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Abstract

In this thesis, we present efficient implementation techniques for probabilistic model

checking, a method which can be used to analyse probabilistic systems such as randomised

distributed algorithms, fault-tolerant processes and communication networks. A proba-

bilistic model checker inputs a probabilistic model and a specification, such as “the mes-

sage will be delivered with probability 1”, “the probability of shutdown occurring is at

most 0.02” or “the probability of a leader being elected within 5 rounds is at least 0.98”,

and can automatically verify if the specification is true in the model.

Motivated by the success of symbolic approaches to non-probabilistic model check-

ing, which are based on a data structure called binary decision diagrams (BDDs), we

present an extension to the probabilistic case, using multi-terminal binary decision dia-

grams (MTBDDs). We demonstrate that MTBDDs can be used to perform probabilistic

analysis of large, structured models with more than 7.5 billion states, way out of the

reach of conventional, explicit techniques, based on sparse matrices. We also propose a

novel, hybrid approach, combining features of both symbolic and explicit implementa-

tions and show, using results from a wide range of case studies, that this technique can

almost match the speed of sparse matrix based implementations, but uses significantly

less memory. This increases, by approximately an order of magnitude, the size of model

which can be handled on a typical workstation.
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Chapter 1

Introduction

The proliferation of computerised systems in all aspects of our lives places an increasing

importance on the need for them to function correctly. The presence of such systems

in safety-critical applications, coupled with their ever increasing complexity, means that

the conventional method of checking that a system behaves as intended, testing it on a

representative set of scenarios, is often inadequate.

A branch of computer science which aims to resolve this problem is formal verification.

Of particular interest are formal verification techniques which can be automated. A prime

example of this is model checking. To verify the correctness of some real-life system using

model checking, one first constructs a model to represent it. This model identifies the

set of all possible states that the system can be in and the transitions which can occur

between them. One also specifies desirable or required properties of the real-life system

to be verified. Examples are: “process 1 and process 2 are never in their critical sections

simultaneously”, “it is always possible to restart the system”, and “whenever a request

occurs, an acknowledgement will eventually be received”.

A model checker then automatically checks, via a systematic analysis of the model,

whether or not each of the specified properties is satisfied. The popularity and, more

importantly, the uptake by industry of model checkers such as SMV, SPIN and FDR

provide an indication of the success that these techniques have enjoyed.

One caveat of the model checking paradigm is that the results of verification are only

as dependable as the accuracy of the model which has been constructed for analysis. For

this reason, as verification techniques have become more efficient and more prevalent,

many people have sought to extend the range of models and specification formalisms to

which model checking can be applied.

A good example is the field of probabilistic model checking. The behaviour of many

real-life processes is inherently stochastic. Examples include: probabilistic protocols or

1



2 1 - Introduction

randomised distributed algorithms, which can execute certain actions randomly; fault-

tolerant systems, which are designed to operate knowing that some of its components are

unreliable; and communication networks, whose varying and unpredictable patterns in

usage can only be accurately modelled in a probabilistic fashion.

In probabilistic model checking, the model constructed for analysis is probabilistic.

This is usually achieved by labelling transitions between states with information about

the likelihood that they will occur. The specifications are also suitably modified. We

now verify properties such as: “the message will be delivered with probability 1”, “the

probability of shutdown occurring is at most 0.02”, and “the probability of a leader being

elected within 5 rounds is at least 0.98”.

As in the non-probabilistic case, algorithms for probabilistic model checking can be

used to automatically determine whether or not a model satisfies its specification. While

non-probabilistic model checking usually reduces to algorithms based on graph analysis,

the probabilistic case typically also requires numerical computation. Despite the fact that

the appropriate algorithms have been known since the 1980s, there has been a distinct lack

of tools developed to support the technology. This was one of the primary motivations for

our work. Over the past four years, we have developed a probabilistic model checker called

PRISM. This thesis describes research carried out into developing the data structures and

associated techniques required for the efficient implementation of such a tool.

The principal challenge when developing any kind of model checker is to overcome

the so called state space explosion problem. Also known as ‘largeness’ or ‘the curse of

dimensionality’, this states that there is a tendency for the number of states in a model

to grow exponentially as the size of the system being represented is increased linearly.

In practice, this means that models of even the most trivial real-life systems can contain

many millions of states.

The reason that non-probabilistic model checking has been so successful in the real

world is that an enormous amount of work has been put into developing efficient imple-

mentation techniques for it. One of the most successful approaches taken is known as

symbolic model checking. This relies on a data structure called binary decision diagrams

(BDDs). Because the models used in verification are inevitably described in some high-

level formalism, they usually contain a degree of structure and regularity. BDDs can be

used to exploit this regularity, resulting in an extremely compact representation for very

large models. Efficient manipulation algorithms developed for the data structure then

allow model checking to be performed on these models.

In this thesis, we consider the application of symbolic techniques to probabilistic model

checking. To do so, we use a natural extension of BDDs, multi-terminal binary decision

diagrams (MTBDDs). We have developed a complete implementation of probabilistic
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model checking based on the MTBDD data structure. Using a wide range of case stud-

ies, we present an extensive analysis of the efficiency of this symbolic implementation

and compare its performance to that of more conventional, explicit approaches based on

sparse matrices. We show that MTBDDs can be used for probabilistic model checking

of large, structured models with more than 7.5 billion states. Here, analysis with equiv-

alent, explicit techniques is simply not feasible. We also demonstrate, however, that in

many other cases the symbolic implementation has significantly higher time and memory

requirements than the explicit version.

To combat this, we propose a novel, hybrid approach combining features of both the

symbolic and explicit implementations. For typical examples, this technique is many

times faster than using MTBDDs alone and can almost match the speed of the sparse

matrix based implementation. Furthermore, by providing a significant reduction in the

amount of memory required for verification, we increase the size of model which can be

handled by approximately an order of magnitude.

Layout of the Thesis

The remainder of this thesis is structured as follows. Chapter 2 gives a technical review

of related work, identifying what research has already been done in this area and how

the work in this thesis contributes to it. Chapter 3 introduces the relevant background

material. This includes details of the probabilistic models, specification formalisms and

model checking algorithms we consider, a description of our tool PRISM, and an intro-

duction to the two principal data structures discussed in this thesis: sparse matrices and

multi-terminal binary decision diagrams (MTBDDs). Chapters 4 to 6 contain the main

contribution of the thesis. In Chapter 4, we consider the problem of developing an effi-

cient representation for probabilistic models using MTBDDs. In Chapter 5, we use this

representation to present a full, symbolic implementation of probabilistic model checking.

We give results for a range of case studies, making comparisons with equivalent, explicit

implementations based on sparse matrices and provide a detailed analysis of their respec-

tive performances. In Chapter 6, we present a novel, hybrid approach which combines

symbolic and explicit techniques in order to improve the efficiency of the pure MTBDD

implementation. We conclude in Chapter 7 by evaluating the success of the work and

highlighting possible areas for future research.
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Other Publications

Some of the work in this thesis has previously been published in jointly authored papers.

In [dAKN+00], a symbolic implementation of model checking for MDPs was presented.

This included an early version of the translation of the PRISM language into MTBDDs,

as described in Section 4.3 and Appendix C. This translation was worked on by the

author of this thesis along with Marta Kwiatkowska and Gethin Norman. The MTBDD

implementation used to provide experimental results for [dAKN+00] was developed by the

author. The latter is also true of [KKNP01], which presented results for MTBDD-based

model checking of CTMCs. In addition, [KKNP01] included an improvement to the CSL

model checking algorithm. This was developed jointly by the author and Gethin Norman.

The data structures and associated algorithms making up the hybrid approach of

Chapter 6 are entirely the work of the author. A preliminary version of this was published

in [KNP02b]. The author was also solely responsible for the development of the PRISM

model checker, into which all the implementations described in this thesis have been built.

A tool paper describing PRISM appeared in [KNP02a].

The majority of the modelling work to develop case studies for PRISM was done by

Gethin Norman. These are used throughout this thesis to present experimental results.

Finally, a joint journal paper with Holger Hermanns, Marta Kwiatkowska, Gethin Norman

and Markus Siegle, summarising experiences with MTBDD-based analysis of probabilistic

models, is to be published in [HKN+02]. This paper reports on results obtained indepen-

dently with PRISM and IM-CAT, a tool developed at Erlangen.



Chapter 2

Review of Related Work

In this chapter we review work from the literature which is closely related to the topic of

this thesis: the implementation of symbolic model checking techniques for probabilistic

systems. We begin, in Section 2.1, by examining the development of probabilistic model

checking itself. Next, Section 2.2 reviews BDD-based, symbolic model checking tech-

niques, as applied in the non-probabilistic setting. Following this, in Section 2.3, we focus

on MTBDDs, which are a natural extension of BDDs, suitable for extending symbolic

model checking to the probabilistic case. We consider the application of MTBDDs to

matrix representation and manipulation, the solution of linear equation systems and the

analysis of probabilistic models. We also review some other approaches to the implemen-

tation of probabilistic model analysis. These include alternative extensions of BDDs and

methods based on the Kronecker algebra. Finally, in Section 2.5, we summarise existing

implementations of probabilistic model checking.

2.1 Probabilistic Model Checking

Temporal logics provide a way of reasoning about behaviour which varies over time. Their

application in computer science was pioneered by Pnueli [Pnu77] who argued that existing

techniques for formal verification were not adequate for concurrent, reactive systems, i.e.

those comprising parallel, interacting components and which do not necessarily terminate.

Model checking, proposed independently by Clarke and Emerson [CE81] and by Queille

and Sifakis [QS82], is a technique for automatically determining whether or not a finite-

state model of a system satisfies a property specified in temporal logic. It does so via

an exhaustive search of its state space, usually by executing some form of graph analysis

over the model’s transition relation. In the case where a property is not satisfied, a model

checker also produces a counterexample: an execution of the system which illustrates

5
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that the property does not hold. A model checking algorithm for the temporal logic CTL

(Computation Tree Logic) was presented in [CES86].

Temporal logic based formal verification has been successfully extended to the realm

of probabilistic models. Initial work in this area focused on the verification of qualitative

formulas, i.e. those stating that some property holds with probability 0 or 1. The case for

purely probabilistic systems, which we refer to in this thesis as discrete-time Markov chains

(DTMCs), was considered in [LS82, HS84, CY88]. At the heart of all these approaches is

the fact that, for qualitative formulas, the actual probabilities in the model are irrelevant:

verification can be performed based only on an analysis of the underlying graph.

In a similar vein, qualitative property verification was considered for models which

exhibit both probabilistic and nondeterministic behaviour, i.e. models such as Markov

decision processes (MDPs). These included [HSP83, Pnu83, Var85, PZ86, CY88]. One of

the main differences here is that a notion of fairness must be considered.

More difficult is the verification of quantitative specifications. For these, one must

compute the exact probability that a given property is satisfied. The case for DTMCs was

considered by Courcoubetis and Yannakakis [CY88, CY95], Hansson and Jonsson [HJ94],

and Aziz et al. [ASB+95]. The latter two papers introduced the temporal logics PCTL

and pCTL respectively. These are essentially equivalent, extending the non-probabilistic

logic CTL with a probabilistic operator. This operator takes a probability bound as a

parameter and allows one to write formulas such as P>p[ψ], stating that the probability

of event ψ occurring is greater than the bound p. It is shown that model checking for

pCTL/PCTL reduces to solving a linear equation system. Aziz et al. [ASB+95] also

introduced pCTL*, a combination of pCTL and the linear time logic LTL. This can be

model checked using the techniques in [CY88, CY95].

The verification of quantitative properties for MDPs was considered by Courcoubetis

and Yannakakis [CY90] and Bianco and de Alfaro [BdA95]. Model checking for pCTL is

shown to reduce to the solution of a linear optimisation problem. Bianco and de Alfaro

[BdA95] also presented an algorithm for pCTL*. As in the case for qualitative properties,

it is often necessary to consider fairness in order to perform verification. In [BK98], Baier

and Kwiatkowska showed how the algorithms for model checking quantitative properties

can be extended to incorporate a notion of fairness based on that of Vardi [Var85]. A

further improvement to their algorithm was given by Baier in [Bai98].

The model checking paradigm has also been extended to continuous-time Markov

chains (CTMCs). Traditionally, these models have been analysed by standard perfor-

mance analysis techniques, where steady-state (long run) and transient probabilities are

computed and then translated into more meaningful, application-specific measures such

as throughput and mean waiting time. In [ASSB96], Aziz et al. proposed the logic CSL
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(Continuous Stochastic Logic) to provide a means of formally specifying properties of

CTMCs. CSL can be seen as an extension of PCTL. It introduces a time-bounded un-

til operator which can be used to reason about real-time behaviour of CTMCs. Model

checking for the logic is shown to be decidable for rational time-bounds.

Baier et al. [BKH99] then extended CSL by adding an operator to reason above the

steady-state behaviour of CTMCs and presented the first model checking algorithm for

the logic. Steady-state probabilities are computed in the usual way by solving a linear

equation system. For the time-bounded until operator, they proposed an algorithm based

on an iterative method for the approximate solution of a Volterra integral equation system.

In [BHHK00a], Baier et al. presented an alternative method of model checking the

CSL time-bounded until operator using a conversion to transient analysis. This allows

standard, efficient computation techniques to be used. The algorithm was improved fur-

ther by Katoen et al. in [KKNP01], where a relatively simple reformulation of the required

computation results in an O(N) improvement in time complexity, N being the number

of states in the CTMC being model checked.

2.2 Symbolic Model Checking

At the same time that model checking techniques were being extended to handle more

complex modelling and specification formalisms, a great deal of work was being done to

improve the efficiency of the original, non-probabilistic approach. Model checking had

shown itself to be successful on relatively small examples, but it quickly became apparent

that, when applied to real-life examples, explicitly enumerating all the states of the model

is impractical. The fundamental difficulty, often referred to as the state space explosion

problem, is that the state space of models representing even the most trivial real-life

systems can easily become huge.

One of the most well-known approaches for combating this problem, and the one which

this thesis focuses on, is symbolic model checking. This refers to techniques based on a

data structure called binary decision diagrams (BDDs). These are directed acyclic graphs

which can be used to represent Boolean functions. BDDs were introduced by Lee [Lee59]

and Akers [Ake78] but became popular following the work of Bryant [Bry86], who refined

the data structure and developed a set of efficient algorithms for their manipulation.

In terms of model checking, the fundamental breakthrough was made by McMillan.

He observed that transition relations, which were stored explicitly as adjacency lists in

existing implementations, could be stored symbolically as BDDs. Because of the reduced

storage scheme employed by the data structure, BDDs could be used to exploit high-level

structure and regularity in the transition relations. Furthermore, the graph analysis based
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model checking algorithms for CTL could be implemented using efficient BDD operations.

In [BCM+90, McM93], these ideas were applied to give a symbolic version of the

CTL model checking algorithm from [CES86] and it was demonstrated that large, regular

models with as many as 1020 states could be verified. Improvements presented in [BCL91]

pushed the limit even higher to 10120 states. These techniques were implemented in what

became the well-known SMV model checker [McM93]. Perhaps one of the most notable

achievements of this technology was the successful verification of the cache coherence

protocol from the IEEE Futurebus+ standard [CGH+93].

2.3 Multi-Terminal Binary Decision Diagrams

This thesis considers the extension of established symbolic model checking techniques to

the probabilistic case. In addition to algorithms based on graph analysis, probabilistic

model checking requires numerical computation to be performed. While graph analysis

reduces to operations on a model’s transition relation and sets of its states, numerical

computation requires operations on real-valued matrices and vectors. For this reason,

the most natural way to extend BDD-based symbolic model checking is to use multi-

terminal binary decision diagrams (MTBDDs). MTBDDs extend BDDs by allowing them

to represent functions which can take any value, not just 0 or 1.

2.3.1 Matrix Representation and Manipulation

The idea of MTBDDs was first presented by Clarke et al. [CMZ+93], where two differ-

ent extensions of BDDs are considered for the purpose of representing integer matrices:

arrays of BDDs and BDDs with more than two terminals (MTBDDs). Focusing on the

latter, they give methods for implementing standard matrix operations, such as scalar

multiplication, matrix addition and matrix multiplication. Furthermore, they use these

techniques to implement the Walsh transform, a common component of digital circuit

design, and give positive experimental results. The reason for the success of this imple-

mentation seems to stem from the fact that the matrices used, Walsh matrices, contain

only two distinct values (1 and -1) and are extremely regular.

This work is extended in [CFM+93], which begins by observing that MTBDDs can

represent matrices over any finite set, for example a subset of the reals as opposed to

of the integers. It then proceeds to examine in more detail the effectiveness of such a

representation. The worst case complexity for the size of an MTBDD is analysed and

compared to that of explicit storage schemes such as sparse matrices. It is shown that, in

this respect, MTBDDs are the optimal representation for very sparse matrices.
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In [CFM+93], it is also shown how the recursive nature of MTBDDs leads to elegant

algorithms for the implementation of matrix operations. In particular, an improved algo-

rithm for multiplication of matrices and vectors is presented. Inversion of upper or lower

triangular matrices and L/U decomposition is also considered. The worst-case complexity

for these operations is analysed, but experimental results are notably absent. While com-

plexity analysis gives valuable insight into the performance of the algorithms, previous

work on BDDs has shown that, despite having exponential worst-case or even average-

case complexity, many operations have still proven to perform well in practice. Hence, it

would seem wise to apply the algorithms to some real examples.

MTBDDs were also studied independently by Bahar et al. in [BFG+93], under the

guise of ADDs (algebraic decision diagrams). The choice of terminology reflects the fact

that the authors considered the data structure to be applicable not only to arithmetic

over real-valued matrices, but also to operations in alternative algebras. For example,

they show how MTBDDs can be used to implement a min-plus algebra based solution

to the shortest path problem for weighted, directed graphs. More relevantly, from our

perspective, they also give a detailed analysis of the application of MTBDDs to both the

multiplication of real matrices and the solution of linear equation systems.

The authors present a novel matrix multiplication algorithm and compare it to the

existing two [CMZ+93, CFM+93] on a number of large, benchmark examples. They

conclude that their algorithm is comparable with the one in [CFM+93] and that both

typically outperform the one in [CMZ+93]. Of particular interest is their comparison

with an explicit implementation of multiplication using sparse matrices. Although they

initially claim that the MTBDD and sparse matrix approaches are comparable in terms of

speed, a later version of the paper [BFG+97] concedes that MTBDDs are actually much

slower.

Bahar et al. also investigate MTBDD-based solution methods for linear equation sys-

tems. An implementation of Gaussian elimination is presented and analysed. Again,

MTBDDs are found to be significantly slower than the equivalent sparse matrix ver-

sion. An important contribution of the paper is the identification of the reason for this

behaviour. The pivoting operations required for Gaussian elimination rely on the ma-

nipulation of individual matrix elements, rows and columns. These tend to destroy any

regularity in the MTBDD, increasing its size and making the operations on it slow to

perform. With this in mind, the authors suggest that iterative methods based on matrix

multiplication may prove to be a more fruitful source of investigation.
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2.3.2 Analysis of Probabilistic Models

Given that probabilistic models are often represented as matrices and that their analysis

often entails numerical computation based on these matrices, such as the solution of

linear equation systems, it becomes possible to perform the analysis using MTBDDs. In

this section, we review work which has been undertaken in this area. We classify the

various approaches according to the type of probabilistic model involved, considering first

discrete-time Markov chains (DTMCs), then Markov decision processes (MDPs) and then

continuous-time Markov chains (CTMCs).

Discrete-Time Markov Chains (DTMCs)

In [HMPS94, HMPS96], Hachtel et al. apply MTBDDs to the computation of steady-

state probabilities of DTMCs using two iterative methods, the Power method and a

modified version of the Jacobi method. They test their implementation on a number

of DTMCs generated from benchmark circuits and present experimental results. These

results demonstrate that analysis can be performed on some extremely large models,

including one DTMC with 1027 states. The authors observe that the principal problem

is the exponential increase in the number of distinct values in the solution vector. To

circumvent this, they employ a strategy which actually computes an approximation to

the correct solution by rounding all probabilities below a certain threshold to zero.

In a similar fashion, Xie and Beerel [XB97] used MTBDDs to compute the steady-state

probabilities of DTMCs using the Power method. The techniques are used to analyse the

performance of several asynchronous timed systems. While the implementation appears

successful, results are only given for relatively small examples, with at most 30,000 states.

DTMC analysis using MTBDDs was also proposed by Baier et al. in [BCHG+97],

where a symbolic algorithm for PCTL model checking is given. The key part of the algo-

rithm constitutes solving a linear equation system. As above, it is proposed to accomplish

this using iterative methods. The authors also give an MTBDD-based model checking

algorithm for the richer logic PCTL*, which we do not consider in this thesis.

Although [BCHG+97] does not present any experimental results, a subset of the sym-

bolic PCTL model checking algorithm proposed was implemented and described in the

thesis of Hartonas-Garmhausen [HG98]. This resulted in the prototype tool ProbVerus

[HGCC99]. In [HG98], these techniques are applied to two case studies, one based on a

railway signalling system, and the other on a flexible manufacturing system. Although

this work only covered a subset of PCTL (bounded until formulas only), it demonstrated

that PCTL model checking of DTMCs could be successfully implemented in MTBDDs

and applied to real-life examples.
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Markov Decision Processes (MDPs)

In [BC98], Baier and Clarke presented the algebraic mu-calculus, an extension to the mu-

calculus and, via an MTBDD representation of its semantics, restated how PCTL model

checking of DTMCs could be implemented with MTBDDs. Baier [Bai98] then showed

how this approach can be adapted to work with MDPs.

Kwiatkowska et al. [KNPS99] and de Alfaro et al. [dAKN+00] presented the first

implementations of PCTL model checking for MDPs using MTBDDs. In [KNPS99], model

checking was performed using the Simplex method. This was found to perform poorly

for the same reasons that [BFG+93] found Gaussian elimination to do so: the Simplex

method relies upon operations on individual rows and columns of matrices. These are

slow to perform and cause a blow-up in MTBDD size. In [dAKN+00], de Alfaro et al.

presents a much improved version, focusing on the structured construction of MTBDDs

and a BDD-based precomputation algorithm. Results for a number of extremely large,

regular examples are given. It is also observed, as done previously in [HMPS94, HMPS96],

that it is the MTBDD representation for the solution vector which limits the applicability

of the techniques to even larger models.

An alternative usage of MTBDDs for MDP analysis can be found in [HSAHB99]. Al-

though the application domain is very different, decision-theoretic planning, the solution

algorithm implemented bears a marked similarity to the one used in PCTL model check-

ing. One key difference is that, in their MDPs, the choices in each state are labelled with

actions. Hence, for example, instead of computing the maximum probability of a given

event, they would attempt to determine the best action to select in each state (a policy) in

order to maximise this probability. Because of this, they store an MDP as a set of MTB-

DDs, one for each possible action which can be taken. The paper presents positive results

for a large, structured MDP example. The performance of the MTBDD implementation

is shown to be superior to both an existing version based on decision trees (which differ

from decision diagrams in that they do not merge identical nodes) and one which uses

an explicit representation. Because of differences between the three implementations, a

detailed comparison of times is not attempted.

We also mention the work of [DJJL01] which introduces a technique for model checking

a subset of PCTL on MDPs using abstraction and refinement. They also describe a

prototype implementation of their approach which uses MTBDDs. The emphasis of the

paper, however, is on improving the efficiency of model checking via abstraction and

refinement, not through symbolic implementation.
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Continuous-Time Markov Chains (CTMCs)

We now move on to the analysis of CTMCs. In [HMKS99], Hermanns et al. extended

the work of [HMPS94, HMPS96], applying MTBDDs to the computation of steady-state

probabilities for CTMCs. The paper describes how MTBDDs can be used to represent

CTMCs and then gives symbolic algorithms for computing the steady-state probability

distribution using iterative methods. These include the Power, Jacobi and Gauss-Seidel

methods, the latter being implemented for the first time in MTBDDs.

The key contribution of the paper, though, is an in-depth discussion of methods for

obtaining a compact MTBDD model encoding, something that is notably absent from

prior work. This issue is particularly important since the efficiency of BDD-based data

structures is largely dependent on their size, which in turn is dramatically affected by

issues such as the encoding scheme chosen and the ordering of MTBDD variables.

The results of the paper are presented as a series of heuristics. The key lesson is

that MTBDDs should be used to exploit structure in the model being represented. Such

structure usually derives from the original high-level description of the system. The case

for several formalisms, including process algebras and queueing models, is described in

the paper. Empirical results are limited to memory requirements for the various encoding

schemes discussed; performance details for the implementation of the iterative methods

are not given.

In [BKH99], Baier et al. showed how full model checking of CSL can be performed

symbolically. The two main problems are the computation of probabilities for the logic’s

steady-state and time-bounded until operators. The former can be done as in [HMKS99].

For the latter, an adaptation of MTBDDs, called MTDDs (multi-terminal decision dia-

grams) and a corresponding set of operations for manipulation are introduced.

The algorithm presented for model checking the CSL time-bounded until operator

is based on solving an integral equation system, which in turn reduces to approximate

evaluation of integrals using quadrature formulas. The new data structure is specifically

tailored to this process. Some nodes in the MTDD remain as binary decisions, but others

represent a choice betweenN values, whereN corresponds to the number of components in

the computation of the approximation. From a performance point of view, it is important

to note that the size of the data structure will be affected by the choice of N , which in

turn determines the quality of the approximations. Unfortunately, no implementation or

experimental results were presented so it is difficult to judge the effect that the increase

in complexity of the data structure would have.

Following the improved CSL model checking algorithm of [BHHK00a], an entirely

MTBDD-based version of CSL model checking was proposed in [KKNP01] and a compar-
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ison of its efficiency made with an equivalent implementation using sparse matrices. Two

examples are given where MTBDDs perform significantly better, handling large, struc-

tured CTMCs with as many as 33 million states. It is also noted, however, that because

of the size of the MTBDD for the solution vector, this is not the case for other examples.

Summary

In summary, there have been numerous applications of MTBDDs to the representation and

analysis of probabilistic models. It is encouraging to note that there is clearly potential

for the data structure to provide compact storage of these models. It is also evident that

this is dependent both on the existence of structure and regularity in the models and on

the use of heuristics to obtain suitable MTBDD encodings. We will consider these issues

in Chapter 4.

Another positive observation which can be made is that MTBDDs have proved to be

well suited to the implementation of a range of probabilistic model checking algorithms

and are seemingly a natural extension of BDDs in this respect. One criticism that can

be directed at existing research, though, is that, in many cases, algorithms have been

translated into MTBDDs, but no implementation has been attempted. In others, where

the techniques have been realised, a thorough analysis of their efficiency has often been

lacking; in particular, a comparison with more traditional alternatives such as sparse

matrices. This is a situation we have tried to redress in our contributions to the literature

[dAKN+00, KKNP01]. In Chapter 5, we describe our MTBDD-based implementation of

probabilistic model checking for three types of models, DTMCs, MDPs and CTMCs, and

provide a detailed analysis of its efficiency using experimental results from a wide range

of case studies.

Another conclusion which can be drawn from the existing descriptions of MTBDD-

based analysis of probabilistic models is that a symbolic representation for solution vectors

can often be problematic. We will also observe this phenomenon in Chapter 5 and, in

Chapter 6, will present a novel solution to the problem.

2.3.3 Other Applications

For completeness, we also describe some additional applications of MTBDDs that have

appeared in the literature. One such example is the work of Ruf and Kropf [KR97, RK98],

who use MTBDDs for discrete-time model checking. Systems are modelled as labelled

transition systems, each transition being associated with an integer delay. Specifications

are written in QCTL (quantitative or quantized CTL) or CCTL (clocked CTL), temporal

logics which extend CTL. The timed models can be represented as MTBDDs and model
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checking algorithms are then formulated in terms of the data structure. Results are pre-

sented to show that, on a set of examples, this approach outperforms two existing methods:

firstly a conversion to a larger, but equivalent CTL model checking problem solved with

SMV [McM93]; and secondly using an alternative tool for discrete-time model checking,

KRONOS [DOTY96]. While this work bears obvious similarities with our application, the

main difference is that both the model and algorithms in question deal only with integer

values, not reals. Hence, the proliferation of distinct values in the computation is far less

problematic.

A second interesting application is that of [BBO+02] which presents a technique for

eliminating incoherence from probabilistic data. MTBDDs are used to store probability

distributions which are generated and manipulated using genetic algorithms. Experimen-

tal results show that compact representations of probability distributions can be achieved,

but running times were not necessarily reduced as a result.

2.4 Alternative Approaches

2.4.1 Other Data Structures

A number of other data structures related to MTBDDs have been introduced in the lit-

erature. In this section we review some of the more relevant ones. Firstly, we mention

Siegle’s DNBDDs (decision node BDDs) [Sie99], which were introduced for the representa-

tion of CTMCs. While MTBDDs extend BDDs by allowing multiple terminals, DNBDDs

retain the original structure of BDDs, but add additional information to certain edges

between nodes. Rates in the CTMC being represented are now encoded by these edge

labels, rather than the values on the terminals, as is the case with MTBDDs. DNBDDs

were used in [HS99] to implement bisimulation algorithms for CTMCs and found to be

well suited to this purpose by extending existing BDD algorithms for the non-probabilistic

case. It is not clear, however, what advantages the data structure would present in terms

of implementing the numerical solution of CTMCs.

Another extension of the basic BDD is the EVBDD (edge-valued BDD) [LPV96,

VPL96]. This introduces additive weights onto edges between nodes. EVBDDs have

been successfully applied to the formal verification of arithmetic circuits and to integer

linear programming. They are, however, not applicable in our setting since they are lim-

ited to the representation of integer-valued functions. FEVBDDs (factored edge-valued

BDDs) [TP97, Taf94] extend EVBDDs by including two weights on edges, one additive

and one multiplicative, affording a more compact representation than EVBDDs and al-

lowing functions to take fractional values. The data structure was applied to matrix
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manipulation and the solution of linear equation systems. The latter was performed with

Gaussian elimination using arbitrary precision arithmetic. Due to the size of the models

we aim to consider, this is not an option for us.

Lastly, we describe PDGs (probabilistic decision graphs), introduced by Bozga and

Maler in [BM99]. These are another BDD-based representation for vectors or matrices of

probabilities, the basic idea being that nodes are labelled with conditional probabilities

which are multiplied together to determine the final probability. The intention is to

allow a compact representation of vectors or matrices which are structured, but contain

many distinct values and would hence result in a large MTBDD. While it does indeed

seem possible to achieve more compact storage in some cases, the experimental results

presented indicate that, as computations progress, the size of the data structure often

increases unmanageably. The proposed solution is to ‘discretise’ the probabilities, merging

similar values together. The implications of this on numerical accuracy are not considered.

At the end of Chapter 5, we observe that applying similar ideas in our case proved to be

fruitless. In addition, the increased complexity of algorithms for manipulation of PDGs

slows the implementation speed considerably.

Similar findings were made by Buchholz and Kemper in [BK01], where they adapt

PDGs for use alongside Kronecker-based techniques (described in the next section). The

PDG data structure is modified for this purpose, allowing more than two edges from each

node, and new algorithms for manipulation are presented. Unfortunately, it seems that

the performance, in terms of speed, is still unsatisfactory.

2.4.2 Kronecker-Based Approaches

We also consider an area of research which uses the Kronecker algebra to derive efficient

methods for the analysis of probabilistic models. In common with the symbolic model

checking approach considered in this thesis, these Kronecker-based techniques rely on

exploitation of structure in probabilistic models to generate a compact representation

and hence extend the range of models which can be analysed. For this reason, they are

often referred to as structured analysis approaches. They can be seen as closely related to

our hybrid approach in Chapter 6 since they use a structured representation for matrices

but store vectors explicitly using arrays.

The basic idea is that the transition matrix of a CTMC can be represented as a

Kronecker (tensor) algebraic expression of smaller matrices, corresponding to components

of the system being modelled. The power behind the Kronecker approach is that it is only

necessary to store these small, component matrices and the structure of the expression

which combines them. Methods for analysing the CTMC such as steady-state probability
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computation, which reduces to the iterative solution of a linear equation system, can be

applied to this representation directly.

The Kronecker approach was first conceived by Plateau in [Pla85] and applied to

CTMCs modelled in a formalism called stochastic automata networks. It was later ex-

tended by Donatelli [Don94] to certain classes of stochastic Petri nets, a commonly used

formalism in performance analysis.

Further work [Kem96, CT96, BCDK97] removed some of the restrictions on the type

of model to which the techniques could be applied and addressed a number of implemen-

tation issues. For example, early approaches such as [Pla85] operated over the product

state space of the components, which may be considerably larger than the subset which

is actually reachable. This means that larger vectors have to be stored and the time

complexity of numerical solution is increased because spurious matrix entries have to be

detected and ignored. Schemes such as binary search over ordered sets and multi-level

data structures were used to allow solution using the reachable state space only. Another

improvement was the development of methods whereby the relatively slowly converging

Power method could be replaced by speedier alternatives such as Gauss-Seidel. The over-

all effect is that the Kronecker-based approaches can increase by approximately an order

of magnitude the size of model which can be handled whilst maintaining solution speed

comparable with sparse matrix implementations.

Of particular interest to us is recent work by Ciardo and Miner, presented in [CM99,

Min00] and integrated within the tool SMART [CM96], into developing efficient data

structures to perform Kronecker-based solution of CTMCs. They introduce a data struc-

ture called matrix diagrams for this purpose. This complements existing work by the

authors [CM97] which considers structured approaches for computing and storing the

reachable state space of stochastic Petri nets. The latter uses multi-valued decision di-

agrams (MDDs), a generalisation of BDDs. Matrix diagrams store the small Kronecker

matrices in a BDD-like tree data structure. Ciardo and Miner developed efficient al-

gorithms for extracting matrix columns from the data structure, which can be used to

implement the Gauss-Seidel method for numerical solution. In [Min01], Miner presents

an extension called ‘canonical’ matrix diagrams, which differ from conventional matrix

diagrams by giving a canonical representation of matrices, rather than being tied to a

particular Kronecker-algebraic expression. From the point of view of numerical compu-

tation, the data structure is identical. We will give a more technical discussion of the

similarities and differences between our work and the Kronecker-based techniques after

describing our approach in Chapter 6.
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2.5 Tools and Implementations

As stated previously, one of the primary motivations for the work in this thesis was the

limited number of available tools for probabilistic model checking. We conclude this

chapter by reviewing the implementations which have been produced.

We are aware of two prototype probabilistic model checkers which were developed

before the work in this thesis commenced. The first is TPWB (Time and Probability

Workbench) [Fre94]. This implements the algorithms presented in [Han94] for model

checking the logic TPCTL over systems described in the process algebra TPCCS, which

allows both probability and discrete-time to be modelled. This incorporates model check-

ing of PCTL over DTMCs, as described in [HJ94], which we consider.

The second is ProbVerus [HGCC99], an extension of the tool Verus [Cam96]. This

supports model checking of DTMCs using a subset of PCTL (until formulas are restricted

to the bounded variant) and was developed to accompany the work presented in [HG98].

Of particular interest from our point of view is the fact that, in contrast to TPWB, it

was implemented using MTBDDs.

More recently, [HKMKS00] presented the tool E T MC2 (Erlangen-Twente Markov

Chain Checker). This provides model checking of both CSL over CTMCs and PCTL over

DTMCs. E T MC2 is not a symbolic model checker: it uses explicit data structures such

as sparse matrices. The transition matrices for the DTMCs or CTMCs to be analysed are

also specified explicitly: the user provides a list of all the states and transitions which make

up the model. The format in which E T MC2 accepts this information allows it to be used

in conjunction with other tools, such as TIPPtool [HHK+98], which constructs a CTMC

from a process algebra description. TIPPtool, along with numerous other applications

such as MARCA [Ste94], SMART [CM96], PEPA [GH94] and TwoTowers [BCSS98],

supports conventional steady-state and transient analysis of CTMCs, but not probabilistic

temporal logic model checking.

Our tool, PRISM [KNP02a], supports model checking of three types of probabilistic

model: DTMCs, CTMCs and MDPs. As described in the previous paragraphs, there is

a degree of overlap with other tools in terms of support for DTMC and CTMC analysis.

As far as we are aware, though, PRISM is the only fully-fledged tool to provide model

checking of MDPs. The only comparable implementation in this respect is that presented

in [DJJL01] which implements the abstraction and refinement techniques, applicable to

a subset of PCTL model checking, introduced in the paper. More information about

PRISM can be found in Appendix A.



Chapter 3

Background Material

In this chapter, we introduce the necessary background material for this thesis. The first

three sections cover the theory behind probabilistic model checking. Sections 3.1 and

3.2 introduce the relevant models and temporal logics, respectively, and Section 3.3 gives

the corresponding model checking algorithms. In Section 3.4, we show how probabilistic

models can be specified in practice using the PRISM language. The final three sections

cover some of the practical issues which we need to consider for our implementation of

probabilistic model checking. Section 3.5 reviews iterative methods for solving systems

of linear equations. Sections 3.6 and 3.7 introduce the two main data structures used in

this thesis: sparse matrices and multi-terminal binary decision diagrams (MTBDDs).

3.1 Probabilistic Models

Traditional model checking involves verifying properties of labelled state transition sys-

tems. In the context of probabilistic model checking, however, we use models which also

incorporate information about the likelihood of transitions between states occurring. In

this thesis, we consider three different types of probabilistic model: discrete-time Markov

chains, Markov decision processes and continuous-time Markov chains.

3.1.1 Discrete-Time Markov Chains

The simplest of the models we consider are discrete-time Markov chains (DTMCs), which

simply define the probability of making a transition from one state to another. They can

be used to model either a single probabilistic system or several such systems composed in

a synchronous fashion. We define a DTMC as a tuple (S, s,P, L) where:

• S is a finite set of states

18
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• s ∈ S is the initial state

• P : S × S → [0, 1] is the transition probability matrix

• L : S → 2AP is the labelling function.

An element P(s, s′) of the transition probability matrix gives the probability of making

a transition from state s to state s′. We require that
∑

s′∈S P(s, s′) = 1 for all states

s ∈ S. Terminating states are modelled by adding a self-loop (a single transition going

back to the same state with probability 1). The labelling function L maps states to sets

of atomic propositions from a set AP . We use these atomic propositions to label states

with properties of interest.

An execution of the system which is being modelled is represented by a path through

the DTMC. A path ω is a non-empty sequence of states s0s1s2 . . . where si ∈ S and

P(si, si+1) > 0 for all i ≥ 0. The ith state of ω is denoted by ω(i). A path can be either

finite or infinite. For a finite path ωfin , the last state is written last(ωfin). We say that a

finite path ωfin of length n is a prefix of the infinite path ω if the first n+1 states of ω are

exactly as given by ωfin . Unless stated explicitly, we always deal with infinite paths. The

set of all (infinite) paths starting in state s is Paths.

Since an execution of the system corresponds to a path, in order to reason about the

probabilistic behaviour of the system, we need to be able to determine the probability

that paths in a DTMC are taken. We do this in the standard way [KSK66] by, for each

state s ∈ S, defining a probability measure Probs on Paths. The probability measure is

induced by the transition probability matrix P in the following way. We first define the

probability P(ωfin) of a finite path ωfin as P(ωfin) = 1 if ωfin consists of a single state s0 and

P(ωfin) = P(s0, s1) ·P(s1, s2) · · ·P(sn−1, sn) in the general case where ωfin = s0s1 . . . sn.

We next define the cylinder set C(ωfin), corresponding to a finite path ωfin , as the

set of all paths with prefix ωfin . Then, let Σs be the smallest σ-algebra on Paths which

contains all the sets C(ωfin) where ωfin ranges over all finite paths starting in s. We

define the probability measure Probs on Σs as the unique measure with Probs(C(ωfin)) =

P(ωfin). We can now quantify the probability that a DTMC behaves in a specified fashion

by identifying the set of paths which satisfy this specification and, assuming that it is

measurable, using the associated measure Probs.

3.1.2 Markov Decision Processes

The second type of model we consider, Markov decision processes (MDPs), can be seen

as a generalisation of DTMCs. An MDP can describe both nondeterministic and proba-

bilistic behaviour. It is well known that nondeterminism is a valuable tool for modelling

concurrency: an MDP allows us to describe the behaviour of a number of probabilistic
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systems operating in parallel. Nondeterminism is also useful when the exact probability

of a transition is not known, or when it is known but not considered relevant. We define

an MDP as a tuple (S, s, Steps , L) where:

• S is a finite set of states

• s ∈ S is the initial state

• Steps : S → 2Dist(S) is the transition function

• L : S → 2AP is the labelling function.

The set S, initial state s and labelling function L are as for DTMCs. The transition

probability matrix P, however, is replaced by Steps , a function mapping each state s ∈ S
to a finite, non-empty subset of Dist(S), the set of all probability distributions over S (i.e.

the set of all functions of the form µ : S → [0, 1] where
∑

s∈S µ(s) = 1). Intuitively, for a

given state s ∈ S, the elements of Steps(s) represent nondeterministic choices available in

that state. Each nondeterministic choice is a probability distribution, giving the likelihood

of making a transition to any other state in S.

A path in the MDP is a non-empty sequence of the form s0
µ1−→ s1

µ2−→ s2 . . . where

si ∈ S, µi+1 ∈ Steps(si) and µi+1(si+1) > 0 for all i ≥ 0. As for DTMCs, ω(i) denotes the

ith state of a path ω and last(ωfin) is the last state of a finite path ωfin . Likewise, Paths

is the set of all (infinite) paths starting in state s.

Note that to trace a path through an MDP, both the nondeterministic and probabilistic

choices have to be resolved. We assume that the nondeterministic choices are made by

an adversary (also known as a ‘scheduler’ or ‘policy’), which selects a choice based on

the history of choices made so far. Formally, an adversary A is a function mapping every

finite path ωfin of the MDP onto a distribution A(ωfin) ∈ Steps(last(ωfin)). We denote by

PathAs the subset of Paths which corresponds to adversary A.

The behaviour of the MDP under a given adversary A is purely probabilistic. It can

be described by a (usually infinite state) DTMC whose states are associated with finite

paths of the original MDP and where the probability of making a transition between

two such states is given by the probability distribution selected by A. More specifically,

the state space of this DTMC is equal to the set of all finite paths in the MDP and its

transition probability matrix PA is defined as follows. For two finite paths ω and ω′,

PA(ω, ω′) = A(ω)(s) if ω′ is of the form ω
A(ω)−−→ s and PA(ω, ω′) = 0 otherwise. For

a state s ∈ S, there is a one-to-one correspondence between the paths of this DTMC

which start with the zero-length path s and the set of paths PathAs in the MDP. Hence,

using the probability measure over DTMCs given in the previous section, we can define a

probability measure ProbAs over the set of paths PathAs . The interested reader is referred

to [BK98] for a more in-depth coverage of this material.
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Reasoning about the precise probabilistic behaviour of an MDP for a single adversary

is of limited use. We can, however, still verify meaningful properties of the MDP by com-

puting the maximum or minimum probability that some specified behaviour is observed

over all possible adversaries.

It is useful to extend this idea by computing the maximum or minimum probability

for some class of adversaries. In particular, this allows the notion of fairness to be

introduced. Consider an MDP which models several probabilistic systems running in

parallel. Effectively, an adversary of the MDP selects which system is scheduled and

when. It will often be impossible to verify basic properties of this system without making

some assumptions about the fairness of this scheduling.

