, re-
gardless of the actions of the other players.

Multi-player strategy synthesis can be solved using rPATL model checking.
Details for the the full logic rPATL (which allows nested operators and includes
additional reward operators, but omits C6k and C) are given in in [14]. Basically,
model checking reduces to the analysis of zero-sum properties on a stochastic
2-player game in which player 1 corresponds to C and player 2 to Π\C. For
reachability properties (i.e., 〈〈C〉〉P./ p[ F b ]), memoryless deterministic strategies
suffice and optimal values and strategies can be computed either with value it-
eration or strategy iteration [16,17]. For an LTL property ψ, we again reduce
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Fig. 4. Left: A stochastic 2-player game modelling an unknown probability interval.
Right: The maximum value with which ctrl can guarantee reaching goal1 for probability
interval [p, q] = [0.5−∆, 0.5 +∆]. See Ex. 6 for details.

the problem to a simpler one on the product of the game G and a deterministic
automaton representing ψ. Unlike MDPs, there is no notion of end components.
Instead, we can either use the strategy improvement algorithm of [13] to directly
compute probabilities for Rabin objectives, or convert the DRA to a determin-
istic parity automaton and compute probabilities for parity objectives [12].

Example 6. To give an example of strategy synthesis using stochastic games, we
consider a simple extension of the MDP M from the running example (Fig. 1).
We assume that the existing choices in the MDP are made by a player ctrl , and
we add a second player env , which represents nondeterministic aspects of the
environment. Recall that transition probabilities inMmodel uncertain outcomes
of robot actions due to obstacles. For example, when action south is taken in
state s1 of M, the MDP only moves in the intended direction (to s4) with
probability 0.5; otherwise, it moves to s2. Let us now instead assume that this
probability (of going to s4) can vary in some interval [p, q].

Fig. 4 (left) shows how we can model this as a stochastic two-player game.2

States controlled by player ctrl are, as before, shown as circles; those controlled
by player env , are shown as squares. When action south is taken in state s1, we
move to a new state s6, in which player env can choose between two actions,
one that leads to s4 with probability p and one that does so with probability q.
Since players are allowed to select actions at random, this means player env can
effectively cause the transition to occur with any probability in the range [p, q].

In Ex. 2, we computed the maximum probability of reaching goal1 as 0.5.
Now, we will consider the maximum probability that ctrl can guarantee, re-
gardless of the choices made by env , i.e., the maximum probability of reaching
goal1, if the probability of moving to state s4 after action south can be any value
in [p, q]. This is done with the query 〈〈ctrl〉〉Pmax=?[ F goal1 ]. We compute this
value for various intervals [p, q] centred around the original value of 0.5, i.e., we

2 This notion can be captured more cleanly by annotating transitions directly with
probability intervals [40], or with more general specifications of uncertainty [39].
Here, we just aim to give a simple illustration of using a stochastic 2-player game.
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let p = 0.5−∆, q = 0.5+∆ and vary ∆. Fig. 4 (right) plots the result. From
inspection of the game, we can deduce that the plot corresponds to the function
min(0.5−∆, 0.15− 0.1∆). This means that, if ∆ > 7

18 (i.e., if p 6 1
9 ), then it is

better to switch to the strategy that picks south in state s0, rather than east .

6 Challenges and Directions

In this paper, we have given a brief overview of strategy synthesis for proba-
bilistic systems, pointing to some promising application areas, highlighting the
benefits that can be derived from existing work on probabilistic verification, and
summarising the algorithmic techniques required for a variety of useful strategy
synthesis methods. We invite the reader to consult the extended version of this
paper [30] for further details.

As noted at the start, the current presentation makes a number of simplifying
assumptions. We conclude by reviewing some of the key challenges in the area
of strategy synthesis for probabilistic systems.

– Partial observability. In this paper, we assumed a complete information set-
ting, where the state of the model (and the states of its history) are fully
visible when a strategy chooses an action to take. In many situations, this is
unrealistic, which could lead to strategies being synthesised that are not fea-
sible in practice. Although fundamental decision problems are undecidable in
the context of partial observability [3], practical implementations have been
developed for a few cases [11,24] and some tool support exists [36]. Develop-
ing efficient methods for useful problem classes is an important challenge.

– Robustness and uncertainty. In many potential applications of strategy syn-
thesis, such as the generation of controllers in embedded systems, it may
be difficult to formulate a precise model of the stochastic behaviour of the
system’s environment. Thus, developing appropriate models of uncertainty,
and corresponding methods to synthesise strategies that are robust in these
environments, is important. We gave a very simple illustration of uncertain
probabilistic behaviour in Sec. 5. Developing more sophisticated approaches
is an active area of research [46,37].

– Continuous time and space. In this paper, we focused on discrete-time prob-
abilistic models. Verification techniques have also been developed for models
that incorporate both nondeterminism and continuous notions of time, in-
cluding probabilistic timed automata [35], interactive Markov chains [25] and
Markov automata [43]. Similarly, progress is being made on verification tech-
niques for models with continuous state spaces, and hybrid models that mix
both discrete and continuous elements [48,44]. Developing efficient strategy
synthesis techniques for such models will bring the benefits of the methods
discussed in this paper to a much wider range of application domains.
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