We will do this by distinguishing between fair and unfair adversaries. We use the

definitions of fairness from [BK98], which are loosely based on those of [Var85]. For

alternative notions of fairness in probabilistic systems, see for example [dA98, BK98]. We

say that a path ω of an MDP is fair if, for states s occurring infinitely often in ω, each

choice µ ∈ Steps(s) is taken infinitely often. We then define an adversary A to be fair if

ProbAs ({ω ∈ PathAs | ω is fair}) = 1 for all s ∈ S.

In our description of MDPs, we have adopted the terminology and notation of [BK98],

although they refer to them as ‘concurrent probabilistic systems’. The model can be also

seen as a generalisation of the ‘concurrent Markov chains’ of [Var85] and is essentially the

same as the ‘simple probabilistic automata’ of [SL94]. Note that, for our purposes, we

omit some features which are frequently found in the definition of an MDP: action labels

for nondeterministic choices and state- or choice-based rewards.

3.1.3 Continuous-Time Markov Chains

The final type of model, continuous-time Markov chains (CTMCs), also extend DTMCs

but in a different way. While each transition of a DTMC corresponds to a discrete time-

step, in a CTMC transitions can occur in real time. Each transition is labelled with a

rate, defining the delay which occurs before it is taken. The delay is sampled from a

negative exponential distribution with parameter equal to this rate. We define a CTMC

as a tuple (S, s,R, L) where:

• S is a finite set of states

• s ∈ S is the initial state

• R : S × S → IR≥0 is the transition rate matrix

• L : S → 2AP is the labelling function.

The elements S, s and L are, again, as for DTMCs. The transition rate matrix R, however,

gives the rate, as opposed to the probability, of making transitions between states. For
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states s and s′, the probability of a transition from s to s′ being enabled within t time

units is 1 − e−R(s,s′)·t. Typically, there is more than one state s′ with R(s, s′) > 0. This

is known as a race condition. The transition taken will be the one which is enabled first.

Hence, it can be shown that the actual probability P(s, s′) of moving from state s to

state s′ in a single step is R(s, s′)/
∑

s′′∈S R(s, s′′) (unless s has no outgoing transitions,

in which case we set P(s, s′) to 1 if s = s′ and to 0 if s 6= s′). This information is captured

by the embedded Markov chain, a DTMC (S, s,P, L), where S, s and L are identical to

the CTMC and P(s, s′) is as just described. Note that we do allow self-loops, i.e. states

s with R(s, s) > 0. We also define the generator matrix Q of the CTMC as follows:

Q(s, s′) = R(s, s′) if s 6= s′ and Q(s, s′) = −
∑

s′′ 6=s R(s, s′′) if s = s′.

A path in a CTMC is a non-empty sequence s0t0s1t1s2 . . . where R(si, si+1) > 0 and

ti ∈ IR>0 for all i ≥ 0. The value ti represents the amount of time spent in the state si.

As with DTMCs and MDPs, we denote by ω(k) the kth state of a path ω, i.e. sk. In

addition, we denote by ω@t the state occupied at time t, i.e. ω(k) where k is the smallest

index for which
∑k

i=0 ti ≥ t.

We again denote by Paths the set of all infinite paths starting in state s. The prob-

ability measure Probs over Paths, taken from [BKH99], can be defined as follows. If the

states s0, . . . , sn ∈ S satisfy R(si, si+1) > 0 for all 0 ≤ i < n and I0, . . . , In−1 are non-

empty intervals in IR≥0, then the cylinder set C(s0, I0, . . . , In−1, sn) is defined to be the

set containing all paths s′0t0s
′
1t1s

′
2 . . . where si = s′i for i ≤ n and ti ∈ Ii for i < n.

We then let Σs be the smallest σ-algebra on Paths which contains all the cylinder sets

C(s0, I0, . . . , In−1, sn) where s0, . . . , sn ∈ S range over all sequences of states with s0 = s

and R(si, si+1) > 0 for 0 ≤ i < n, and I0, . . . , In−1 range over all sequences of non-empty

intervals in IR≥0. The probability measure Probs on Σs is then the unique measure defined

inductively by Probs(C(s0)) = 1 and Probs(C(s0, . . . , sn, In, sn+1)) equal to:

Probs(C(s0, . . . , sn)) ·P(sn, sn+1) ·
(
e− inf In·

∑
s′∈S Q(sn,s′) − e− sup In·

∑
s′∈S Q(sn,s′)

)
In addition to path probabilities, we consider two more traditional properties of CTMCs:

transient behaviour, which relates to the state of the model at a particular time instant;

and steady-state behaviour, which describes the state of the CTMC in the long run.

The transient probability πs,t(s
′) is defined as the probability, having started in state

s, of being in state s′ at time instant t. The steady-state probability πs(s
′) is defined

as limt→∞ πs,t(s
′). For a certain class of CTMCs, namely those which are ergodic, the

steady-state probability distribution can be shown to be independent of the initial state

s. More information on this can be found in any standard text on CTMCs, e.g. [Ste94].

For simplicity, in this thesis we only deal with ergodic CTMCs.



3 - Background Material 23

3.2 Probabilistic Specification Formalisms

We now describe the formalisms that we use to specify properties of our models. As is

usually the case with model checking, these are temporal logics; in this case PCTL, which

is interpreted over DTMCs or MDPs, and CSL, which is interpreted over CTMCs.

3.2.1 PCTL

PCTL (Probabilistic Computational Tree Logic) [HJ94] is a probabilistic extension of the

temporal logic CTL. It is essentially the same as the logic pCTL of [ASB+95]. The syntax

of PCTL is as follows:

φ ::= true
∣∣ a ∣∣ φ ∧ φ ∣∣ ¬φ ∣∣ P./ p[ψ]

ψ ::= X φ
∣∣ φ U≤k φ ∣∣ φ U φ

where a is an atomic proposition, ./∈{≤, <,≥, >}, p ∈ [0, 1] and k ∈ IN. PCTL formulas

are interpreted over a DTMC or an MDP. Note that each atomic proposition a must be

taken from the set used to label the states of this DTMC or MDP.

In the syntax above we distinguish between state formulas φ and path formulas ψ,

which are evaluated over states and paths, respectively. A property of a model will

always be expressed as a state formula. Path formulas only occur as the parameter of the

probabilistic path operator P./ p[ψ]. Intuitively, a state s satisfies P./ p[ψ] if the probability

of taking a path from s satisfying ψ is in the interval specified by ./ p.

As path formulas we allow the X (next), U≤k (bounded until) and U (until) operators

which are standard in temporal logic. Intuitively, X φ is true if φ is satisfied in the next

state; φ1 U≤k φ2 is true if φ2 is satisfied within k time-steps and φ1 is true up until that

point; and φ1 U φ2 is true if φ2 is satisfied at some point in the future and φ1 is true up

until then. In the following two sections, we formally define the semantics of PCTL over

DTMCs and MDPs.

PCTL over DTMCs

For a DTMC (S, s,P, L), state s ∈ S and PCTL formula φ, we write s |=φ to indicate

that φ is satisfied in s. Alternatively, we say that φ holds in s or is true in s. We denote

by Sat(φ) the set {s ∈ S | s |=φ} of all states satisfying the formula φ. Similarly, for a

path ω satisfying path formula ψ, we write ω |=ψ. We can now give the formal semantics

of PCTL over DTMCs. For a path ω:

ω |=X φ ⇐⇒ ω(1) |=φ

ω |=φ1 U≤k φ2 ⇐⇒ ∃i ≤ k . (ω(i) |=φ2 ∧ ω(j) |=φ1 ∀j < i)

ω |=φ1 U φ2 ⇐⇒ ∃k ≥ 0 . ω |=φ1 U≤k φ2
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and for a state s ∈ S:

s |= true for all s ∈ S
s |= a ⇐⇒ a ∈ L(s)

s |=φ1 ∧ φ2 ⇐⇒ s |=φ1 ∧ s |=φ2

s |=¬φ ⇐⇒ s 6|=φ

s |=P./ p[ψ] ⇐⇒ ps(ψ) ./ p

where ps(ψ) = Probs({ω ∈ Paths | ω |=ψ}). The probability Probs assigned to this set

of paths is as defined in Section 3.1.1 and is provably measurable for all possible PCTL

path formulas (see e.g. [Var85]).

PCTL over MDPs

The semantics of path formulas remain the same for MDPs as for DTMCs. However, as

we saw in Section 3.1.2, the probability of a set of paths in an MDP can only be computed

for a particular adversary. We denote by pAs (ψ) the probability that a path from s satisfies

path formula ψ under adversary A, i.e. pAs (ψ) = ProbAs ({ω ∈ PathAs | ω |=ψ}). To give

the semantics of a PCTL formula P./ p[ψ], we choose a class of adversaries Adv (in this

thesis, either all possible adversaries or only the fair ones) and then quantify over this set.

We say that a state s satisfies P./ p[ψ] if pAs (ψ) ./ p for all adversaries A ∈ Adv . Hence,

the satisfaction relation is now parameterised by a class of adversaries Adv :

s |=Adv true for all s ∈ S
s |=Adv a ⇐⇒ a ∈ L(s)

s |=Adv φ1 ∧ φ2 ⇐⇒ s |=Adv φ1 ∧ s |=Adv φ2

s |=Adv ¬φ ⇐⇒ s 6|=Adv φ

s |=Adv P./ p[ψ] ⇐⇒ pAs (ψ) ./ p for all A ∈ Adv

Additional Operators

From the basic syntax of PCTL, given above, we can derive a number of additional useful

operators. Among these are the well known logical equivalences:

false ≡ ¬true

φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2)

φ1→φ2 ≡ ¬φ1 ∨ φ2

We also allow path formulas to contain the ♦ (diamond) operator, which is common

in temporal logic. Intuitively, ♦φ means that φ is eventually satisfied, and its bounded
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variant ♦≤kφ means that φ is satisfied within k time units. These can be expressed in

terms of the PCTL until and bounded until operators as follows:

♦φ ≡ true U φ

♦≤kφ ≡ true U≤k φ

When writing specifications for MDPs in PCTL, it may sometimes be useful to consider

the existence of an adversary, rather than state that all adversaries satisfy some property.

This can be done via translation to a dual property. For example, verifying that “there

exists an adversary A for which pAs (φ1 U φ2) ≥ p” is equivalent to model checking the

PCTL formula ¬P<1−p[φ1 U φ2].

A perceived weakness of PCTL is that it is not possible to determine the actual prob-

ability with which a certain path formula is satisfied, only whether or not the probability

meets a particular bound. However, since the PCTL model checking algorithms proceed

by computing the actual probability and then comparing it to the bound, this restriction

on the syntax can be relaxed. If the outermost operator of a PCTL formula is the P./ p
operator, we can omit the bound ./ p and simply compute the probability instead. Fur-

thermore, it may be useful to extend this idea by, for example, computing the probability

that a path formula ♦≤kφ is satisfied for several values of k and then plotting a graph of

this information.

For completeness, we should also discuss the limitations of PCTL. There are some

useful properties of DTMCs and MDPs which cannot be expressed in the logic. The

types of path formula, for example, supported by PCTL are quite limited. This could be

solved by using the logic LTL (linear time temporal logic) which allows more complex path

formulas. For example, we could compute the probability of the set of paths satisfying the

path formula ♦φ1 ∧♦φ2, i.e. those where both φ1 and φ2 are eventually satisfied (but not

necessarily at the same time). Note that this cannot be derived from the probabilities that

the individual path formulas ♦φ1 and ♦φ2 are satisfied. We could add further expressivity

by using the logic PCTL* [ASB+95, BdA95] which subsumes both PCTL and LTL.

Unfortunately this expressivity comes at a cost of increased model checking complexity.

The model checking algorithms for PCTL on both DTMCs [CY88, HJ94] and MDPs

[CY90, BdA95] are polynomial in the size of the model and linear in the size of the

formula. Model checking for LTL and PCTL*, e.g. [Var85, CY88, ASB+95, BdA95, BK98],

however, proceeds by translating the model to a larger one for a given property and is

exponential in the size of the formula for DTMCs and at least doubly exponential in the

size of the formula for MDPs.
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3.2.2 CSL

The logic CSL (Continuous Stochastic Logic) was introduced in [ASSB96] and extended

in [BKH99]. It is similar to the logic PCTL, but is designed to specify properties of

CTMCs. CSL provides a way to describe steady-state and transient behaviour which are

both elements of traditional CTMC analysis. It also allows specification of more involved

properties using the probabilistic path operator of PCTL. The syntax is:

φ ::= true
∣∣ a ∣∣ φ ∧ φ ∣∣ ¬φ ∣∣ P./ p[ψ]

∣∣ S./ p[φ]

ψ ::= X φ
∣∣ φ U≤t φ ∣∣ φ U φ

where a is an atomic proposition, ./∈{≤, <,≥, >}, p ∈ [0, 1] and t ∈ IR≥0.

As for PCTL, P./ p[ψ] indicates that the probability of the path formula ψ being

satisfied from a given state satisfies the bound ./ p. Path formulas are the same for CSL

as for PCTL except that the parameter t of the bounded until operator φ1 U≤t φ2 is a

non-negative real rather than an non-negative integer. The formula holds if φ2 is satisfied

at some time instant in the interval [0, t] and φ1 holds at all preceding time instants. To

avoid confusion, we will refer to this as the time-bounded until operator. The S operator

describes the steady-state behaviour of the CTMC. The formula S./ p[φ] asserts that the

steady-state probability of being in a state satisfying φ meets the bound ./ p.

CSL over CTMCs

As with PCTL, we write s |=φ to indicate that a CSL formula φ is satisfied in a state s

of a CTMC and denote by Sat(φ) the set {s ∈ S | s |=φ}. Similarly, for a path formula ψ

satisfied by path ω, we write ω |=ψ. For a CTMC (S, s,R, L), the semantics of CSL are:

ω |=X φ ⇐⇒ ω(1) is defined and ω(1) |=φ

ω |=φ1 U≤t φ2 ⇐⇒ ∃x ∈ [0, t] . (ω@x |=φ2 ∧ ω@y |=φ1 ∀y ∈ [0, x))

ω |=φ1 U φ2 ⇐⇒ ∃k ≥ 0 . (ω(k) |=φ2 ∧ ω(j) |=φ1 ∀j < k)

and:

s |= true for all s ∈ S
s |= a ⇐⇒ a ∈ L(s)

s |=φ1 ∧ φ2 ⇐⇒ s |=φ1 ∧ s |=φ2

s |=¬φ ⇐⇒ s 6|=φ

s |=P./ p[ψ] ⇐⇒ ps(ψ) ./ p

s |=S./ p[φ] ⇐⇒
∑

s′ |=φ πs(s
′) ./ p

where ps(ψ) = Probs({ω ∈ Paths | ω |=ψ}).
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Additional Operators

As with PCTL, we can derive CSL operators for false, ∨, → and ♦. Note, however, that

the bounded form of the diamond operator is ♦≤t, where t is a non-negative real, as in

the time-bounded until operator. Again, like with PCTL, when the outermost operator

of a CSL formula is P or S, we can omit the bound ./ p and just return the probability.

An extension specific to CSL is that the time-bound attached to a U or ♦ operator

can be replaced with an arbitrary time interval, allowing formulas such as:

P./ p[φ1 U [t1,t2] φ2]

P./ p[♦≥t φ]

Model checking is described in [BHHK00a] and is not much more expensive, requiring an

amount of work equivalent to model checking two of the simpler, time-bounded instances

described above. For simplicity, we do not consider this case here.

3.3 Probabilistic Model Checking

We now summarise the model checking algorithms for the three cases discussed previ-

ously: PCTL over DTMCs, PCTL over MDPs and CSL over CTMCs. A model checking

algorithm for either PCTL or CSL takes a model of the appropriate type, a formula φ in

the logic, and returns the set Sat(φ) containing the states of the model which satisfy φ.

The overall structure of the model checking algorithm is the same in all three cases,

and originates from the original CTL model checking algorithm presented in [CES86]. We

first construct the parse tree of the formula φ. Each node of the tree is labelled with a

subformula of φ and the root node is labelled with φ itself. Leaves of the tree will be

labelled with either true or an atomic proposition a. Working upwards towards the root

of the tree, we recursively compute the set of states satisfying each subformula. By the

end, we have determined whether each state in the model satisfies φ.

Model checking of the non-probabilistic operators of the two logics is performed iden-

tically for DTMCs, MDPs and CTMCs: it is trivial to deduce from the model which

states satisfy a given atomic proposition, and logical operators such as conjunction and

negation are also simple. The non-trivial cases are the P and S operators. Here, it is

necessary to compute the relevant probabilities and then identify the states which satisfy

the bound given in the formula. The calculation of probabilities required for each opera-

tor is described in the following sections. The time complexity of these computations is,

at worst, polynomial in the size of the model. Hence, the complexity for PCTL model

checking over DTMCs and MDPs or CSL model checking over CTMCs is linear in the

size of the temporal logic formula and polynomial in the size of the model.
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3.3.1 PCTL Model Checking of DTMCs

For model checking the PCTL P./ p[ψ] operator against a DTMC (S, s,P, L), we need to

compute the probability that a path leaving each state s will satisfy the path formula ψ.

When ψ is a PCTL next (X φ), bounded until (φ1 U≤k φ2) or until (φ1 U φ2) formula, we

calculate, for all states s ∈ S, the probabilities ps(X φ), ps(φ1 U≤k φ2) and ps(φ1 U φ2),

respectively. We then compute Sat(P./ p[ψ]) as {s ∈ S | ps(ψ) ./ p}. Because of the

recursive nature of the PCTL model checking algorithm, we can assume that the relevant

sets, Sat(φ), Sat(φ1) or Sat(φ2), are already known. The algorithms described in the

following sections were first presented in [CY88, HJ94].

PCTL Next

It is easy to show that ps(X φ) =
∑

s′∈Sat(φ) P(s, s′). Assuming that we have a state-

indexed vector φ with φ(s) = 1 if s |=φ and 0 otherwise, we can compute the vector

p(X φ) of required probabilities as follows: p(X φ) = P · φ. This requires a single matrix-

vector multiplication.

PCTL Bounded Until

We first divide all states into three disjoint sets: Sno , Syes , and S?. The sets Sno =

S\(Sat(φ1) ∪ Sat(φ2)) and Syes = Sat(φ2) contain the states for which ps(φ1 U≤k φ2) is

trivially 0 or 1, respectively. The set S? = S\(Sno ∪ Syes) contains all remaining states.

For these states, we have:

ps(φ1 U≤k φ2) =

{
0 if k = 0∑

s′∈S P(s, s′) · ps(φ1 U≤k−1 φ2) if k ≥ 1

If we define the matrix P′ as:

P′(s, s′) =


P(s, s′) if s ∈ S?

1 if s ∈ Syes and s = s′

0 otherwise

and abbreviate the vector of required probabilities p(φ1 U≤k φ2) to pk, the computation

needed is as follows. For k = 0, p0(s) = 1 if s ∈ Syes and 0 otherwise. For k > 0,

pk = P′ · pk−1. In total, this requires k matrix-vector multiplications.

PCTL Until

As with the bounded until operator, one can identify the sets for which ps(φ1 U φ2) is

trivially 0 or 1. In this case, it is useful to extend these sets to contain all states for which
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Prob0(Sat(φ1),Sat(φ2))

1. R := Sat(φ2)

2. done := false

3. while (done = false)

4. R′ := R ∪ {s ∈ Sat(φ1) | ∃s′ ∈ R .P(s, s′) > 0}
5. if (R′ = R) then done := true

6. R := R′

7. endwhile

8. return S\R

Figure 3.1: The Prob0 algorithm

Prob1(Sat(φ1),Sat(φ2), Sno)

1. R := Sno

2. done := false

3. while (done = false)

4. R′ := R ∪ {s ∈ (Sat(φ1)\Sat(φ2)) | ∃s′ ∈ R .P(s, s′) > 0}
5. if (R′ = R) then done := true

6. R := R′

7. endwhile

8. return S\R

Figure 3.2: The Prob1 algorithm

ps(φ1 U φ2) is exactly 0 or 1. As above, we denote these sets Sno and Syes . They can

be determined with the fixpoint algorithms Prob0 and Prob1, respectively, described

in Figures 3.1 and 3.2. Prob0 computes all the states from which it is possible, with

non-zero probability, to reach a state satisfying φ2 without leaving states satisfying φ1.

It then subtracts these from S to determine the states which have a zero probability.

Prob1 computes the set Syes in a similar fashion to Prob0 by first determining the set

of states for which the probability is less than 1. These are the states from which there

is a non-zero probability of reaching a state in Sno passing only through states satisfying

φ1 but not φ2.

These two algorithms form the first part of the calculation of ps(φ1 U φ2). For this

reason, we refer to them as precomputation algorithms. It should be noted that for qual-

itative PCTL properties (i.e. where the bound p in the P./ p operator is either 0 or 1) or

for cases where ps(φ1 U φ2) happens to be either 0 or 1 for all states (i.e. Sno ∪ Syes = S),

it suffices to use these precomputation algorithms. For quantitative properties with an

arbitrary bound ./ p, numerical computation is also usually required. The precompu-
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Figure 3.3: A 4 state DTMC and its transition probability matrix

tation algorithms are still valuable, though, particularly since they determine the exact

probability for the states in Sno and Syes , whereas numerical computation typically only

computes an approximation and may also be subject to round-off errors.

We still need to compute ps(φ1 U φ2) for the remaining states S? = S\(Sno ∪ Syes).

This can be done by solving the linear equation system in variables {xs | s ∈ S}:

xs =


0 if s ∈ Sno

1 if s ∈ Syes∑
s′∈S P(s, s′) · xs′ if s ∈ S?

and then letting ps(φ1 U φ2) = xs. To rewrite this in the traditional A · x = b form, we

let A = I−P′ where I is the identity matrix and P′ is given by:

P′(s, s′) =

{
P(s, s′) if s ∈ S?

0 otherwise

and b is a column vector over states with b(s) equal to 1 if s ∈ Syes and 0 otherwise.

The system A · x = b can then be solved by any standard approach. These include

direct methods, such as Gaussian elimination, or iterative methods, such as Jacobi and

Gauss-Seidel. Since we are aiming to solve these problems for very large models, we will

concentrate on iterative methods. This is discussed further in Section 3.5.

Example

We conclude our coverage of model checking for DTMCs with a simple example. Figure 3.3

shows a DTMC with four states {0, 1, 2, 3}. In our graphical notation, states are drawn as

circles and transitions as arrows, labelled with their associated probabilities. The initial

state is indicated by an additional incoming arrow. The atomic propositions attached to

each state, in this case taken from the set {a, b}, are also shown.

We consider the PCTL formula P≥0.5[¬ b U a]. Hence, we need to calculate the prob-

ability ps(¬ b U a) for s ∈ {0, 1, 2, 3}. Since a is true in state 2 and neither a nor ¬ b are
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true in state 3, the probabilities for these two states are 1 and 0, respectively. On this

simple example, the precomputation algorithms Prob0 and Prob1 identify no further

states with ps(¬ b U a) equal to 0 or 1. Thus, Sno = {3}, Syes = {2} and S? = {0, 1}.
The remaining probabilities can be computed by solving the following system of linear

equations: x0 = x1, x1 = 0.5x0 + 0.3x2 + 0.2x3, x2 = 1 and x3 = 0. This yields the

solution (x0, x1, x2, x3) = (0.6, 0.6, 1, 0). Letting ps(¬ b U a) = xs, we see that the formula

P≥0.5[¬ b U a] is satisfied by states 0, 1 and 2.

3.3.2 PCTL Model Checking of MDPs

For an MDP (S, s, Steps , L), we are again required to compute probabilities for PCTL

next, bounded until and until operators. Since we need to determine whether or not the

bound ./ p is satisfied for all adversaries in some set Adv , we actually compute either the

maximum or minimum probability for the formula, depending on whether the relational

operator ./ defines an upper or lower bound:

s |=Adv P≤p[ψ] ⇐⇒ pmax
s (ψ) ≤ p

s |=Adv P<p[ψ] ⇐⇒ pmax
s (ψ) < p

s |=Adv P≥p[ψ] ⇐⇒ pmin
s (ψ) ≥ p

s |=Adv P>p[ψ] ⇐⇒ pmin
s (ψ) > p

where pmax
s (ψ) = maxA∈Adv [pAs (ψ)] and pmin

s (ψ) = minA∈Adv [pAs (ψ)]. The computation of

pmax
s (ψ) or pmin

s (ψ) differs depending on whether the set Adv is all adversaries or the set

of fair adversaries. In fact this is only true for PCTL until formulas; for next and bounded

until formulas, there is no difference. Intuitively, this is because they relate to paths of

bounded length and fairness only places restrictions on the long-run (infinite) behaviour

of the model. The model checking algorithms we give here are those of [CY90, BdA95]

plus the extensions in [BK98, Bai98] for handling fairness and in [dA97, dAKN+00] for

the Prob1E precomputation algorithm.

PCTL Next

We first consider the PCTL next operator. This is very similar to the case for DTMCs:

pmax
s (X φ) = maxµ∈Steps(s)

{∑
s′∈Sat(φ) µ(s′)

}
pmin
s (X φ) = min µ∈Steps(s)

{∑
s′∈Sat(φ) µ(s′)

}
Let m be the total number of nondeterministic choices in all states of the MDP, i.e.

m =
∑

s∈S |Steps(s)|. We can represent the function Steps as an m × |S| matrix Steps,
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where each row of the matrix corresponds to a single nondeterministic choice. This means

that there are |Steps(s)| rows corresponding to each state s, rather than just one, as for a

DTMC. Assume we also have a state-indexed vector φ with φ(s) equal to 1 if s |=φ and 0

otherwise. We can carry out the computation above in two steps: firstly, a matrix-vector

multiplication Steps ·φ which computes the summation for each nondeterministic choice,

producing a vector of length m; and secondly, an operation which selects, from this vector,

the maximum or minimum value for each state, reducing the length from m to |S|.

PCTL Bounded Until

Again, computation for the PCTL bounded until operator is very similar to the case for

DTMCs. We first divide the set of all states into three disjoint subsets: Sno , Syes , and S?.

The sets Sno = S\(Sat(φ1) ∪ Sat(φ2)) and Syes = Sat(φ2) contain the states for which

pmax
s (φ1 U≤k φ2) or pmin

s (φ1 U≤k φ2) is trivially 0 or 1, respectively. The set S? is defined

as S\(Sno ∪ Syes) and contains all remaining states. For s ∈ S?, we have:

pmax
s (φ1 U≤k φ2) =

{
0 if k = 0

maxµ∈Steps(s)

{∑
s′∈S µ(s′) · pmax

s (φ1 U≤k−1 φ2)
}

if k ≥ 1

pmin
s (φ1 U≤k φ2) =

{
0 if k = 0

minµ∈Steps(s)

{∑
s′∈S µ(s′) · pmin

s (φ1 U≤k−1 φ2)
}

if k ≥ 1

If we assume, as above, that Steps is represented by the matrix Steps, then the com-

putation of pmax
s (φ1 U≤k φ2) or pmin

s (φ1 U≤k φ2) can be carried out in k iterations, each

one similar to the process described for the PCTL next operator. Every iteration will

comprise one matrix-vector multiplication and one maximum or minimum operation.

PCTL Until (All Adversaries)

For the PCTL until operator, we must distinguish between the case for all adversaries

and the case for fair adversaries. We begin with the former. The latter is covered in

the next section. We are required to compute either the probabilities pmax
s (φ1 U φ2) or

pmin
s (φ1 U φ2), which we will abbreviate to pmax

s and pmin
s , respectively, in the remainder

of this section. Likewise, we will use pAs to denote pAs (φ1 U φ2).

As for DTMCs, we first compute the sets Sno and Syes , which contain the states with

probability equal to exactly 0 or 1, respectively. When computing pmax
s , Sno contains

all the states for which pAs = 0 for every adversary A. We determine these with the

precomputation algorithm Prob0A. Conversely, Syes contains all the states for which

pAs = 1 for some adversary A. This is done with the precomputation algorithm Prob1E.

The two algorithms are shown in Figures 3.4 and 3.5, respectively.
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Prob0A(Sat(φ1),Sat(φ2))

1. R := Sat(φ2)

2. done := false

3. while (done = false)

4. R′ := R ∪ {s ∈ Sat(φ1) | ∃µ ∈ Steps(s) .∃s′ ∈ R .µ(s′) > 0}
5. if (R′ = R) then done := true

6. R := R′

7. endwhile

8. return S\R

Figure 3.4: The Prob0A algorithm

Prob1E(Sat(φ1),Sat(φ2))

1. R := S

2. done := false

3. while (done = false)

4. R′ := Sat(φ2)

5. done ′ := false

6. while (done ′ = false)

7. R′′ := R′ ∪
{
s ∈ Sat(φ1) | ∃µ ∈ Steps(s) .

. (∀s′ ∈ S . µ(s′) > 0→ s′ ∈ R) ∧ (∃s′ ∈ R′ . µ(s′) > 0)
}

8. if (R′′ = R′) then done ′ := true

9. R′ := R′′

10. endwhile

11. if (R′ = R) then done := true

12. R := R′

13. endwhile

14. return R

Figure 3.5: The Prob1E algorithm

Prob0E(Sat(φ1),Sat(φ2))

1. R := Sat(φ2)

2. done := false

3. while (done = false)

4. R′ := R ∪ {s ∈ Sat(φ1) | ∀µ ∈ Steps(s) .∃s′ ∈ R .µ(s′) > 0}
5. if (R′ = R) then done := true

6. R := R′

7. endwhile

8. return S\R

Figure 3.6: The Prob0E algorithm
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Prob0A works in a similar fashion to the earlier algorithm Prob0. It first computes

the states from which one can, under some adversary, with non-zero probability, reach a

state satisfying φ2 without leaving states satisfying φ1. It then subtracts these from S to

determine the states which have a zero probability for every adversary.

The Prob1E algorithm is more involved. It was first presented in [dAKN+00] but

is actually an extension of a related algorithm from [dA97]. In essence, it is similar to

Prob1, given earlier, in that it works by identifying states for which pmax
s is less than 1.

Prob1E is based on the computation of a double fixpoint and is hence implemented as

two nested loops. The outer loop computes a set of states R. By the end of the algorithm,

R will contain all the states s for which pAs = 1 for some adversary A, as required. Initially

R is set to S, i.e. all states. In each iteration of the outer loop, states are removed from R

for which there is no adversary A with pAs = 1. The inner loop identifies the states to be

removed as those which cannot reach a state in Sat(φ2) without passing through either a

state not in Sat(φ1) or a state already removed by the algorithm (i.e. not in R).

When computing pmin
s , Sno contains all states for which pAs = 0 for some adversary

A. This is computed with the algorithm Prob0E, given in Figure 3.6, which works in

an almost identical fashion to Prob0A. The approach taken in Prob1E, however, is

not applicable to the problem of determining states where pAs = 1 for every adversary A.

Hence, we take Syes to be the set of states Sat(φ2) for which pmin
s is trivially 1.

The computation of pmax
s or pmin

s for the remaining states in S? = S\(Sno ∪ Syes)

can then be performed by solving a linear optimisation problem over the set of variables

{xs | s ∈ S?}. For the case of pmax
s , the problem is:

Minimise
∑

s∈S? xs subject to the constraints

xs ≥
∑

s′∈S? µs(s
′) · xs′ +

∑
s′∈Syes µs(s

′)

for all s ∈ S? and all µs ∈ Steps(s)

and for the case of pmin
s :

Maximise
∑

s∈S? xs subject to the constraints

xs ≤
∑

s′∈S? µs(s
′) · xs′ +

∑
s′∈Syes µs(s

′)

for all s ∈ S? and all µs ∈ Steps(s)

In either case, the problem admits a unique optimal solution and we can let pmax
s = xs or

pmin
s = xs, respectively. These results can be found in [BT91, CY90, dA97].
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Linear optimisation problems can be solved using classic techniques such as the Sim-

plex method. However, as with model checking of the PCTL until operator over DTMCs,

these direct methods are not well suited to problems of the size we wish to deal with.

Fortunately, there is an alternative method for computing the probabilities pmax
s and pmin

s .

As shown in [Bai98], pmax
s = limn→∞ pmax

s
(n) where:

pmax(n)
s =


0 if s ∈ Sno

1 if s ∈ Syes

0 if s ∈ S? and n = 0

maxµ∈Steps(s)

{∑
s′∈S µ(s′) · pmax(n−1)

s

}
if s ∈ S? and n > 0

and pmin
s = limn→∞ p

min(n)
s where:

pmin(n)
s =


0 if s ∈ Sno

1 if s ∈ Syes

0 if s ∈ S? and n = 0

minµ∈Steps(s)

{∑
s′∈S µ(s′) · pmin(n−1)

s

}
if s ∈ S? and n > 0

The values of pmax
s and pmin

s can now be approximated by an iterative computation, which

calculates p
max(n)
s and p

min(n)
s for successive n, stopping when some convergence criterion

has been satisfied. In our experiments, we have used the same convergence criterion as

that applied in iterative methods for solving linear equation systems. This is discussed

in Section 3.5. Note the similarity between a single iteration of this method and one

of those required for the bounded until operator. Hence, assuming again that Steps is

represented by a matrix Steps, each iteration can be performed in the same way using

one matrix-vector multiplication and one maximum or minimum operation.

PCTL Until (Fair Adversaries Only)

We now describe the case of computing pmax
s and pmin

s over fair adversaries only, as pre-

sented in [BK98, Bai98]. The case for computing pmax
s actually remains unchanged, i.e.

we can simply use the algorithm from the previous section. The reason for this is as

follows. Because we are now considering a more restricted class of adversaries, the max-

imum probability clearly cannot increase. More importantly, though, it cannot decrease

either. This is because, for any adversary A, we can always construct a fair adversary A′

for which pA
′

s (φ1 U φ2) ≥ pAs (φ1 U φ2). Intuitively, the reason for this is that fairness only

places restrictions on infinite behaviour and, for a path to satisfy an until formula, only

some finite, initial portion of it is relevant.
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Figure 3.7: A 4 state MDP and the matrix representing its transition function

For the case of computing pmin
s , this argument cannot be applied. The minimum

probability over all fair adversaries can be higher than the minimum for all adversaries.

In the next section, we show a simple example where this is true. Fortunately, using the

technique of [Bai98], we can still compute pmin
s without much additional effort. The basic

idea is to solve a dual problem, calculating the probability that φ1 U φ2 is not satisfied.

In doing so, we convert the problem to one where the maximum, not the minimum,

probability is needed. For this, as we saw above, we can ignore fairness and use the

method from the previous section. The desired probabilities can then be obtained from

the computed probabilities by subtracting from 1.

The dual problem is constructed as follows. Let S+ be the set of states for which

pmax
s > 0. This can be computed using the Prob0A precomputation algorithm described

above. Then, let S# be the set S+\Sat(φ2). Using atomic propositions a+ and a# to label

states in the sets S+ and S#, respectively, it is shown in [Bai98] that, for a fair adversary

A, pAs (φ1 U φ2) = 1 − pAs (a# U ¬ a+). Hence, as described above, the problem reduces

to computing pmax
s (a# U ¬ a+), for which fairness is irrelevant.

Example

We now give some simple examples of PCTL model checking over an MDP. Figure 3.7

shows an MDP with four states {0, 1, 2, 3}. As with DTMCs, states are drawn as circles

and transitions as arrows, labelled with their associated probabilities. We join transitions

corresponding to the same nondeterministic choice with an arc. This is only necessary

when a choice can select more than one state with non-zero probability. Again, atomic

propositions from the set {a, b} label each state. We also give the matrix Steps, repre-

senting the transition function Steps of the MDP. Each row of the matrix corresponds to

a single nondeterministic choice. For clarity, we separate the choices for each state with

a horizontal line.

We begin by considering the formula P≤0.5[¬ b U a], model checking over all adver-
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saries. Since “≤0.5” defines an upper bound, we are required to compute the maximum

probabilities pmax
s (¬ b U a) for s ∈ {0, 1, 2, 3}. We see immediately that pmax

2 (¬ b U a) = 1

and pmax
3 (¬ b U a) = 0. The precomputation algorithms Prob0A and Prob1E yield no

additional states so we have Sno = {3}, Syes = {2} and S? = {0, 1}. The values of

pmax
s (¬ b U a) for states 0 and 1 can be computed by solving the linear optimisation

problem “Minimise x0 + x1 such that x0 ≥ x1, x1 ≥ x0 and x1 ≥ 0.6” which has the

unique, optimal solution (x0, x1) = (0.6, 0.6). Hence, our required vector of probabilities

is (0.6, 0.6, 1, 0) and the formula P≤0.5[¬ b U a] is satisfied only by state 3.

Note that an adversary of this MDP actually only has to make a choice in state 1

since |Steps(s)| = 1 for s ∈ {0, 2, 3}. Consider the adversary A which selects the 0.6/0.4

probability distribution the first time state 1 is reached. From this point on, state 1

can never be reached again and so A has no more decisions to make. It can be seen

that the probabilities pAs (¬ b U a) are equal to the maximum probabilities (0.6, 0.6, 1, 0).

Furthermore, the adversary A is fair since state 1 cannot occur infinitely often in any

path, from any state, corresponding to A. Hence, the values of pmax
s (¬ b U a) are the

same when calculated over fair adversaries only. In fact, we already knew this since the

model checking algorithm states that the computation remains unchanged.

Secondly, we consider the formula P≥0.5[¬ b U a]. Since this contains a lower bound, we

need to compute the minimum probabilities pmin
s (¬ b U a) for s ∈ {0, 1, 2, 3}. We first per-

form model checking over all adversaries. As above, pmin
2 (¬ b U a) and pmin

3 (¬ b U a) are

trivially 1 and 0, respectively. On this occasion, however, the precomputation algorithm

Prob0E identifies that pmin
s (¬ b U a) is also 0 for states 0 and 1. Thus, Sno = {0, 1, 3},

Syes = {2}, S? = ∅ and P≥0.5[¬ b U a] is only satisfied in state 2. Like in the previous

example, we can easily construct a simple adversary A which results in these minimum

probabilities: the one which, in state 1, always selects the distribution leading to state 0

with probability 1. Clearly, under this adversary, it is impossible to reach state 2 from

either state 0 or state 1. Hence, pAs (¬ b U a) = 0 for s ∈ {0, 1}.
Note, however, that this adversary A is not fair since, in any path, state 1 is returned

to infinitely often but the same choice is made every time. Thus, it is possible that the

probabilities pmin
s (¬ b U a) may be different under fair adversaries only. In fact, this is

the case, as we now confirm by model checking.

Following the method outlined earlier, we begin by constructing the dual problem.

We get S+ = {0, 1, 2} and S# = {0, 1}. Thus, we must now compute the probabilities

pmax
s (a# U ¬ a+) where a# is satisfied in states 0 and 1, and ¬ a+ in state 3. Trivially,

pmax
3 (a# U ¬ a+) = 1 and pmax

2 (a# U ¬ a+) = 0. The algorithms Prob0A and Prob1E

identify no further states so Syes = {3}, Sno = {2} and S? = {0, 1}. The corresponding

linear optimisation problem is “Minimise x0+x1 such that x0 ≥ x1, x1 ≥ x0 and x1 ≥ 0.4”
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which yields the solution (x0, x1) = (0.4, 0.4). Subtracting the resulting probabilities

(0.4, 0.4, 0, 1) from 1, we get finally get that the values pmin
s (¬ b U a) are (0.6, 0.6, 1, 0)

and P≥0.5[¬ b U a] is satisfied in states 0, 1 and 2.

3.3.3 CSL Model Checking of CTMCs

In this section, we consider the computation of probabilities for the CSL next, time-

bounded until, until and steady-state operators. CSL model checking was shown to be

decidable (for rational time-bounds) in [ASSB96] and a model checking algorithm first

presented in [BKH99]. We use these techniques plus the subsequent improvements made

in [BHHK00a] and [KKNP01]. The CSL next and until operators depend only on the

probability of moving from one state to another, not the time at which this occurs. Hence,

in both cases, model checking can be performed on the embedded DTMC, proceeding as

in Section 3.3.1 above. We consider the remaining two operators below.

CSL Time-Bounded Until

For this operator, we need to determine the probabilities ps(φ1 U≤t φ2) for all states

s. As in previous cases, the probability for states which satisfy φ2 is trivially 1. We

reuse the Prob0 algorithm from Figure 3.1 above to determine the set of states which

cannot possibly reach a state satisfying φ2 passing only through states satisfying φ1. We

denote this set of states Sno . The probabilities for the remaining states must be computed

numerically. Originally, [BKH99] proposed to do this via approximate solution of Volterra

integral equation systems. Experiments in [HKMKS00] showed that this method was

generally slow and, in [BHHK00a], a simpler alternative was presented which reduces the

problem to transient analysis. This is a well studied problem in performance modelling,

for which efficient algorithms have been developed.

The basic idea is to modify the CTMC, removing all outgoing transitions from states

that either satisfy φ2 or are contained in Sno . Since a path in the new CTMC cannot exit

a state satisfying φ2 once it reaches one, and will never be able to reach a state satisfying

φ2 if it enters a state from Sno , the probability ps(φ1 U≤t φ2) in the original CTMC is

equal to the probability of being in a state satisfying φ2 at time t in the modified CTMC,

i.e.
∑

s′ |=φ2
πs,t(s

′). Hence, the problem reduces to computing the transient probabilities

πs,t(s
′) for all states s and s′ of the new CTMC.

For this, we will use a technique called uniformisation (also known as ‘randomisation’

or ‘Jensen’s method’). From the rate matrix Q, we compute the uniformised DTMC

P, given by P = I + Q/q where q ≥ maxs∈S |Q(s, s)|. Writing the vector of transient
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probabilities πs,t(s
′) over all states s′ ∈ S as πs,t, we have:

πs,t = πs,0 ·
∞∑
i=0

γi,q·t ·Pi

where γi,q·t is the ith Poisson probability with parameter q · t, i.e. γi,q·t = e−q·t · (q · t)i/i!.
The vector πs,0 gives the probability of being in each state at time t = 0. Since we begin

in state s, we have πs,0(s
′) equal to 1 if s′ = s and 0 otherwise. The weighted sum of

powers of P produces a matrix giving the probability of moving from any state in the

CTMC to any other state in t time units.

To compute the transient probabilities numerically, we can truncate the infinite sum-

mation above using the techniques of Fox and Glynn [FG88]. For some desired precision ε,

their method produces lower and upper bounds, Lε and Rε. Summing over these bounds

is then sufficient to compute the transient probabilities to within the specified precision.

As shown in [KKNP01], uniformisation can be adapted to compute the probabilities

for the CSL time-bounded until operator. Let p(φ1 U≤t φ2) be the required vector of

probabilities ps(φ1 U≤t φ2) for each state s. Assuming that φ2 is a vector with φ2(s)

equal to 1 if s |=φ2 and 0 otherwise, and truncating the infinite summation as described:

p(φ1 U≤t φ2) =

(
Rε∑
i=Lε

γi,q·t ·Pi

)
· φ2

=
Rε∑
i=Lε

(
γi,q·t ·Pi · φ2

)
Note that the inclusion of the vector φ2 within the brackets is vital since it allows explicit

computation of the matrix powers Pi to be avoided. Instead, each product Pi · φ2 is

calculated as P · (Pi−1 · φ2), reusing the computation from the previous iteration. The

bulk of the work required thus reduces to Rε matrix-vector multiplications.

CSL Steady-State

A state s satisfies the steady-state formula S./ p[φ] if
∑

s′ |=φ πs(s
′) ./ p. Therefore, to

model check the S./ p[φ] operator, we must compute the steady-state probabilities πs(s
′)

for all states s and s′. However, since we only consider the case of ergodic CTMCs, the

steady-state probabilities are in fact independent of the initial state s. Hence, we proceed

by computing the unique steady-state probability distribution of the CTMC and summing

over states satisfying φ. Depending on the bound ./ p, the formula S./ p[φ] is then satisfied

in either all states or no states. We denote the vector of steady-state probabilities for
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Figure 3.8: A 3 state CTMC with its transition rate matrix and generator matrix

all states as π. As shown in any standard text on CTMCs, such as [Ste94], this can be

computed by solving the linear equation system:

π ·Q = 0 and
∑

s′∈S π(s′) = 1

This system can be transposed as QT · πT = 0 and solved using standard methods, as for

the PCTL until operator over DTMCs. Again, we will opt to solve this using iterative,

rather than direct, methods. These are discussed in Section 3.5.

Example

We conclude this section with a simple example of CSL model checking. Figure 3.8 shows

a 3 state ergodic CTMC. We use exactly the same graphical notation as for DTMCs,

the only difference being that the transitions are now labelled with rates rather than

probabilities. We consider the CSL formula S≥0.6[b]. This requires us to calculate the

steady-state probability π(s′) for each state s′ ∈ {0, 1, 2}. Abbreviating π(s′) to xs′ , we

can determine these from the linear equation system:

−11x0 + 5x1 = 0

4x0 − 8x1 + 4x2 = 0

7x0 + 3x1 − 4x2 = 0

x0 + x1 + x2 = 1

which has solution (x0, x1, x2) = ( 5
33
, 1
3
, 17
33

). Since states 0 and 2 satisfy b, we compute∑
s′ |= b π(s′) = 5

33
+ 17

33
= 2

3
≥ 0.6 and hence the formula S≥0.6[b] is satisfied in all states.

3.4 The PRISM Language

In this section, we describe how the probabilistic models from the previous sections are

specified in practice using PRISM, the probabilistic model checker we have developed

to implement the techniques in this thesis. Typically, real life applications will result in
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models with a huge number of states. Clearly, it is impractical for the user to explicitly

list every state and transition of these models. The solution is to provide a high-level spec-

ification formalism to describe them in a meaningful fashion. Examples for probabilistic

models include stochastic process algebras and stochastic Petri nets.

PRISM has its own system description language for this purpose, based on the Reactive

Modules formalism of [AH99]. There were two main reasons for this choice. Firstly,

it provides a simple, consistent and intuitive way of specifying all three of the types

of model we consider: DTMCs, MDPs and CTMCs. Secondly, the language is well

suited to translation into MTBDDs, providing an ideal basis for experimentation into

symbolic probabilistic model checking. In this section, we explain the basic ideas behind

the language and give a number of illustrative examples. A formal specification of its

syntax and semantics can be found in Appendix B.

3.4.1 Fundamentals

The two basic elements of the PRISM language are modules and variables. A model is

defined as the parallel composition of several interacting modules. Each module has a set

of integer-valued, local variables with finite range. We will often refer to these as PRISM

variables. The local state of a module at a particular time is given by a valuation of its

local variables. A global state of the whole model is a valuation of the variables for all

modules.

A module makes a transition from one local state to another by changing the value

of its local variables. A transition of the whole model from one global state to another

comprises transitions for one or more of its component modules. This can either be asyn-

chronous, where a single module makes a transition independently, the others remaining

in their current state, or synchronous, where two or more modules make a transition

simultaneously.

The behaviour of each module, i.e. the transitions it can make in any given state,

are defined by a set of commands. Each command consists of a guard, which identifies a

subset of the global state space, and one or more updates, each of which corresponds to

a possible transition of the module. Intuitively, if the model is in a state satisfying the

guard of a command then the module can make the transitions defined by the updates

of that command. The probability that each transition will be taken is also specified

by the command. The precise nature of this information depends on the type of model

being described. This will be clarified in the following sections through a number of small

examples.
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dtmc

module M

v : [0..3] init 0;

[] (v = 0) → (v′ = 1);

[] (v = 1) → 0.5 : (v′ = 0) + 0.3 : (v′ = 2) + 0.2 : (v′ = 3);

[] (v = 2) → (v′ = 2);

[] (v = 3) → (v′ = 3);

endmodule

Figure 3.9: The PRISM language: Example 1

3.4.2 Example 1

As a first example, we consider a description of the 4 state DTMC from Figure 3.3. This

is shown in Figure 3.9. The first line identifies the model type, in this case a DTMC. The

remaining lines define the modules which make up the model. For this simple example,

only a single module M is required.

The first part of a module definition gives its set of local variables, identifying the

name, range and initial value of each one. In this case, we have a single variable v with

range [0..3] and initial value 0. Hence, the local state space of module M , and indeed the

global state space of the whole DTMC, is {0, 1, 2, 3}.
The second part of a module definition gives its set of commands. Each one takes

the form “ [] g → u ; ”, where g is the guard and u lists one or more updates. A guard

is a predicate over all the variables of the model (in this case, just v). Since each state

of the model is associated with a valuation of these variables, a guard defines a subset

of the model’s state space. The updates specify transitions that the module can make.

These are expressed in terms of how the values of the local variables would change if the

transition occurred. In our notation, v′ denotes the updated value of v, so “ v′ = 1 ”

implies simply that v’s value will change to 1.

Since the model is a DTMC, where more than one possible transition is listed, the

likelihood of each being taken is given by a discrete probability distribution. The second

command of M shows an example of this. There is a clear correspondence between this

probability distribution and the one in state 1 of the DTMC in Figure 3.3. When there

is only a single possible transition, we assume an implicit probability distribution which

selects this transition with probability 1. This information can be omitted from the

description, as is done in the first, third and fourth commands of M . Note that, in order

to ensure that the model described is a DTMC, we require that the guards of the module
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are disjoint.

Since this DTMC is the one which we used for our PCTL model checking example in

Section 3.3.1, we take this opportunity to illustrate how PCTL (and CSL) formulas are

specified in PRISM. The only important issue to consider is how atomic propositions, the

basic building blocks of the formulas, are expressed. The approach we take is to write

them as predicates over PRISM variables. For example, in Section 3.3.1, we illustrated

model checking of the PCTL formula P≥0.5[¬ b U a]. Since a is satisfied only in state 2

and b only in state 3, the formula becomes P≥0.5[¬ (v = 3) U (v = 2)].

This small example is slightly misleading since it gives the impression that, to include

an atomic proposition in a formula, we have to determine all the states satisfying it

and then encode them as a predicate over PRISM variables. In more realistic examples,

however, atomic propositions are used to label states with some property of interest.

Since it is the PRISM variables themselves which determine the ‘meaning’ of a state, it

is intuitive to describe atomic propositions in this way.

3.4.3 Example 2

Our second example, shown in Figure 3.10, describes an MDP. This is a slightly larger

model than Example 1 and illustrates some additional features of the PRISM language,

in particular demonstrating how several modules can be composed in parallel.

The model comprises two identical modules, M1 and M2, each with a single local

variable, v1 and v2, respectively. The basic layout of the definition for each module is as

described in Example 1. There are a few further points to note. Firstly, the commands

here are more complex: we have used additional operators such as ≤, ≥ and ∧ in the

guards; and the updates contain arithmetic expressions such as “ v′1 = v1−1 ”. Essentially,

though, they both function exactly as before.

Secondly, the examples demonstrate that the guard of a command in one module can

reference variables from another module. Note, for example, the presence of variable v2,

belonging to module M2, in the third and fourth commands of module M1. This applies

only to guards, not updates: a module can only specify how its own local variables can

change. Intuitively, this means that a module can read any variable in the model when

deciding what transition to perform next, but can only update its own local variables

when making the transition.

The complete model is constructed as the parallel composition of its component mod-

ules. The state space of the model is the product of the modules’ state spaces. In this

example, the state space of both M1 and M2 is {0, . . . , 10} so the global state space of the

model is {0, . . . , 10} × {0, . . . , 10}. By default, the parallel composition is asynchronous,
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mdp

module M1

v1 : [0..10] init 0;

[] (v1 = 0) → (v′1 = 1);

[] (v1 ≥ 1) ∧ (v1 ≤ 9) → 0.5 : (v′1 = v1 − 1) + 0.5 : (v′1 = v1 + 1);

[] (v1 = 10) ∧ (v2 ≤ 5) → (v′1 = 10);

[] (v1 = 10) ∧ (v2 > 5) → (v′1 = 9);

endmodule

module M2

v2 : [0..10] init 0;

[] (v2 = 0) → (v′2 = 1);

[] (v2 ≥ 1) ∧ (v2 ≤ 9) → 0.5 : (v′2 = v2 − 1) + 0.5 : (v′2 = v2 + 1);

[] (v2 = 10) ∧ (v1 ≤ 5) → (v′2 = 10);

[] (v2 = 10) ∧ (v1 > 5) → (v′2 = 9);

endmodule

Figure 3.10: The PRISM language: Example 2

meaning that each transition of the composed model corresponds to an independent tran-

sition of a single module.

We assume that, in each global state of the model, some form of scheduling takes

place to decide which module actually makes a transition. For MDPs, the scheduling is

nondeterministic. The transitions which an individual module can make in each state of

the model are defined by the description of that module. Note that, as in Example 1,

there may be more than one possible transition available and, where this is the case, the

module defines the probability that each is taken. Hence, each state of the resulting MDP

comprises a nondeterministic choice between several probability distributions.

We clarify this using the example. Consider state (0, 1) of the model, i.e. the state

where v1 = 0 and v2 = 1. If module M1 were scheduled, v1 would change to 1 with

probability 1. If module M2 were scheduled, v2 would change to either 0 or 2 with equal

probability 0.5. Hence, in state (0, 1) of the MDP, we have a nondeterministic choice

between a probability distribution which selects state (1, 1) with probability 1 or one

which selects states (0, 0) and (0, 2) with equal probability 0.5.

In an MDP, scheduling due to parallel composition is not the only possible source

of nondeterminism. We also allow local nondeterminism, where an individual module

can choose between several transitions. Such behaviour is specified through multiple

commands which have the overlapping guards. Returning to our example, let us assume
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ctmc

module Mq

vq : [0..50] init 0;

[] (vq < 50) → 5 : (v′q = vq + 1);

[serve] (vq > 0) → 1 : (v′q = vq − 1);

endmodule

module Ms

vs : [0..1] init 0;

[serve] (vs = 0) → 20 : (v′s = 1);

[] (vs = 1) → 7 : (v′s = 0);

endmodule

Figure 3.11: The PRISM language: Example 3

that module M1 had an additional command “[] (v1 = 0) → (v′1 = 2);”. Then, the

nondeterministic choice in state (0, 1) of the resulting MDP would have, in addition

to the two probability distributions described in the previous paragraph, a probability

distribution which selects state (2, 1) with probability 1.

Parallel composition of several PRISM modules is also applicable to DTMCs and

CTMCs. We deal with the case for CTMCs in the next section. For DTMCs, we assume

that the scheduling between modules is probabilistic and that each one is equally likely to

be scheduled. This is not a particularly useful model of concurrency, but is included for

completeness. In practice, DTMC models typically comprise either only a single module

or several modules which are fully synchronised (i.e. move in lock-step).

3.4.4 Example 3

Figure 3.11 shows our third example, which describes a CTMC. This illustrates how

CTMCs can provide an alternative to MDPs for modelling concurrent behaviour. It also

demonstrates how the PRISM language can be used to model synchronisation between

modules. The example comprises two modules, Mq and Ms, which represent a queue of

jobs and a server, respectively. Module Mq has a single local variable vq which represents

the number of jobs currently in the queue. Module Ms has a single variable vs. If vs = 0,

the server is free to accept a job; if vs = 1, it is busy processing one.

The basic layout of the model description and the definition of each module is the

same as in Examples 1 and 2. There are two main differences. Firstly, the updates of

each command are assigned rates, not probabilities (i.e. the values are not necessarily
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in the range [0, 1]). This is because we are describing a CTMC. Secondly, some of the

commands in the modules are labelled with actions, placed in the square brackets at the

start of the line. These are used for synchronisation and will be discussed shortly.

Like for an MDP or a DTMC, the parallel composition of several modules in a CTMC

model results in the product state space of its components, in this case {0, . . . , 50} ×
{0, 1}. Again, we must consider the scheduling between the modules. In a CTMC,

this concurrency is modelled naturally as a race condition. Consider state (0, 1) in our

example. Here, Mq can change vq to 1 and Ms can change vs to 0. These two transitions

are specified as having rate 5 and 7, respectively. Hence state (0, 1) of the CTMC will

contain two transitions, one to state (1, 1) with rate 5 and one to state (0, 0) with rate 7.

The module which is scheduled will be the one whose transition is enabled first.

In this case, the transitions occur asynchronously. However, transitions which corre-

spond to commands labelled with actions take place synchronously. Consider, for example,

the second command of Mq and the first command of Ms. These are both labelled with

the action serve. Hence, their transitions will take place simultaneously. For example, in

state (50, 0) of the model, Mq can change vq to 49 and Ms can change vs to 1. In the

CTMC, there will be a single, synchronous transition to state (49, 1). This represents the

server removing a job from the queue and beginning to process it.

We define the rate of a synchronous transition to be the product of its component

rates. This is a slightly contentious issue and a number of alternative schemes can be

found in the literature. Essentially, the source of the problem is that the behaviour of

both the individual components and the combined components must be modelled using

an exponential distribution. It is not possible, for example to make the time taken for

the synchronous transition to occur equal to the maximum of its component transitions,

since the maximum of two exponential distributions is not itself an exponential distribu-

tion. A good discussion of the various possible approaches and their relative merits and

disadvantages can be found in [Hil94].

One common usage of our approach, as illustrated in the example above, is the fol-

lowing. One component is denoted active and proceeds with some non-negative rate.

The other components are denoted passive, proceeding with rate 1. This means that

the combined rate is simply that of the active component. The principal advantage of

taking the product of the rates is that it provides us with a simple and consistent ap-

proach to the semantics and construction of all three of models: synchronisation can be

applied in an identical fashion to DTMC and MDP models. Here, the probability of a

synchronous transition occurring is equal to the product of the component probabilities.

This is an intuitive approach since it equals the probability of all transitions occurring. In

all cases, scheduling between a combination of asynchronous and synchronous behaviour
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is identical to that of the purely asynchronous case: an equiprobable choice for DTMCs,

a nondeterministic choice for MDPs and a race condition for CTMCs.

3.4.5 Additional Considerations

In this section, we have given an informal introduction to the PRISM language. Ap-

pendix B provides a formal description, explicitly stating its syntax and semantics. It

also covers two topics we have not discussed here: global variables and reachability.

The PRISM language allows a model to contain global variables in addition to the

local variables belonging to individual modules. A global state of the model is then a

valuation for each local variable and each global variable. The values of global variables

can be both read and modified by any module. This allows us to model shared memory,

providing an alternative to synchronisation for inter-module interaction.

Reachability is another important issue. We say that a state s of a model is reachable

if there exists a finite path starting in the initial state of the model and ending in s (note

that this definition applies to all three types of model: DTMCs, MDPs and CTMCs).

Since any execution of the model will only ever pass through states which are reachable,

we can ignore the states which are not. The state space of a model defined in the PRISM

language is the product of the state spaces of its modules, i.e. all possible valuations of

all PRISM variables in the model. Typically, only some subset of these will be reachable.

Hence, when translating a description in the PRISM language into a probabilistic model,

we compute this reachable subset (a process we refer to as reachability) and remove all

other states from the model.

3.5 Iterative Solution Methods

As we saw in Section 3.3, model checking for several operators of PCTL and CSL reduces

to the solution of a system of linear equations. We can assume that this system is of the

traditional form A · x = b, where A is a real-valued matrix, b is a real-valued vector, and

x is a vector containing the solution to be determined. Since the systems we solve are

derived from model checking problems, where matrices and vectors are indexed over a set

of states S, we assume that matrices and vectors are of size |S|× |S| and |S|, respectively,

and use the indexing 0, . . . , |S|−1.

Solving a system of linear equations is, of course, a well known and much studied

problem. Typically, methods for their solution fall into two distinct classes: direct methods

and iterative methods. Direct methods compute the exact solution (within the bounds

of numerical error) in a fixed number of steps. Examples include Gaussian elimination
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and L/U decomposition. Iterative methods compute successive approximations to the

solution, terminating when the sequence of solutions has converged to within some pre-

specified accuracy. Examples include the Power, Jacobi and Gauss-Seidel methods.

In this work we will only consider iterative methods. As with many applications,

probabilistic model checking typically produces systems where A is large and sparse.

Direct methods are not well suited to solving such systems because of a phenomenon

known as fill-in. Modifications made to A as the computation progresses usually increase

the number of non-zero elements. For large systems, the resulting growth in required

storage space can make the computation infeasible. Fortunately, this is not the case for

iterative methods. With the exception of some possible initialisation steps, the matrix

is not modified at all during computation, and hence there is no increase in memory

consumption.

There are also implications for the data structures used to implement the solution

methods. For iterative techniques, we are free to select matrix storage schemes with

strengths such as compactness and ease of access: we need not concern ourselves with

the efficiency of modifications to the matrix. Conventionally, this argument is applied to

sparse matrices, the traditional storage scheme for iterative methods, which we review

in Section 3.6. The arguments will also apply, however, to the symbolic data structures,

based on MTBDDs, which we introduce in Chapter 6.

In the following paragraphs we describe four of the most common iterative methods

for solving systems of linear equations: Jacobi, Gauss Seidel, JOR and SOR. The general

procedure for all four methods is as follows. Starting with some initial estimate, each

iteration produces an increasingly accurate approximation to the solution of the linear

equation system. The approximation computed in the kth iteration is denoted x(k). We

refer to this as the solution vector or iteration vector. Using the same notation, we denote

the initial estimate as x(0).

Each estimate x(k) is computed from the previous one x(k−1). The iterative process is

stopped when the solution vector is judged to have converged sufficiently. The criteria

for convergence can vary. One approach is to stop when the maximum difference between

elements of consecutive vectors is less than some threshold ε:

maxi
∣∣x(k)(i)− x(k−1)(i)∣∣ < ε

One potential problem with, though, is that if the solution vector contains very small

values (i.e. less than ε), the process may be terminated prematurely. A better approach,

and the one we adopt in this thesis, is to check the relative difference between elements:

maxi

(
|x(k)(i)− x(k−1)(i)|

|x(k)(i)|

)
< ε
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By default, we will take ε to be 10−6.

3.5.1 The Jacobi Method

The Jacobi method is based on the observation that the ith equation of the linear equation

system A · x = b:

|S|−1∑
j=0

A(i, j) · x(j) = b(i)

can be rearranged as:

x(i) =

(
b(i)−

∑
j 6=i

A(i, j) · x(j)

)
/A(i, i)

On the basis of this, in the Jacobi method, the ith element of the kth iteration vector is

computed from the elements of the (k − 1)th vector as:

x(k)(i) :=

(
b(i)−

∑
j 6=i

A(i, j) · x(k−1)(j)

)
/A(i, i)

Note that for the systems which arise from PCTL or CSL model checking, the diagonal

elements A(i, i) will always be non-zero. For our purposes, it is also useful to express

a single iteration of the Jacobi method in terms of matrices and vectors, rather than

individual elements:

x(k) := D−1 ·
(
(L + U) · x(k−1) + b

)
where D−(L+U) is a partitioning of the matrix A into its diagonal, lower-triangular, and

upper-triangular elements respectively, i.e. D contains all the diagonal entries of A and

L + U contains all the non-diagonal entries, negated. In this setting, the main operation

required to perform a single iteration is a matrix-vector multiplication. We will see why

this is useful when we implement symbolic versions of these algorithms in Chapters 5

and 6. Note also that the Jacobi method requires two vectors to be stored: one for the

previous iteration’s vector, and one for the current one.

3.5.2 The Gauss-Seidel Method

The Jacobi method can be improved by observing that the kth update to the ith vector

element can actually use the new value x(k)(j) rather than the old value x(k−1)(j) for
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j < i. This gives rise to the Gauss-Seidel method:

x(k)(i) :=

(
b(i)−

∑
j<i

A(i, j) · x(k)(j)−
∑
j>i

A(i, j) · x(k−1)(j)

)
/A(i, i)

This usually converges much faster than the Jacobi method. Furthermore, it only requires

a single vector to be stored: after each new vector entry is computed, its old value is no

longer required and can be overwritten.

As with the Jacobi method, we can show that one iteration of the Gauss-Seidel method

can be performed using matrix-vector multiplication:

x(k) := (D− L)−1 · (U · x(k−1) + b)

where D, L and U are as for the Jacobi method above. In this case, though, it may not be

a sensible option since the computation of the inverse of (D− L) may require significant

extra work or result in fill-in. Furthermore, with this formulation, we again need to store

two vectors rather than one.

3.5.3 Over-Relaxation Methods

Both the Jacobi and Gauss-Seidel methods can be improved with a technique called

over-relaxation. In an iteration, the new value of each vector element is first computed

as described above, and then subjected to a weighted average between itself and the

corresponding vector element from the previous iteration. The weights for this average

are determined according to a parameter ω. For example, using the Jacobi method as a

basis, we get:

x(k)(i) := (1− ω) · x(k−1)(i) + ω ·

(
b(i)−

∑
j 6=i

A(i, j) · x(k−1)(j)

)
/A(i, i)

This is known as the JOR (Jacobi Over-Relaxation) method. The same technique can be

applied to the Gauss-Seidel method, in which case it is referred to as the SOR (Successive

Over-Relaxation) method. The idea is that the methods converge faster for a well chosen

value of ω. It is known that JOR and SOR will only converge for ω ∈ (0, 2). Unfortunately,

it is usually either impossible or impractical to compute the optimum value of ω. Typically,

one must rely on heuristics to select a good value. The interested reader is referred to, for

example [Ste94], for more details. Note also that, technically, for ω < 1, this technique

should be referred to as under-relaxation, but for convenience it is often still known as

over-relaxation.
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Figure 3.12: A 4× 4 matrix and its sparse matrix representation

3.6 Sparse Matrices

Two of the probabilistic models we consider, namely DTMCs and CTMCs, are described

by real-valued matrices. These matrices are often very large, but contain a relatively

small number of non-zero entries. The transition matrix of a model with 106 states,

for example, might have as few as 10 non-zero entries in each row. In this thesis, we

will be considering symbolic data structures for the efficient storage and manipulation of

such matrices. However, in order to assess the performance of our techniques, we will

need to compare them with implementations based on more conventional, explicit storage

mechanisms. We will use sparse matrices, the standard data structure for this purpose.

The basic idea is that only the non-zero entries of the matrix are explicitly stored.

There are several different types of sparse storage scheme. The best one to use depends

on what operations will be performed on the matrix. The scheme we will describe here

is a common variant, often referred to as a row-major sparse matrix. Matrix entries are

stored very compactly and are quick and easy to access. The main trade-off is that it

is not efficient to make modifications to the matrix. The scheme is well suited to many

typical applications of sparse matrices, such as the iterative solution methods we consider.

In particular, matrix-vector multiplication, the key operation for such methods, can be

performed very efficiently using this sparse matrix scheme.

Assume that we wish to store a real-valued matrix A. As in the previous section,

since the matrices we deal with represent probabilistic systems with some state space S,

we assume that A is of size |S| × |S| and use the indexing 0, . . . , |S|−1. We denote the

number of non-zero entries in A by nnz .

The sparse matrix data structure stores information about the row index, column

index and value of each matrix entry in three separate arrays, row , col and val . The

arrays val and col each contain nnz elements and store the actual value and column

index of each matrix entry, respectively, ordered by row. The third array, row , stores

indices into the other two arrays: the ith element of row points to the start of the entries

of row i in val and col .
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SparseMVMult(row , col , val , b)

1. for (i := 0 . . . |S|−1)

2. res[i] := 0

3. l := row [i]

4. h := row [i+ 1]−1

5. for (j := l . . . h)

6. res[i] := res[i] + val [j]× b[col [j]]

7. endfor

8. endfor

9. return res

Figure 3.13: Multiplication of a sparse matrix with a vector

Figure 3.12 shows an example of a matrix (|S| = 4, nnz = 6) and its corresponding

sparse storage. For clarity, we show all zero entries of the matrix as dots. Both the matrix

and the three arrays which store it are indexed from zero. To determine, for example,

the entries in row 0 of the matrix, we read the values of row [0] and row [1]. Since these

are 0 and 2, respectively, we can deduce that row 0 contains two entries and that they

are stored in positions 0 and 1 of the other two arrays. Hence, row 0 consists of entries

(0, 1) = 0.5 and (0, 3) = 0.5. Note that row contains |S|+ 1 elements so that the number

of entries in the final row can be deduced.

The value of an arbitrary entry (r, c) in the matrix can be determined by looking up

the rth and (r + 1)th entries in row and then checking the column indices col [row [r]] to

col [row [r+1]−1] for the value c. If the value c is not present, then (r, c) = 0. If it is present,

then (r, c) is non-zero and its value can be found by looking up the value at the same

position in val . In fact, for our purposes, we never require access to a single, random entry,

but access to all the entries at once, usually to perform a matrix-vector multiplication.

The algorithm to perform such a multiplication, A · b, is given in Figure 3.13. The matrix

A is stored in the arrays row , col and val , as described above. The vector b and the

vector representing the result A · b are stored in arrays b and res , respectively.

We will assume that matrix entries are stored as 8 byte doubles and indices as 4 byte

integers. This puts an upper limit on nnz of 232 (≈ 4.3 × 109). Given the storage of a

typical workstation, this is ample. Using these figures, the amount of memory required

to store a sparse matrix is 12nnz + 4(|S|+ 1) bytes.

Note that it is also possible to order the entries in the sparse matrix by column,

reversing the roles of the row and col arrays. This is known as a column-major scheme.

In terms of storage, row-major and column-major schemes are identical. The principal

difference in practice is that the former is better suited to matrix-vector multiplication
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(A · b) and the latter is better suited to vector-matrix multiplication (b ·A). Depending

on the particular model checking algorithm being implemented, we may use either.

3.6.1 An Extension for MDPs

In this thesis, we will also be developing symbolic techniques for the analysis of MDPs. We

will again wish to compare the performance of these methods with explicit alternatives. A

comparison of this type is slightly more problematic than with DTMCs or CTMCs since

there is no standard storage scheme for MDPs.

In fact, our requirements for MDP storage are slightly unusual. As described in

Section 3.1.2, we consider the choice between different possible behaviours in each state

of an MDP as being nondeterministic. We do not attempt to distinguish between these

choices in any way. By contrast, in most other applications they are labelled with actions.

An analysis of the MDP in this situation might entail, for example, determining the

sequence of actions which maximises the probability of some event occurring. In our

case, checking a typical PCTL formula would involve simply computing the maximum

probability that the event occurs and verifying that it does not exceed some specified

bound, not determining the actions.

Because of this, we can opt for a fairly simple data structure to store MDPs. We will

use a trivial extension of sparse matrices. As discussed previously, we can think of an

MDP as being represented by a matrix, but with each state described by several rows,

rather than a single row as for DTMCs and CTMCs. Again, we store the value and

column index of every matrix entry in two arrays val and col . This time, however, we

require two levels of indexing to associate each entry with both a state of the MDP and

a nondeterministic choice in that state. We name these arrays row and nc, respectively.

The idea is illustrated most clearly through a simple example. Figure 3.14 gives the

matrix representation for a 4 state MDP and the sparse matrix based data structure which

stores it. Again, we only show non-zero entries in the matrix. To determine the entries

corresponding to state 0, we first read the values of row [0] and row [1]. This reveals that

state 0 contains two nondeterministic choices and that these have index 0 and 1 in the

array nc. From nc[0] and nc[1], we see that the first nondeterministic choice comprises

a single entry (0, 1) = 1. Likewise, from nc[1] and nc[2], we can deduce that the second

choice comprises two entries: (0, 1) = 0.5 and (0, 2) = 0.5.

From the algorithms for PCTL model checking of MDPs in Section 3.3.2, we see that

the key operation required is a combined matrix-vector multiplication and maximum or

minimum operation. This can be implemented on the sparse data structure in a very

similar way to ordinary matrix-vector multiplication. The algorithm for the ‘maximum’
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Figure 3.14: A 4 state MDP and its sparse storage

SparseMVMultMax(row ,nc, col , val , b)

1. for (i := 0 . . . |S|−1)

2. li := row [i]

3. hi := row [i+ 1]−1

4. res[i] := −1

5. for (j := li . . . hi)

6. lj := nc[j]

7. hj := nc[j + 1]−1

8. sum := 0

9. for (k := lj . . . hj)

10. sum := sum + val [k]× b[col [k]]

11. endfor

12. if (sum > res[i]) then res[i] := sum

13. endfor

14. endfor

15. return res

Figure 3.15: Combined multiplication and maximum operation for an MDP

case is given in Figure 3.15. It takes an MDP, stored in arrays row , nc, col and val , a

vector stored in an array b and returns the result in an array res . The corresponding

algorithm to determine the minimum is almost identical.

Again storing matrix entries as 8 byte doubles and indices as 4 byte integers, the

amount of memory required to represent an MDP with this scheme can be computed as

4(|S|+1)+4(nnc +1)+12nnz bytes, where |S| is the number of states, nnz is the number

of non-zero entries and nnc is the total number of nondeterministic choices over all states,

i.e. nnc =
∑

s∈S |Steps(s)|.
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3.7 Multi-Terminal Binary Decision Diagrams

We now introduce multi-terminal binary decision diagrams (MTBDDs), the data structure

upon which much of the work in this thesis is based. MTBDDs are actually an extension

of binary decision diagrams (BDDs), originally created by Lee [Lee59] and Akers [Ake78],

popularised by Bryant [Bry86], and applied to model checking by McMillan, Clarke and

others [BCM+90, McM93]. A BDD is a rooted, directed acyclic graph which represents a

Boolean function of the form f : IBn → IB.

MTBDDs were first proposed in [CMZ+93] and then developed independently in

[CFM+93] and [BFG+93]. In [BFG+93], they were christened algebraic decision diagrams

(ADDs) but the two data structures are identical. MTBDDs extend BDDs by represent-

ing functions which can take values from an arbitrary set D, not just IB, i.e. functions of

the form f : IBn → D. In the majority of cases, D is taken to be IR and this is the policy

we adopt here. Note that BDDs are in fact a special case of MTBDDs.

Let {x1, . . . , xn} be a set of distinct, Boolean variables which are totally ordered as

follows: x1 < · · · < xn. An MTBDD M over x = (x1, . . . , xn) is a rooted, directed acyclic

graph. The vertices of the graph are known as nodes. Each node of the MTBDD is classed

as either non-terminal or terminal. A non-terminal node m is labelled with a variable

var(m) ∈ x and has exactly two children, denoted then(m) and else(m). A terminal node

m is labelled by a real number val(m) and has no children. We will often refer to terminal

and non-terminal nodes simply as terminals and non-terminals, respectively.

The ordering < over the Boolean variables is imposed upon the nodes of the MTBDD.

For two non-terminals, m1 and m2, if var(m1) < var(m2), then m1 < m2. If m1 is a non-

terminal and m2 is a terminal, then m1 < m2. We require that, for every non-terminal m

in an MTBDD, m < else(m) and m < then(m).

Figure 3.16(a) shows an example of an MTBDD. The nodes are arranged in horizontal

levels, one per Boolean variable. The variable var(m) for a node m can be found at the

left end of the level which contains it. The two children of a node m are connected to it

by edges, a solid line for then(m) and a dashed line for else(m). Terminals are drawn as

squares, instead of circles, and are labelled with their value val(m). For clarity, we omit

the terminal with value 0 and any edges which lead directly to it.

An MTBDD M over variables x = (x1, . . . , xn) represents a function fM(x1, . . . , xn) :

IBn → IR. The value of fM(x1, . . . , xn) is determined by tracing a path in M from the root

node to a terminal, for each non-terminal m, taking the edge to then(m) if var(m) is 1

or else(m) if var(m) is 0. The function represented by the MTBDD in Figure 3.16(a) is

shown in Figure 3.16(b). For example, the value of fM(0, 1, 0) can be read as 9. We also

use the notation fM[x1 = 0, x2 = 1, x3 = 0] or fM[x = (0, 1, 0)]. This is often convenient
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otherwise 0

Figure 3.16: An MTBDD M and the function it represents

when we wish to express the value of an MTBDD without explicit reference to the ordering

of its Boolean variables.

We define a minterm of an MTBDD as a valuation of its Boolean variables which

results in a non-zero value. The MTBDD in Figure 3.16, for example, has 5 minterms,

each corresponding to a row in the table. Note that there is not necessarily a one-to-one

mapping between paths in the MTBDD and minterms. For example, the path to the 4

terminal in Figure 3.16(a) corresponds to two different minterms.

For an MTBDD M, over variables (x1, . . . , xn), we define its cofactor M|xi=b (where

b = 0 or 1) as the MTBDD over variables (x1, . . . , xi−1, xi+1, . . . , xn) representing the

function fM(x1, . . . , xi−1, b, xi+1, . . . , xn). Conversely, the function fM for an MTBDD M,

with top variable x1, can be evaluated recursively using its cofactors:

fM = x1 · fM|x1=1 + (1− x1) · fM|x1=0

Note that, because of the recursive nature of the data structure, each node of an MTBDD

is itself an MTBDD. Hence, we will often consider an MTBDD and the node which

represents it (i.e. its root node) to be interchangeable.

The reason that MTBDDs can often provide compact storage is because they are

stored in a reduced form. Firstly, if nodes m and m′ are identical (i.e. var(m) = var(m′),

then(m) = then(m′) and else(m) = else(m′)), only one copy of the node is stored. We

refer to this as sharing of nodes. Secondly, if a node m satisfies then(m) = else(m), it

is removed and any incoming edges from levels above are redirected to its unique child.

We will refer to this as a skipped level. Figure 3.17 illustrates the way that the MTBDD

in Figure 3.16 has been reduced: (a) shows the full binary tree representing the same

function; in (b), shared nodes have been merged; and in (c), nodes with identical children

have also been removed, introducing skipped levels.

In this thesis, unless stated otherwise, we assume that all MTBDDs are fully reduced

in this way. Under this assumption, and for a fixed ordering of Boolean variables, the data
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Figure 3.17: Reducing an MTBDD

structure can be shown to be canonical, meaning that there is a one-to-one correspondence

between MTBDDs and the functions they represent. As we will see later, this canonicity

property has crucial implications for performance.

Another important consideration from a practical point of view is variable ordering.

The size of an MTBDD (i.e. number of nodes) representing a given function is extremely

sensitive to the ordering of its Boolean variables. This has a direct effect on both the

storage requirements for the data structure and the time needed to perform operations

on it. We will consider this topic in more depth in Chapter 4.

The size of an MTBDD is also affected by the number of terminals it contains, or

equivalently, the number of distinct values taken by the function which it represents.

Compact MTBDDs can only be obtained by maximising sharing within the nodes of the

graph. A high number of terminals reduces the capacity for sharing and so increases the

number of nodes in the MTBDD.

3.7.1 Operations

Described below are all of the BDD and MTBDD operations needed for the model checking

algorithms discussed in this thesis. We treat BDDs simply as a special case of MTBDDs.

In the following, we assume that M, M1 and M2 are MTBDDs over the set of variables

x = (x1, . . . , xn).

• Const(c), where c ∈ IR, creates a new MTBDD with the constant value c, i.e. a

single terminal m, with val(m) = c.

• Apply(op,M1,M2), where op is a binary operation over the reals (e.g. +, −, ×,

÷, min, max, etc.), returns the MTBDD representing the function fM1 op fM2 . If

M1 and M2 are BDDs, op can also be a Boolean operation (∧, ∨, →, etc.). For
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clarity, we allow Apply operations to be expressed in infix notation, e.g. M1×M2 =

Apply(×,M1,M2) and M1 ∧M2 = Apply(∧,M1,M2).

• Not(M), where M is a BDD, returns the BDD representing the function ¬ fM. As

above, we may abbreviate Not(M) to ¬M.

• Abs(M) returns the MTBDD representing the function |fM|, giving the absolute

value of the original one.

• Threshold(M, ./, c), where ./ is a relational operator (<, >, ≤, ≥, etc.) and

c ∈ IR, returns the BDD M′ with fM′ equal to 1 if fM ./ c and 0 otherwise.

• FindMin(M) returns the real constant equal to the minimum value of fM.

• FindMax(M) returns the real constant equal to the maximum value of fM.

• Abstract(op, x,M), where op is a commutative and associative binary opera-

tion over the reals, returns the result of abstracting all the variables in x from

M by applying op over all possible values taken by the variables. For example,

Abstract(+, (x1),M) would give the MTBDD representing the function fM|x1=0 +

fM|x1=1 and Abstract(×, (x1, x2),M) would give the MTBDD representing the func-

tion fM|x1=0,x2=0 × fM|x1=0,x2=1 × fM|x1=1,x2=0 × fM|x1=1,x2=1 . In the latter, M|x1=b1,x2=b2 is

equivalent to (M|x1=b1)|x2=b2 .

• ThereExists(x,M), where M is a BDD, is equivalent to Abstract(∨, x,M).

• ForAll(x,M), where M is a BDD, is equivalent to Abstract(∧, x,M).

• ReplaceVars(M, x, y), where y = (y1, . . . , yn), returns the MTBDD M′ over vari-

ables y with fM′(b1, . . . , bn) = fM(b1, . . . , bn) for all (b1, . . . , bn) ∈ IBn.

3.7.2 Vectors and Matrices

From our point of view, one of the most interesting applications of MTBDDs is the

representation of vectors and matrices. This was investigated in the original work which

introduced the data structure [CFM+93, BFG+93]. Consider a real-valued vector v of

length 2n. We can think of v as a mapping from indices to reals, i.e. v : {0, . . . , 2n−1} →
IR. Given an encoding of the 2n indices into n Boolean variables, i.e. a bijection enc :

{0, . . . , 2n−1} → IBn, we can represent v as an MTBDD v over variables x = (x1, . . . , xn).

We say that v represents v if and only if fv[x = enc(i)] = v(i) for 0 ≤ i ≤ 2n−1.
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Figure 3.18: A matrix M and an MTBDD M representing it

This idea extends easily to matrices. We can think of a 2n by 2n matrix, M, as

a mapping from {0, . . . , 2n−1} × {0, . . . , 2n−1} to IR. Again, assuming an encoding

enc : {0, . . . , 2n−1} → IBn, we can represent M by an MTBDD M over 2n variables, n

of which encode row indices and n of which encode column indices. Using row variables

x = (x1, . . . , xn) and column variables y = (y1, . . . , yn), we say that M represents M if and

only if fM[x = enc(i), y = enc(j)] = M(i, j) for 0 ≤ i, j ≤ 2n−1. Note that we can also

encode vectors and matrices with sizes which are not powers of two simply by padding

them with extra elements, rows or columns, all set to 0.

Figure 3.18 shows an example: a matrix M and an MTBDD M representing it. The

table on the right hand side illustrates how the matrix entries can be read off the MTBDD.

We are representing a 4 × 4 matrix so we use two row variables (x1, x2) and two column

variables (y1, y2). We use the standard binary encoding for integers, i.e. 0→ 00, 1→ 01,

2 → 10 and 3 → 11. Each minterm of the MTBDD represents a non-zero entry in the

matrix. Consider, for example, the minterm fM(1, 1, 0, 1) = 5. In this case, x1 = 1 and

x2 = 0, so the row index is 2. Similarly, y1 = 1 and y2 = 1, giving a column index of 3.

This corresponds to the matrix entry (2, 3) = 5.

Observe that, in Figure 3.18, row and column variables are ordered alternately. This

is a well known heuristic to minimise MTBDD size and will be discussed in Chapter 4.

Another advantage of the ordering, though, is that it allows a convenient division of the

matrix into its component submatrices. Figure 3.19 illustrates this. If the matrix M

is represented by MTBDD M, the top and bottom halves of M are represented by the

cofactor MTBDDs M|x1=0 and M|x1=1, respectively. Since x1 is the top variable in the

ordering, these cofactors can be found simply by following the else and then edges. By

repeating this process on the next variable in the ordering, y1, the four quadrants of M can

be obtained. As well as providing convenient access to submatrices, this can be beneficial
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Figure 3.19: Submatrix access via cofactors

for implementing matrix operations which can be expressed recursively.

A good example of this is matrix-matrix multiplication. An algorithm to compute

the product of two matrices represented as MTBDDs was first presented in [CMZ+93].

It was shown that by taking all the products of matrix entries first, and summing them

afterwards, the multiplication could be performed with an Apply and an Abstract

operation. In [CFM+93] an improved, recursive algorithm was proposed, based on the

decomposition of a matrix into quadrants, as shown in Figure 3.19, and the fact that

matrix-matrix multiplication can be computed in terms of these quadrants:

(
A1 A2

A3 A4

)
=

(
B1 B2

B3 B4

)
·

(
C1 C2

C3 C4

)
⇐⇒

A1 = B1 ·C1 + B2 ·C3

A2 = B1 ·C2 + B2 ·C4

A3 = B3 ·C1 + B4 ·C3

A4 = B3 ·C2 + B4 ·C4

In [BFG+93], the algorithm was improved further, observing that it was not always nec-

essary to split the matrix at every level of recursion. The latter work also provided

a comparison, in terms of empirical results on some benchmark matrices, of all three

methods and concluded that, in general, their method performed better. Hence, in our

implementation, we have used the algorithm of [BFG+93].

Note that, as we have seen earlier in this chapter, the primary operation which we

need for probabilistic model checking is multiplication of a matrix and a vector, not of

two matrices. Fortunately, the three algorithms can easily be adapted to this case. For

an MTBDD M over variables x and y representing matrix M, and an MTBDD v over

x representing column vector v, we will denote by MVMult(M, v) the function which

returns the MTBDD over x, representing the column vector M · v. It is also trivial to

adapt this algorithm to perform multiplication of a vector by a matrix.

Several other useful operations on vectors and matrices can be implemented with

basic MTBDD functions. Any pointwise operation, such as addition or scalar multiplica-

tion, can be performed with Apply. Vectors and matrices can be transposed using the
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ReplaceVars function. Lastly, we define Identity(x, y) as the MTBDD (in fact, BDD)

representing the identity matrix with row variables x and column variables y.

3.7.3 Implementation Fundamentals

We conclude our coverage of BDDs and MTBDDs by discussing some of the more impor-

tant aspects of how they are implemented in practice. Since this thesis is concerned with

the development of efficient data structures and analysis of their performance, such low-

level details are vital. All of our experimental work was implemented using the CUDD

(Colorado University Decision Diagram) package of Somenzi [Som97], which, unlike the

majority of BDD software, also supports MTBDDs. Most of the issues we discuss here

are applicable to all decision diagram packages. Papers which discuss these in more detail

can be found in, e.g. [BRB90, YBO+98].

We first examine how the data structures are stored. We have seen above that MTB-

DDs are kept in a reduced form where no identical nodes are duplicated. In practice, this

is taken one step further. All of the MTBDDs in use at any one time are maintained in

one large data structure, effectively a very large MTBDD with multiple root nodes. This

means that nodes are not even duplicated across different MTBDDs. At any point during

an MTBDD operation where a new node needs to be created, it is first verified whether

or not such a node already exists and, if so, it is reused.

To ensure that such checks can be performed rapidly, the nodes are stored in a set of

hash tables, one for each level (i.e. MTBDD variable). This structure is usually known

as the unique table. Terminal MTBDD nodes are also stored in this fashion. However,

since their values are stored as double precision floating points numbers, in practice, two

terminals are considered to be identical if the difference between their values is less than

some small threshold ε. In the CUDD package, the default value for ε is 10−12. We found

it necessary to lower this to 10−15, almost equal to the precision of a double, to minimise

round-off error in our numerical computations.

In normal operation, MTBDDs are constantly being created and destroyed. Hence, it

is necessary to keep track of which nodes are currently needed and which are not. This

issue is complicated by the fact that the nodes are stored in one shared structure and a

given node may be contained in several MTBDDs. The solution is to keep a reference

count on each node, denoting how many MTBDDs in current use contain it. If the

reference count reaches zero, it is known as a dead node. Since removing a dead node

from the unique table potentially involves restructuring the whole data structure, dead

nodes are only removed periodically, typically when their number exceeds some predefined

threshold. This process is know as garbage collection.
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The total amount of memory required to store an MTBDD is directly proportional

to its number of nodes. In the CUDD package, each non-terminal node comprises: one

integer storing the level (i.e. which variable it is labelled with); two pointers, one for the

then child and one for the else child; one integer storing the reference count; and one

pointer used to maintain the node in a linked list as part of a hash table. Assuming that

both integers and pointers are stored in 4 bytes, this gives a total of 20 bytes per node.

Terminal nodes store slightly different information but this can still be fitted into the

same amount of space.

The existence of the unique table is fundamental to the efficient operation of an

MTBDD package. Clearly, storing the MTBDDs in this way minimises the amount of

storage space required. More importantly, though, it also has ramifications for the speed

at which MTBDD operations can be performed. Checking whether two MTBDDs are

identical is easy: it reduces to verifying that the root nodes are stored in the same place

in the unique table. Because of the canonicity property of MTBDDs, checking whether

two MTBDDs represent the same function is equally trivial.

The true value of this comes in the implementation of another fundamental aspect of

MTBDD packages: the computed table. This is essentially a cache for storing the results

of operations on MTBDDs. Before any operation is performed, the cache is checked to

see if it has been executed previously. If so, the result can simply be reused. If not, the

result is computed, stored in the cache and then returned. Typically, many operations

are repeated several times, particularly since operations are usually performed recursively

and there is often a great deal of node sharing in MTBDDs. Lookups in this cache can

only be implemented efficiently if it is quick to compare the equality of two MTBDDs.

In theory, any single operation is only ever performed once. Practically, of course,

there is usually an upper limit on the amount of memory allocated to the cache so this is

not true. It is still fair to say, though, that the computed table can result in a dramatic

improvement in performance.



Chapter 4

Model Representation and

Construction with MTBDDs

In this thesis, we consider an MTBDD-based implementation of probabilistic model check-

ing. The first step in this process is to establish an efficient representation for the three

types of models which we wish to analyse: DTMCs, MDPs and CTMCs. In this chap-

ter, we consider several ways to minimise the size of the MTBDD representation of these

models.

The size of an MTBDD is defined as the number of nodes contained in the data

structure. This is particularly important because it affects not only the amount of memory

required for storage, but also the amount of time required for manipulation. Typically,

the time complexity of operations on MTBDDs is proportional to the number of nodes

they contain.

It is well known that the size of an MTBDD representing a given function is extremely

sensitive to both the way that the function is encoded into Boolean variables and the

ordering that is chosen for these variables. We address both of these topics in detail.

In Section 4.1, we will consider the situation for DTMCs and CTMCs, which are very

similar. In Section 4.2, we will extend this to MDPs, which raise additional issues. For

each type of model, we will present results for a number of case studies and compare the

effectiveness of the MTBDD representation with that of equivalent, explicit alternatives,

based on sparse matrices.

In the final section of this chapter, we will consider how these MTBDDs are con-

structed: the process of converting a model’s description in the PRISM language into

a symbolic representation of the corresponding DTMC, MDP or CTMC. This involves

two stages: firstly, translation from the high-level model description into MTBDDs; and

secondly, computation of the set of reachable states.

63
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4.1 Representing DTMCs and CTMCs

4.1.1 Schemes for Encoding

We begin by considering the problem of representing DTMCs and CTMCs as MTBDDs.

These two types of models are both described by real-valued matrices. From their incep-

tion, MTBDDs [CMZ+93, CFM+93, BFG+93] have been used to represent matrices, a

process we described in Section 3.7. The basic idea is that a matrix can be thought of as

a function mapping pairs of indices to real numbers. Given an encoding of these indices

into Boolean variables, we can instead view the matrix as a function mapping Boolean

variables to real numbers, which is exactly what an MTBDD represents.

In the simple example of Section 3.7, matrix indices were simply integers and we

encoded them using their standard binary representation. In our case, however, the

transition matrix of the DTMC or CTMC is indexed by states. Hence, what we actually

need is an encoding of the model’s state space into MTBDD variables. One approach is

to enumerate the set of states in the model, assigning each one a unique integer, and then

proceed as before. As we will see, though, by taking a more structured approach to the

encoding, we can dramatically improve the efficiency of this representation.

The use of MTBDDs to represent probabilistic models has been proposed on a number

of occasions, for example [BFG+93, HMPS94, BCHG+97]. The issue of developing an effi-

cient encoding, however, was first considered by Hermanns et al. in [HMKS99]. One of the

main contributions of the paper is a set of ‘rules of thumb’ for deriving compact MTBDD

encodings of CTMCs from descriptions in high-level formalisms such as process algebras

and queueing networks. This extends previous work [EFT91, DB95] which considers the

efficient encoding of non-probabilistic process algebra descriptions into BDDs.

The key observation of Hermanns et al. is that one should try to preserve structure

and regularity from the high-level description of the CTMC in its MTBDD encoding. For

example, in the process-algebraic setting, a system is typically described as the parallel

composition of several sequential components. They show that it is more efficient to first

obtain a separate encoding for each of these components, and only then combine them

into a global encoding. Regularity in the high-level description which can be reflected in

the low-level MTBDD representation results in an increase in the number of shared nodes

and, subsequently, a decrease in the size of the data structure.

In [dAKN+00], we described how these ideas can be be applied and extended to encode

models described using the PRISM language. In this case, a model’s state space is defined

by a number of integer-valued PRISM variables and its behaviour by a description given

in terms of these variables. Hence, to benefit from structure in this high-level description,
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N States MTBDD Nodes

‘Enumerated’ ‘Structured’

5 240 807 271

7 1,344 3,829 482

9 6,912 15,127 765

11 33,792 54,389 1,096

13 159,744 184,157 1,491

15 737,280 594,309 1,942

Table 4.1: MTBDD sizes for two different encoding schemes

there must be a close correspondence between PRISM variables and MTBDD variables.

To achieve this, we encode each PRISM variable with its own set of MTBDD variables.

For the encoding of each one, we use the standard binary representation of integers.

Consider a model with three PRISM variables, v1, v2 and v3, each of range {0, 1, 2}.
Our structured encoding would use 6 MTBDD variables, say x1, . . . , x6, with two for each

PRISM variable, i.e. x1, x2 for v1, x3, x4 for v2 and x5, x6 for v3. The state (2, 1, 1), for

example, would become (1, 0, 0, 1, 0, 1).

An interesting consequence of this encoding is that we effectively introduce a number

of extra states into the model. In our example, 6 MTBDD variables encode 26 = 64 states,

but the model actually only has 33 = 27 states, leaving 37 unused. We refer to these extra

states as dummy states. To ensure that these do not interfere with model checking, when

we store the transition matrix for the model, we leave the rows and columns corresponding

to dummy states blank (i.e. all zero).

We now present some experimental results to illustrate the effect that the choice of

encoding can have on the size of the MTBDD. We use a CTMC model of the cyclic server

polling system of [IT90]. By varying N , the number of stations attached to the server,

we consider several models of different sizes (for more information, see Appendix E).

Table 4.1 shows statistics for each model. We give the number of states and the size

of the MTBDD (number of nodes) which represents it for the two different encoding

schemes described above: ‘enumerated’, where we assign each state an integer and encode

it using the standard binary encoding; and ‘structured’, where we work from a high-level

description, encoding each PRISM variable with its own set of MTBDD variables. It is

clear from the table that the ‘structured’ encoding results in far more compact storage.

This encoding scheme has two other important advantages. These both result from

the close correspondence between PRISM variables and MTBDD variables. Firstly, it

facilitates the process of constructing an MTBDD, i.e. the conversion of a description in

the PRISM language into an MTBDD representing the corresponding model. Since the
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description is given in terms of PRISM variables, this can be done with an almost direct

translation. We discuss this process in more detail in Section 4.3 and Appendix C.

Secondly, we find that useful information about the model is implicitly encoded in the

MTBDD. As described in Section 3.4, when using PRISM, the atomic propositions used in

PCTL or CSL specifications are predicates over PRISM variables. It is therefore simple,

when model checking, to construct a BDD which represents the set of states satisfying

such a predicate by transforming it into one over MTBDD variables. We will give some

examples of this in Section 5.1. With most other encodings, it would be necessary to use

a separate data structure to keep track of which states satisfy which atomic propositions.

4.1.2 Heuristics for Variable Ordering

Having chosen a suitable encoding of DTMCs and CTMCs into MTBDDs, we now move

on to consider a second issue which can have dramatic effects on efficiency, that of variable

ordering. It has long been known that BDDs are extremely sensitive to the ordering of

their Boolean variables. For this reason, the problem has received an enormous amount

of attention in the literature. Because MTBDDs and BDDs are so similar, many of the

principles involved also apply in our case. One key result, from [THY93, BW96], is that

the problem of determining the optimal variable ordering for a BDD is NP-hard. Because

of this, the traditional approach to finding a good ordering is to rely on heuristics.

We have already seen one example of such an ordering heuristic. When building

the MTBDD to represent a matrix in Section 3.7, we interleaved the Boolean variables

encoding the row and column indices. The ordering was shown to provide a convenient

decomposition of the matrix into its constituent submatrices. More importantly, though,

this heuristic can dramatically reduce MTBDD size. The idea was first presented in

[EFT91]. We can illustrate its usefulness on a simple example.

In Figure 4.1, we show two MTBDDs representing the 8 × 8 identity matrix. Both

use variables x1, x2, x3 to encode row indices and y1, y2, y3 to encode column indices. The

first MTBDD (a) uses the interleaved variable ordering x1< y1< x2< y2< x3< y3 and the

second (b) uses x1< x2< x3< y1< y2< y3. Even on this small example, the difference is

clear. In fact, for the general case, the size of the MTBDD for the 2n× 2n identity matrix

is O(n) or O(2n) for the interleaved and non-interleaved orderings respectively.

The effect of the variable ordering on this example can be explained as follows. Note

that, in terms of MTBDD variables, the actual function being represented by the MTB-

DDs in Figure 4.1 is (x1 = y1) ∧ (x2 = y2) ∧ (x3 = y3). Consider what happens when we

traverse the MTBDDs from top to bottom, trying to determine the value of the function

for some assignment of the variables. Effectively, each node encodes the values of all the



4 - Model Representation and Construction with MTBDDs 67

1

x1

x2

y2

x3

y3

y1

1

x1

x3

y1

y3

x2

y2

(b)(a)

Figure 4.1: Alternative BDD variable orderings for the 8 × 8 identity matrix:

(a) interleaved (b) non-interleaved

variables in levels above it. For example, in the first MTBDD, after two levels, we have

established whether or not x1 = y1. If so, we will be positioned at the single node on the

x2 level. If not, we will have already moved to the zero constant node. In either case, from

this point on, the values of x1 and y1 are effectively irrelevant, since in the function being

represented, x1 and y1 relate only to each other. In the second MTBDD, however, there

is a gap in the ordering between x1 and y1. After the first level, we ‘know’ the value of x1

but cannot ‘use’ it until the fourth level. In the meantime, we must consider all possible

values of x2 and x3, causing a blow-up in the number of nodes required.

This reasoning also explains why the interleaved variable ordering is appropriate for

an MTBDD representing a transition matrix. Each traversal through the MTBDD cor-

responds to a single transition of the model. In a typical transition, only a few PRISM

variables will actually change value, the rest remaining constant. Since there is a direct

correspondence between PRISM variables and MTBDD variables, this argument also ap-

plies at the MTBDD level. This means that we have a similar situation to the identity

matrix: generally, each yi variable is most closely related to xi. Hence, the interleaved

variable ordering is beneficial. Table 4.2 demonstrates the effect of this on some typical

transition matrices. We use the polling system case study of [IT90], as in the previous

section, but the results are the same for all our examples. We present MTBDD sizes for

both the interleaved and non-interleaved ordering. The difference is clear: it is simply

not feasible to consider non-interleaved orderings.

Even once we have decided to opt for an interleaved variable ordering, there is still

benefit to be derived from considering the positioning of the individual xi and yi variables
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N States MTBDD Nodes

Interleaved Non-interleaved

5 240 271 1,363

7 1,344 482 6,766

9 6,912 765 39,298

11 33,792 1,096 178,399

13 159,744 1,491 794,185

Table 4.2: MTBDD sizes for interleaved and non-interleaved variable orderings

within the overall ordering. Actually, we need only decide on an ordering for the xi

variables: the yi variables will have to be in the same order. There are many other

variable ordering heuristics to be found in the literature. Unfortunately, they are generally

application dependent and hence not directly relevant to our situation. The general

principles on which they are based, however, can still be used.

For example, we argued above that since an MTBDD node effectively encodes the

values of all the variables in levels above it, it is wise to place closely related MTBDD

variables as near to each other as possible in the ordering. By similar reasoning, it can

be inferred that, if a single MTBDD variable is closely related to several others, it should

benefit from being placed above all of them in the ordering.

The MTBDD variables encoding a single PRISM variable can be seen as closely related

to each other. Furthermore, those relating to PRISM variables in the same module are

more likely to be related to each other. Hence, our default ordering is to group MTBDD

variables by module and, within that, by PRISM variable.

In fact, because of the close correspondence between MTBDD variables and PRISM

variables, these heuristics can also be applied at the level of the PRISM language. Hence,

it can be beneficial to choose an ordering for the PRISM variables within a module or for

the ordering of the modules themselves according to similar rules.

We demonstrate this through an example, again using the polling system case study

of [IT90]. The model consists of N+1 modules: a server and N stations. In ordering 1,

we place the MTBDD variables for the server first, and those for the stations afterwards.

In ordering 2, we do the opposite, with the variables for all stations first and then those

for the server last. We would expect ordering 1 to perform better since, in the model, all

stations communicate with the server but not with each other. Table 4.3 shows the results

for several values of N , in each case giving the size of the MTBDD under both orderings.

The conclusion we can draw from this is that, in some cases, it can be extremely beneficial

to apply such heuristics.
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N States MTBDD Nodes

Ordering 1 Ordering 2

5 240 271 417

7 1,344 482 1,236

9 6,912 765 5,415

11 33,792 1,096 17,804

13 159,744 1,491 67,098

15 737,280 1,942 264,122

17 3,342,336 2,469 1,312,887

Table 4.3: MTBDD sizes for two different variable orderings

4.1.3 Results

In the previous sections, we presented a number of techniques to achieve compact rep-

resentations of DTMCs and CTMCs using MTBDDs. We now present some statistics

to demonstrate the effectiveness of these techniques on a number of different examples.

We do this by comparing the amount of memory required by MTBDDs to that of an

equivalent explicit alternative, namely sparse matrices. Note that, in this section, we

only consider the space requirements of the representations, and not timing factors such

as the speed with which the data structures can be accessed or manipulated. This will

be covered in the next chapter when we discuss model checking. Typically though, the

smaller the MTBDD, the faster the operations on it will be.

Table 4.4 gives statistics for several different case studies: the polling system of [IT90],

as used in the preceding sections; the Kanban manufacturing system of [CT96]; and the

bounded retransmission protocol (BRP) of [HSV94]. The first two give rise to CTMCs,

the third to a DTMC. For each one, we can construct models of varying size by changing

a parameter N . In the polling system, N refers to the number of stations; in the Kanban

system, N is the number of jobs in the system; and in the bounded retransmission protocol,

N is the number of packets to be transmitted. For more information on the case studies

and their respective parameters, see Appendix E.

The table gives the size of each model (both the number of states and the number of

transitions) and the amount of memory required to store it (to the nearest kilobyte) both

as an MTBDD and as a sparse matrix. For the MTBDD representation, the amount of

memory needed is proportional to the number of nodes. We assume 20 bytes per node,

as described in Section 3.7.3. For the sparse matrix representation, the memory usage

is as described in Section 3.6. Note that, in all cases, we had to actually construct the

MTBDD in order to compute the number of nodes. The largest sparse matrices, on the
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Model N States Transitions Memory (KB)

MTBDD Sparse

5 240 800 5 10

7 1,344 5,824 9 74

Polling 9 6,912 36,864 15 459

system 11 33,792 214,016 21 2,640

13 159,744 1,171,456 29 14,352

15 737,280 6,144,000 38 74,880

17 3,342,336 31,195,136 48 378,624

3 58,400 446,400 48 5,459

4 454,475 3,979,850 96 48,414

Kanban 5 2,546,432 24,460,016 123 296,588

system 6 11,261,376 115,708,992 154 1,399,955

7 41,644,800 450,455,040 186 5,441,445

8 133,865,325 1,507,898,700 287 18,193,599

1,000 55,005 69,998 49 1,035

2,500 137,505 174,998 53 2,588

BRP 5,000 275,005 349,998 54 5,176

10,000 550,005 699,998 56 10,352

20,000 1,100,005 1,399,998 58 20,703

Table 4.4: Symbolic versus explicit storage for DTMCs and CTMCs

other hand, are too large to be stored, but the required space can be computed anyway.

From Table 4.4, it is clear that, by exploiting structure, we can store significantly larger

models using MTBDDs than we can with sparse matrices. Of course, it can be argued

that the original, high-level description of a model constitutes an even more compact,

structured representation. The MTBDD, however, provides direct access to the model’s

transition matrix.

4.2 Representing MDPs

4.2.1 Schemes for Encoding

Representing MDPs with MTBDDs is more complex than DTMCs or CTMCs since the

nondeterminism must also be encoded. An MDP is not described by a transition matrix

over states, but by a function Steps mapping each state to a set of nondeterministic

choices, each of which is a probability distribution over states.

Assuming, however, that the maximum number of nondeterministic choices in any

state is m, and letting S denote the set of states of the MDP, we can reinterpret Steps
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as a function of the form S × {1, . . . ,m} × S → [0, 1]. We have already discussed, in

the previous section, ways of encoding a model’s state space S into Boolean variables. If

we encode the set {1, . . . ,m} in a similar fashion, we can consider Steps as a function

mapping Boolean variables to real numbers, and hence represent it as an MTBDD. We

will use variables x = (x1, . . . , xn) and y = (y1, . . . , yn) to range over source and destination

states and variables z = (z1, . . . , zk) to encode {1, . . . ,m}. We will refer to x and y as row

and column variables, as before, and z as nondeterministic variables. The idea of encoding

nondeterministic choice in an MDP as a third index to represent it as an MTBDD was

proposed in [Bai98] but the application or practicality of it was not considered.

As discussed in Section 3.3.2, when implementing model checking of MDPs, it is often

useful to consider Steps as non-square matrix, where each row corresponds to a single

nondeterministic choice. This allows certain parts of the model checking algorithm to be

conveniently expressed as matrix-vector multiplication. Similarly, we can think about the

MTBDD representation described above as storing a matrix with m · |S| rows, encoded

by variables x and z, and |S| columns, encoded by variables y. We will return to this

idea when we consider an MTBDD-based implementation of model checking in the next

chapter.

First, though, there are still several issues to address with our encoding. For example,

it is likely that in some states, there will be less than m nondeterministic choices. Since

we represent the MDP by a function of the form S×{1, . . . ,m}×S → [0, 1], some parts of

it remain undefined. This problem will also arise when we encode {1, . . . ,m} into Boolean

variables. Unless m happens to be a power of two, we will be introducing extra indices,

the meaning of which is undefined. This situation is analogous to the case with DTMCs

and CTMCs, where we added dummy states with no transitions to our model. We will

take the same approach here, effectively adding extra, empty probability distributions to

some (or all) states.

We formalise this idea as follows. Let Steps be an MTBDD over the variable sets

x = (x1, . . . , xn), y = (y1, . . . , yn) and z = (z1, . . . , zk). We say that Steps represents an

MDP with state space S and transition function Steps if, for some state space encoding

enc : S → IBn, for any s ∈ S:

• if µ ∈ Steps(s), then there exists b ∈ IBk such that:

– fSteps[x = enc(s), y = enc(t), z = b] = µ(t) for all t ∈ S

• for any b ∈ IBk, one of the following two conditions holds:

– fSteps[x = enc(s), y = enc(t), z = b] = 0 for all t ∈ S
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– there exists µ ∈ Steps(s) such that

fSteps[x = enc(s), y = enc(t), z = b] = µ(t) for all t ∈ S

The first part ensures that every nondeterministic choice in each state of the MDP is

encoded in the MTBDD and the second ensures that every choice encoded in the MTBDD

does actually belong to the MDP. Note that it is acceptable for a choice to be included

more than once in the MTBDD. In the definition of an MDP, Steps(s) is a set and hence

contains no duplicates. When constructing the MTBDD representing it, though, checking

for duplicate choices would be a costly process so we ignore them. Fortunately, it is safe to

do this because when we perform model checking on the MDP, we only ever compute the

minimum or maximum probability of some event occurring; we never need to distinguish

between individual nondeterministic choices.

Another issue to consider is how we actually encode the nondeterministic choices as

MTBDD variables. Since the number of nondeterministic choices is typically very small

compared to the number of states (i.e. m� |S|), one scheme would be to just enumerate

them and encode them as integers, as we would do for an individual PRISM variable.

The lesson we learnt from the previous section, however, was that it can be extremely

beneficial to capture any high-level structure in our MTBDD encoding.

On example of such regularity is that in nearly all of the MDP case studies we have

considered, most of the nondeterminism arises from the parallel composition (scheduling)

of modules. Let us assume that this is in fact the only source of nondeterminism. In an

MDP composed of m modules, there will be exactly m nondeterministic choices in every

state, each corresponding to one of the modules being scheduled. This suggests a more

structured encoding, using m nondeterministic variables, one for each module.

We illustrate the difference between these two schemes, which we will refer to as

‘enumerated’ and ‘structured’, through an example. Consider a model comprising four

modules. In each state there will be four nondeterministic choices. Using the ‘enumerated’

scheme, we can encode these with 2 Boolean variables since 22 = 4. Using the ‘structured’

scheme, we would require 4 variables. For simplicity, assume that the new variables appear

at the start of the overall ordering. Figure 4.2 shows what the two MTBDDs would look

like. The grey triangles denote the lower subgraphs of the MTBDDs, the exact structure

of which is irrelevant here.

From the diagram, it seems clear that the ‘enumerated’ encoding will always be supe-

rior, in general requiring O(m), as opposed to O(m2), nodes to encode the nondetermin-

ism for m modules. In the next section, however, we will demonstrate that, for variable

orderings other than the one used in Figure 4.2, this is not necessarily the case.
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(a)

z1

z2

(b)

z4

z2

z1

z3

Figure 4.2: The two MTBDD encodings for nondeterminism in MDPs:

(a) ‘enumerated’ (b) ‘structured’

4.2.2 Heuristics for Variable Ordering

As for DTMCs and CTMCs, it is important to consider the ordering of the MTBDD

variables. Since the previous reasoning still applies, it makes sense to retain our ordering

heuristics for the row and column variables. All we need to consider, in fact, is where

the nondeterministic variables are inserted into this ordering. The choice will depend on

which of the two encodings from the previous section we opt for.

The obvious two policies would be to place all the nondeterministic variables either

at the very top of the ordering or the very bottom. We will refer to these two options

as ‘top’ and ‘bottom’. Of these, ‘top’ would appear most promising option since the

nondeterministic variables can be seen as related to all other variables: they affect every

transition of the model.

The effect of this option has already been illustrated for each of the two encodings in

Figure 4.2. Note that, since the only difference between the two MTBDDs is the encoding

of the nondeterminism, the lower regions of the MTBDDs, i.e. all nodes labelled with row

and column variables rather than nondeterministic variables, are exactly the same for

both encodings. We have already made the observation that the maximum number of

nondeterministic choices is typically much less than the number of states in the model. If

this is the case, then the lower parts of the MTBDD represent the majority of the graph.

Hence, there is actually very little difference between the two encodings.

If we focus on the ‘structured’ encoding, however, we have a third possibility for

variable ordering. There are m nondeterministic variables, each corresponding to one

module. Recall from the discussion of state space encoding in Section 4.1.1 that the row
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Model N States MTBDD Nodes

‘Enumerated’ ‘Structured’

‘Top’ ‘Bottom’ ‘Top’ ‘Bottom’ ‘Middle’

3 10,744 28,500 28,557 28,503 28,590 23,159

4 201,828 65,621 79,960 65,628 80,061 43,468

Mutual 5 6,769,448 136,836 233,641 136,845 233,777 78,292

exclusion 6 1.3× 108 206,204 506,653 206,219 507,108 103,385

8 4.5× 1010 381,163 - 381,192 - 153,571

10 4.7× 1013 962,787 - 962,831 - 328,030

4 84,096 2,290 1,973 2,297 1,995 1,398

Coin 6 4,612,864 6,948 7,540 6,963 7,605 3,142

protocol 8 2.2× 108 15,684 25,936 15,713 26,220 5,587

(K = 8) 10 1.0× 1010 29,655 91,990 29,699 92,801 8,718

12 4.3× 1011 50,079 342,087 50,145 346,005 12,536

14 1.8× 1013 78,262 1,322,933 78,353 1,339,214 17,047

Table 4.5: MTBDD sizes for several different MDP variable orderings

and column variables for each module are grouped together. Since the nondeterministic

variable for a module can be seen as related to its row and column variables, it would seem

wise to group them all together. We will refer to this third ordering option as ‘middle’.

For a system of m modules, where the state space of the ith module is encoded by ni row

variables (xi,1, . . . , xi,ni
) and ni column variables (yi,1, . . . , yi,ni

), the three orderings can

be summarised as shown below. The parentheses are purely to aid readability.

• ‘top’ (z1, . . . , zm), (x1,1, y1,1, . . . , x1,n1 , y1,n1), . . . , (xm,1, ym,1, . . . , xm,nm , ym,nm)

• ‘bottom’ (x1,1, y1,1, . . . , x1,n1 , y1,n1), . . . , (xm,1, ym,1, . . . , xm,nm , ym,nm), (z1, . . . , zm)

• ‘middle’ (z1, x1,1, y1,1, . . . , x1,n1 , y1,n1), . . . , (zm, xm,1, ym,1, . . . , xm,nm , ym,nm)

We have experimented with combinations of encodings and variable orderings on several

case studies which give rise to MDP models. Our findings are typified by the results,

given in Table 4.5, for two examples: Rabin’s randomised mutual exclusion algorithm

[Rab82] and the coin protocol from Aspnes and Herlihy’s randomised consensus protocol

[AH90]. Both are parameterised by N , the number of processes modelled. The latter

case study has an additional parameter, K, which we fix here at 8. Further details about

these case studies and others we have used can be found in Appendix E. For each MDP,

we give its size (number of states) and the number of nodes in the five MTBDDs which

can represent it, one for each of the encoding/ordering pairs discussed. A dash indicates

that the MTBDD could not be built due to memory constraints.

The results confirm our various predictions. When choosing the ‘top’ or ‘bottom’
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ordering, there is very little difference between the two encodings, but ‘top’ consistently

performs much better than ‘bottom’. More importantly, we find that using the ‘structured’

encoding and the ‘middle’ ordering results in the most compact MTBDD. This confirms

our most important heuristic: that it is beneficial to exploit structure in the model.

The encoding schemes we have described here only handle the nondeterminism which

results from inter-module scheduling. In the general case, there could also be nondeter-

ministic choices made locally, within a module. There is usually no particular structure to

such nondeterminism, but it is associated with an individual module. Hence, these choices

could be encoded in a simple, unstructured fashion, and the nondeterministic variables

used placed with the others for that module.

We are aware of two other examples in the literature which consider the representa-

tion of MDPs using MTBDDs. Firstly, we mention the work of Hoey et al. [HSAHB99,

SAHB00], who implement techniques for decision-theoretic planning. Although the appli-

cation domain is very different, the iterative algorithm implemented is similar to ours. In

terms of representation, however, due to the nature of their algorithm, it is more conve-

nient to store the MDP as a set of several MTBDDs. In our scenario, this would constitute

storing separate MTBDDs, one for each of the possible nondeterministic choices.

A second instance can be found in [DJJL01] which presents a technique for model

checking a restricted subset of PCTL over MDPs. Although the application domain in

this case is very similar to ours, the emphasis of the paper is on the algorithm itself, not

the implementation. They state only that the states of the MTBDD and the nondeter-

ministic can be encoded into a set of Boolean variables. The compactness of the MTBDD

representation is not considered.

4.2.3 Results

We now present some results to illustrate the effectiveness of the symbolic storage schemes

for MDPs described in the previous two sections. As for DTMCs and CTMCs, we will

consider the amount of storage space required by the MTBDD and compare this to that

of the equivalent explicit storage scheme, described in Section 3.6.1. Any time-related

issues will be dealt with in the next chapter where we consider model checking. Typically

though, operations on smaller MTBDDs will be performed more quickly.

Table 4.6 gives statistics for the two MDP case studies from the previous section: Ra-

bin’s randomised mutual exclusion algorithm [Rab82] and the coin protocol of [AH90]. For

each MDP, the table gives the size of the model (number of states, number of transitions

and number of choices) and the amount of memory required (to the nearest kilobyte) by

the MTBDD or sparse matrix to represent it. As before, we assume that each MTBDD
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Model N States Transitions Choices Memory (KB)

MTBDD Sparse

3 10,744 128,934 36,768 452 1,697

4 201,828 3,379,072 912,320 849 43,951

Mutual 5 6,769,448 1.7× 108 3.8× 107 1,529 2,094,274

exclusion 6 1.3× 108 3.9× 109 8.7× 108 2,019 5.0× 107

8 4.5× 1010 1.8× 1012 4.0× 1011 2,999 2.3× 1010

10 4.7× 1013 2.7× 1015 5.1× 1014 6,406 3.4× 1013

4 84,096 392,544 336,384 27 6,243

Coin 6 4,612,864 3.2× 107 2.8× 107 61 504,239

protocol 8 2.2× 108 2.1× 109 1.8× 109 109 3.2× 107

(K = 8) 10 1.0× 1010 1.2× 1011 1.0× 1011 170 1.8× 109

12 4.3× 1011 6.1× 1012 5.2× 1012 245 9.3× 1010

14 1.8× 1013 3.0× 1014 2.5× 1014 333 4.6× 1012

Table 4.6: Symbolic versus explicit storage for MDPs

node takes 20 bytes. For the sparse storage scheme, the amount of memory required is

computed as described in Section 3.6.1.

We find that MTBDDs can store structured MDP models extremely compactly. In

fact, the representation is generally even more compact than for DTMCs and CTMCs.

The main reason for this seems to be that there are fewer terminals in the MTBDDs,

implying that there are less distinct values (i.e. probabilities) in the MDPs. This is

not a property specifically of MDPs, but of the type of case studies we have considered:

distributed randomised algorithms. Generally the probabilistic behaviour in these systems

results from simple random choices, often from coin tosses with values such as 1
2

or 1
4
.

4.3 Construction and Reachability

We have presented ways in which three types of probabilistic model can be encoded

as MTBDDs. We have shown how to optimise these encodings and demonstrated that

they can compare very favourably with explicit storage schemes. In this final section,

we consider the issue of how these MTBDDs are actually constructed, i.e. how a system

description in the PRISM language can be translated into an MTBDD which represents

the corresponding probabilistic model.

This translation proceeds in three phases. The first task is to establish an encoding

of the model’s state space into MTBDD variables. This process was described in the

preceding sections of this chapter. Secondly, using the correspondence between PRISM
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and MTBDD variables provided by this encoding, an MTBDD representing the model

is constructed from its description. Thirdly, we compute from the constructed model

the set of reachable states. All unreachable states, which are of no interest, are then

removed. The next two sections describe these second and third phases (construction

and reachability) in more detail. Note that all the models for which statistics have been

presented in this chapter have been built in this fashion.

4.3.1 Construction

The construction process converts a model described in the PRISM language into an

MTBDD representing the corresponding DTMC, MDP or CTMC, as defined by the se-

mantics in Appendix B. One of the motivations behind the design of the language was to

allow for an efficient translation into MTBDDs. In this section, we describe the translation

process informally through a simple example. Appendix C contains a formal description

of the entire process and a proof that the construction is correct. A preliminary version

of this translation was presented in [dAKN+00].

Figure 4.3 shows a simple DTMC described in the PRISM language. It comprises two

modules, M1 and M2, each with a single variable, v1 and v2, respectively, of range [0..1].

Hence, the global state space of the model is {0, 1}× {0, 1} = {(0, 0), (0, 1), (1, 0), (1, 1)}.
Our first task is to encode this state space into Boolean variables. Since the PRISM

variables v1 and v2 are themselves Boolean, we will simply use row variables x = (x1, x2)

and column variables y = (y1, y2), where x1 and y1 correspond to variable v1 and x2 and

y2 to variable v2.

Since the encoding gives such a close correspondence between PRISM variables and

MTBDD variables, the model description can be translated almost directly. First, an

MTBDD is constructed for each command in the description. Each one defines the local

behaviour of a particular module for some subset of the global state space. Hence, it

is represented by an MTBDD over the row variables for the whole system and the col-

umn variables for that module. Figure 4.4 demonstrates the translation for the first and

third commands of module M1. Note how non-primed and primed PRISM variables are

translated into row and column variables, respectively.

The MTBDD describing the behaviour of an entire module is computed by summing

those for all of its commands. The MTBDD representing the whole DTMC is then

obtained by combining the MTBDDs for all its modules. The precise details of this are

left to Appendix C. Here, we simply aim to demonstrate that the translation process is

direct and relatively simple. Consequently, the construction is also usually quite fast.

Section 4.3.3 presents some results to illustrate this.
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dtmc

module M1

v1 : [0..1] init 0;

[] (v1 = 0) ∧ (v2 = 0) → (v′1 = 1);

[] (v1 = 0) ∧ (v2 = 1) → (v′1 = 0);

[] (v1 = 1) → 0.4 : (v′1 = 0) + 0.6 : (v′1 = 1);

endmodule

module M2

v2 : [0..1] init 0;

[] (v2 = 0) ∧ (v1 = 0) → (v′2 = 1);

[] (v2 = 0) ∧ (v1 = 1) → (v′2 = 0);

[] (v2 = 1) → 0.4 : (v′2 = 0) + 0.6 : (v′2 = 1);

endmodule

Figure 4.3: Description of a small DTMC in the PRISM language

1 11

(v1 = 0) ∧ (v2 = 0)→ (v′1 = 1)

x1 x2 y1 −→

1

x1

x2

y1

1 11

(v1 = 1)→ 0.4 : (v′1 = 0) + 0.6 : (v′1 = 1)

x1

0.60.4

y1 y1
−→

0.4 0.6

x1

y1

Figure 4.4: MTBDD construction for two commands of module M1
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4.3.2 Reachability

Computing the set of reachable states of the model can be done via a breadth-first search

of the state space starting with the initial state. This is well suited to implementation

as a BDD fixpoint computation. We first compute BDDs representing the initial state

and the transition relation for the underlying graph of the model. Reachability is then

performed iteratively using these two BDDs. The implementation is very similar to that

of the precomputation algorithms for PCTL and CSL model checking, discussed in the

next chapter. We give full details of the BDD algorithm for reachability in Appendix C.

It should be noted that, in non-probabilistic model checking, determining the reachable

states of a model may actually be sufficient for model checking. In our case, though, we

usually need to perform probability calculations. Since these must be performed on the

entire, reachable model, we consider reachability to be part of the construction phase.

Another interesting observation which we make here is that the removal of unreachable

states from the model often causes a slight increase in the size of its MTBDD. This is

despite the fact that both the number of states and the number of transitions in the model

decreases. The explanation for this phenomenon is that the regularity of the model is also

reduced and, as we have seen repeatedly in this chapter, structure and regularity are the

chief sources of MTBDD efficiency. It is, however, impractical to retain the unreachable

states since this would result in extra work being performed at the model checking stage.

4.3.3 Results

Finally, we present some statistics to demonstrate the performance of the construction and

reachability phases. Table 4.7 gives statistics for a selection of different case studies (see

Appendix E for further details about each example). For each one, we give the number of

states in the model, the time taken for construction (conversion from the PRISM language

to an MTBDD), and both the number of fixpoint iterations and the total time required

to compute the set of reachable states. As will always be the case in this thesis, timings

given refer to actual (wall) time as run on a 440 MHz 512 MB Sun Ultra10. It can be

seen that we can construct very large models with quite reasonable speed: in all cases

the whole process takes less than 80 seconds. This means that we can now concentrate

on the implementation and efficiency of the actual model checking process, which is our

main area of interest.
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Model Parameters States Construction Reachability

(sec.) Iterations Seconds

Polling system N = 18 7,077,888 0.47 37 0.52

Kanban system N = 6 11,261,376 0.41 85 3.99

FMS N = 8 4,459,455 7.11 65 36.1

BRP N = 2, 500 137,505 8.02 15,011 71.3

Dining philosophers N = 4,K = 6 3,269,200 6.38 36 65.1

Coin protocol N = 10,K = 6 7,598,460,928 1.22 729 17.4

FireWire N = 3, 000 2,238,333 13.1 3,050 27.2

Table 4.7: Performance statistics for construction and reachability



Chapter 5

Model Checking with MTBDDs

Having presented techniques to construct and store probabilistic models with MTBDDs

in an efficient manner, we now consider the problem of carrying out probabilistic model

checking using the same data structure. The first three sections of this chapter describe

how this can be implemented. We cover model checking of PCTL over DTMCs and

MDPs and of CSL over CTMCs. In doing so, we reuse existing algorithms and results

from [BFG+93, HMPS94, BCHG+97, KNPS99, HMKS99, BKH99, dAKN+00, KKNP01].

We will see that there is a great deal of similarity between the various algorithms.

The main contribution of this chapter is a thorough investigation into the practical

applicability of these techniques. In Section 5.4, we present experimental results for

MTBDD-based probabilistic model checking on a wide range of case studies. We also

compare the performance of our symbolic implementation with that of an explicit version

based on sparse matrices. In Section 5.5, we analyse the performance of the symbolic

implementation in more detail and consider some potential improvements.

5.1 The Main Algorithm

As we saw in Chapter 3, the model checking algorithms for both PCTL and CSL take a

formula in the logic, along with a model of the appropriate type, and return the set of

states which satisfy the formula. The first requirement of our implementation of these

model checking algorithms is that the inputs and outputs can be represented as MTBDDs.

We have seen in the previous chapter how, by encoding its state space with Boolean

variables, a model can be represented as an MTBDD. Using the same state space encoding,

we can represent a state-indexed vector, as described in Section 3.7. Furthermore, by

representing a set of states S ′ by its characteristic function (i.e. the function fS′ for which

fS′(s) equals 1 if s ∈ S ′ and 0 otherwise), we can also represent sets of states using BDDs.

81
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φ Sat(φ)

true Const(1)

a Encode(a)

φ1 ∧ φ2 Sat(φ1) ∧ Sat(φ2)

¬φ ¬Sat(φ)

Figure 5.1: Model checking for non-probabilistic PCTL and CSL operators

This gives us all that is required.

In the description of our implementation, we will assume the following. For DTMCs,

MDPs and CTMCs, the transition probability matrix P, transition function Steps and

transition rate matrix R are represented by MTBDDs P, Steps and R respectively. We use

x = (x1, . . . , xn) as row variables, y = (y1, . . . , yn) as column variables, and z = (z1, . . . , zk)

as nondeterministic variables. Hence, P and R are over x and y, and Steps is over x, y and

z. For state-indexed vectors and sets of states we use an (MT)BDD over x.

The model checking algorithms for PCTL and CSL proceed by traversing the parse

tree for the logical formula and recursively evaluating the set of states which satisfy each

subformula. Hence, it suffices to provide one algorithm for each logical operator. For the

non-probabilistic operators (true, a, ∧, ¬), common to PCTL and CSL, model checking

is trivial and performed identically for both logics. The operations required are given in

Figure 5.1. We denote by Sat(φ) the function which computes the BDD for the set of

states satisfying the formula φ. Note that since the model checking algorithm is recursive,

we can assume that any subformulas have already been model checked. For example, when

computing Sat(¬φ), we can assume that the result of Sat(φ) is known.

Model checking for true, ∧ and ¬ uses only straightforward BDD operations. For an

atomic proposition a, we denote by Encode(a) the function which returns the BDD rep-

resenting the set of states which satisfy a. Fortunately, as observed in Section 4.1.1, this

is also easy to generate. This is because, in practice, atomic propositions are predicates

over PRISM variables and since we adopt a structured approach to encoding the model’s

state space, there is a direct correspondence between PRISM variables and MTBDD vari-

ables. Consider, for example, a single PRISM variable v with range {0, 1, 2, 3}, encoded

as described in Section 4.1.1 by two MTBDD variables x1 and x2. Figure 5.2 shows BDDs

corresponding to some simple predicates. More complex predicates can be created using

logical connectives such as ∨ and ∧. Their BDDs can be computed using the correspond-

ing BDD ∨ and ∧ operations.

One further point we should note about the main model checking algorithm is that

we must be careful to only include reachable states. We saw in the previous chapter that
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v x1 x2

0 0 0

1 0 1

2 1 0

3 1 1

1

x1

x2

Encode(v = 2) Encode(v ≤ 1)

1

x1

Encode(v ∈ {0, 3})

1

x1

x2

Figure 5.2: BDD encodings for atomic propositions

the MTBDD encoding of a model’s state space will typically include some unreachable

or non-existent states. Since these are uninteresting, we remove them by performing a

conjunction with a BDD reach representing the set of reachable states. So, for example,

Sat(¬φ) would actually be computed as reach ∧ ¬Sat(φ).

The remaining PCTL and CSL operators which we need to consider are the proba-

bilistic operators, P./ p[·] and S./ p[·]. These are non-trivial and constitute the bulk of the

work required for model checking. The overall procedure is the same for both operators.

In each case, we are required to compute a vector of probabilities (either ps(·), pmax
s (·) or

pmin
s (·) for P./ p[·], or π(s) for S./ p[·]), one for each state, and compare the probabilities

with the bound (./ p) to establish which states satisfy the formula. Assuming that we

have computed an MTBDD probs representing the vector of probabilities for all states,

the BDD representing the result is Threshold(probs, ./, p).

The calculation of probabilities is covered in the next two sections. We begin with

the implementation of the precomputation algorithms, which usually constitute the first

phase of the process. We then consider the situations where numerical computation is

required. In both cases, rather than describe all the different algorithms in their entirety,

we give the implementation of a few representative examples. All the algorithms can be

found in Appendix D.

5.2 Precomputation Algorithms

The first step in the model checking algorithm for many of the probabilistic operators of

PCTL and CSL is to execute one or more precomputation algorithms. These determine,

via a graph analysis of the model, the states for which the relevant probability is exactly 0

or 1. Probabilities need then only be computed for the remaining states. The precompu-

tation algorithms are important because, in some cases, they produce enough information

for the second and more expensive numerical computation phase to be skipped. Even
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Prob0(phi1, phi2)

1. sol := phi2
2. done := false

3. while (done = false)

4. sol′ := sol ∨ (phi1 ∧ThereExists(y,T ∧ReplaceVars(sol, x, y))

5. if (sol′ = sol) then done := true

6. sol := sol′

7. endwhile

8. return ¬ sol

Figure 5.3: The MTBDD version of the Prob0 algorithm

when the second phase is carried out, it only computes an approximation to the exact

probabilities and is subject to round-off errors. The precomputation algorithms, however,

present no such drawbacks.

The algorithms we need, as described in Section 3.3, are Prob0, Prob1, Prob0A,

Prob1E, and Prob0E. We will concentrate on Prob0, which is sufficient to explain all

the necessary implementation details. The MTBDD versions of all five algorithms can be

found in Appendix D.

Prob0 is used when model checking a PCTL until formula P./ p[φ1 U φ2] over a

DTMC. It computes the set of states for which ps(φ1 U φ2) = 0. The algorithm was

given in Figure 3.1. We assume that the sets Sat(φ1) and Sat(φ2) have already been com-

puted, and are represented by phi1 and phi2, BDDs over the variables x. The algorithm

only considers the existence of a transition between two states, not the actual probability

of making that transition. Hence, it is more efficient to use a BDD T, representing the

transition relation of the underlying graph, than to use the MTBDD P representing the

transition probability matrix. This can be computed as T := Threshold(P, >, 0). The

Prob0 algorithm will return a BDD over variables x representing the required set of

states. Figure 5.3 gives the MTBDD algorithm for Prob0.

Like all the precomputation algorithms, Prob0 uses a fixpoint computation to gener-

ate its result. The key aspects of the implementation of the fixpoint are as follows. The

set of states being computed is stored in a BDD sol over variables x. First, sol is initialised

to some value (line 1). The algorithm then repeatedly computes a new set sol′ based on

sol (line 4) and compares it to the previous set (line 5). The iterative process is stopped

when the set does not change, i.e. the BDDs sol and sol′ are identical. The computation

is guaranteed to terminate since there are finitely many states. The set generated by the

fixpoint is then given by sol. Note that, in this case, the required result is actually the

states not accumulated by the fixpoint, hence we negate sol before returning it.
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As for the actual computation performed in each iteration, the original algorithm

translates easily into BDDs. Note the close correspondence between line 4 of Figure 3.1

and line 4 of Figure 5.3:

• R′ := R ∪ {s ∈ Sat(φ1) | ∃s′ ∈ R .P(s, s′) > 0}
• sol′ := sol ∨ (phi1 ∧ThereExists(y,T ∧ReplaceVars(sol, x, y))

Furthermore, this consists entirely of simple BDD operations which can be performed

efficiently. The other important part of the algorithm, checking if the BDDs sol and sol′

are identical, can be done in constant time due to the canonicity property of (MT)BDDs

and the efficient data structures used to store them, as discussed in Section 3.7.

5.3 Numerical Computation

We require algorithms to compute probabilities for the PCTL next, bounded until and

until operators over both DTMCs and MDPs, and the CSL next, time-bounded until,

until and steady-state operators over CTMCs. As in the previous section, there is a

considerable amount of overlap between the various cases. Hence, we limit our coverage

to a few examples which illustrate all of the relevant points. A complete description of

all the MTBDD algorithms can be found in Appendix D.

5.3.1 The PCTL Until Operator for DTMCs

As our first example, we consider an MTBDD implementation of the numerical compu-

tation for the PCTL until operator, P./ p[φ1 U φ2], over DTMCs. This algorithm was

discussed in Section 3.3.1. The MTBDD version is given in Figure 5.4. It is essentially

the same as the one proposed in [BCHG+97]. The probabilities are computed by the

MTBDD algorithm PctlUntil. It takes as input two BDDs, phi1 and phi2, representing

the sets of states Sat(φ1) and Sat(φ2), respectively, and returns an MTBDD represent-

ing the vector of probabilities ps(φ1 U φ2) for each state s. It also uses the MTBDD P

representing the transition probability matrix of the DTMC.

The first step (lines 1–3) determines the sets Sno , Syes and S?. This uses the pre-

computation algorithms Prob0 and Prob1, the implementation of which was described

in the previous section. Secondly (lines 4–6), the linear equation system A · x = b is

constructed, as described in Section 3.3.1. The matrix A and vector b are represented by

MTBDDs A and b respectively. We first build the matrix P′ (represented by P′) which

is equal to the matrix P but with the rows corresponding to states not in S? set to zero.

This is done by a pointwise multiplication, using the Apply operator, of P and s?, the
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PctlUntil(phi1, phi2)

1. sno := Prob0(phi1, phi2)

2. syes := Prob1(phi1, phi2, sno)

3. s? := ¬ (sno ∨ syes)

4. P′ := s? × P

5. A := Identity(x, y)− P′

6. b := syes

7. probs := SolveJacobi(A, b, b)

8. return probs

Figure 5.4: The PctlUntil algorithm

latter representing S?. The matrix A = I − P′ is then constructed using the Identity

and Apply functions. In line 7, the solution of the linear equation system A · x = b is

computed, using the Jacobi iterative method. This constitutes the bulk of the work and

is contained in a separate algorithm, SolveJacobi.

As stated in Section 3.3, we use iterative methods for solving linear equation systems,

rather than alternative, direct methods such as Gaussian elimination or L/U decomposi-

tion. This is because we are aiming to study large probabilistic models, which will produce

very large linear equation systems. Direct methods usually require modifications to the

matrix A, which are costly both in terms of space and time.

This argument applies regardless of the data structure being used. In our case, how-

ever, it is particularly relevant. Work by [BFG+93] showed that MTBDDs are very poorly

suited to methods such as Gaussian elimination. As we saw in the previous chapter, the

effectiveness of MTBDDs relies heavily on them being used to store regular, structured

information. Modifications to the matrix A, such as those made by Gaussian elimination,

inevitably lead to a significant loss in regularity and a consequent blow-up in the size of

the MTBDD. Furthermore, the operations required to perform these modifications work

on individual elements, rows and columns of the matrix. These are particularly difficult to

implement on inherently recursive data structures such as MTBDDs. The iterative meth-

ods we use, on the other hand, do not modify the matrix throughout the computation

and can be implemented with matrix-vector multiplication, for which efficient MTBDD

algorithms exist.

The problem of implementing iterative solution methods using MTBDDs was first

considered in [HMPS94], which implemented steady-state probability calculation using

the Power method. [HMKS99] extended this work, also presenting MTBDD algorithms for

the Jacobi and Gauss-Seidel methods. In Figure 5.5, we give the function SolveJacobi,

the MTBDD implementation of the Jacobi method.
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SolveJacobi(A, b, init)

1. d := Abstract(max, y,A× Identity(x, y))

2. A′ := A×Const(−1)× ¬Identity(x, y)

3. sol := init

4. done := false

5. while (done = false)

6. sol′ := MVMult(A′, sol)

7. sol′ := sol′ + b

8. sol′ := sol′ ÷ d

9. if (MaxDiff(sol, sol′) < ε) then

10. done := true

11. endif

12. sol := sol′

13. endwhile

14. return sol

Figure 5.5: The SolveJacobi algorithm

The algorithm can be compared to the description of the Jacobi method we gave in

Section 3.5. Note that there were two alternatives presented there: one expressed in

terms of operations on individual matrix elements; and one in terms of matrix-vector

multiplication. We select the latter because, as described above, it is far more efficient to

implement in MTBDDs. The first three lines of Figure 5.5 set up the MTBDDs A′, d and

sol which will be used in the main iterative loop. In terms of the description of the Jacobi

method in Section 3.5.1, A′ corresponds to the matrix L + U and d stores the diagonal

values from the matrix D. The MTBDD sol represents the solution vector.

The main part of SolveJacobi is the loop in lines 4–13. Each iteration computes

the next approximation to the solution vector, sol′, from the previous one, sol. This is

done with one matrix-vector multiplication and a pointwise addition and division on a

vector. Each iteration also contains a convergence check which compares sol and sol′ to

determine whether or not the method should be terminated. Various stopping criteria

can be used, as discussed in Section 3.5. We check if the maximum relative difference

between elements of the two vectors is below some threshold ε. We assume the presence

of a function MaxDiff(v1, v2) which computes this difference between two vectors rep-

resented by MTBDDs v1 and v2. This could be done with basic MTBDD operations, e.g.

FindMax(Abs((sol′−sol)÷sol′)). In fact, there are also built-in operations in the CUDD

package which can be used to compute this directly from the MTBDDs.

The JOR method can be implemented as a simple modification of the Jacobi method

(see Appendix D for the exact details). To encode Gauss-Seidel though, or the related SOR
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PctlUntilMax(phi1, phi2)

1. sno := Prob0A(phi1, phi2)

2. syes := Prob1E(phi1, phi2)

3. s? := ¬ (sno ∨ syes)

4. Steps′ := s? × Steps

5. probs := syes

6. done := false

7. while (done = false)

8. probs′ := MVMult(Steps′, probs)

9. probs′ := Abstract(max, z, probs′)

10. probs′ := probs′ + yes

12. if (MaxDiff(probs, probs′) < ε) then

13. done := true

14. endif

15. probs := probs′

16. endwhile

16. return probs

Figure 5.6: The PctlUntilMax algorithm

method, is more difficult. For efficiency reasons, we must rely on the matrix formulation of

the method given in Section 3.5, which is again based on matrix-vector multiplication. The

implementation of this in MTBDDs is considered in [HMKS99] but the need to compute a

matrix inverse and the amount of extra work this entails make it an unattractive option.

This is unfortunate, because these two methods usually require significantly less iterations

to converge, which could have a marked effect on the overall time required for model

checking.

5.3.2 The PCTL Until Operator for MDPs

As our second example, we describe the model checking algorithm for the PCTL until

operator, P./ p[φ1 U φ2], over MDPs. We consider the case where ./ p defines an upper

bound, and hence the algorithm computes the probabilities pmax
s (φ1 U φ2). In this case, it

makes no difference whether we consider all adversaries or fair adversaries only. The model

checking algorithm was given in Section 3.3.2. The MTBDD version, PctlUntilMax,

can be seen in Figure 5.6. We first presented this in [dAKN+00].

As was the case in the previous section, there exist alternative, direct methods to

perform this model checking problem. It can be reformulated as a linear programming

(LP) problem, as detailed in Section 3.3.2, and solved with classic LP techniques such

as the Simplex algorithm. We investigated the applicability of MTBDDs to the Simplex
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method in [KNPS99] and found that the situation is similar to that of Gaussian elimina-

tion: its reliance on access to individual elements, rows and columns of the matrix makes

it impractical for symbolic implementation.

The overall structure of PctlUntilMax is very similar to PctlUntil from the

previous section: firstly, we use precomputation algorithms to determine the sets Sno ,

Syes and S?; secondly, we make modifications to the MTBDD representing the model;

and thirdly, we execute an iterative method using this modified MTBDD.

Note that an MDP is represented by a transition function Steps , not a transition

matrix, as is the case for a DTMC. As described in Section 3.3.2 though, from an im-

plementation point of view it is useful to think of Steps as a non-square matrix Steps,

where there are several rows corresponding to each state of the MDP. The key component

of each iteration of the MDP model checking algorithms then becomes a matrix-vector

multiplication using this non-square matrix.

We can use the same idea here. The MTBDD Steps, representing the MDP, is over

row variables x, column variables y, and nondeterministic variables z. If we instead treat

Steps as representing a matrix with x and z for row variables and y for column variables,

we can perform this operation using the MTBDD MVMult function. This is done in line

8 of Figure 5.6. The other important step, computing the maximum probability for each

state, can be carried out easily using the Abstract(max, ·, ·) operator. The convergence

check is performed as in the previous PctlUntil algorithm.

5.3.3 Other Operators

The implementation of the numerical computation for the remaining PCTL and CSL

operators is not particularly different from the ones described above. PCTL bounded

until for DTMCs and MDPs requires a fixed number of iterations similar to those for the

unbounded variants and PCTL next needs a single such iteration. For CSL, the steady-

state operator requires solution of a linear equation system, which can be done as for

PCTL until formulas over DTMCs. The calculations for the CSL time-bounded until

operator are slightly more involved but the basic operations required are no different. As

discussed in Chapter 2, symbolic implementations of the computation required for CSL

model checking were first proposed in [HMKS99, BKH99].

The full versions of all algorithms for PCTL and CSL model checking of DTMCs,

MDPs and CTMCs are in Appendix D. Crucially, the overall format of the methods is

the same in all cases: a number of initialisation steps followed by one or more iterations,

the key constituent of each being the multiplication of a matrix and a vector.
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5.4 Results

The MTBDD-based model checking algorithms for PCTL and CSL described in the pre-

vious sections have all been implemented in the PRISM model checker. Using the tool,

we have applied the techniques to a number of case studies. This section presents some

of the results of this work. We assess the performance of our symbolic implementation

and, where applicable, compare it to that of equivalent, explicit approaches based on

sparse matrices. Since most interesting properties for our case studies will make use of

the probabilistic operators of PCTL and CSL, our analysis focuses on these.

We begin by considering cases where model checking can be done entirely with pre-

computation algorithms, typically when we are considering qualitative formulas where the

bound p is 0 or 1. There are actually many case studies where this is true. One of the

most common sources is models of randomised distributed algorithms, which give rise to

MDPs. Since the algorithms are randomised, it is usually necessary to verify properties

such as “the probability that the algorithm eventually terminates is 1”, weaker than the

more usual “the algorithm will always eventually terminate”.

In Table 5.1, we present results for three such case studies: Rabin’s randomised mutual

exclusion [Rab82], Lehmann and Rabin’s randomised dining philosophers [LR81], and

the coin protocol from Aspnes and Herlihy’s randomised consensus protocol [AH90]. In

each case, we model check a PCTL property of the form P≥1[♦φ], which reduces to an

until formula, and compute minimum probabilities over fair adversaries only. Hence, the

precomputation algorithm is used is Prob0A. The actual properties checked and details

of the model parameters (N and K in the table) can be found in Appendix E.

For each example, we give the size of the MDP (number of states), the number of

fixpoint iterations performed by the precomputation algorithm and the total time required

for model checking. In these, and all the other results presented in this thesis, we measure

actual (wall) time, running on a 440 MHz 512 MB Sun Ultra10.

We see from the table that, for these examples, model checking is fast and efficient,

in some cases for extremely large models (up to 1013 states). We have not attempted

to compare these results with an explicit implementation. It is clear, though, from the

model sizes given above and the comparisons presented in Chapter 4, that many of these

models could not even be constructed explicitly due to memory limitations.

Although the success of these techniques is encouraging, particularly because they

can be applied to many randomised distributed algorithm case studies, in this thesis we

are more concerned with the problem of implementing numerical computation. Since the

former only requires BDD fixpoint algorithms on state transition systems, it is similar

to existing, symbolic implementations of non-probabilistic model checking, which have
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Model Parameters States Iterations Time (sec.)

3 10,744 4 0.50

Mutual 4 201,828 4 1.13

exclusion 5 6,769,448 4 1.67

(N) 6 1.3× 108 4 3.62

8 4.5× 1010 4 4.92

10 4.7× 1013 4 12.8

3, 4 28,940 9 1.54

3, 5 47,204 8 1.86

Dining 3, 6 69,986 8 2.87

philosophers 3, 8 129,254 8 4.78

(N,K) 4, 4 729,080 11 31.4

4, 5 1,692,144 11 26.2

4, 6 3,269,200 10 40.3

4, 8 8,865,024 9 80.7

2, 8 1,040 53 0.04

Coin 4, 8 84,096 105 0.57

protocol 6, 8 4,612,864 157 2.93

(N,K) 8, 8 2.2× 108 209 10.3

10, 6 7.6× 109 201 20.4

Table 5.1: Results for precomputation-based model checking
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Model Parameters States Iterations Time per iteration (sec.)

MTBDD Sparse

2, 8 1,040 6,132 0.02 0.0003

Coin 4, 8 84,096 21,110 0.34 0.04

protocol 6, 8 4,612,864 42,967 1.83 3.37

(N,K) 8, 8 222,236,672 70,669 4.56 -

10, 6 7,598,460,928 63,241 9.79 -

200 68,185 169 0.01 0.02

400 220,733 375 0.02 0.07

FireWire 600 375,933 581 0.04 0.12

(N) 800 531,133 789 0.05 0.17

1,000 686,333 995 0.06 0.22

2,000 1,462,333 2,027 0.11 0.47

3,000 2,238,333 3,015 0.17 0.71

500 501,501 534 0.12 0.22

1,000 2,003,001 1,049 0.15 0.89

1,500 4,504,501 1,563 0.20 1.96

Tandem 2,000 8,006,001 2,077 0.25 -

queue 3,000 18,009,001 3,103 0.56 -

(N) 4,000 32,012,001 4,128 0.47 -

5,000 50,015,001 5,153 0.48 -

6,000 72,018,001 6,177 0.57 -

7,000 98,021,001 7,201 0.61 -

Table 5.2: Positive results for MTBDD-based numerical computation

already received considerable attention in the literature. Hence, we concentrate on situ-

ations where precomputation algorithms are either not applicable or where they can be

applied but numerical computation is still required. Unsurprisingly, these cases require

considerably more effort.

We start by highlighting a number of examples where our MTBDD implementation

performs extremely well. Table 5.2 present results for these. The case studies in question

are the coin protocol of [AH90], the FireWire root contention protocol model of [SV99],

and the tandem queueing network of [HMKS99]. The first two are MDP models, for which

we model check a PCTL until formula. The third is a CTMC model, where we check a

CSL time-bounded until formula. Appendix E gives more details.

For each model, Table 5.2 shows its size (number of states), the number of iterations

required for model checking, and the time required for both the MTBDD and sparse

matrix implementations. For the latter, we give the average time per iteration. This

allows for a good, general comparison between the two data structures, regardless of the



5 - Model Checking with MTBDDs 93

actual iterative method required or its convergence on a particular example. Note that

the time required for other parts of model checking, such as the initial setup up of the

iterative solution method, is always negligible in comparison. A dash in the table indicates

that model checking could not be completed because of memory constraints.

For each of the three case studies, MTBDDs are faster than sparse matrices on all but

the very smallest examples. In addition, for both the coin protocol and tandem queue

case studies, the MTBDD implementation can handle considerably larger models. The

reason for this is the differing memory usage of the two approaches.

Unfortunately, it is not feasible to carry out a detailed comparison in this respect.

While the storage requirements for the matrix and solution vectors are easy to compute

for the sparse matrix implementation, it is difficult to determine exact figures for the

MTBDD version. Each individual operation performed creates new MTBDDs. These are

kept in a shared data structure so their storage always overlaps to some extent. Also,

memory freed by MTBDDs becoming redundant is only released periodically via garbage

collection. Furthermore, a significant portion of the space required is taken up by the

cache for the computed table, whose size is altered dynamically by the MTBDD package.

What we can see from our empirical results, though, is that we have examples where

MTBDDs can be used but where sparse matrices cannot. On the largest coin protocol

model, for example, which has 7.5 billion states, the MTBDD computation could be

performed comfortably in 512 MB of RAM, while the storage of the matrix alone would

have required 1, 300 GB for the explicit implementation.

The results presented in Table 5.2 are again very encouraging. Unfortunately, they are

not typical. More often than not, the MTBDD implementation is easily outperformed by

its sparse matrix counterpart. Table 5.3 illustrates the performance of the two approaches

on some typical examples: two CTMC models, the Kanban manufacturing system of

[CT96] and the cyclic server polling system of [IT90]; a DTMC model, the bounded

retransmission protocol (BRP) of [HSV94]; and an MDP model, the randomised dining

philosophers algorithm of Lehmann and Rabin [LR81]. For the CTMCs, we compute the

steady-state probabilities in order to model check a CSL steady-state formula; for the

DTMC, we check a PCTL until property; and for the MDP, we check a PCTL bounded

until formula. As above, we give the size of the model, the number of iterations required

and the average time per iteration using MTBDDs and sparse matrices.

Here, the MTBDD implementation is always much slower than the sparse matrix

equivalent, by several orders of magnitude in the worst cases. MTBDDs also perform

poorly in terms of memory. While the upper limit for models which can be analysed by

the sparse matrix implementation remains the same (a few million states), the MTBDD

version runs out of memory on examples with as few as 70, 000 states.



94 5 - Model Checking with MTBDDs

Model Parameters States Iterations Time per iteration (sec.)

MTBDD Sparse

1 160 101 0.03 0.001

Kanban 2 4,600 166 2.22 0.002

System 3 58,400 300 45.5 0.05

(N) 4 454,475 466 - 0.41

5 2,546,432 663 - 2.70

8 3,072 310 0.31 0.001

Polling 10 15,360 406 13.1 0.01

system 12 73,728 505 - 0.05

(N) 14 344,064 606 - 0.30

16 1,572,864 709 - 1.56

500 27,505 3,086 0.38 0.01

BRP 1,000 55,005 6,136 0.67 0.01

(N) 1,500 82,505 9,184 0.99 0.02

2,000 110,005 12,230 1.26 0.03

2,500 137,505 15,274 1.53 0.04

3, 4 28,940 22 0.12 0.01

3, 5 47,204 26 0.14 0.01

Dining 3, 6 69,986 30 0.16 0.02

philosophers 3, 8 129,254 38 0.22 0.04

(N,K) 4, 4 729,080 22 1.24 0.19

4, 5 1,692,144 27 2.57 0.48

4, 6 3,269,200 31 4.62 1.00

Table 5.3: Negative results for MTBDD-based numerical computation
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5.5 Analysis

We now analyse our results in more detail. In particular, we want to determine why

MTBDDs are good for some cases of numerical computation and bad for others. We

begin by trying to identify the factors which cause MTBDDs to perform poorly. In the

previous section, we measured the performance of an implementation by the average time

per iteration. Whilst this is a good measure for comparisons, it is also revealing to examine

the actual time required for each iteration.

In Figures 5.7 and 5.8, we plot this information for the steady-state probability com-

putation of two CTMCs. Figures 5.7 and 5.8 show the Kanban system and polling system

examples, respectively. In both cases, (a) gives the times for sparse matrices and (b) the

times for MTBDDs. We select models such that the average time per iteration is approx-

imately the same for the two implementations. We are not concerned with the actual

times, only the pattern in iteration time.

The most obvious difference is that the iteration times for sparse matrices remain

relatively constant, whilst those for MTBDDs vary greatly. In fact, this variation in the

latter is the result of two factors. The repeated jumps which can be observed in the graph

are due to the fact that the MTBDD package periodically performs garbage collection

and then reorganises the unique table. This is done when the package determines that

there are a significant number of dead nodes which should be freed. Typically, entries in

the computed table which correspond to these nodes are also removed. All other MTBDD

operations are paused while this process is carried out. This phenomenon is particularly

clear in Figure 5.7(b), where it can be seen to occur every 3 or 4 iterations.

The second characteristic which can be observed is an increase in iteration time as the

computation progresses. This is especially evident in Figure 5.8(b) where the time can

be seen to initially be almost zero and then grow very rapidly. This can also be seen in

Figure 5.7(b), where the increase is even more sudden.

An examination of the iterative algorithms we perform for model checking suggests

that the most costly operation performed is the multiplication of a matrix and a vector.

Empirical results confirm this. For both the sparse matrix and MTBDD implementations,

the time complexity of this operation depends purely on the size of the data structures

storing the matrix and the vector. We know that the matrix is never modified: this is

one of the fundamental properties of iterative solution methods. The vector, however, is

updated at each iteration. In the sparse matrix implementation, it is stored in an array

of fixed size so these alterations will have no effect on the size of the data structure.

By contrast, the MTBDD representation of the iteration vector may change significantly.

The size of the MTBDD (and hence the time required for the multiplication operation)
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Figure 5.7: Actual iteration times for the Kanban system case study:

(a) Sparse matrices (N = 5) (b) MTBDDs (N = 2)
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Figure 5.8: Actual iteration times for the polling system case study:

(a) Sparse matrices (N = 15) (b) MTBDDs (N = 9)
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depends on the structure and regularity of the vector. This will inevitably change as the

computation progresses.

To investigate this, we now plot the size (number of nodes) of the MTBDD representing

the vector for each iteration. Figure 5.9 shows this for the same computations as in

Figures 5.7(b) and 5.8(b). There is a clear correspondence between the growth in the

MTBDD size for the vector and the increase in time per iteration. Note, for example,

how in the Kanban system example, the MTBDD size jumps almost immediately to its

maximum value and remains the same, as is reflected in the iteration times. We conclude

that it is this growth of the MTBDD for the vector which is responsible for the slow run-

times observed in the symbolic implementation. From the size of the MTBDDs involved,

it is clear that this is also the reason that the implementation runs out of memory for

the larger examples in Table 5.3. In addition to the storage required for the MTBDDs

themselves, the memory required for the computed table will also increase.

One likely factor to explain the increase in the size of the MTBDD is the number of

terminals it contains. This corresponds to the number of distinct values in the iteration

vector. We would expect this to increase as the computation progresses. This is indeed

the case, as confirmed by the graphs in Figure 5.10, where we plot the number of terminals

in the vector MTBDD for each iteration. Note the close correspondence between these

two graphs and the two in Figure 5.9.

The correlation between these two sets of statistics is unsurprising. Compact MTBDDs

are obtained by exploiting structure and regularity. Clearly, as the number of distinct

terminal nodes increases, the capacity for sharing will decrease. For the Kanban example

(Figure 5.10(a)), the number of terminals quickly reaches 4,600, equal to the number of

states in the model. This is actually the worst possible case for MTBDD size. As well

as affecting the number of nodes, these factors will also reduce the chance of duplicate

operations being performed, severely limiting the effectiveness of the cache, usually one

of the main sources of efficiency in MTBDD computations.

For comparison, we plot the equivalent graphs for some of the cases where MTBDDs

performed well. Figures 5.11(a) and (b) show plots of the number of terminals in the

iteration vector MTBDD for two examples from Table 5.2: the FireWire root contention

protocol model (N = 400) and the coin protocol model (N = 2, K = 8).

The most obvious difference is that the number of terminals for these MTBDDs is

much lower than in the previous examples. For the FireWire example, this number is

extremely small, remaining below 6 for the whole computation. This is despite the fact

that the model has more than 200,000 states. For the coin protocol, the number is slightly

higher, levelling off at about 130, but this is still significantly less than in our examples

where MTBDD perform badly. Note that, in this second example, we have only plotted
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Figure 5.9: MTBDD size for the iteration vector during steady-state computation:

(a) Kanban system (N = 2) (b) Polling system (N = 9)
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Figure 5.10: Number of terminals at each iteration for steady-state computation:

(a) Kanban system (N = 2) (b) Polling system (N = 9)
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Figure 5.11: Number of terminals at each iteration for PCTL model checking:

(a) FireWire model (N = 400) (b) Coin protocol (N = 2, K = 8)

results for the first 300 iterations. The whole computation actually takes more than

6,000 iterations, but we have verified that the number of terminals grows no larger in this

period. The curve of the graph where the number of terminals levels off is also suspiciously

sharp, suggesting that other factors, such as round-off error might be keeping the figure

artificially low. To rule this out, we performed the same computation using arbitrary

precision arithmetic and obtained identical results.

We observe that the models on which MTBDDs perform impressively are usually

MDPs. In Chapter 4, we found that the compactness of the MTBDD representation was

better for MDPs than other types of model. We reasoned that this was due to the fact

that our primary source of MDP case studies was randomised distributed algorithms.

The probabilistic behaviour in such systems is often limited to a small number of simple,

random choices such as coin tosses. Therefore, in the matrices representing the corre-

sponding MDPs, there are very few distinct values and most most non-zero entries are 1.

This results in compact, regular MTBDDs with a small number of terminals. It seems

that, consequently, the solution vector in these cases can also remain relatively struc-

tured and compact, causing a much slower growth in size and improved time and memory

requirements.

Potential Solutions

We conclude this chapter by describing some some potential solutions we have considered

for alleviating the performance problems of MTBDD-based numerical computation. We
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first look at approaches taken in the non-probabilistic case. BDD-based fixpoint computa-

tions, such as those used in this thesis for reachability (Section 4.3.2) and precomputation

algorithms (Section 5.2), or elsewhere for non-probabilistic model checking, can be seen

as an analogue of our MTBDD-based numerical methods. Both are based on iterative

computations: in our case, using MTBDDs to represent a real-valued matrix and a real-

valued vector; in the non-probabilistic case, using BDDs to represent a transition relation

and a set of states.

Although the problems are not as severe in the non-probabilistic case, it is frequently

still necessary to try and curb the growth of the BDDs during the computation. A common

approach is to experiment with dynamic variable reordering. While an initial ordering for

the BDD variables is usually chosen to minimise the size of the transition relation, if the

size of the BDD for the set of states becomes unmanageable, it is often worth reordering

the variables to reduce the BDD size. The literature contains many studies into heuristics

for determining when and how to perform such reordering. Unfortunately, in our case, the

lack of structure in the solution vector which causes the growth in MTBDD size seems to

be influenced mainly by the number of terminals. This will remain the same, regardless

of the ordering chosen.

This suggests that a good direction to take would be to try and reduce the number

of terminals in the vector MTBDD. One possible technique would be to round off the

solution vector to some lower precision at each iteration. In this way, terminals with

distinct (but approximately equal) values, perhaps the result of round-off errors, would

be merged, reducing the size of the MTBDD. We implemented a prototype version of this

idea and discovered that, not only was there no dramatic decrease in MTBDD size, but

in several cases the iterative solution method would now either not converge or would

converge to the wrong answer. It is well known that the limited precision of floating point

arithmetic can cause round-off errors in computations. It seems that artificially limiting

the precision further only accentuates these problems.



Chapter 6

A Hybrid Approach

In the previous two chapters, we demonstrated the applicability of MTBDDs to the con-

struction and analysis of probabilistic models. MTBDDs proved to be extremely well

suited to building and storing large, structured models. Furthermore, model checking of

qualitative properties could be performed efficiently on these models using reachability-

based precomputation algorithms. When we focused on model checking of quantitative

properties, based on numerical computation, we also witnessed positive results, finding

several instances where the MTBDD implementation easily outperformed the sparse ma-

trix equivalent. In the majority of these cases, though, the opposite was true and the

symbolic implementation performed poorly.

We successfully identified the main cause of these problems. All the numerical calcu-

lations required for model checking are implemented using iterative methods, based on

successive computations of an approximation to a solution vector. The update to this

vector at each iteration is based on a multiplication by a matrix, derived in some way

from the transition matrix of the model. Despite the fact that the MTBDD representation

for this matrix is often extremely compact, we found that the size of the same representa-

tion for the vector usually increases rapidly as the computation progresses and the vector

becomes less and less regular. Consequently, the time required to perform operations on

the vector grows large, slowing the computation down. Furthermore, in many instances,

the increase in memory consumption actually makes model checking infeasible.

By comparison, in our explicit implementation, the solution vector is stored in an

array. The entries of the vector can be accessed and modified much more quickly when

represented in this fashion. Furthermore, the size of the data structure remains constant

as the computation progresses. The disadvantage of this implementation, though, is that

the memory requirements for the matrix can become unwieldy, limiting the size of model

checking problem to which the techniques can be applied.

101
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In this chapter, we present a novel, hybrid approach to the implementation of numer-

ical solution. We will represent the matrix as an MTBDD, allowing us to benefit from

the compact storage schemes developed in Chapter 4 and also to make use of the more

efficient aspects of our symbolic implementation such as model construction and precom-

putation algorithms. The iteration vector, though, will be stored in an array, as in the

explicit approach. The problem we now face is implementing numerical iterative methods

using these two fundamentally different data structures.

6.1 Mixing MTBDDs and Arrays

We begin by considering the numerical computation required for model checking DTMCs

and CTMCs. The complications introduced by the case for MDPs will be addressed at

a later stage. As we observed when developing the pure MTBDD-based implementation

in Chapter 5, model checking for all probabilistic operators of PCTL and CSL can be

performed using iterative methods, the key step of each iteration being the multiplication

of a matrix and a vector.

The only restriction implied by this is that, when solving a system of linear equations

(for PCTL until or CSL steady-state formulas), we limit ourselves to the Jacobi and JOR

methods, rather than more efficient alternatives such as Gauss-Seidel or SOR. In fact, we

will later discuss ways of relaxing this restriction. For now, though, we are free to focus

on the simpler problem of performing a single operation, matrix-vector multiplication,

knowing that this is sufficient to implement full PCTL and CSL model checking. The

problem we address in the following sections is how to perform this operation when the

matrix is stored as an MTBDD and the vector as an array.

6.1.1 A First Algorithm

Our approach will be to emulate the matrix-vector multiplication algorithm for sparse

matrices given in Figure 3.13. This multiplies a matrix A, stored in arrays row , col and

val , by a vector, stored in an array b, and places the result in an array res . Crucially, we

observe that the algorithm uses each element of A exactly once during this process.

In a sparse matrix setting, these elements can be obtained by simply reading along the

three arrays, row , col and val . In this case, the matrix entries are obtained in order, row

by row, but this is not actually required for matrix-vector multiplication. The same result

can be achieved by initially setting every element of res to zero, and then performing the

operation res [r] := res [r] + v × b[c] for all entries “(r, c) = v” of A in any order.

With this in mind, we observe that all the non-zero entries of a matrix, as represented
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by an MTBDD, can be extracted via a depth-first traversal of the data structure, i.e.

an exhaustive exploration of all paths through the MTBDD which lead to a non-zero

terminal. The entries will not be produced in any meaningful order, but this represents

the quickest way of extracting them all in a single pass.

Figure 6.1 shows the algorithm TraverseMtbdd, which performs this depth-first

traversal. It does so by recursively splitting the problem into the traversal of four smaller

MTBDDs. This corresponds to the decomposition of the matrix represented by the

MTBDD into four submatrices, as previously illustrated in Figure 3.19.

The recursion bottoms out either when the algorithm comes across a submatrix con-

taining no non-zero entries, represented by the zero terminal, or when it locates a ma-

trix entry, i.e. when it reaches a non-zero terminal. In the latter case, the function

UseMatrixEntry(r, c, v) is called, where r, c and v correspond to the row index,

column index and value of the matrix entry found. For matrix-vector multiplication,

UseMatrixEntry(r, c, v) would perform the operation res [r] := res [r] + v × b[c]. We

use this generic function to indicate that the traversal algorithm could just as easily be

used for any operation which requires an explicit list of all matrix entries.

In a call to the algorithm TraverseMtbdd(m, i, r, c), m is the current MTBDD

node, i is the current level of recursion and r and c are used to keep track of row and

column indices. For a matrix represented by an MTBDD M, the algorithm is called at

the top level as TraverseMtbdd(M, 1, 0, 0). Recall from Section 3.7 that we consider

an MTBDD and the node which represents it (its root node) to be interchangeable.

The current level of recursion, i, has to be tracked explicitly in order to deal with

skipped levels in the MTBDD. This corresponds to our observation in Section 3.7 that a

single path through an MTBDD can correspond to several minterms and hence to several

matrix entries. We assume that the matrix being represented by M uses row variables

x = (x1, . . . , xn) and column variables y = (y1, . . . , yn). Skipped levels can be detected by

comparing the positions of the variable for the current node, var(m), and that of either

xi or yi in the MTBDD variable ordering.

The key part of the algorithm is the calculation of the row and column indices. In

an MTBDD, each index is associated with its Boolean encoding, i.e. an element of IBn.

An explicit representation such as an array is indexed by integers. We need a way to

convert one to the other. We will assume that the rows and columns of the matrix are

indexed from 0 to 2n−1 and are encoded using the standard binary representation for

integers. By noting the path that we have taken through the MTBDD and by summing

the appropriate powers of two when we take a then edge, we can compute the indices as

required. This is exactly what TraverseMtbdd does. Note that the computation of

row and column indices is performed independently, using variables r and c, respectively.
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TraverseMtbdd(m, i, r, c)

1. if (m = Const(0)) then

2. return

3. else if (i = n+ 1) then

4. UseMatrixEntry(r, c, val(m))

5. return

6. endif

7. if (var(m) > xi) then

8. e := t := m

9. else

10. e := else(m)

11. t := then(m)

12. endif

13. if (var(e) > yi) then

14. ee := et := e

15. else

16. ee := else(e)

17. et := then(e)

18. endif

19. if (var(t) > yi) then

20. te := tt := t

21. else

22. te := else(t)

23. tt := then(t)

24. endif

25. TraverseMtbdd(ee, i+ 1, r, c)

26. TraverseMtbdd(et, i+ 1, r, c+ 2n−i)

27. TraverseMtbdd(te, i+ 1, r + 2n−i, c)

28. TraverseMtbdd(tt, i+ 1, r + 2n−i, c+ 2n−i)

Figure 6.1: The TraverseMtbdd algorithm
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When a then edge is followed from a node at the ith level of recursion, 2n−i is added to

the appropriate variable, r or c.

Alternatively, we can consider TraverseMtbdd to function as follows. Each call to

TraverseMtbdd(m, i, r, c) extracts the submatrix represented by node m and computes

the corresponding local indices of its elements, relative to that submatrix. The actual row

and column indices are calculated by adding the offsets r and c, respectively, to the local

indices. Since, at this level of recursion, the algorithm splits a square matrix of size 2n−i+1

into four submatrices of size 2n−i, the offsets, r and c, for the next level are computed by

adding 2n−i where appropriate.

A simple example should demonstrate this process more clearly. Figure 6.2 shows a

4×4 matrix M and the MTBDD M which represents it. Note that M was derived from a

model with an unreachable state and the corresponding row and column have been filled

with zeros. For clarity, we mark these as ‘−’s, not ‘0’s. This issue is irrelevant now, but

will be important when we reuse the example later.

Figure 6.3 gives a table, explaining how the TraverseMtbdd algorithm works on

this example. Each row of the table corresponds to a single matrix entry. These are

listed in the order in which TraverseMtbdd would have extracted them. The first

five columns of the table describe the path taken through the MTBDD, i.e. the value

of each MTBDD variable and of the terminal reached. The next four columns give the

components of the sums to compute the row and column indices. The final column shows

the resulting matrix entry.

The table also illustrates why the methods we present here are only applicable to

iterative methods which can be implemented with matrix-vector multiplication. The

order in which the matrix entries are extracted is determined by the interleaving of the

row and column variables in the MTBDD. The entire top-left quadrant of the matrix will

be extracted before any entries of the top-right quadrant are. Hence, we generally do

not obtain a whole row at a time. Notice, for example, in Figure 6.3, that entry (1, 1) is

extracted before entry (0, 3). Iterative methods which rely on utilising rows or columns

one at a time, such as Gauss-Seidel, could not be implemented in this way.

One way to resolve this would be to opt for a non-interleaved MTBDD variable or-

dering such as x1 < · · · < xn < y1 < · · · < yn but, as we saw in Section 4.1.2, this is not

feasible because the size of the MTBDD becomes unmanageable. Alternatively, we could

extract every row or column individually, performing one traversal of the MTBDD for

each. It seems likely, though, that this would result in a considerable slow-down.

There remains one crucial problem with the approach outlined in this section. Recall

from Chapter 4 that our MTBDD encoding of a model typically results in the inclusion

of unreachable states. Hence, the matrix represented by the MTBDD will have empty
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M =


0 3 − 6

0 3 − 4

− − − −
5 0 − 4


3 6 4 5

x1

y1

x2

y2

M

Figure 6.2: A matrix M and the MTBDD M which represents it

Path Indices Entry of M

x1 y1 x2 y2 fM x1 y1 x2 y2

0 0 0 1 3 - - - 1 (0, 1) = 3

0 0 1 1 3 - - 1 1 (1, 1) = 3

0 1 0 1 6 - 2 - 1 (0, 3) = 6

0 1 1 1 4 - 2 1 1 (1, 3) = 4

1 0 1 0 5 2 - 1 - (3, 0) = 5

1 1 1 1 4 2 2 1 1 (3, 3) = 4

Figure 6.3: Illustration of the TraverseMtbdd algorithm on M
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rows and columns corresponding to these states. The number of such states is potentially

large and, for some of our case studies, is orders of magnitude larger than the number of

reachable states. The traversal algorithm presented above takes no account of this, and

so effectively we are dealing with a much larger matrix than necessary.

Normally, we are happy to do this since it results in a compact MTBDD representation.

The difficulty here, though, is that vectors, and hence the arrays storing them, need to

be of the same size. Since these are stored explicitly, this puts unacceptable, practical

limits on the size of problems with which we can deal. Note that this is not a problem

with sparse matrices, because we assume that the sparse matrix (and hence the solution

vector) is only over reachable states.

6.1.2 Our Improved Method

What we need is a way of determining the actual row and column index of each matrix

element, in terms of reachable states only. We will assume that the set of reachable states,

say Ŝ ⊆ S, is indexed from 0 to |Ŝ|−1 and that these are in the same order that they were

in S. This means we can adopt a similar approach to the previous section, recursively

computing submatrix entries locally and using offsets to determine the actual indices.

In the previous section, we increased the offsets r and c at each level of recursion by a

fixed power of two, corresponding to the size of the submatrices on the next level. Now, the

increase will instead depend on the number of rows or columns in these submatrices which

correspond to reachable states. Our approach will be to precompute this information and

store it on the MTBDD so that it can be read off as we traverse the data structure.

More precisely, we will construct a new MTBDD from the old one, in which each node

is labelled with an offset. For a row node, this offset will indicate how many ‘reachable

rows’ there are in the top submatrix and, for a column node, it will indicate how many

‘reachable columns’ there are in the left submatrix. In both cases, the submatrix in

question corresponds to taking the else edge (as illustrated previously in Figure 3.19).

This means that, when tracing a path from the root node of the MTBDD to one of

its terminals, representing some matrix entry, the actual row and column indices of this

entry can be determined by summing the offsets on nodes labelled with row and column

variables, respectively, from which the then edge was taken. In this section, we will

describe this new data structure in more detail and present a modified traversal algorithm

for it. In the following section, we will explain precisely how it is constructed.

We christen this data structure an offset-labelled MTBDD. It is essentially an MTBDD,

but with two important differences. Firstly, as described above, every non-terminal node

is labelled with an integer value, which will be used to compute reachable row and col-
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umn indices. Secondly, the MTBDD does not need to be fully reduced. In fact, our

requirements in this respect are slightly more complex, as we now explain.

Recall from Section 3.7 that there are two types of reduction performed to minimise

the size of an MTBDD: merging of shared nodes, i.e. those on the same level and with

identical children; and removal of nodes for which the then and else edges point to the

same node, introducing one or more skipped levels. In an offset-labelled MTBDD, the

second type of reduction is only permitted when both the then and else edges point to the

zero terminal. This means that every edge from every node points either to a node in the

level immediately below it or directly to the zero terminal. Consequently, we now have a

one-to-one correspondence between paths through the offset-labelled MTBDD leading to

a non-zero terminal and the entries of the matrix which it represents.

There are two reasons for doing this. Firstly, the traversal process can be sped up

because we no longer need to check for skipped levels at every node. Secondly, and more

importantly, we need the offsets which are used to compute matrix entry indices to be on

every level and these are stored on the nodes. Note that the exception for edges going

directly to the zero terminal is safe because we are only interested in extracting non-

zero matrix entries. In fact, since our matrices are typically very sparse, removing this

exception would slow the extraction process down considerably.

Furthermore, in offset-labelled MTBDDs the first type of MTBDD reduction, merging

of shared nodes, is not compulsory. When we describe the construction process in the next

section, we will see instances where it is important not to merge shared nodes. Note that

the principal reason for maintaining fully reduced MTBDDs in normal use is to preserve

the canonicity property of the data structure. As described in Section 3.7.3, this allows

extremely efficient manipulation of MTBDDs by facilitating features such as caching of

intermediate results in the computed table. Offset-labelled MTBDDs are not canonical

but do not need to be. The data structure will be constructed once, used to perform

numerical computation via traversal and then discarded: no manipulation is required.

In Figure 6.4, we give the algorithm, TraverseOffsets, which is used to traverse

the new, offset-labelled MTBDD data structure and extract the matrix entries. Compare

the new algorithm in Figure 6.4 with the old version in Figure 6.1. The key differences are

as follows. Firstly, we do not need to check for skipped levels. This removes a significant

amount of effort. The exception to this is that we must still check for edges which skip

directly to the zero terminal. Secondly, in the recursive portion of the algorithm, instead

of adding 2n−i to the indices r and c, we use the node offsets, denoted off (m) for node m.

Figure 6.5 shows an example of the new data structure representing the same ma-

trix M as in the previous section. Compare this to the MTBDD in Figure 6.2. Note the

addition of the offset labels and also the insertion of an extra node on the path to the 3 ter-
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TraverseOffsets(m, i, r, c)

1. if (m = Const(0)) then

2. return

3. else if (i = n+ 1) then

4. UseMatrixEntry(r, c, val(m))

5. return

6. endif

7. e := else(m)

8. t := then(m)

9. if (e 6= Const(0)) then

10. TraverseOffsets(else(e), i+ 1, r, c)

11. TraverseOffsets(then(e), i+ 1, r, c+ off (e))

12. endif

13. if (t 6= Const(0)) then

14. TraverseOffsets(else(t), i+ 1, r + off (m), c)

15. TraverseOffsets(then(t), i+ 1, r + off (m), c+ off (t))

16. endif

Figure 6.4: The refined traversal algorithm TraverseOffsets

minal. Figure 6.6 explains the traversal of the data structure by the TraverseOffsets

algorithm. Again, each row corresponds to a single matrix entry. The table gives both

the path through the MTBDD corresponding to this entry and the offsets which have

been summed to determine its row and column indices. The table in Figure 6.6 can be

compared to the equivalent one for the TraverseMtbdd algorithm in Figure 6.3. Since

only 3 of the 4 states are reachable, all references to state 3 in the previous table are

replaced with 2 in the new one.

The offset-labelled MTBDD and the traversal algorithm TraverseOffsets can now

be used to efficiently perform matrix-vector multiplication where the matrix is stored as

an MTBDD and the vector as an array. This allows us to implement iterative numerical

methods, as required for probabilistic model checking, using these two data structures.

First though, we need to consider how this new data structure can be generated.

6.2 The Construction Process

6.2.1 Generating the Offsets

In the next two sections, we describe the process of constructing an offset-labelled MTBDD.

The first issue we resolve is how to generate the offsets which will label the nodes. These
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M =


0 3 − 6

0 3 − 4

− − − −
5 0 − 4


3 6 4 5

2

2 2

1 1

1 1

00

0 0

x1

y1

x2

y2

M′

Figure 6.5: A matrix M and the offset-labelled MTBDD M′ which represents it

Path Offsets Entry of M

x1 y1 x2 y2 fM′ x1 y1 x2 y2

0 0 0 1 3 - - - 1 (0, 1) = 3

0 0 1 1 3 - - 1 1 (1, 1) = 3

0 1 0 1 6 - 2 - 0 (0, 2) = 6

0 1 1 1 4 - 2 1 0 (1, 2) = 4

1 0 1 0 5 2 - 0 - (2, 0) = 5

1 1 1 1 4 2 2 0 0 (2, 2) = 4

Figure 6.6: Illustration of the TraverseOffsets algorithm on M′
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1

x1

x2

x3

x4

reach

# (x1, x2, x3, x4)

0 (0, 0, 0, 1)

1 (0, 0, 1, 0)

2 (0, 1, 0, 1)

3 (0, 1, 1, 1)

4 (1, 0, 0, 1)

5 (1, 0, 1, 1)

6 (1, 1, 0, 1)

Figure 6.7: An example of the BDD reach and the states it represents

are used to determine the row or column index, in terms of reachable states, of each entry

in the matrix being represented. As we have seen, for a node m where var(m) is a row

variable, the offset gives the number of rows in the submatrix represented by else(m)

which correspond to reachable states. If var(m) is a column variable, the offset gives the

number of columns which correspond to reachable states.

We assume that the necessary information about which of the potential 2n states are

reachable is stored in a BDD reach. Figure 6.7 shows an example: a BDD over four

variables (x1, x2, x3, x4) which encodes a set of 7 states taken from IB4. The table in the

figure lists the reachable states in order, assigning them indices from 0 to 6.

The states which are reachable in a certain portion of the state space are represented

by the appropriate subgraphs of reach. Using the example from Figure 6.7, the set of states

for which x1 = 0, i.e. those of the form (0, ·, ·, ·), is represented by the BDD else(reach).

This information can be used to determine the rows and columns of a particular submatrix

which correspond to reachable states: the number of such rows or columns is equal to the

number of minterms in the appropriate subgraph of reach. Hence, we will use reach to

compute the required offsets. For convenience, we will store these values on the nodes of

the BDD reach itself.

The first step is to modify reach slightly by removing all skipped levels, except those

which go directly to the zero terminal. This ensures that there are nodes at each level

of every path through the BDD on which to store offsets. We do this by checking for

edges which skip one or more levels and inserting extra nodes. Empirical results show

that this usually results in only a very slight increase in the size of the BDD. The process

is performed by the recursive algorithm ReplaceSkippedLevels, given in Figure 6.8.

The top-level call is:

reach′ := ReplaceSkippedLevels(reach, 1)
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ReplaceSkippedLevels(m, i)

1. if (marked(m) = true) then

2. return m

3. else if (m = Const(0)) then

4. marked(m) := true

5. return m

6. else if (i = n+ 1) then

7. marked(m) := true

8. return m

9. else if (var(m) > xi) then

10. e := t := ReplaceSkippedLevels(m, i+ 1)

11. M′ := CreateNode(xi, e, t)

12. marked(m′) := true

13. return m′

14. else

15. else(m) := ReplaceSkippedLevels(else(m), i+ 1)

16. then(m) := ReplaceSkippedLevels(then(m), i+ 1)

17. marked(m) := true

18. return m

19. endif

Figure 6.8: The ReplaceSkippedLevels algorithm

On each recursive call, the algorithm checks to see if a level is skipped at the current

position in the MTBDD, adds an extra node if this is the case, and then recurses down-

wards. The level of recursion, i, is tracked and used to check for skipped levels in the

same way as in the TraverseMtbdd algorithm. The function CreateNode(xi, e, t)

returns a non-terminal MTBDD node m with var(m) = xi, else(m) = e and then(m) = t.

It first checks to see if an identical node has already been created and, if so, reuses it.

Otherwise, a new node is created. For the purposes of this algorithm, we have added an

extra field, marked , to each BDD node. This stores a Boolean variable, used to mark

nodes which have already been dealt with by the algorithm. Using this approach, we can

ensure that the algorithm only visits each node once, rather than many times, as would

usually be the case in a recursive traversal of the BDD.

Next, we proceed by labelling each node m in the modified BDD reach′ with the

number of minterms in its child else(m). This value can be computed recursively by

adding the number of minterms of its two children and is done by the recursive algorithm

ComputeOffsets(m, i), given in Figure 6.9. As in previous algorithms, i denotes the

level of recursion. The top-level call would be ComputeOffsets(reach′, 1).

We add two fields, offe and offt , to each node of the BDD to store the number of
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ComputeOffsets(m, i)

1. if (m = Const(0)) then

2. return 0

3. else if (i = n+ 1) then

4. return 1

5. else if (offe(m) 6= −1) then

6. return offe(m) + offt(m)

7. else

8. offe(m) := ComputeOffsets(else(m), i+ 1)

9. offt(m) := ComputeOffsets(then(m), i+ 1)

10. return offe(m) + offt(m)

11. endif

Figure 6.9: The ComputeOffsets algorithm

minterms in its else and then branches respectively. Initially, these are both set to −1

on all nodes, allowing us to keep track of which nodes have been visited dealt with. A

call to ComputeOffsets(m, ·) computes values for offe and offt , stores them on m, and

then returns the sum of the two, i.e. the number of minterms for m. When the algorithm

terminates, we remove the two labels from each node and replace them with a single label

off , which is given the value of offe .

This process could be carried out by storing just offe , not offt . This way, however, we

do not need to calculate the value of offt each time we revisit a node. Hence, the time

complexity is proportional to the number of nodes of the BDD rather than the number

of minterms or paths.

Figure 6.10 gives a simple illustration of the process of generating these offsets: (a)

shows the BDD reach from the earlier example in Figure 6.7; (b) shows the modi-

fied BDD reach′ created by applying ReplaceSkippedLevels to reach; in (c), the

ComputeOffsets algorithm has labelled each node with the two offsets offe and offt ;

in (d), the offset offt has been removed from each node. Figure 6.10(e) shows a table

explaining how the indices of each state can now be read off the final offset-labelled BDD

reach′. Each row of the table corresponds to path through the BDD which computes the

index for a single state. This index can be obtained by summing the offsets on nodes

along the path from which the then edge was taken.

6.2.2 Constructing the Offset-Labelled MTBDD

We now discuss how an offset-labelled MTBDD is built. Assume that we have a matrix,

represented by an MTBDD M, and an indexing of reachable states, represented by an
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(a) 1

x1

x2

x3

x4

reach

(b)

x1

x2

x3

x4

1

reach′

(c)

x1

x2

x3

x4

1

4,3

2,2 2,1

1,1 1,1 1,0

1,0 0,1

reach′

(d)

x1

x2

x3

x4

1

4

2 2

1 1 1

1 0

reach′

(e)

Path Offsets Index

x1 x2 x3 x4 x1 x2 x3 x4

0 0 0 1 - - - 0 0

0 0 1 0 - - 1 - 1

0 1 0 1 - 2 - 0 2

0 1 1 1 - 2 1 0 3

1 0 0 1 4 - - 0 4

1 0 1 1 4 - 1 0 5

1 1 0 1 4 2 - 0 6

Figure 6.10: Labelling the BDD reach with offsets
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offset-labelled BDD reach′. Essentially, we want to combine the two into a single data

structure which, when traversed by the algorithm TraverseOffsets from Figure 6.4,

will produce the correctly indexed matrix entries, as defined by M and reach′.

The construction process works by modifying the existing MTBDD M. As when

modifying reach in the previous section, we first remove from M all occurrences of skipped

levels, except those that go directly to the zero terminal. Again, the motivation for this

is to ensure that offsets can be stored at every level of the MTBDD. For this, we reuse

the ReplaceSkippedLevels algorithm of Figure 6.8:

M′ := ReplaceSkippedLevels(M, 1)

using variables (x1, y1, . . . , xn, yn), instead of just (x1, . . . , xn).

The remainder of the construction process entails labelling each node of M′ with the

correct offset. This is done via a recursive traversal of M′. At the same time, two

concurrent traversals of the offset-labelled BDD reach′ are performed. These are used

to determine what the offset for each node should be, one for nodes labelled with row

variables and one for those labelled with column variables.

When we encounter a node of M′ for the first time, this process works fine. However,

when nodes are revisited, a problem quickly becomes apparent: there is a potential clash

in terms of offset labelling when two different paths pass through the same node. This

situation will occur when the entries in two submatrices are identical, but the patterns

of reachable states in the rows or columns are different. Our solution will simply be to

add into the MTBDD an identical copy of the node, but labelled with the correct offset.

This is why, in our earlier definition of offset-labelled MTBDDs, we did not insist that all

shared nodes must be merged.

The algorithm to perform the whole process is given in Figure 6.11. It is recursive,

but since row and column nodes are treated slightly differently, it alternates between two

functions, LabelMtbddRow and LabelMtbddCol. Both take three parameters, m,

row and col, which are the current nodes in the traversal of M′ and in the two traversals

of reach′, respectively. The top-level call is:

M′′ := LabelMtbddRow(M′, reach′, reach′)

We assume that each node of the MTBDD M′ being labelled has two extra labels row and

col . These will store pointers to BDD nodes and are initially all set to null. Although we

only intend to label each node m of M′ with a single integer offset, for the duration of the al-

gorithm, what we actually store on m is two pointers to nodes of the BDD reach′. Since the

latter are themselves labelled with the required offset, this information is easily accessed

indirectly. More specifically, in a recursive call to either LabelMtbddRow(m, row, col)
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LabelMtbddRow(m, row, col)

1. if (m is a terminal node) then

2. return m

3. else if (row(m) = row and col(m) = col) then

4. return m

5. endif

6. e := LabelMtbddCol(else(m), else(row), col)

7. t := LabelMtbddCol(then(m), then(row), col)

8. if (row(m) = null) then

9. else(m) := e

10. then(m) := t

11. row(m) := row

12. col(m) := col

13. return m

14. else

15. return CreateNode(var(m), e, t, row, col)

16. endif

LabelMtbddCol(m, row, col)

1. if (m is a terminal node) then

2. return m

3. else if (row(m) = row and col(m) = col) then

4. return m

5. endif

6. e := LabelMtbddRow(else(m), row, else(col))

7. t := LabelMtbddRow(then(m), row, then(col))

8. if (col(m) = null) then

9. else(m) := e

10. then(m) := t

11. row(m) := row

12. col(m) := col

13. return m

14. else

15. return CreateNode(var(m), e, t, row, col)

16. endif

Figure 6.11: The LabelMtbddRow and LabelMtbddCol algorithms
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or LabelMtbddCol(m, row, col), the labels row(m) and col(m) will be set to row and

col, respectively. The actual offset which will eventually label the node is off (row(m)) if

var(m) is a row variable and off (col(m)) if it is a column variable.

The reasoning behind this approach is as follows. As stated above, there are potential

clashes in terms of the offset which should label an MTBDD node. If we labelled each

MTBDD node with the actual offset, we would have to traverse every possible path

through the MTBDD to ensure that we had dealt with all possible clashes. Our approach,

however, is more efficient. On visiting a node for the second time, we check that the nodes

row(m) and col(m) are equal to row and col. If this is the case, we know not only that

the (implicitly stored) offset is correct, but that the same is true for all nodes below it in

the MTBDD. This speeds the whole process up considerably.

After the algorithm terminates, we replace the two row and col fields on each node m

with a single integer field off , which contains the final offset. If var(m) is a row variable,

then this value is set to off (row(m)) and if var(m) is a col variable, then it is set to

off (col(m)).

Figure 6.12 gives an example of an offset-labelled MTBDD constructed in this way: (a)

shows a 4× 4 matrix and (b) the MTBDD M which represents it. Note that this example

again includes an unreachable state. Figures 6.12(c) and (d) show the offset-labelled BDD

reach′ and the offset-labelled MTBDD M′′, respectively. Firstly, note the skipped level

on the left of the x2 level in the original MTBDD and the extra node introduced in M′′

to resolve it. Secondly, note the two extra nodes added at the bottom right as a result

of offset clashes. For clarity, we also give, in Figure 6.12(e), a table explaining how the

TraverseOffsets algorithm would operate on this particular offset-labelled MTBDD

M′′. It can be verified that each matrix entry obtained by tracing a single path through

M′′ can alternatively be determined by tracing one path through M and two paths through

reach′.

Correctness

The correctness of the construction algorithm can be argued as follows. We require that

the offset-labelled MTBDD produced by the algorithm is such that, when traversed by the

algorithm TraverseOffsets, all non-zero entries of the matrix and their corresponding

(reachable) row and column indices are extracted. For this, we require that every path

through the MTBDD from the root node to a non-zero terminal corresponds to an entry

(r, c) = v, i.e. the terminal in question is labelled with v and r and c can be determined

by summing the offsets on nodes labelled with row and column variables, respectively,

from which then edges were taken.



118 6 - A Hybrid Approach

(a)

M =


2 5 − 0

2 5 − 7

− − − −
0 7 − 0



(b) 2 5 7

x1

y1

x2

y2

M

(c)

2

1 0

1

x2

x1

reach′

(d) 2 5 7

2

2 2

0

0

1 1

1 1

x1

y1

x2

y2

M′′

(e)

Path Offsets Entry of M

x1 y1 x2 y2 fM′′ x1 y1 x2 y2

0 0 0 0 2 - - - - (0, 0) = 2

0 0 0 1 5 - - - 1 (0, 1) = 5

0 0 1 0 2 - - 1 - (1, 0) = 2

0 0 1 1 5 - - 1 1 (1, 1) = 5

0 1 1 1 7 - 2 1 0 (1, 2) = 7

1 0 1 1 7 2 - 0 1 (2, 1) = 7

Figure 6.12: Construction of an offset-labelled MTBDD M′′
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The set of non-zero entries is defined by the original MTBDD M and its corresponding

function fM : IB2n → IR. The index, be it row or column, of each state (in terms of

reachable states only) has already been shown to be defined by the offset-labelled BDD

reach′ which maps each path to the 1 terminal to an integer by summing offsets. The

combined data structure must capture both sets of information. We demonstrate each of

the two cases separately.

Firstly, we show, by induction, that the offset-labelled MTBDD preserves the original

function fM : IB2n → IR. For the base case, we observe that terminals, at the bottom

of the recursion, are returned unchanged. For non-terminal nodes, if the node is being

visited for the first time or has been visited already and the row and col labelling is the

same, it is also returned unchanged, except for the possible addition of offset information

which is irrelevant here. The only instance where the structure of the MTBDD is actually

changed is when a new node is created because of an offset clash. In this case, the then

and else edges of the new node are attached to nodes computed by recursion on the then

and else edges of the original node. By induction, these are correct with respect to fM.

Secondly, we show that the MTBDD returned has the correct offsets. We observe

that, by the recursive nature of the algorithm, it considers every path from the root to

a non-zero terminal. If it reaches the bottom of a path, i.e. a non-zero terminal, it will

have taken the corresponding choices in row and col and (indirectly) labelled each node

with the correct offset. Where necessary, new nodes may have been added to ensure that

this is the case. The only situation where some portion of a path is not considered is

when the current node m has already been visited and row(m) and col(m) are the same

as the values of row and col at the current point in the recursion. Since the traversal of

M, row and col from then on will be exactly the same as last time the node was visited,

the offsets on all nodes below this point must be correct.

Efficiency

The time complexity of the construction algorithm is determined by the size of the

MTBDD produced by it. If no new nodes need to be added, then each of the nodes

in the original MTBDD is only dealt with once. If this is not the case, additional work

is required to create each extra node. Extra nodes are either a result of skipped levels or

offset clashes. Unfortunately, it is very difficult to quantify how often either of these will

occur in a typical MTBDD. The hope is that, in a structured MTBDD, most identical

subtrees in the MTBDD will correspond to identical sets of reachable states and few nodes

will need to be added. We will see the empirical results in the next section.
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6.3 Results

We have integrated the hybrid approach described in first part of this chapter into our

probabilistic model checker PRISM. We have used the techniques to implement model

checking for the PCTL bounded until, PCTL until, CSL time-bounded until and CSL

steady-state operators. Where solution of a linear equation system is required, we can

use either the Jacobi or JOR methods.

This section presents some results to illustrate the effectiveness, in terms of both time

and space requirements, of our approach. Our analysis is divided into two parts: first, we

consider the construction of the offset-labelled MTBDD and second, the implementation

of iterative numerical methods, based on repeated traversal of the data structure using the

TraverseOffsets algorithm. We also compare the performance of the hybrid approach

with that of the two rival alternatives, namely MTBDDs and sparse matrices.

6.3.1 The Construction Process

As discussed previously, the strength of the algorithm for constructing the offset-labelled

MTBDD is the fact that its time complexity is proportional to the number of nodes

created, not the number of paths in the original MTBDD. For this reason, the time for

construction should generally be less than a single iteration of the solution process. Given

that many such iterations will be required, our main concern is that the amount of memory

required to store the matrix does not increase significantly.

In Table 6.1, we present statistics for the construction process. In this and the following

sections, we show results for four model checking case studies: the Kanban manufacturing

system of [CT96] and cyclic server polling system of [IT90], CTMC models for which

we compute steady-state probabilities using the JOR (ω = 0.9) and Jacobi methods,

respectively; the bounded retransmission protocol (BRP) of [HSV94], a DTMC model for

which we model check a PCTL until formula using the Jacobi method; and the flexible

manufacturing system (FMS) of [CT93], a CTMC model for which we check a CSL time-

bounded until property. The sizes of all four models can be varied by changing a parameter

N , the meaning of which for each case can be found in Appendix E.

For each model, Table 6.1 gives the number of nodes in the original MTBDD (“Be-

fore”), the number of nodes in the newly constructed, offset-labelled MTBDD (“After”),

the percentage increase, and the time taken for the construction process.

We conclude that the increase in the number of nodes is typically small. For the three

CTMC examples, we always observe a growth of less than 5%. The results for the DTMC

example, the bounded retransmission protocol (BRP), are not quite as impressive, but
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Model N MTBDD Nodes Increase Time

Before After (%) (sec.)

1 499 499 0 < 0.01

2 1,685 1,685 0 < 0.01

Kanban 3 2,474 2,474 0 < 0.01

system 4 4,900 4,900 0 0.01

5 6,308 6,308 0 0.02

6 7,876 7,876 0 0.04

8 608 629 3.45 < 0.01

10 921 948 2.93 < 0.01

Polling 12 1,282 1,315 2.57 0.01

system 14 1,707 1,746 2.28 0.01

16 2,188 2,233 2.06 0.01

18 2,745 2,796 1.86 0.01

500 2,268 3,032 33.7 0.02

1,000 2,340 3,126 33.6 0.02

BRP 1,500 2,410 3,242 34.5 0.03

2,000 2,412 3,220 33.5 0.03

2,500 2,486 3,320 33.5 0.03

3 10,423 10,880 4.38 0.06

4 26,744 27,941 4.48 0.36

FMS 5 47,750 49,877 4.45 1.17

6 73,256 76,638 4.62 2.89

7 113,902 118,978 4.46 6.92

8 203,495 211,563 3.96 22.6

Table 6.1: Statistics for the offset-labelled MTBDD construction process
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still satisfactory: on average, the data structure increases in size by about a third. As we

will see in the next section, the amount of memory required to store this data structure

is still significantly smaller than that required by the equivalent sparse matrix. We also

note that the total time required for construction in small in all cases.

We have analysed further the reasons for the increase in MTBDD size. As described

previously, nodes will be added either as a result of skipped levels in the original MTBDD

or because of offset clashes. We determined that, in every example above, all the additional

nodes were a result of offset clashes. It seems that the compactness of the MTBDDs for

these models is purely a result of shared nodes, not skipped levels.

6.3.2 The Solution Process

Secondly, and more importantly, we consider the performance of the numerical solution

phase. Although the exact computation carried out varies depending on the instance of

probabilistic model checking being performed, this phase always comprises a number of

iterations, the key element of each being a single traversal of an offset-labelled MTBDD

using the TraverseOffsets algorithm. Table 6.2 shows timing statistics for the four

model checking case studies described in the previous section. For each example, it lists

the size of the model (number of states), the number of iterations performed and the

average time per iteration for each of our three implementations. Here, as always, we give

actual (wall) times measured on a 440 MHz 512 MB Sun Ultra10. A ‘-’ symbol indicates

that an example could not be model checked due to memory limitations. For the Kanban

system, polling system and FMS case studies, we increased the parameter N as far as

possible for each implementation. For the BRP examples, this was not the case since the

computation for some of the larger models we built suffered from round-off errors.

The results can be summarised as follows. The new hybrid approach represents a

marked improvement over the original MTBDD implementation. There is an impressive

reduction in average iteration time for all examples. In the best cases (Kanban system

for N = 3 and polling system for N = 10), it is improved by a factor of more than 100.

Unfortunately, the times remain much slower than for sparse matrices.

The most noteworthy result, though, is that our hybrid approach can handle larger

models than both of the other implementations. This is a result of their relative memory

requirements. As in the previous chapter, we do not attempt a detailed comparison

with the memory requirements for MTBDDs since accurate information is very difficult

to obtain. We can see from Table 6.2, however, that many of the examples cannot be

performed using the MTBDD implementation due to insufficient memory. A comparison

of the memory required for hybrid and sparse matrix approaches is given in Table 6.3.
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Model N States Iterations Time per iteration (sec.)

MTBDD Sparse Hybrid

1 160 101 0.03 0.001 0.001

2 4,600 166 2.22 0.002 0.03

Kanban 3 58,400 300 45.5 0.05 0.35

system 4 454,475 466 - 0.41 4.79

5 2,546,432 663 - 2.70 26.1

6 11,261,376 891 - - 123.8

8 3,072 310 0.31 0.001 0.004

10 15,360 406 13.1 0.01 0.03

Polling 12 73,728 505 - 0.05 0.16

system 14 344,064 606 - 0.30 0.89

16 1,572,864 709 - 1.56 4.46

18 7,077,888 814 - - 23.1

500 27,505 3,086 0.38 0.01 0.12

1,000 55,005 6,136 0.67 0.01 0.24

BRP 1,500 82,505 9,184 0.99 0.02 0.36

2,000 110,005 12,230 1.26 0.03 0.47

2,500 137,505 15,274 1.53 0.04 0.59

3 6,520 569 6.13 0.002 0.11

4 35,910 733 48.3 0.02 0.84

FMS 5 152,712 825 - 0.10 3.35

6 537,768 968 - 0.37 13.3

7 1,639,440 1,040 - 1.14 33.6

8 4,459,455 1,182 - - 102.0

Table 6.2: Timing statistics for numerical solution using the hybrid approach
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Model N Vector Matrix storage (KB) Total storage (KB)

storage (KB) Sparse Hybrid Sparse Hybrid

1 3 × 1 8 10 11 13

2 3 × 36 348 33 455 141

Kanban 3 3 × 456 5,455 48 6,823 1,417

system 4 3 × 3,551 48,414 96 59,066 10,748

5 3 × 19,894 296,588 123 356,270 59,805

6 3 × 87,979 - 154 - 264,092

8 3 × 24 186 12 258 84

10 3 × 120 1,110 19 1,470 379

Polling 12 3 × 576 6,192 26 7,920 1,754

system 14 3 × 2,688 32,928 34 40,992 8,098

16 3 × 12,288 168,960 44 205,824 36,908

18 3 × 55,296 - 55 - 165,943

500 4 × 215 441 59 1,301 919

1,000 4 × 430 883 61 2,602 1,781

BRP 1,500 4 × 645 1,324 63 3,902 2,643

2,000 4 × 859 1,766 63 5,203 3,499

2,500 4 × 1,074 2,207 65 6,504 4,361

3 4 × 51 451 213 655 416

4 4 × 281 2,711 546 3,835 1,668

FMS 5 4 × 1,193 11,990 974 16,762 5,746

6 4 × 4,201 42,744 1,497 59,548 18,302

7 4 × 12,808 129,853 2,324 181,085 53,556

8 4 × 34,839 - 4,132 - 143,490

Table 6.3: Memory requirements for numerical solution using the hybrid approach

We present statistics for the same four case studies: the amount of memory to store the

matrix; the amount to store the iteration vectors; and the total memory, which is the sum

of these. All values are rounded to the nearest kilobyte.

For the hybrid implementation, the memory required to store the matrix is determined

by the number of nodes in the offset-labelled MTBDD. Each node requires 20 bytes, as

was the case for a standard MTBDD. Although we must store an additional integer (the

offset) on each node, we can reuse the space previously occupied by the node’s reference

count (see Section 3.7.3). This is not required because we never need to manipulate this

new data structure: we simply create it once, traverse it repeatedly and then discard it.

The memory required to store the matrix in sparse format is computed as described in

Section 3.6.

In both cases, we assume that all vectors are stored as arrays of doubles (8 bytes per
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entry). The number of arrays required varies depending on the model checking problem.

All the iterative methods require at least two, to store the previous and current approxi-

mations. We also store the diagonal entries of the matrix in an array because this gives

a significant improvement in speed. Additionally, for CSL time-bounded until we require

one to keep track of the weighted sum of vectors, and for PCTL until over DTMCs we

need one to store the vector b of the linear equation system A · x = b. For CSL steady-

state, this is not necessary since b is the zero vector. The actual number of arrays needed

for each example is given in the table.

From Table 6.3, the main conclusion we draw is that, despite the potential increase

in MTBDD size and storage of additional information, the amount of memory required

to store the matrix using the hybrid approach is still far less than with sparse matrices.

At best, the ratio is four orders of magnitude. In fact, the limiting factor, in terms of

memory, now becomes the storage of the iteration vectors.

On the 512 MB Sun Ultra10 used for these experiments, the largest probabilistic

model successfully analysed with the hybrid technique had over 11 million states; with

sparse matrices, the largest had about 2.5 million states. The choice of machine for our

experiments was dictated by the fact that we needed a single-user workstation in order to

generate accurate timings. To test the scalability of our approach, we also ran experiments

from the same case studies on a shared machine with 1 GB of RAM. On this, the largest

model handled by the hybrid approach had 41 million states, compared to 7 million for

the sparse matrix implementation. In general, we find that we can increase the size of

solvable model by approximately a single order of magnitude.

6.4 Optimising the Hybrid Approach

6.4.1 The Basic Idea

We now present an improvement to our hybrid approach which will result in a significant

speedup for numerical solution. Every iteration of the process requires access to each

matrix entry exactly once. In the hybrid approach described in this chapter, this is

achieved by a recursive traversal of an offset-labelled MTBDD, tracing every path from

the root node to a non-zero terminal. It is hardly surprising that the sparse matrix

implementation, in which the matrix entries can be read directly off the arrays storing

them, is faster.

It is important to note that, despite our best efforts in the preceding chapters to

minimise the size of the MTBDD representing the matrix, for the hybrid approach the

number of nodes affects only the storage space required and has no bearing on traversal
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speed. The compactness of the MTBDD is a result of shared nodes in the data structure,

representing structure in the high-level model. In terms of the matrix, these shared nodes

correspond to identical submatrices. However, since the actual row and column indices of

the entries in these submatrices are different for each occurrence, the entries are extracted

separately each time. In fact, each shared node is visited once for every time it occurs on

a path to a non-zero terminal in the MTBDD.

In this section, we modify the offset-labelled MTBDD data structure and its traversal

algorithm in order to exploit the data structure’s compactness in terms of time as well

as space. The key idea is that, although the actual row and column indices of entries in

each repeated submatrix are different each time it occurs in the overall matrix, the local

indices, relative to that submatrix are the same. This is of course fundamental to the

working of the recursive traversal algorithm which computes the indices.

The optimisation we propose is, for some subset of the nodes in the MTBDD, to cache

an explicit version of the submatrix corresponding to each node and then reuse it each

time the node is visited in future, rather than having to traverse all the other nodes below

that one. To compute the actual indices of the submatrix on each visit, we can simply

add the computed offsets (r and c in TraverseOffsets) to the local indices. Since the

traversals in each iteration are identical, we will compute and store these matrices once,

at the beginning of the solution process, and then use them on every iteration.

6.4.2 Implementing the Optimisations

The first task is to decide for which nodes we will store an explicit matrix. There is a

clear compromise here between time and space. If we opt to compute the matrices for

nodes near the top of the MTBDD, we are likely to significantly improve the time to

extract its entries, but would lose our advantage in terms of memory usage. Conversely,

if we only stored the matrices for a few nodes at low levels in the MTBDD, we would

require little extra memory, but would also achieve only a small improvement in terms of

traversal time.

One situation we want to avoid is duplication of information. For example, if we

store the matrix for two nodes which occur on a common path, the submatrix for the

lower node is effectively being stored twice. With this in mind, we propose to adopt

the following simple scheme. We will select a particular level of the MTBDD and then

compute matrices for all the nodes on that level. For simplicity, we will limit our choice of

levels to those containing row variables. This is because our existing traversal algorithm

is based on a four way recursive split, so at each level the current node is labelled with

a row variable. One advantage of this scheme is that it is guaranteed not to duplicate
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information. Secondly, it is easy to control the amount of optimisation, and hence the

compromise between time and space, by selecting a level higher or lower in the MTBDD.

We also need to consider how the matrices will be stored. Since all but the very

smallest submatrices of a large, sparse matrix will also be sparse, it seems sensible to

adopt the same sparse storage scheme we have been using to date. The next question

is where they will be stored. One approach would be to store the matrices in a cache

and then check the cache each time we come across a node to see if its matrix has been

precomputed. However, since this would require a great deal of searching at every step

of every iteration, and since the number of nodes in our MTBDD is relatively small, we

instead add a pointer to each MTBDD node. For nodes with precomputed matrices, we

store a pointer to the matrix. For nodes without, we leave the pointer null.

Once these decisions have been made, the optimised version of the hybrid approach

can be implemented fairly easily using our existing algorithms. First, we add an extra

field, sm, to each MTBDD node which can hold a pointer to a sparse matrix. Initially,

these pointers are all set to null. For a specified level of the MTBDD, we then compute the

sparse matrices corresponding to each node on that level. These matrices can be obtained

using the existing TraverseOffsets algorithm, where UseMatrixEntry stores each

entry in a sparse matrix, rather than using it to perform a matrix-vector multiplication

as was the case previously. Each matrix is then attached to its corresponding node via

the pointer sm.

The new traversal algorithm, TraverseOpt is shown in Figure 6.13. It is basically an

extension of TraverseOffsets, with lines 3–12 added. At each point in the recursion,

the algorithm checks the pointer sm(m) of the current node m to see if it is non-null. If

so, the sparse matrix is extracted and no further recursion is required for that node. If

the pointer is null, traversal continues as before.

The extraction of matrix entries from the sparse matrix sm(m) is done in exactly the

same way that we saw in the sparse matrix-vector multiplication algorithm of Figure 3.13.

The sparse matrix is stored in three arrays, row , col , and val , and dim gives the size of

the matrix. The main difference in the extraction process is that the current offsets r and

c are added to the row and column indices to compute the correct values.

6.4.3 Example

Figure 6.14 illustrates the idea of this optimisation through an example, using the matrix

and MTBDD from Figure 6.12. We compute the submatrices for all nodes on the x2 level.

In the diagram, we denote this by replacing each node and any nodes under it by the

matrix itself. Since it is such a small example, none of the three nodes which have been
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TraverseOpt(m, i, r, c)

1. if (m = Const(0)) then

2. return

3. else if (sm(m) 6= null) then

4. (row , col , val , dim) := sm(m)

5. for (j := 0 . . . dim−1)

6. l := row [j]

7. h := row [j + 1]−1

8. for (k := l . . . h)

9. UseMatrixEntry(r + j, c+ col [k], val [k])

10. endfor

11. endfor

12. return

13. else if (i = n+ 1) then

14. UseMatrixEntry(r, c, val(m))

15. return

16. endif

17. e := else(m)

18. t := then(m)

19. if (e 6= Const(0)) then

20. TraverseOpt(else(e), i+ 1, r, c)

21. TraverseOpt(then(e), i+ 1, r, c+ off (e))

22. endif

23. if (t 6= Const(0)) then

24. TraverseOpt(else(t), i+ 1, r + off (m), c)

25. TraverseOpt(then(t), i+ 1, r + off (m), c+ off (t))

26. endif

Figure 6.13: The optimised traversal algorithm TraverseOpt
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(1, 1) = 5 (1, 1) = 5

0 1 - 2 (1, 0) = 7 (1, 2) = 7

1 0 2 - (0, 1) = 7 (2, 1) = 7

Figure 6.14: An illustration of the optimisation idea on a small example

turned into sparse matrices are actually shared nodes. In a more realistic example, each

matrix would be reachable along many paths. In addition, the matrices themselves are

not particularly sparse. Again, in a larger example, this would not be the case.

The table in Figure 6.14 shows how data structure would be used. Traversal of the

MTBDD would result in three paths, each leading to a sparse matrix. The local entries of

each submatrix are given in the table, along with the actual entries in the global matrix,

which are computed by adding the row or column indices shown.

6.4.4 Results

In order to assess the improvement which this optimisation provides, we experimented

with replacing the nodes on different levels in the MTBDDs for several case studies. In

Figure 6.15, we plot graphs for three such examples, selected from the set for which

we presented results in the previous section. In each one, for the full possible range

of levels, we graph both the time per iteration of numerical solution and the amount

of space required to store the offset-labelled MTBDD and small sparse matrices. For

comparison, on the timing graphs, we also plot the time per iteration for the sparse

matrix and (unoptimised) hybrid implementations. Note that we only present a graph for

one example of each case study. We are interested in the pattern of the graph and this

was found to be almost identical for examples taken from the same case study.

For the purpose of these experiments, we count the number of levels starting from the
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Figure 6.15: Statistics for the optimised hybrid approach
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bottom of the MTBDD. Hence, a value of 1 indicates that we have replaced nodes in the

bottom level, a value of 2 refers to the second bottom level, and so on. Recall that we

only replace nodes labelled with row variables. Hence the ith level is actually the 2ith

from bottom level in the MTBDD. The maximum level we can try is equal to half the

height of the MTBDD, or equivalently, the number of Boolean variables used to encode

the global state space.

We can obtain several useful pieces of information from the graphs, the first and most

obvious of which, is that by optimising our hybrid technique we can dramatically improve

the time required for each iteration of numerical solution. We can generally now match

the speed of the sparse matrix implementation. Furthermore, this reduction can be made

without a significant increase in memory usage.

It is also instructive to examine the graphs in more detail. There is a general pattern

which can be observed in all cases. The time per iteration drops very quickly initially,

flattens out and then increases slightly at the end. Note that the increase at the end is less

pronounced in the Kanban system and FMS examples, since the range of times involved,

and hence the scale of the graph, is greater. Realistically, any point in the middle region

of the graph gives a satisfactory time.

The steep drop at the beginning of the timing graph can be explained as follows.

Moving from left to right along the graph, the level is increased, i.e. we replace nodes

further up the MTBDD. By the nature of the depth-first recursive traversal algorithm,

the lower nodes will be visited far more often than nodes further up the MTBDD. Hence,

the impact of saving work at lower nodes is more pronounced. This also explains why the

total improvement is better for the Kanban system and FMS examples which have more

levels.

Secondly, we consider the pattern of the graph for memory usage. Here we note that

the memory stays low for the first portion of the graph and then increases rapidly towards

the right-hand end. This is expected, since the nodes higher up in the MTBDD correspond

to larger submatrices, which are likely to contain more non-zeros, and hence take up more

space when stored explicitly.

For the right-most point on the graph, the memory usage is the same as when storing

the entire matrix explicitly. Note though that this is not the maximum value in each

graph. Because of the way the sparse matrix representation works, storing one matrix

requires less memory than storing the submatrices which comprise it separately. The top

few levels of an MTBDD are likely to contain very few shared nodes. Hence, replacing

nodes on these levels is actually more expensive than just replacing the root node.

We hypothesise that the slight increase in iteration time for higher levels is caused by

the larger amount of space needed. This theory is supported by a visible correspondence
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between the right-hand sections of the graphs for timing and memory usage. In these cases,

there is not a great deal of difference between the work done by the hybrid implementation

for different levels. The main difference is that the blocks of memory (for each sparse

matrix) which have to be accessed are of different sizes. Smaller blocks can be moved

in and out of RAM more easily. Larger blocks will be broken into smaller pieces by

the operating system anyway, but it is more efficient for us to specify which subblocks

we need and when, rather than rely on the operating system’s algorithms for doing so.

Furthermore, it is likely that using smaller blocks of memory allows us to take more

advantage of low-level memory caching.

Fortunately, the amount of memory required to store the sparse matrix corresponding

to a given MTBDD node is relatively easy to compute. It depends only on the dimension

of the matrix and the number of entries it contains. This information can be computed

for each node of the MTBDD in a single recursive traversal of the data structure. This

allows us to calculate in advance how much memory would be required to compute and

store the matrices for nodes on each level of the MTBDD. Hence, given some upper limit

on memory, we can determine the highest level on which nodes can be replaced without

exceeding the memory limit.

Finally, we present experimental results to illustrate the time and space requirements

of our optimised hybrid approach on the four running examples. We use the scheme

described above to select a level for which to store explicit matrices, taking an upper

memory limit of 1024 KB. Table 6.4 gives timing statistics. This includes the time taken

to construct the new data structure, i.e. the process of selecting a level and then computing

and storing the sparse submatrices for that level, and the average time per iteration of

numerical solution. For comparison, we also include the iteration times for the three other

implementations: MTBDDs, sparse matrices and the (unoptimised) hybrid approach.

The results are very satisfying. Firstly, we note that the construction process for

the optimised hybrid technique is very fast. More importantly, we find that we have

significantly improved the average time per iteration of numerical solution using the opti-

mised version of our hybrid approach. The time is now comparable with those for sparse

matrices.

Furthermore, we are again able to handle larger models than with sparse matrices.

This is due to the relative storage requirements of the methods, illustrated in Table 6.5.

In each case, it gives both the memory used to store the matrix and the total memory.

The latter figure includes the storage requirements for iteration vectors. These remain

the same as in Figure 6.3 and are not repeated.

Clearly, the optimised approach will need more memory than the unoptimised version:

firstly, we have to store an extra pointer on each node; and secondly, we have to store the
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Model N States Construction Time per iteration (sec.)

(sec.) MTBDD Sparse Hybrid Hybr. opt.

1 160 0.01 0.03 0.001 0.001 0.001

2 4,600 0.05 2.22 0.002 0.03 0.003

Kanban 3 58,400 0.10 45.5 0.05 0.35 0.05

system 4 454,475 0.12 - 0.41 4.79 0.53

5 2,546,432 0.09 - 2.70 26.1 3.19

6 11,261,376 0.11 - - 123.8 16.1

8 3,072 0.01 0.31 0.001 0.004 0.001

10 15,360 0.02 13.1 0.01 0.03 0.01

Polling 12 73,728 0.04 - 0.05 0.16 0.05

system 14 344,064 0.04 - 0.30 0.89 0.31

16 1,572,864 0.04 - 1.56 4.46 1.67

18 7,077,888 0.05 - - 23.1 8.51

500 27,505 0.19 0.38 0.01 0.12 0.01

1,000 55,005 0.25 0.67 0.01 0.24 0.02

BRP 1,500 82,505 0.33 0.99 0.02 0.36 0.03

2,000 110,005 0.32 1.26 0.03 0.47 0.04

2,500 137,505 0.33 1.53 0.04 0.59 0.05

3 6,520 0.22 6.13 0.002 0.11 0.003

4 35,910 0.33 48.3 0.02 0.84 0.03

FMS 5 152,712 0.27 - 0.10 3.35 0.16

6 537,768 0.31 - 0.37 13.3 0.57

7 1,639,440 0.32 - 1.14 33.6 2.55

8 4,459,455 0.45 - - 102.0 8.17

Table 6.4: Timing statistics for the optimised hybrid implementation
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Model N Matrix storage (KB) Total storage (KB)

Sparse Hybrid Hybr. Opt. Sparse Hybrid Hybr. Opt.

1 8 10 20 11 13 23

2 348 33 387 455 141 495

Kanban 3 5,455 48 866 6,823 1,417 2,234

system 4 48,414 96 858 59,066 10,748 11,511

5 296,588 123 671 356,270 59,805 60,353

6 - 154 944 - 264,092 264,881

8 186 12 201 258 84 273

10 1,110 19 657 1,470 379 1017

Polling 12 6,192 26 794 7,920 1,754 2,522

system 14 32,928 34 804 40,992 8,098 8,868

16 168,960 44 815 205,824 36,908 37,679

18 - 55 829 - 165,943 166,717

500 441 59 512 1,301 919 1,372

1,000 883 61 726 2,602 1,781 2,446

BRP 1,500 1,324 63 1,055 3,902 2,643 3,635

2,000 1,766 63 1,011 5,203 3,499 4,447

2,500 2,207 65 1,006 6,504 4,361 5,302

3 451 213 706 655 416 910

4 2,711 546 1,556 3,835 1,668 2,680

FMS 5 11,990 974 1,885 16,762 5,746 6,657

6 42,744 1,497 2,645 59,548 18,302 19,449

7 129,853 2,324 3,666 181,085 53,556 54,898

8 - 4,132 5,686 - 143,490 145,042

Table 6.5: Memory requirements for the optimised hybrid implementation

small sparse matrices. Despite these increases, though, it is evident that, in general, our

approach still requires far less memory than sparse matrices.

The results here were obtained, like all the others in this thesis, on a 440 MHz 512 MB

Sun Ultra10. We were able to run all the same experiments as in the previous section. In

addition, we again confirmed the scalability of our techniques on a larger, shared machine.

As before, we find that in general, we are able to increase the size of models which can

be analysed by approximately one order of magnitude.

6.5 Extending to MDPs

The hybrid approach described in the previous sections dealt specifically with the problem

of performing a matrix-vector multiplication, as required by the model checking algorithms
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for DTMCs and CTMCs. We now extend our technique to handle MDPs. As ever, the

complication is the addition of nondeterminism.

From an implementation point of view, the difference can be explained as follows. In a

standard matrix-vector multiplication, as required for DTMC or CTMC model checking,

each entry of the resulting vector, corresponding to a particular state in the DTMC or

CTMC, is computed from a summation of products. In an iteration of model checking

for an MDP, the value for a state is determined by computing a summation of products

for each nondeterministic choice in that state, and then selecting either the maximum or

minimum of these values. For clarity, in the remainder of this section, we will consider the

case where the maximum is taken. The case for minimum, however, is almost identical.

In our MTBDD implementation, described in Section 5.3.2, we thought of the MDP

as being represented by a non-square matrix. This allowed each iteration to be performed

using a matrix-vector multiplication and then a maximum operation, both of which can

be done efficiently with MTBDDs. The disadvantage of this approach is that it creates

an intermediate result: a vector of size equal to the number of nondeterministic choices in

the MDP. This is potentially much larger than the number of states in the MDP. Hence,

in situations where vectors are stored explicitly with arrays, such as in our sparse matrix

or hybrid implementations, this approach is not practical. We have already seen that the

storage required for vectors represents the limiting factor for the applicability of these

techniques.

In Section 3.6.1, we showed how this problem could be resolved in the sparse matrix

case, by combining the matrix-vector multiplication and maximum operation. The algo-

rithm considers each state, one by one, computing and storing its maximum value before

moving on to the next. Note that this is only possible because, in our sparse matrix

storage scheme for MDPs, matrix entries are ordered by state.

As we saw in the previous sections though, with our hybrid approach, entries from

matrices for DTMCs and CTMCs are not extracted from MTBDDs in a meaningful

order. This is because of the interleaving of their row and variable variables. Since

in our preferred encoding of MDPs, as presented in Chapter 4, the MTBDD variables

corresponding to rows, columns and nondeterministic choices are again interleaved, this

will also apply to the extraction of matrix entries for MDPs. Therefore, we cannot perform

a direct analogue of the sparse matrix operation.

We have already concluded that sacrificing the interleaving of row and column variables

is impractical due to the large size of the resulting MTBDDs. Hence, the only feasible

way to resolve this situation is the following. We revert to the ‘top’ MTBDD variable

ordering for MDPs described in Section 4.2.2, where all the nondeterministic variables

come first in the ordering, followed by all the row and column variables, interleaved as for
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MdpIterMax({Mi}i=1..m, b)

1. for (i := 0 . . . |S|−1)

2. res[i] := −1

3. endfor

4. for (i = 1 . . .m)

5. for (j := 0 . . . |S|−1)

6. tmp[j] := −1

7. endfor

8. for (each element (r, c) = v of Mi)

9. if (tmp[r] = −1) then tmp[r] := 0

10. tmp[r] := tmp[r] + v × b[c]

11. endfor

12. for (j := 0 . . . |S|−1)

13. if (tmp[j] > res[j]) then res[j] := tmp[j]

14. endfor

15. endfor

16. return res

Figure 6.16: Pseudo-code for a single iteration of MDP solution

DTMC and CTMC models. In this way, we effectively partition the MDP into several, say

m, transition matrices. A depth-first traversal of the MTBDD for the MDP will extract

each matrix, in its entirety, one by one. This provides a way of performing the combined

multiplication and maximum operation using just two arrays to store vectors. Essentially,

we will perform m individual matrix-vector operations, one for each matrix. We will use

one array to store the result of a single multiplication operation and a second to keep

track of the maximum value found so far for each state.

Figure 6.16 shows the pseudo-code for this process. We assume that the m matrices

are M1, . . . ,Mm, the vector to be multiplied by is stored in an array b, and that there are

|S| states. The resulting vector is put in an array res , and an array tmp is used to store

each individual matrix-vector multiplication. In our implementation, the implicit loop

over all matrix entries in line 8 would be done by traversing the appropriate MTBDD.

We must be careful to remember that, since there are not necessarily m choices in

every state, some matrices may not contain a row for every state. This must be taken

into consideration when computing the maximum. Because we only deal with probability

distributions, every value in every vector will always be in the range [0, 1]. Hence, we

initialise our vector so that all entries are −1, guaranteed to be below this range, and

then states which have been missed are easily detected.

Hence, we have found a way to apply our hybrid technique to MDP models. Further-
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more, we can just reuse our existing algorithms, since we do the same as before, but for

several matrices. This applies to each and every phase of the process, i.e. for construction

we perform offset labelling and explicit submatrix construction m times, and in each iter-

ation of numerical solution we carry out m traversals. The disadvantages are that, firstly,

we have resorted to our second choice of MDP encoding so the MTBDDs will not be as

small as possible, and secondly, we require an extra vector.

6.5.1 Results

We now present experimental results of applying the hybrid approach, as just described,

to some MDP model checking case studies. In our work, we found a distinct lack of such

examples for which numerical computation was actually required, the majority being solv-

able with precomputation algorithms alone. Of the few remaining cases, most were the

examples where we found MTBDDs outperformed explicit approaches. Tables 6.6 and 6.7

present statistics for three instances: Lehmann and Rabin’s randomised dining philoso-

phers algorithm [LR81], the coin protocol of [AH90] and the FireWire root contention

protocol model of [SV99]. For the first, we check a PCTL bounded until property, and for

the second two a PCTL until property. In each case we use a lower probability bound, and

hence compute minimum probabilities. For the PCTL until properties, though, we model

check over fair adversaries only so this actually reduces to the problem of computing

maximum probabilities.

Table 6.6 gives timing statistics: the time for construction (which includes offset la-

belling and explicit submatrix construction), the number of iterations required for model

checking and the average time per iteration. For comparison, we also give the time per

iteration for the equivalent MTBDD and sparse matrix implementations.

The results are clearly not as good as for DTMCs and CTMCs. The times for con-

struction remain small, but the time per iteration is poor in comparison to the other

implementations. We already know that MTBDDs perform very well on these examples,

particularly for the coin protocol and FireWire case studies, but the comparison with

sparse matrices is disappointing.

The main problem seems to be that the fast, efficient algorithms we have developed to

explicitly extract matrix entries from MTBDDs are not as well suited to the computation

required for model checking of MDPs. We are forced to split the MDP into m separate

matrices, where m is the maximum number of nondeterministic choices in any state.

From examination of our case studies, we see that, in typical MDPs, most states will have

significantly fewer that m choices. Hence, a lot of time is wasted traversing MTBDDs and

computing maximums or minimums, work that the sparse matrix version does not do.



138 6 - A Hybrid Approach

Model Param.s States Construction Iterations Time per iteration (sec.)

(sec.) MTBDD Sparse Hybrid

3, 4 28,940 0.27 22 0.12 0.01 0.02

3, 5 47,204 0.47 26 0.14 0.01 0.03

Dining 3, 6 69,986 0.50 30 0.16 0.02 0.05

philosophers 3, 8 129,254 0.80 38 0.22 0.04 0.11

(N,K) 4, 4 729,080 6.53 22 1.24 0.19 0.81

4, 5 1,692,144 15.3 27 2.57 0.48 2.04

4, 6 3,269,200 38.1 31 4.62 1.00 3.91

2, 8 1,040 0.01 6,132 0.02 0.0003 0.0004

Coin 4, 8 84,096 0.06 21,110 0.34 0.04 0.07

protocol 6, 8 4,612,864 0.15 42,967 1.83 3.37 6.21

(N,K) 8, 8 2.2× 108 - 70,669 4.56 - -

10, 6 7.6× 109 - 63,241 9.79 - -

200 68,185 0.35 169 0.006 0.02 0.05

400 220,733 0.50 375 0.02 0.07 0.27

FireWire 600 375,933 0.48 581 0.04 0.12 0.47

(N) 800 531,133 0.50 789 0.05 0.17 0.73

1,000 686,333 0.46 995 0.06 0.22 0.91

2,000 1,462,333 0.51 2,027 0.11 0.47 2.09

3,000 2,238,333 0.50 3,015 0.17 0.71 3.22

Table 6.6: Timing statistics for the hybrid approach on MDPs
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Model Parameters MTBDD nodes Matrix storage (KB) Total storage (KB)

increase (%) Sparse Hybrid Sparse Hybrid

3, 4 114 663 1,292 1,341 2,196

3, 5 123 1,157 1,406 2,264 2,882

Dining 3, 6 133 1,791 1,522 3,432 3,710

philosophers 3, 8 147 3,495 1,790 6,525 5,830

(N,K) 4, 4 169 16,357 4,442 33,445 27,226

4, 5 166 43,564 6,147 83,224 59,027

4, 6 176 91,763 8,740 168,386 110,904

Coin 2, 8 48 32 43 56 75

protocol 4, 8 45 3,247 697 5,218 3,321

(N,K) 6, 8 42 183,539 935 291,653 145,087

200 90 2,083 963 3,682 3,095

400 95 7,074 1,190 12,249 8, 090

FireWire 600 95 12,163 1,288 20,974 13,037

(N) 800 95 17,252 1,386 29,702 17,986

1,000 95 22,341 1,095 38,427 22,543

2,000 95 47,787 1,193 82,062 46,893

3,000 95 73,232 1,291 125,693 71,239

Table 6.7: Memory requirements for the hybrid approach on MDPs

On a more positive note, we see that the memory usage is still more favourable for

the hybrid approach. Table 6.7 gives the amount of memory required for the hybrid and

sparse matrix implementations. We give both the memory to store the matrix and the

total amount, which also includes arrays for the iteration vectors. In addition, we show

the percentage increase in the number of nodes for the construction of the offset-labelled

MTBDDs. The figures for the latter are significantly higher than those observed for

DTMCs and CTMCs. One possible reason for this is that, in our current implementa-

tion, we perform the construction of offset-labelled MTBDDs and explicit submatrices

separately for each of the m matrices. Hence, it is likely that the memory usage could be

improved by exploiting any sharing which occurs between these matrices. Despite all this,

because of the small size of the original MTBDDs, the sparse matrix storage still requires

far more memory than the hybrid approach. This means that, even with the addition of

an extra vector (4 for the hybrid approach, as opposed to 3 with sparse matrices), the

total memory usage is still less for the symbolic implementation than the explicit one.
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6.6 Extending to Gauss-Seidel and SOR

Recall that, so far, our symbolic implementations of iterative numerical methods have been

restricted to those based on matrix-vector multiplication. This includes both the pure

MTBDD implementation of Chapter 5 and the hybrid approach presented in this chapter.

For some parts of our probabilistic model checking algorithms (e.g. for the PCTL until

operator over MDPs and the CSL time-bounded over CTMCs), this limitation is irrelevant

since there is only one viable solution method and this can be efficiently expressed in terms

of matrix-vector multiplication.

For others, this is not the case. In particular, model checking for the PCTL until

operator over DTMCs and the CSL steady-state operator over CTMCs requires solution

of a linear equation system. Here, our symbolic implementations are limited to the Jacobi

and JOR methods, while more efficient alternatives such as Gauss-Seidel and SOR are

not feasible. In this section, we propose an extension to our hybrid approach which allows

a modified form of these more efficient methods to be applied.

Note that an implementation of Gauss-Seidel can easily be extended to SOR in exactly

the same fashion that Jacobi can be extended to JOR. Hence, in the remainder of this

section, we will focus on the Gauss-Seidel method. The method presented is, however,

equally applicable to SOR.

6.6.1 Jacobi versus Gauss-Seidel

Gauss-Seidel has two principal advantages over the Jacobi method. Firstly, it generally

converges quicker, reducing the total time required for solution. Secondly, the solution

vector can be stored using a single array, rather than two as needed for Jacobi. We have

already seen that the memory requirements for storing vectors constitute the limiting

factor for our hybrid approach, so this would present a significant advantage.

The difference between the two methods is the way in which the solution vector is

updated at each iteration. Assume we are solving the linear equation system A · x = b,

where A is an |S| × |S| matrix and b a vector of length |S|. We describe the iterative

methods in terms of how x(k)(i), the ith element of the kth vector, is obtained from A, b,

and the previous vector x(k−1). For the Jacobi method:

x(k)(i) :=

(
b(i)−

∑
j 6=i

A(i, j) · x(k−1)(j)

)
/A(i, i)

and for the Gauss-Seidel method:

x(k)(i) :=

(
b(i)−

∑
j<i

A(i, j) · x(k)(j)−
∑
j>i

A(i, j) · x(k−1)(j)

)
/A(i, i)
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JacobiIteration(A′, d )

1. for (i := 0 . . . |S|−1)

2. xnew (i) := 0

3. endfor

4. for (each element (r, c) = v in A′)

5. xnew (r) := xnew (r) + v · x(c)

6. endfor

7. for (i := 0 . . . |S|−1)

8. x(i) := (xnew (i) + b(i))/d(i)

9. endfor

GaussSeidelIteration(A′, d )

1. for (i := 0 . . . |S|−1)

2. xnew := 0

3. for (each element (r, c) = v in row i of A′)

4. xnew := xnew + v · x(c)

5. endfor

6. x(i) := (xnew + b(i))/d(i)

7. endfor

Figure 6.17: Implementation of an iteration of Jacobi and Gauss-Seidel

Note how the Gauss-Seidel method uses the most recent approximation of the solution

vector available. Hence, to compute x(k)(i), it uses x(k)(j) for j < i but x(k−1)(j) for j > i.

Intuitively, this is why Gauss-Seidel converges faster than Jacobi.

Pseudo-code illustrating how a single iteration of each method is implemented in

practice is shown in Figure 6.17. Note that we do not use the matrix A directly. Instead,

we assume that the non-diagonal elements of A are stored, negated, in a matrix A′, and

that the diagonal elements of A are stored in a vector d , i.e. for 0 ≤ i, j ≤ |S|−1:

• A′(i, j) = −A(i, j) if i 6= j and 0 otherwise

• d(i) = A(i, i)

In practice, diagonal and non-diagonal matrix entries are often stored separately in this

way because they are treated differently by the algorithm. The reason we negate the non-

diagonal entries is that it allows us to clarify the link between these methods and matrix-

vector multiplication. Note how lines 1–6 of the Jacobi iteration essentially correspond

to multiplying the matrix A′ by vector x and placing the result in xnew . This is why we

were able to construct our symbolic implementations of the Jacobi method using matrix-

vector multiplication. Gauss-Seidel, which accesses each row of the matrix A′ individually,
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cannot be formulated in this way. Hence, we have only been able to implement it with

sparse matrices.

The relative memory requirements of Jacobi and Gauss-Seidel are also clarified by the

pseudo-code in Figure 6.17. Both methods use a vector x of size |S| to store the current

approximation to the solution. By the end of the iteration, this will have been updated to

contain the next approximation. The Jacobi method requires an additional vector xnew

of equal size to store intermediate results For Gauss-Seidel, on the other hand, a single,

scalar variable xnew suffices.

6.6.2 Pseudo Gauss-Seidel

We now propose a modified version of Gauss-Seidel which we will able to implement

symbolically using our hybrid approach. The method is essentially a compromise between

the Jacobi and Gauss-Seidel methods. We will refer to it as Pseudo Gauss-Seidel. Let us

assume that our matrix A is divided into a number of blocks. In the above, we indexed

A over 0, . . . , |S|−1 where S is the state space of the probabilistic model being analysed.

Assume now that S is divided into m contiguous partitions S1, . . . , Sm. Using this, the

matrix A can be split into m2 blocks, {Ap,q | 1 ≤ p, q ≤ m}, where the rows and columns

of block Ap,q correspond to the states in Sp and Sq, respectively, i.e. block Ap,q is of size

|Sp| by |Sq|. We introduce the additional notation Np =
∑p−1

i=1 |Si|. For 1 ≤ p ≤ m,

partition Sp includes indices Np up to Np+1 − 1. Finally, we denote by block(i) the block

containing index i, i.e. the unique value 1 ≤ p ≤ m such that Np ≤ i < Np+1. Pseudo

Gauss-Seidel can then be described as:

x(k)(i) :=

b(i) − ∑
j<Nblock(i)

A(i, j) · x(k)(j) −
∑

j≥Nblock(i),j 6=i

A(i, j) · x(k−1)(j)

 /A(i, i)

The method works as follows. Each iteration is divided into m phases. In the pth phase,

the method updates elements of the solution vector corresponding to the states in Sp.

It does this using the most recent approximation for each entry of the solution vector

available, i.e. it uses values from the previous iteration for entries corresponding to sets

Sp, . . . , Sm and values from earlier phases of the current iteration for entries corresponding

to sets S1, . . . , Sp−1. We can relate Pseudo Gauss-Seidel to the previous two iterative

methods by considering Jacobi to be the case where m = 1 and Gauss-Seidel to be the

case where m = |S|.
The pseudo-code for a single iteration of Pseudo Gauss-Seidel is shown in Figure 6.18.

The notation used is the same as in Figure 6.17: A is split into A′ and d, the solution

vector is stored in x and intermediate results are stored in the vector xnew . The matrix
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PseudoGaussSeidelIteration(A′, d )

1. for (p := 1 . . .m)

2. for (i := 0 . . . |Sp|−1)

3. xnew (i) := 0

4. endfor

5. for (each element (r, c) = v in a block A′p,q)

6. xnew (r −Np) := xnew (r −Np) + v · x(c)

7. endfor

8. for (i := 0 . . . |Sp|−1)

9. x(Np+i) := (xnew (i) + b(Np+i))/d(Np+i)

10. endfor

11. endfor

Figure 6.18: Implementation of an iteration of Pseudo Gauss-Seidel

(a) (b) (c)

Figure 6.19: Matrix access for (a) Jacobi (b) Gauss-Seidel (c) Pseudo Gauss-Seidel

A′ is split into m2 blocks in an identical fashion to A.

Note that the pth phase of an iteration only requires access to entries from the pth

row of blocks in A′, i.e. A′p,q for 1 ≤ q ≤ m. This can be compared to Jacobi, where all

the entries of A′ were used in one go, and to Gauss-Seidel, where each of the |S| steps

in an iteration used a single row of A′. Figure 6.19 illustrates this idea graphically: (a)

refers to Jacobi, (b) to Gauss-Seidel, and (c) to Pseudo Gauss-Seidel. In each case, the

figure demonstrates the part of an iteration which uses the elements of matrix A′ and the

elements of vector x to calculate new entries for the solution vector. In the pseudo-code

for Jacobi, Gauss-Seidel and Pseudo Gauss-Seidel, this corresponds to lines 1–6, 2–5 and

2–7, respectively.

The intuition behind the Pseudo Gauss-Seidel method is as follows. Firstly, since

each iteration now uses newer approximations for some elements of the solution vector

(each phase uses the values computed by earlier phases of the same iteration), we would

hope that the method converges more quickly than Jacobi. Secondly, the vector xnew ,

used to store intermediate results, need only be of size maxp=1,...,m |Sp|, rather than |S|,
as in Jacobi. Basically, we would expect to obtain the same benefits of the Gauss-Seidel
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method, only to a lesser extent. The performance of the algorithm will vary, depending on

the number of blocks that the matrix is split into and the maximum size of these blocks.

Note that, although Pseudo Gauss-Seidel is based on a division into blocks, it is

entirely different from the existing ‘Block Gauss-Seidel’ iterative method. The latter is

an attempt to improve the Gauss-Seidel method by reducing the number of iterations

required for convergence. We, on the other hand, hope to require less iterations than

Jacobi, but would not expect to use less than Gauss-Seidel.

On the subject of convergence, since we have introduced a non-standard iterative

method, it is important to check that it actually converges. Fortunately, because of its

similarity to the existing Jacobi and Gauss-Seidel methods, Pseudo-Gauss Seidel can be

seen to exhibit similar behaviour in this respect. We rely on existing results for Jacobi

and Gauss-Seidel, as presented for example in [Ste94].

Jacobi and Gauss-Seidel belong to a class of methods which can be described by

splittings. An iterative method of this type, for the solution of the linear equation system

A · x = b, is associated with a splitting of the matrix A = M −N. An iteration of the

method can then be written as x(k) := M−1 ·N · x(k−1) + M−1 · b. For Jacobi, M contains

the diagonal entries of A and N the negated non-diagonal entries. For Gauss-Seidel, M

contains the diagonal and lower-triangular entries of A, while N contains the negated

upper-triangular entries. Pseudo Gauss-Seidel is also based on a splitting, where M is

defined as follows:

M(i, j) =

{
A(i, j) if j < Nblock(i) or j = i

0 otherwise

and N is equal to M−A. If the splitting A = M−N is such that both M−1 and N are

non-negative, then it is known as a regular splitting.

In [Ste94], it is shown that solving the linear equation system π ·Q = 0 to compute

steady-state probabilities for a CTMC is equivalent to solving a system of the form (I−
PT ) · x = 0, where P is a stochastic matrix (one where each row contains positive entries

summing to one). The convergence properties for both Jacobi and Gauss-Seidel then rely

on the fact that, for such a system, the methods are based on regular splittings. Crucially,

if M can be obtained from I − PT only by setting non-diagonal elements to zero, then

the splitting is regular. As can be seen from above, this is the case for all three of the

methods we consider: Jacobi, Gauss-Seidel and Pseudo Gauss-Seidel.

Note that, in the other instance where we require solution of a linear equation system,

namely model checking the PCTL until operator over a DTMC, the system is of the form

(I − P) · x = b, where P is a stochastic matrix. Using again the results from [Ste94],

splittings of I−P for Jacobi, Gauss-Seidel and Pseudo Gauss-Seidel are always regular.
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y1

x1

Figure 6.20: Storing subgraphs of an offset labelled MTBDD explicitly

6.6.3 Implementation

The reason that we have introduced the Pseudo Gauss-Seidel method is because it can

be implemented with the hybrid approach we developed earlier in this chapter. We have

already seen, on several occasions, how submatrices of a matrix represented by an (offset-

labelled) MTBDD correspond to subgraphs of the same data structure. To extract a row

of matrix blocks, as required by Pseudo Gauss-Seidel, we can simply extract each block

in the row individually, using our existing MTBDD traversal algorithm TraverseOpt

on the appropriate subgraphs of the offset-labelled MTBDD.

The exact procedure we adopt is as follows. Assume that we have an offset-labelled

MTBDD M representing the matrix A′, as used by the iterative methods in the previous

section. We begin by selecting an integer k. By performing a traversal of the top 2k

levels of M (i.e. k row variables and k column variables), we can split it into (2k)2 smaller

offset-labelled MTBDDs, each representing a submatrix of A′. We then explicitly store

pointers to each of these MTBDDs, for example in a two-dimensional array. Figure 6.20

illustrates this idea for k = 1; the grey triangles denote the lower portions of the offset-

labelled MTBDD. We can now perform Pseudo Gauss-Seidel, letting m = 2k. The entries

in each of the m2 blocks of A′ are extracted using the TraverseOpt algorithm and the

pointers to each block’s offset-labelled MTBDD can be accessed quickly and easily from

their explicit storage.

The number of blocks for which we store pointers will grow exponentially as k is

increased. Furthermore, because our matrices are sparse, many of these blocks will only

contain zeros. Hence, we actually store a sparse matrix data structure of MTBDD pointers

rather than a 2-dimensional array. Each row can still be accessed quickly, exactly as for a
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conventional sparse matrix, but the items extracted from the data structure are pointers

to MTBDD nodes, not floating point values.

6.6.4 Results

We have integrated the method outlined above into our symbolic model checker, extend-

ing our existing implementation of the Jacobi method into Pseudo-Gauss Seidel and the

JOR method into ‘Pseudo SOR’ in identical fashion. We then applied these to the model

checking case studies from the previous sections. Clearly, these techniques are only ap-

plicable when solving a linear equation system, i.e. when model checking either a PCTL

until formula for a DTMC or a CSL steady-state formula for a CTMC. Hence, we use the

polling system, bounded retransmission protocol (BRP) and Kanban system case studies.

For the first two, we previously used the Jacobi method so we will now apply Pseudo

Gauss-Seidel. For the Kanban system, we used JOR (ω = 0.9) since Jacobi did not

converge. In this case, we apply Pseudo SOR.

We begin by considering two specific examples, the polling system for N = 16 and the

Kanban system for N = 5. We will use these to investigate the effect that the choice of

k has on the performance of the algorithm. Figure 6.21 shows three plots for each of the

two examples.

Figures 6.21(a) and (b) show how the memory usage varies. We plot both the amount

needed to store the vector of intermediate results (xnew) and the amount for explicit

storage of pointers into the MTBDD storing the matrix (A′). The variation in memory is

exactly as we would expect. As k increases, the size of the matrix blocks becomes smaller

so the vector xnew decreases in size. Conversely, the increase in the number of blocks

causes the memory required for storing the MTBDD pointers to rise. It seems though,

that by choosing a sensible value of k, we can produce a large drop in the memory for the

vector without a significant increase in that for the matrix.

In Figures 6.21(c) and (d), we show the number of iterations taken for Pseudo Gauss-

Seidel (or Pseudo SOR) to converge for each value of k. For comparison, we also give the

number required by the standard iterative methods. We compare Pseudo Gauss-Seidel

to Jacobi and Gauss Seidel, and Pseudo SOR to JOR and SOR. As hoped the number

of iterations required decreases as we increase the value of k. For the Kanban system,

the range of values is neatly bounded above and below by the number of iterations for

the two standard methods. For the polling system, we see that for very small values of

k, Pseudo Gauss-Seidel requires more iterations than either Jacobi or Gauss-Seidel. The

overall conclusion, however, is that we can successfully reduce the required number of

iterations using the ‘Pseudo’ methods.
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Figure 6.21: Statistics for Pseudo Gauss-Seidel and SOR
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Finally, Figures 6.21(e) and (f) give the average time per iteration of Pseudo Gauss-

Seidel or Pseudo SOR. The amount of work done in each iteration does not differ greatly

from that done in the original hybrid implementation (i.e. Jacobi or JOR). The time for

the latter is shown by the dotted, horizontal line. We see that for small values of k, we

require slightly more time, attributed to the extra book-keeping performed, and for larger

k, we need slightly less time. This is because it is faster to extract the MTBDDs for each

matrix block from explicit storage than it is to obtain them by traversing the top few

levels of the MTBDD every iteration. For reference, we also show the average time per

iteration for sparse matrices (Jacobi or JOR) as a dashed, horizontal line. Interestingly,

for large values of k on the polling system example, we can now outperform the explicit

implementation. This seems to be because, as described in Section 6.4.4, it is more

efficient to manipulate small matrices than to work with the entire matrix.

In summary, we see that increasing the value of k reduces the memory for vector

storage, the number of iterations and the average time per iteration. The only negative

consequence is that the matrix storage grows. Fortunately, we can adopt a similar ap-

proach to that taken in Section 6.4, when selecting a level for which to compute explicit

submatrices. The amount of memory which would be required for the explicit storage of

MTBDD pointers for a given value of k is easy to compute in advance. Hence, we choose

an upper limit on memory and then determine the maximum value of k for which this

limit is not exceeded. We will again take this limit to be 1024 KB. Note that, on smaller

examples, these two schemes (division into matrix blocks and explicit storage of subma-

trices) could potentially interfere with each other. Where there is a possible conflict, we

give preference to the techniques of this section, i.e. division into matrix blocks.

Finally, we present experimental results for the techniques described above on the full

range of examples from our three case studies. Tables 6.8 and 6.9 show statistics for

timing and memory usage, respectively. For reasons of space, we identify each model with

a letter, as explained in the key below each table.

Table 6.8 shows the number of iterations required for convergence, the average time

per iteration, and the total time for three different implementations: Gauss-Seidel (GS)

using sparse matrices, and Jacobi (Jac) and Pseudo Gauss-Seidel (PGS) using the hybrid

approach. For the Kanban system example, these are replaced by SOR, JOR and Pseudo

SOR (PSOR), respectively. We conclude that changing the hybrid approach to use the

‘Pseudo’ methods reduces both the average iteration time and the number of iterations,

the net result being a useful decrease in the total time required. The overall time for

sparse matrices is still quicker. This is largely because the number of iterations is even

less using (real) Gauss-Seidel or SOR. We have still achieved a clear improvement in our

hybrid implementation though.
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Model Iterations Time per iteration (sec.) Total time (sec.)

GS Jac PGS GS Jac PGS GS Jac PGS

A 25 310 25 0.001 0.001 0.003 0.03 0.31 0.08

B 27 406 27 0.01 0.01 0.02 0.27 4.06 0.54

C 29 505 64 0.06 0.05 0.06 1.74 25.3 3.84

D 31 606 87 0.32 0.31 0.30 9.92 188 26.1

E 33 709 107 1.64 1.67 1.51 54.1 1,184 162

F - 814 127 - 8.51 8.03 - 6,927 1,020

G 2,046 3,086 2,557 0.01 0.01 0.01 20.5 30.9 25.6

H 4,071 6,136 5,088 0.01 0.02 0.02 40.7 123 102

I 6,095 9,184 7,617 0.02 0.03 0.03 122 276 229

J 8,117 12,230 10,146 0.03 0.04 0.04 244 489 406

K 10,140 15,274 12,674 0.04 0.05 0.05 406 764 634

SOR JOR PSOR SOR JOR PSOR SOR JOR PSOR

L 140 101 140 0.001 0.001 0.001 0.14 0.10 0.14

M 136 166 142 0.002 0.003 0.003 0.27 0.50 0.43

N 235 300 258 0.05 0.05 0.05 11.8 15.0 12.9

O 367 466 414 0.45 0.53 0.52 165 247 215

P 524 663 590 2.79 3.19 3.14 1,462 2,115 1,853

Q - 891 794 - 16.1 15.6 - 14,336 12,386

Key

Polling system BRP Kanban system

A N = 8 G N = 500 L N = 1

B N = 10 H N = 1, 000 M N = 2

C N = 12 I N = 1, 500 N N = 3

D N = 14 J N = 2, 000 O N = 4

E N = 16 K N = 2, 500 P N = 5

F N = 18 Q N = 6

Table 6.8: Timing statistics for Pseudo Gauss-Seidel and SOR
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Model Matrix storage (KB) Vector storage (KB) Total storage (KB)

GS Jac PGS GS Jac PGS GS Jac PGS

A 186 201 273 48 72 48 234 273 321

B 1,110 657 569 240 360 240 1,350 1,017 809

C 6,192 794 648 1,152 1,728 1,152 7,344 2,522 1,800

D 32,928 804 1,384 5,376 8,064 5,376 38,304 8,868 6,760

E 168,960 815 1,215 24,576 36,864 24,577 193,536 37,679 25,792

F - 829 1,524 - 165,888 110,596 - 166,717 112,120

G 441 512 673 645 860 645 1,086 1,372 1,318

H 883 726 761 1,290 1,720 1,289 2,172 2,446 2,050

I 1,324 1,055 745 1,935 2,580 1,934 3,258 3,636 2,679

J 1,766 1,011 795 2,577 3,436 2,578 4,344 4,447 3,373

K 2,207 1,006 723 3,222 4,296 3,223 5,429 5,302 3,946

SOR JOR PSOR SOR JOR PSOR SOR JOR PSOR

L 8 20 147 2 3 3 10 23 150

M 348 387 850 72 108 72 4,19 495 922

N 5,455 866 607 912 1,368 914 6,372 2,234 1,521

O 48,414 858 738 7,102 10,653 7,138 55,515 11,511 7,876

P 296,588 671 912 39,788 59,682 39,889 336,376 60,353 40,801

Q - 944 1373 - 263,937 176,198 - 264,881 177,570

Key

Polling system BRP Kanban system

A N = 8 G N = 500 L N = 1

B N = 10 H N = 1, 000 M N = 2

C N = 12 I N = 1, 500 N N = 3

D N = 14 J N = 2, 000 O N = 4

E N = 16 K N = 2, 500 P N = 5

F N = 18 Q N = 6

Table 6.9: Memory requirements for Pseudo Gauss-Seidel and SOR



6 - A Hybrid Approach 151

Table 6.9 gives the total memory required for each of the three implementations just

described, and shows how this is broken down into storage for the matrix and vectors.

We achieve an impressive reduction in memory for the vectors and, thanks to only an,

at worst, minor increase for the matrix, a similar reduction for the total memory. Since

the storage requirements for the sparse matrix implementation are still dominated by

the explicit representation of the matrix, it is again easily outperformed by the hybrid

approach in this respect.

6.7 Comparison with Related Work

As we pointed out in Chapter 2, the basic idea behind our hybrid technique for probabilis-

tic model checking is similar to that of Kronecker-based approaches for CTMC analysis.

They both use a compact, structured representation of the model and explicit storage for

vectors to perform numerical computation using iterative methods. Of particular interest

is the implementation of Ciardo and Miner [CM99] which uses decision diagram data

structures. Now, having now presented our technique in detail, we give a more in-depth

comparison of the two approaches.

To recap, the idea of Kronecker-based techniques is that the transition matrix of

a CTMC is defined as a Kronecker (tensor) algebraic expression of smaller matrices,

corresponding to components of the overall model. It is only necessary to store these

small matrices and the structure of the Kronecker expression; iterative solution methods

can be applied directly to this representation. Extracting or accessing a single element of

the matrix requires several multiplications and a summation. Hence, as with our approach,

ingenious techniques must be developed to minimise the resulting time overhead during

numerical solution. Typically, these disadvantages are outweighed by the substantial

savings in memory and corresponding increase in size of solvable model.

It turns out that the two approaches share a number of issues. A good example

is the need to differentiate between reachable and unreachable states. Early Kronecker

approaches worked over the entire set of possible states. This increases the size of the

vectors which need to be stored and means that additional work is required to detect

entries in the transition matrix corresponding to unreachable states. Improvements to

the Kronecker approach, such as Kemper’s use of binary search over ordered sets [Kem96]

and Ciardo and Miner’s use of multi-level data structures [CM97, CM99] to store the state

space, relieved these problems to a certain extent. Our approach is comparable to that

of [CM99] in that both use decision diagrams to compute and store the set of reachable

states, and use offsets to determine state indices. The difference is that [CM99] uses

multi-valued decision diagrams (MDDs) and we use binary decision diagrams (BDDs).
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Another common issue is the selection of an iterative method for numerical solution.

Early Kronecker approaches used the Power or Jacobi methods. More recent work such

as [BCDK97, CM99] has given algorithms for the Gauss-Seidel method, a more attractive

option since it usually requires considerably fewer iterations to converge and needs less

memory. The drawback is that, to implement the method, each row or column of the

matrix must be extracted individually, a process not ideally suited to techniques relying

on structured storage of the matrix.

An alternative, and the one which is most directly related to our approach, is the

‘interleaving’ idea of [BCDK97]. Here, all matrix entries are accessed in a single pass of

the data structure, comparable with the depth-first traversal of MTBDDs we adopt. The

advantage is that many of the multiplication operations performed to compute the matrix

entries can be reused when carried out in this order. The sacrifice made to obtain this

saving is that the technique is restricted to the Power and Jacobi methods.

The Kronecker implementation of Ciardo and Miner [CM99, Min00] has further sim-

ilarities with our work. They have developed a data structure called a matrix diagram

which stores the Kronecker representation for a CTMC in a tree-like data structure. Like

an MTBDD, the tree is kept in reduced form to minimise storage requirements. Fur-

thermore, Ciardo and Miner use a combination of MDDs for reachability and state space

storage, and matrix diagrams for matrix storage and numerical solution. This is analogous

with our use of BDDs and MTBDDs, respectively.

Despite the numerous similarities, there remain fundamental differences between our

hybrid approach and the various Kronecker-based techniques. Firstly, the amount of

work required to extract a single matrix entry differs significantly. For an offset-labelled

MTBDD, this constitutes tracing a path from its root node to a terminal, reading and

following one pointer at each level. The Kronecker representation is also a multi-level

system, but extracting an entry is slower, requiring a floating point multiplication to be

performed at each level. In some cases, several such products must be computed and then

summed to determine the final value.

Secondly, our MTBDDs are based on binary decisions whereas data structures for

storing Kronecker representations, such as matrix diagrams, are based on multi-valued

decisions. From an alternative viewpoint, the former encodes state spaces using Boolean

variables and the latter does so using finite, integer-valued variables. The relative merits

of each are hard to judge. Multi-valued variables might been as a more intuitive way to

structure a given model’s state space. On the other hand, we have found the flexibility

of Boolean variables useful for developing efficient storage schemes for MDPs. Kronecker

methods have only been used to store models which can be represented as a square,

two-dimensional matrix, i.e. CTMCs and DTMCs.
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With all of the above factors in mind, we conclude this section by presenting a com-

parison of the space and time efficiency of the two approaches. We begin by considering

the amount of memory required for matrix storage. It seems that the Kronecker-based

representations are more compact than MTBDDs in this respect. As an example, we use

the Kanban system case study of Ciardo and Tilgner [CT96], used both in this thesis and

in numerous other related sources in the literature. According to the statistics in [CM99],

for example, we find that our offset-labelled MTBDD representation requires several times

more memory than matrix diagrams for this model. Fortunately, this comparison is largely

irrelevant since the space requirements of both approaches are dominated almost entirely

by storage for vectors, not matrices.

From a time perspective, an exact comparison is more problematic. Even given the

facility to run contrasting implementations on the same hardware, it is hard to make

a fair evaluation without a detailed knowledge of their workings. Generally, matrix dia-

grams and sophisticated Kronecker implementations both claim, like us, to be comparable

to sparse matrices in terms of speed. We are not aware, though, of an instance where

Kronecker-based methods actually outperformed explicit techniques, as our hybrid ap-

proach did on the polling system case study. Given that an iteration of numerical solution

essentially reduces to extracting matrix entries from the structured matrix representation,

our observations above would suggest that offset-labelled MTBDDs should be faster than

Kronecker-based data structures in this respect.

In fairness, though, Kronecker-based implementations, such as matrix diagrams, are

often tailored towards performing the Gauss-Seidel method. While this usually entails

more work per iteration, the total number of iterations can often be significantly reduced.

The number of vectors which must be stored is also reduced by one.

We, on the other hand, have opted to focus on developing fast implementations of

iterative methods which can be implemented using matrix-vector multiplication such as

the Jacobi method. We have taken steps to address some of the limitations of Jacobi by

investigating Pseudo Gauss Seidel, which exhibits numerous advantages of conventional

Gauss-Seidel, only to a lesser extent.

More importantly, in this thesis we have concentrated on a wider range of analysis

methods for probabilistic models. While steady-state probability computation requires

the solution of a linear equation system, amenable to Gauss-Seidel, many other problems

reduce to alternative iterative methods. Such problems include computing transient prob-

abilities for CTMCs, model checking CSL time-bounded until properties for CTMCs and

model checking PCTL properties for MDPs. In these cases, our approach is at a distinct

advantage.



Chapter 7

Conclusions

7.1 Summary and Evaluation

The aim of this work was to develop an efficient probabilistic model checker. We set out

to investigate whether BDD-based, symbolic model checking techniques, so successful in

the non-probabilistic setting, could be extended for this purpose. The approach we have

taken is to use MTBDDs, a natural extension of BDDs.

In terms of efficiency, we are concerned with minimising both the time and space re-

quirements of model checking. When working with BDD-based data structures, complex-

ity analysis is generally unhelpful; despite often having exponential worst-case complexity,

it is well known that on realistic examples exhibiting structure, symbolic techniques can

dramatically outperform other alternatives. For this reason, we have opted to rely on

empirical results to gauge the efficiency of our techniques. By applying our work to a

wide range of case studies, we aim to make such comparisons as fair as possible.

One of the main motivations for the work in this thesis was the lack of existing im-

plementations of probabilistic model checking. Consequently, there is limited scope for

making comparisons of our work with other tools. Instead we have chosen to implement

an alternative version of our model checker based on more conventional, explicit data

structures and use this to judge the efficiency of our techniques. This allows for fair

comparisons, ensuring that tests can be carried out on identical examples and solution

methods, and under the same conditions. Since probabilistic model checking requires

computations on large matrices with relatively few non-zero entries, the obvious candi-

date for an explicit representation is sparse matrices. Fortunately, it is relatively simple

to produce an efficient implementation of this data structure.

As demonstrated in the preceding chapters, we have successfully applied MTBDDs

to the process of probabilistic model checking for two temporal logics, PCTL and CSL,
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and for three types of model, DTMCs, CTMCs and MDPs. We found that there was a

significant amount of commonality between the various cases.

In Chapter 4, we showed that, by applying heuristics for encoding and variable or-

dering, MTBDDs could be used to quickly construct a very compact representation of

extremely large probabilistic models from their high-level description in the PRISM lan-

guage. The heuristics for MDPs are the first to be presented in the literature. Fur-

thermore, because of the close relationship between MTBDDs and BDDs, we were able to

perform reachability and model checking of qualitative temporal logic properties efficiently

on models with more than 1013 states.

The real focus of the thesis, however, has been on model checking of quantitative

properties, for which numerical computation is required. In Chapter 5, we demonstrated

that, for some case studies, this could be performed very efficiently with MTBDDs. On

a desktop workstation of relatively modest specification, we were able to analyse models

with as many as 7.5 billion states. The best results proved to be for MDP models, typically

of randomised, distributed algorithms. Clearly, models of this size could not be handled

explicitly under the same conditions.

We also found, in concurrence with existing work on symbolic analysis of probabilistic

models, that MTBDDs were often inefficient for numerical computation because they

provide a poor representation of solution vectors, which exhibit no structure and contain

many distinct values. In Chapter 6, we presented a novel hybrid approach to combat

this, combining our symbolic, MTBDD-based approach and the explicit version. Initially,

we implemented this hybrid approach for the model checking of DTMCs and CTMCs,

relying on the Jacobi and JOR methods for solving linear equation systems. Thanks to

memory savings from the compactness of our MTBDD representation, we were able to

analyse models approximately an order of magnitude larger than with explicit techniques.

Typically, we also maintained a comparable solution speed.

We then showed how this hybrid approach could be extended for model checking of

MDPs. Although the results were not as impressive as for DTMCs in terms of solution

speed, we still required less memory than explicit approaches. As a second extension, we

modified our hybrid approach to allow numerical solution of linear equation systems us-

ing a modified version of Gauss-Seidel called Pseudo Gauss-Seidel. We succeeded both in

reducing the number of iterations for convergence and in producing a significant improve-

ment in terms of the amount of memory required for vector storage. We also managed to

reduce the average iteration time, in one case actually outperforming sparse matrices.

We concluded Chapter 6 by presenting a comparison of our hybrid approach and

Kronecker-based techniques for CTMC analysis, in particular the matrix diagram data

structure of Ciardo and Miner. Although the origins of these areas of work are different,
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the two approaches have a lot in common. Generally, the performance of the two is

quite similar; both can handle state spaces an order of magnitude larger than explicit

approaches, while maintaining comparable solution speed. One of the main differences

is that Kronecker techniques are amenable to the more efficient Gauss-Seidel method,

whereas ours are not. We have gone some way towards redressing the balance with the

implementation of Pseudo Gauss-Seidel. More importantly, though, our approach applies

to a wider range of probabilistic models and solution methods, several of which, such as

transient analysis of CTMCs and model checking of MDPs, make no use of Gauss-Seidel.

The potential value of our implementation is illustrated by the response we have

received from the release of our model checker PRISM. To date, the tool has been down-

loaded by more than 350 people and we have received a pleasing amount of positive

feedback from those who have managed to use PRISM to analyse interesting case studies.

These include applications of the tool to probabilistic anonymity protocols [Shm02], and

power management strategies [NPK+02]. A promising collaboration [DKN02] with the

KRONOS model checker [DOTY96] has also been established.

7.2 Future Work

There are many possible areas in which the work in this thesis could be developed further.

These can be divided into two broad classes. Firstly, there are a number of ways in which

the functionality of our model checker PRISM could be improved. It would be desirable,

for instance, to extend the range of modelling and specification formalisms which are

supported. One example is the temporal logics LTL or PCTL*, which would allow more

expressive specifications of DTMCs and MDPs than is possible with PCTL.

We would also like to augment our probabilistic models with information about costs

and rewards, and support model checking of these using appropriately extended specifica-

tion formalisms. The work in [BHHK00b, HCH+02], which presents the temporal logics

CRL and CSRL for CTMC analysis of this nature, and the work of de Alfaro [dA97] for

MDPs, would provide a good starting point. On a similar theme, we are interested in ex-

amining real-time extensions to our existing probabilistic models, for example by adding

timed automata style clocks to the PRISM language. Initial work in this direction can be

found in [DKN02].

Another improvement would be to consider the possibility of providing counterexam-

ples for model checking. This has always been one of the most attractive features of

non-probabilistic model checkers, but represents a non-trivial extension in the probabilis-

tic setting since a single path of a model cannot be used to illustrate whether or not

a temporal logic formula is satisfied. A related feature is the provision of information
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about adversaries for MDPs (also known as policies or schedulers). Currently, our model

checker computes the minimum or maximum probability, over a set of adversaries, that

some behaviour is observed but does not generate the actual adversary which produces

this behaviour. Such information would constitute useful feedback to the user of a model

checker.

Lastly, it would certainly be beneficial to extend our probabilistic model checking

with techniques for abstraction, such as data-type reduction and assume-guarantee rea-

soning. These have met with success in the non-probabilistic setting but would represent

a significant challenge to emulate in the probabilistic case.

From our point of view, it would be interesting to investigate whether the improve-

ments to the functionality of PRISM described above could be efficiently integrated into

the symbolic implementation we have already developed. The fact that the techniques

proposed here have already proved to be applicable to a wide range of model checking

problems is an encouraging sign in this respect.

A second class of potential areas for future work are those which focus on improving

the efficiency of our existing model checking implementation. For example, in this thesis,

we have highlighted a number of cases where MTBDDs alone perform well, but have

generally focused on techniques to improve efficiency where this is not the case. It would

be interesting to investigate further the limits of the MTBDD approach where it does

perform well and examine potential areas for improvement such as dynamic variable

reordering and cache management. There are also aspects of our hybrid approach which

warrant additional development, such as the version for MDP model checking.

As observed at the end of Chapter 6, it would also be interesting to explore in more

depth the relationship between our work and Kronecker-based approaches, in particular

the matrix diagram data structure of Ciardo and Miner. One example is the choice

between binary and multi-valued decisions in data structures. There is some evidence

that operations traditionally implemented in BDDs such as reachability and CTL model

checking can be performed more efficiently with MDDs, as used in some Kronecker-based

approaches. It might be beneficial to try modifying our data structures to use multi-valued

decision instead of binary ones. Conversely, some of the optimisations we have developed

for our hybrid approach in Chapter 6 might be applicable to Kronecker or matrix diagram

implementations.

One of the main factors which limits the applicability of both our hybrid approach and

the Kronecker-based techniques is the memory requirements for explicit vector storage.

Any method of alleviating this problem would be extremely welcome. Two directions for

research are potentially promising: firstly, so called ‘out-of-core’ methods where memory

usage is reduced by storing data on disk, retrieving and updating it as required; secondly,
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parallel or distributed implementations, where storage and, ideally, memory requirements

can be lessened by spreading work over several processors or computers. Preliminary work

in the first of these areas can be found in [KMNP02]. Since both these techniques usually

require the matrix to be split up in some way, there is scope for reusing the techniques

developed for this purpose in the Pseudo-Gauss Seidel implementation of Section 6.6.

7.3 Conclusion

In conclusion, we have successfully demonstrated the feasibility of MTBDD-based proba-

bilistic model checking on a broad range of case studies, including examples of real-world

randomised protocols. We have been able to perform analysis of extremely large, struc-

tured models, some of which are clearly out of the reach of explicit approaches.

This illustrates that established symbolic model checking techniques can be extended

to the probabilistic case. In keeping with results from this field, we confirm that the most

important heuristic for symbolic approaches is to maximise the exploitation of structure

and regularity which derives from high-level model descriptions.

We also draw similar conclusions to other work on structured methods for probabilistic

model analysis such as Kronecker-based techniques; namely that, while compact model

storage can increase by approximately an order of magnitude the size of model which can

be handled, the need to store one or more explicit solution vectors of size proportional to

the model being analysed is often the limiting factor. This suggests that an important

focus for future work should be the development of techniques and methodologies for

abstraction, which concentrate on reducing the size of model which must be analysed,

rather than on finding compact storage for large models.



Appendix A

The PRISM Model Checker

This appendix gives a brief overview of PRISM (Probabilistic Symbolic Model Checker),

the tool which has been developed to implement the techniques described in this thesis.

PRISM supports model checking of PCTL over discrete-time Markov chains (DTMCs)

and Markov decision processes (MDPs) and of CSL over continuous-time Markov chains

(CTMCs). The algorithms used are those described in Section 3.3.

The tool takes two inputs: a model description and a properties specification. The

former is written in the PRISM language, the syntax and semantics of which are given in

Appendix B. PRISM parses this description, constructs a model of the appropriate type,

either a DTMC, an MDP or a CTMC, and then determines the set of reachable states of

this model. The properties specification consists of a number of temporal logic formulas

in either PCTL or CSL, depending on the model type. These are parsed and then model

checked. The architecture of the PRISM tool is summarised in Figure A.1.

The basic underlying data structures of PRISM are BDDs and MTBDDs. These are

used for the construction and storage of all models, as described in Chapter 4 and Ap-

pendix C, for reachability, and for the precomputation phases of model checking. For the

numerical computation aspect of model checking, PRISM provides three distinct engines.

The first is a pure MTBDD implementation, as described in Chapter 5 and Appendix D;

the second is explicit, based on sparse matrices; and the third uses the hybrid approach

described in Chapter 6.

There are two versions of PRISM available, one based on a graphical user interface and

one on a command line interface. Screenshots of each are shown in Figures A.2 and A.3,

respectively. Binary and source-code versions of the tool can be obtained from the PRISM

web site at www.cs.bham.ac.uk/˜dxp/prism. The site also includes tool documentation, a

number of relevant papers and a large amount of information about more than twenty

case studies which have been developed with PRISM.
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Figure A.1: The architecture of the PRISM model checker
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Figure A.2: Screenshot of the PRISM graphical user interface

Figure A.3: Screenshot of the PRISM command line interface



Appendix B

The PRISM Language

In Section 3.4, we gave an informal presentation of the PRISM language and some simple

examples of models described in it. This appendix provides a formal definition. Sec-

tion B.1 defines the syntax of the language and Sections B.2, B.3 and B.4 give its se-

mantics when describing DTMCs, CTMCs and MDPs, respectively. In these sections,

we consider the restricted scenario where neither global variables nor synchronisation be-

tween modules are permitted. In Sections B.5 and B.6, we show how the basic syntax

and semantics can be modified to handle these extensions. Finally, in Section B.7, we

consider the issue of reachability.

B.1 Syntax

In this section, we give the syntax of a model described in the PRISM language. A

model is defined as a set of m modules M1, . . . ,Mm. Each module Mi is a pair (Var i, Ci)

where Var i is a set of integer-valued, local variables with finite range and Ci is a set of

commands. The variable sets Var i define the local state space of each module which in

turn define the global state space of the whole model. We denote by Var the set of all

local variables in the model, i.e. Var =
⋃m
i=1 Var i. Furthermore, we suppose that each

variable v ∈ Var has an initial value v.

The behaviour of module Mi is defined by the set of commands Ci. Each command

c ∈ Ci takes the form (g, (λ1, u1), . . . , (λnc , unc)), comprising a guard g and a set of pairs

(λj, uj) where λj ∈ IR>0 and uj is an update for each 1 ≤ j ≤ nc. A guard g is a predicate

over the set of all local variables Var . Each update uj of a command in Ci corresponds to

a possible transition of module Mi. This is described in terms of the effect the transition

would have on the variables in Var i. If Var i contains ni local variables v1, . . . , vni
, then an

update takes the form (v′1 = expr 1)∧· · ·∧(v′ni
= exprni

) where each expr j is an expression
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in terms of the variables in Var . We use v′ to denote the new value of a variable v. Note

that, in practice, an update may leave the values of some variables in Var i unchanged.

We allow this information to be omitted from the description of the update.

The constants λj in a command are used to assign probabilities or rates to each of its

updates. These values will determine the probability or rate attached to transitions in

the model which correspond to these updates. For a description of a DTMC or an MDP,

we require that λj ∈ (0, 1] for 1 ≤ j ≤ nc and that
∑nc

i=1 λj = 1. In the case of a CTMC,

each λj can take any value in IR>0.

Example

To illustrate the above ideas more clearly, we relate them to a simple example:

dtmc

module M1

v : [1..6] init 1;

[] (v = 1) → 1 : (v′ = 2);

[] (v > 1) ∧ (v < 6) → 0.5 : (v′ = v − 1) + 0.5 : (v′ = v + 1);

[] (v = 6) → 1 : (v′ = 5);

endmodule

This model defines a DTMC and consists of a single module M1. The description of the

module is split into two parts, giving its local variables and commands, respectively. From

the first line, we see that M1 has a single local variable v with range {1, . . . , 6} and initial

value 1. Hence Var = Var 1 = {v} and v = 1.

The other three lines describe the module’s set of commands C1. In our notation, each

command (g, (λ1, u1), . . . , (λnc , unc)) is written “ [] g → λ1 : u1 + · · · + λnc : unc ; ”. For

example, the second command of the three has the guard “ (v > 1) ∧ (v < 6) ” and two

updates, “ (v′ = v − 1) ” and “ (v′ = v + 1) ”, each assigned probability 0.5.

B.2 DTMC Semantics

We now give the semantics of the PRISM language, which are defined in terms of either

DTMCs, CTMCs or MDPs, depending on which is being described. We first demonstrate

the case for DTMCs and then show what modifications are required for the other types

of model.

A DTMC is described by a state space, an initial state, and a probability transition

matrix P, as described in Section 3.1.1. We define the local state space Si of module Mi

to be the set of all valuations of the variables in Var i. The global state space S, i.e. the



164 Appendix B - The PRISM Language

state space of the DTMC, is the product of the m local state spaces, i.e. S = S1×· · ·×Sm.

We can express a global state s ∈ S as a tuple of local states (s1, . . . , sm), where si ∈ Si
for 1 ≤ i ≤ m. The initial state of module Mi, denoted si, is determined by the initial

values of the variables in Var i. The initial state of the DTMC is s = (s1, . . . , sm).

To determine P, we first have to consider the behaviour of each individual module. To

determine the behaviour of module Mi, we must examine each of its commands. Consider

a command c ∈ Ci of module Mi where c = (g, (λ1, u1), . . . , (λnc , unc)). Since the guard

g is a predicate over the variables in Var and each state of the DTMC is a valuation of

these variables, g defines a subset of the global state space S. We denote this set of states

Sc = {s ∈ S | s |= g}. The command c describes the behaviour of module Mi when the

model is in a state s ∈ Sc. For a DTMC, we require that the guards of the commands in

a module do not overlap, i.e. that the sets Sc for c ∈ Ci are pairwise disjoint.

Each update uj of c corresponds to a transition that Mi can make when the model is

in a state s ∈ Sc. The transition is defined by giving the new value of each variable in

Var i as an expression in terms of the variables in Var . Hence, we can think of uj as a

function from Sc to Si. If Var i = {v1, . . . , vni
} and uj is (v′1 = expr 1)∧· · ·∧(v′ni

= exprni
),

then for each state s ∈ Sc:

uj(s) = (expr 1(s), . . . , exprni
(s))

Using the value λj associated with each update uj, the command c defines, for each s ∈ Sc,
a function µc,s : Si → IR≥0 where for each ti ∈ Si:

µc,s(ti) =
∑

j ∈{j |uj(s)=ti}

λj

Note that, by the restrictions placed on the constants λj in the semantics, for a DTMC

µc,s defines a probability distribution over Si. Intuitively, this gives the probability of

module Mi moving to each local state in Si when the global state is s. To determine

the behaviour of Mi in every global state, we have to combine the information for all

commands in Ci. We denote this by a function Pi,ind : S × Si → [0, 1] where for each

s ∈ S and ti ∈ Si:

Pi,ind(s, ti) =

{
µc,s(ti) if s ∈ Sc for some c ∈ Ci

0 otherwise.

Since we are presently ignoring the issue of synchronisation between modules, each tran-

sition of the whole model corresponds to a single module being scheduled and making an

independent transition, the others remaining in the same state. We define the effect that
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module Mi’s transitions have on the whole model using the function Pi : S × S → [0, 1].

For states s = (s1, . . . , sm) and t = (t1, . . . , tm) in S:

Pi(s, t) =

{
Pi,ind(s, ti) if sj = tj for all 1 ≤ j 6= i ≤ m

0 otherwise

Finally, we define the probability transition matrix P of the overall model. In each global

state, some subset of the m modules can independently make transitions. We assume a

uniform probability of each one being scheduled. Hence, we define P : S × S → [0, 1] as:

P(s, t) = 1/ns

(
m∑
i=1

Pi(s, t)

)

where ns is the number of modules which can make a transition in state s, i.e. ns =

|{Mi | s ∈ Sc for some c ∈ Ci}|. Since, by definition, the probabilities for each module

sum to 1, this can also be computed as ns =
∑m

i=1

∑
t∈S Pi(s, t), i.e. by summing the

values in each row of the summation of the Pi matrices above.

Example

We now show how these semantics for DTMCs apply to the simple example from the

previous section. We saw that Var = Var 1 = {v}. Hence, S = S1 = {1, . . . , 6} and

s = s1 = 1. Module M1 has three commands which we label c1, c2 and c3. Then,

Sc1 = {1}, Sc2 = {2, . . . , 5} and Sc3 = {6}. We take the command c2 as an example. Its

two updates, which we denote u1 and u2, define functions from {2, . . . , 5} to {1, . . . , 6}.
For example, u1(2) = 1, u1(3) = 2, u1(4) = 3 and u1(5) = 4. The command c2 defines

four different probability distributions over {1, . . . , 6} : µc2,2, µc2,3, µc2,4 and µc2,5. For

example, µc2,2 selects 1 and 3 with equal probability 0.5.

B.3 CTMC Semantics

For a CTMC, the semantics are almost identical to DTMCs. The local state space Si of

module Mi, global state space S and initial state s are as before. For a command c ∈ Ci,
the set Sc and functions µc,s : Si → IR≥0 are also defined in identical fashion. Note that,

in this case, µc,s does not define a probability distribution over Si, but a mapping from Si

to non-negative reals since, as described in Section 3.1.3, the transitions in a CTMC are

labelled with rates rather than probabilities. Also, we allow the sets Sc for commands in a

module to overlap, i.e. a state s ∈ S can be contained in Sc for several commands c ∈ Ci.
It is often convenient to define the transitions for one state across several commands in
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this way. This is possible for a CTMC because there is no need to check that transitions

in each state form a probability distribution.

The transition rate matrix R : S×S → IR≥0 for the CTMC is constructed in a similar

fashion to the matrix P for DTMCs. The independent behaviour of module Mi is given

by the function Ri,ind : S × Si → IR≥0 where for each s ∈ S and ti ∈ Si:

Ri,ind(s, ti) =
∑

c∈{c∈Ci | s∈Sc}

µc,s(ti)

Note that the summation captures behaviour split over several commands. As for DTMCs,

only one module makes a transition at a time. The effect on the whole model is defined

by Ri : S × S → IR≥0, where for states s = (s1, . . . , sm) and t = (t1, . . . , tm) in S:

Ri(s, t) =

{
Ri,ind(s, ti) if sj = tj for all 1 ≤ j 6= i ≤ m

0 otherwise

Finally, we combine the above to form the transition rate matrix R : S × S → IR≥0:

R(s, t) =
m∑
i=1

Ri(s, t)

Note that there is no need to modify the rates in any way, as we did with the probabilities

when constructing a DTMC. As mentioned in Section 3.4.4, we model the concurrency

arising from scheduling between modules using the race condition which exists in each

state of a CTMC with multiple transitions.

B.4 MDP Semantics

With MDPs, we again take a similar approach. The local state space Si of module Mi,

global state space S and initial state s are as in the previous two sections. For a command

c ∈ Ci, the set Sc and functions µc,s : Si → IR≥0 are also defined in the same way. As for

DTMCs, each function µc,s is a probability distribution over Si. Unlike DTMCs, though,

we allow the guards of commands in a module to overlap. Hence, several probability

distributions may be enabled in one state. This is interpreted as local nondeterminism

within the module.

As described in Section 3.1.2, an MDP is defined by a function Steps : S → 2Dist(S),

mapping each state s ∈ S to a finite, non-empty subset of Dist(S), the set of all prob-

ability distributions over S (i.e. the set of all functions of the form µ : S → [0, 1] where∑
s∈S µ(s) = 1). We begin by, for each module Mi, defining a function Steps i,ind : S →

2Dist(Si) which associates each state s ∈ S with a set of probability distributions over Si:

Steps i,ind(s) = {µc,s | c ∈ Ci and s ∈ Sc}
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As before, we convert this to a function which gives probability distributions over the

global state space, assuming that all other modules remain in the same state. We will

denote this Steps i : S → 2Dist(S). Let s = (s1, . . . , sm) be a state in S. We define

Steps i(s) as follows. For each µi ∈ Steps i,ind(s), the set Steps i(s) contains the distribution

µ ∈ Dist(S), where for any state t = (t1, . . . , tm) in S:

µ(t) =

{
µi(ti) if sj = tj for all 1 ≤ j 6= i ≤ m

0 otherwise

Finally, we combine the above to determine Steps : S → 2Dist(S) for the overall model.

The scheduling between modules in a state is nondeterministic so we simply take the

union of the set of all probability distributions for each module.

Steps(s) =
m⋃
i=1

Steps i(s)

B.5 Global Variables

The basic definition of the language can be extended with the inclusion of global variables.

These are variables which can be both read and modified by any module. In terms of the

syntax, we assume that the set of all variables Var now includes a set of global variables

Var glob . The initial value, gv , of each global variable gv ∈ Var glob is also specified.

A guard g of a command c is still a predicate over all the variables in Var , but this now

includes Var glob . Similarly, each update in a command now also specifies how the global

variables are modified. Hence, if Var i = {v1, . . . , vni
} and Var glob = {gv 1, . . . , gvnglob

}, an

update in a command c ∈ Ci takes the form:

(v′1 = expr 1) ∧ · · · ∧ (v′ni
= exprni

) ∧ (gv ′1 = gexpr 1) ∧ · · · ∧ (gv ′nglob
= gexprnglob

)

where each expr j and gexpr j is an expression in terms of the variables in Var . As be-

fore, the update may leave the values of some variables unchanged, in which case this

information can be omitted from the update.

In terms of the semantics, we define Sglob to be the set of all valuations of the variables

Var glob and the initial valuation sglob ∈ Sglob to be given by the value gv of each global

variable gv . The global state space S and initial state s of the model are then S1 × · · · ×
Sm × Sglob and (s1, . . . , sm, sglob), respectively.

For a command c ∈ Ci of module Mi, the set Sc is defined as in the previous sections.

If c = (g, (λ1, u1), . . . , (λnc , unc)), each update uj now corresponds to a function uj : Sc →
Si × Sglob , where for any state s ∈ Sc:

uj(s) = (expr 1(s), . . . , exprni
(s), gexpr 1(s), . . . , gexprnglob

(s))
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The function µc,s : Si × Sglob → IR≥0 is then defined as follows. For states s ∈ Sc and

ti,glob ∈ Si × Sglob :

µc,s(ti,glob) =
∑

j ∈{j |uj(s)=ti,glob}

λj

The above applies to DTMCs, CTMCs and MDPs. The remaining part of the semantics

differs for each type of model but is easily obtained from the basic semantics. Hence, we

demonstrate the case for DTMCs only.

For states s ∈ S and ti,glob ∈ Si × Sglob , the function Pi,ind is defined as:

Pi,ind(s, ti,glob) =

{
µc,s(ti,glob) if s ∈ Sc for some c ∈ Ci

0 otherwise

Since the parallel composition is asynchronous, only one module is scheduled at any

one time. Hence, we can assume that this module assumes responsibility for the global

variables. For states s = (s1, . . . , sm, sglob) and t = (t1, . . . , tm, tglob) in S, we define the

function Pi : S × S → [0, 1] as:

Pi(s, t) =

{
Pi,ind(s, (ti, tglob)) if sj = tj for all 1 ≤ j 6= i ≤ m

0 otherwise

The final composition remains unchanged:

P(s, t) = 1/ns

(
m∑
i=1

Pi(s, t)

)
where ns = |{Mi | s ∈ Sc for some c ∈ Ci}|.

B.6 Synchronisation

We now extend our definition of the PRISM language to include synchronisation. This

allows modules to make transitions simultaneously, as well as independently. On the

assumption that this would typically be used as an alternative modelling tool to global

variables, we present synchronisation as an orthogonal extension to the basic definition

of the PRISM language.

Adopting the mechanism used in many process algebras, we label local transitions

of modules with actions from a fixed alphabet and require that transitions labelled with

the same action occur simultaneously. Our definition is based on the standard parallel

composition from the process algebra CSP [Hoa85, Ros98].

The changes to the syntax of the PRISM language are as follows. We assume a set of

action labels Act . Each command of a module is either specified as being independent or is
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labelled with an action a ∈ Act . We partition each command set Ci into the subsets Ci,ind

and {Ci,a | a ∈ Act} where independent commands are placed in Ci,ind and commands

labelled with a in Ci,a. The set of all actions used by a module Mi, sometimes referred to

as its ‘alphabet’, is denoted Ai, i.e. Ai = {a ∈ Act | Ci,a 6= ∅}.
Since each transition of a module corresponds to one of its commands, its transitions

are now also defined as being either independent or labelled with an action a ∈ Act .

Intuitively, in each global state of the composed model, either one of the n modules makes

an independent transition or, for some a ∈ Act , the set of modules {Mi | a ∈ Ai} all make

a synchronous, a-labelled transition. In the latter case, the synchronous transition can

only occur if all the modules in {Mi | a ∈ Ai} are able to participate. We now define this

process formally for each of the three types of model.

Discrete-Time Markov Chains (DTMCs)

The definitions of Si, S, s, Sc and µc,s remain the same as in the asynchronous case. For

each module Mi, we then define two functions, Pi,ind : S → Si and Pi,a : S → Si, which

correspond to independent and a-labelled transitions, respectively. For states s ∈ S and

ti ∈ Si:

Pi,ind(s, ti) =

{
µc,s(ti) if s ∈ Sc for some c ∈ Ci,ind

0 otherwise

Pi,a(s, ti) =

{
µc,s(ti) if s ∈ Sc for some c ∈ Ci,a

0 otherwise

As before, we extend these definitions to describe the behaviour of the whole model. The

function Pi : S → S corresponds to the independent behaviour of module Mi and the

function Pa : S → S to the case where modules synchronise over action a ∈ Act . For

states s = (s1, . . . , sm) and t = (t1, . . . , tm) in S:

Pi(s, t) =

{
Pi,ind(s, ti) if sj = tj for all 1 ≤ j 6= i ≤ m

0 otherwise

Pa(s, t) =

{ ∏
i∈{i | a∈Ai}Pi,a(s, ti) if sj = tj when a /∈ Aj

0 otherwise

Note that, as would be expected, the probability of several modules making a transition

is equal to the product of the component probabilities. Finally, we define the overall

transition probability matrix P : S → S as:

P(s, t) = 1/ns

(
m∑
i=1

Pi(s, t) +
∑
a∈Act

Pa(s, t)

)
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In this case, we assume that there is an equal probability of either an independent or an

action-labelled transition occurring. Hence, ns is equal to the number of modules which

can make an independent transition in s plus the number of synchronous transitions which

can occur. Again, we can compute ns by adding all entries of the row corresponding to s

in the summation above.

Continuous-Time Markov Chains (CTMCs)

As for DTMCs, the definitions of Si, S, s, Sc and µc,s remain the same as in the asyn-

chronous case. For each module Mi, we define two functions, Ri,ind : S → Si and

Ri,a : S → Si, corresponding to independent and a-labelled transitions, respectively. For

states s ∈ S and ti ∈ Si:

Ri,ind(s, ti) =
∑

c∈{c∈Ci,ind | s∈Sc}

µc,s(ti)

Ri,a(s, ti) =
∑

c∈{c∈Ci,a | s∈Sc}

µc,s(ti)

These are combined, as for DTMCs, to produce the functions Ri : S → S and Ra : S → S.

For states s = (s1, . . . , sm) and t = (t1, . . . , tm) in S:

Ri(s, t) =

{
Ri,ind(s, ti) if sj = tj for all 1 ≤ j 6= i ≤ m

0 otherwise

Ra(s, t) =

{ ∏
i∈{i | a∈Ai}Ri,ind(s, ti) if sj = tj when a /∈ Aj

0 otherwise

Note that the rate of a synchronous transition is obtained by multiplying the individual

rates. A common approach taken when modelling the synchronisation of several tran-

sitions is to assume that one is active and has a non-negative rate, and the others are

passive with rate equal to 1. Hence, under multiplication, the overall rate is simply equal

to that of the active one. While there is some debate in the literature as to the best way

of combining rates for synchronisation, we opt for this method because it is simple and

allows a consistent approach to finding the probability or rate of a synchronous transition

in all three types of model: DTMCs, CTMCs and MDPs. We can now define the overall

transition rate matrix R : S → S. For states s, t ∈ S:

R(s, t) =
m∑
i=1

Ri(s, t) +
∑
a∈Act

Ra(s, t)
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Markov Decision Processes (MDPs)

For MDPs, the definitions of Si, S, s, Sc and µc,s are the same as for DTMCs and

CTMCs. Like in the previous two sections, we split the behaviour of the MDP into two

cases, independent and synchronising, defining functions Steps i,ind : S → 2Dist(Si) and

Steps i,a : S → 2Dist(Si). For states s ∈ S:

Steps i,ind(s) = {µc,s | c ∈ Ci,ind and s ∈ Sc}

Steps i,a(s) = {µc,s | c ∈ Ci,a and s ∈ Sc}

We then convert these to functions which give probability distributions over the global

state space, Steps i : S → 2Dist(S) and Stepsa : S → 2Dist(S). Let s = (s1, . . . , sm) be a

state in S. We define Steps i(s) as follows. If µi ∈ Steps i,ind(s), then Steps i(s) contains

the distribution µ ∈ Dist(S), where for any state t = (t1, . . . , tm) in S:

µ(t) =

{
µi(ti) if sj = tj for all 1 ≤ j 6= i ≤ m

0 otherwise

Again, letting s = (s1, . . . , sm) be a state in S, we define Stepsa(s) as follows. If µi is a

probability distribution in Steps i,a(s) for each i such that 1 ≤ i ≤ m and a ∈ Ai, then

Stepsa(s) contains the distribution µ ∈ Dist(S) where, for any state t = (t1, . . . , tm) in S:

µ(t) =

{ ∏
i∈{i | a∈Ai} µi(ti) if sj = tj when a /∈ Aj

0 otherwise

Finally, we construct the function Steps : S → 2Dist(S) representing the MDP. For each

state s ∈ S:

Steps(s) =

(
m⋃
i=1

Steps i(s)

) ⋃ ( ⋃
a∈Act

Stepsa(s)

)

B.7 Reachability

A description in the PRISM language, be it corresponding to a DTMC, a CTMC or an

MDP, defines a set of states, one of which is the initial state, and the behaviour of the

model in each of these states. We say that a state s′ is reachable from another state s

if there exists a finite path in the model starting in s and ending in s′. We define the

set of reachable states of the model as the set of all states which are reachable from its

initial state. Typically, we are only interested in this reachable portion of the model and

hence all unreachable states can be removed. In addition, it is often useful to check for

the presence of deadlock states. We define a deadlock state as one which is reachable but

has no outgoing transitions.
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MTBDD Model Construction

In Section 4.3, we discussed the process of constructing an MTBDD from a model descrip-

tion in the PRISM language and gave a simple example. In this appendix, we describe

the method formally and in full. Our presentation is based on the syntax of the language

given in the previous appendix. We then use the corresponding semantics to show that

the construction process is correct. As in Appendix B, we initially assume that neither

global variables nor synchronisation are present.

C.1 Discrete-Time Markov Chains (DTMCs)

We start with the case for DTMCs. We assume an encoding enc : S → IBn of the

global state space into MTBDD variables, as discussed in Chapter 4. Furthermore, we

assume that the local state space of each module Mi is encoded by enci : Si → IBni

where
∑m

i=1 ni = n and such that enc(s1, . . . , sm) = (enc1(s1), . . . , encm(sm)). We will

construct the MTBDD P, which represents the DTMC’s transition probability matrix

P, as described in Section 3.7.2. For this we will use row variables x = (x1, . . . , xn) and

column variables y = (y1, . . . , yn). We also assume that x and y are partitioned into subsets

x1, . . . , xm and y
1
, . . . , y

m
, respectively, corresponding to the encodings enc1, . . . , encm.

Following the semantics in Section B.2, we begin by considering a command c ∈ Ci
of the module Mi. Let c = (g, (λ1, u1), . . . , (λnc , unc)). The guard g is a predicate over

PRISM variables, defining a set Sc ⊆ S. As described in Section 4.1.1, our encoding

enc of S is based on a translation from PRISM variables to MTBDD variables. Hence,

it is trivial to build a BDD g over variables x representing the guard g, i.e. such that

fg[x = enc(s)] is equal to 1 if s ∈ Sc and 0 otherwise for all s ∈ S. This process was

illustrated in the simple example of Section 4.3.1. It is also identical to the construction of

BDDs to represent atomic propositions from PCTL or CSL formulas, as shown previously

172
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in Figure 5.2.

In a similar fashion, we can encode each update uj, representing a function from

Sc to Si. Since Sc ⊆ S, we represent uj as a BDD uj over variables x and y
i
, i.e.

fuj [x = enc(s), y
i

= enc(ti)] is equal to 1 if uj(s) = ti and 0 otherwise for all s ∈ S

and ti ∈ Si. The construction of this BDD was also demonstrated in the example of

Section 4.3.1. The MTBDD muc representing the command c is then obtained as follows:

muc := g ×
nc∑
j=1

Const(λj)× uj

Having constructed muc for each command c ∈ Ci of a module Mi, we combine them to

produce the MTBDD Pi,ind :

Pi,ind :=
∑
c∈Ci

muc

Then, we build the MTBDD Pi, multiplying Pi,ind by identity matrices for the other m−1

modules. This encodes the fact that module Mi moves independently and so the other

modules remain in the same state:

Pi := id1 × · · · × idi−1 × Pi,ind × idi+1 × · · · × idm

where idj is the BDD Identity(xj, yj). Finally, having constructed Pi for each of the m

modules Mi, we compute the MTBDD P:

P := Unif

(
m∑
i=1

Pi

)

where Unif(M) = M÷Abstract(+, y,M).

Proof of Correctness

We need to show that the MTBDD P, constructed above, represents the transition prob-

ability matrix P of the DTMC, as defined by the semantics in Section B.2. From above,

we have that, for a command c = (g, (λ1, u1), . . . , (λnc , unc)) of module Mi and for any

s ∈ S, ti ∈ Si and t ∈ S:

fg[x = enc(s)] =

{
1 if s ∈ Sc
0 otherwise

fuj [x = enc(s), y
i

= enci(ti)] =

{
1 if uj(s) = ti

0 otherwise
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Hence, for any s ∈ S, ti ∈ Si and t ∈ S, we have the following:

fmuc [x = enc(s), y
i

= enci(ti)] =

{
µc,s(ti) if s ∈ Sc

0 otherwise

by the definition of µc,s. Then:

fPi,ind
[x = enc(s), y

i
= enci(ti)] = Pi,ind(s, ti)

by the definition of Pi,ind and since s is contained in Sc for at most one command c ∈ Ci.
This gives:

fPi
[x = enc(s), y = enc(t)] = Pi(s, t)

by the definition of Pi and since fidj [xj = encj(sj), yj = encj(tj)] is equal to 1 if sj = tj

and 0 otherwise for all sj, tj ∈ Sj. Finally, as required:

fP[x = enc(s), y = enc(t)] = P(s, t)

by the definition of P and since, in the summation of matrices Pi, each row corresponding

to state s sums to ns because it comprises ns probability distributions.

C.2 Continuous-Time Markov Chains (CTMCs)

The process for CTMCs is very similar to the one for DTMCs. We use the same row

variable sets x, x1, . . . , xm, column variable sets y, y
1
, . . . , y

m
and state space encodings

enc, enc1, . . . , encm as in the previous section. Assuming also the same definition of the

MTBDD muc, we construct for each module Mi:

Ri,ind :=
∑
c∈Ci

muc

Ri := id1 × · · · × idi−1 × Ri,ind × idi+1 × · · · × idm

where idj is the BDD Identity(xj, yj). We then combine these to form the MTBDD R,

representing the transition rate matrix R:

R :=
m∑
i=1

Ri
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Proof of Correctness

The proof of correctness is also very similar. We need to show that the MTBDD R,

constructed above, represents the transition rate matrix R of the CTMC, as defined by

the semantics in Section B.3. Applying the same arguments as for DTMCs, we have that

for any s ∈ S, ti ∈ Si and t ∈ S:

fRi,ind
[x = enc(s), y

i
= enci(ti)] = Ri,ind(s, ti)

fRi
[x = enc(s), y = enc(t)] = Ri(s, t)

fR[x = enc(s), y = enc(t)] = R(s, t)

C.3 Markov Decision Processes (MDPs)

We now extend the process to MDPs. The main difference is the presence of nondetermin-

ism, either from the scheduling between modules or from local nondeterministic choices

within a module. We use the same row variable sets x, x1, . . . , xm, column variable sets

y, y
1
, . . . , y

m
and state space encodings enc, enc1, . . . , encm as in the previous two sections.

In addition, we use a set of k nondeterministic variables z. We assume that z is partitioned

into two sets, zs = (zs,1, . . . , zs,ks) to encode nondeterminism arising from scheduling be-

tween modules, and zl = (zl,1, . . . zl,kl) to encode local nondeterminism within a module,

i.e. k = ks + kl. Following our definition from Section 4.2.1, we require that, for any state

s ∈ S, the MTBDD Steps representing the MDP defined by Steps satisfies:

• if µ ∈ Steps(s), then there exists b ∈ IBk such that:

– fSteps[x = enc(s), y = enc(t), z = b] = µ(t) for all t ∈ S

• for any b ∈ IBk, one of the following two conditions holds:

– fSteps[x = enc(s), y = enc(t), z = b] = 0 for all t ∈ S

– there exists µ ∈ Steps(s) such that

fSteps[x = enc(s), y = enc(t), z = b] = µ(t) for all t ∈ S

As with DTMCs and CTMCs, we begin by constructing an MTBDD for each module

Mi. For MDPs, we must take additional steps to handle local nondeterminism. Here,

the guards within a module are allowed to overlap, i.e. a state s ∈ S of the MDP can be

in Sc for more than one command c ∈ Ci. Where this is the case, there will be several

nondeterministic choices in s, one corresponding to each command.
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At the MTBDD level, we encode this using the MTBDD variables (zl,1, . . . , zl,kl). We

need to ensure that for a state s, each local nondeterministic choice available in s is

encoded with a distinct element of IBkl . To do so, we partition Mi’s set of commands Ci

into a number, say nl, of subsets, Ci,1, . . . , Ci,nl
, such that the guards of the commands

within each subset do not overlap. All of the nondeterministic choices corresponding to

commands in a given subset Ci,j can then be encoded with the same element. We assume

that bl,1, . . . , bl,nl
are distinct elements of IBkl . For 1 ≤ j ≤ nl, subset Ci,j will be encoded

with bl,j. Hence, we must ensure that kl satisfies 2kl ≥ nl. Note that nl is bounded above

by the number of commands |Ci|.
The construction proceeds as follows. Taking the same definition of the MTBDD muc

for a command c as in the previous two sections, we build the MTBDD Stepsi,ind for each

module Mi as follows:

Stepsi,ind :=

nl∑
j=1

bl,j ×
∑
c∈Ci,j

muc


where bl,j is a BDD over variables zl, encoding bl,j ∈ IBkl , i.e. fbl,j(b) is equal to 1 if

b = bl,j and 0 otherwise for all b ∈ IBkl . Then, like in the previous two sections, we

multiply each MTBDD Stepsi,ind by identity matrices corresponding to the other m−1

modules, encoding the fact that module Mi moves independently:

Stepsi := id1 × · · · × idi−1 × Stepsi,ind × idi+1 × · · · × idm

where idj is the BDD Identity(xj, yj). We then combine the MTBDDs Stepsi to build the

final MTBDD Steps. As described in Section 4.2.1, we use m nondeterministic variables to

encode the scheduling between the m modules. Since we use variables (zs,1, . . . , zs,ks) for

this purpose, we set ks = m. For i = 1, . . . ,m, we will encode module Mi with bs,i ∈ IBks

where bs,1 = (1, 0, . . . , 0), bs,2 = (0, 1, 0, . . . , 0), etc. Then:

Steps :=
m∑
i=1

bs,i × Stepsi

where bs,i is a BDD over variables zs, encoding bs,i ∈ IBks , i.e. fbs,i(b) is equal to 1 if

b = bs,i and 0 otherwise for all b ∈ IBks .

Proof of Correctness

Reasoning as for DTMCs we have that, for any s ∈ S and ti ∈ Si:

fmuc [x = enc(s), y
i

= enci(ti)] =

{
µc,s(ti) if s ∈ Sc

0 otherwise

From this and from the definition of Steps i,ind it follows that, for any s ∈ S:
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• if µi ∈ Steps i,ind(s), then there exists b ∈ IBkl such that:

– fStepsi,ind [x = enc(s), y
i

= enci(ti), zl = b] = µi(ti) for all ti ∈ Si

• for any b ∈ IBkl , one of the following two conditions holds:

– fStepsi,ind [x = enc(s), y
i

= enci(ti), zl = b] = 0 for all ti ∈ Si

– there exists µi ∈ Steps i,ind(s) such that

fStepsi,ind [x = enc(s), y
i

= enci(ti), zl = b] = µi(ti) for all ti ∈ Si

since the sets Sc for commands c within each set Ci,j are disjoint and each set Ci,j is

encoded by a unique bl,j ∈ IBkl . Hence, for any s ∈ S:

• if µ ∈ Steps i(s), then there exists b ∈ IBkl such that:

– fStepsi [x = enc(s), y = enc(t), zl = b] = µ(t) for all t ∈ S

• for any b ∈ IBkl , one of the following two conditions holds:

– fStepsi [x = enc(s), y = enc(t), zl = b] = 0 for all t ∈ S.

– there exists µ ∈ Steps i(s) such that

fStepsi [x = enc(s), y = enc(t), zl = b] = µ(t) for all t ∈ S

by the definition of Steps i and since fidj [xj = encj(sj), yj = encj(tj)] = 1 if sj = tj and 0

otherwise for all sj, tj ∈ Sj. Finally, as required, for any s ∈ S:

• if µ ∈ Steps(s), then there exists b ∈ IBk such that:

– fSteps[x = enc(s), y = enc(t), z = b] = µ(t) for all t ∈ S

• for any b ∈ IBk, one of the following two conditions holds:

– fSteps[x = enc(s), y = enc(t), z = b] = 0 for all t ∈ S

– there exists µ ∈ Steps(s) such that

fSteps[x = enc(s), y = enc(t), z = b] = µ(t) for all t ∈ S

since each µ ∈ Steps(s) is in Steps i(s) for some i and is encoded by b ∈ IBk where

b = (bs,i, bl,j), letting bs,i ∈ IBks and bl,j ∈ IBkl be as defined previously.
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C.4 Global Variables

To handle global variables, we add extra MTBDD variable sets xglob and y
glob

and as-

sume that the state space of the global variables Sglob is encoded by encglob such that

enc(s1, . . . , sm, sglob) = (enc1(s1), . . . , encm(sm), encglob(sglob)). References to global vari-

ables in either guards or updates are translated in exactly the same fashion and the

construction process for all three types of model remains unchanged.

C.5 Synchronisation

Now, we extend our description to include synchronisation between modules. Again,

the construction closely follows the description of the semantics. The definition of the

MTBDD muc for a command c remains the same as in the asynchronous case. Below, we

define the construction for each of the three types of model. The proofs of its correctness

with respect to the semantics are similar to those in the previous sections and are omitted.

Discrete-Time Markov Chains (DTMCs)

Independent commands are treated as before, i.e. for each module Mi:

Pi,ind :=
∑

c∈Ci,ind

muc

Pi := id1 × · · · × idi−1 × Pi,ind × idi+1 × · · · × idm

Action-labelled commands are handled as follows. For each a ∈ Act :

Pi,a :=
∑
c∈Ci,a

muc

Pa :=
∏

i∈{i | a∈Ai}

Pi,a ×
∏

i∈{i | a/∈Ai}

idi

Then, the MTBDD representing the DTMC is constructed by combining the MTBDDs

corresponding to its independent and synchronising behaviour:

P := Unif

(
m∑
i=1

Pi +
∑
a∈Act

Pa

)

where, as before, Unif(M) = M÷Abstract(+, y,M).
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Continuous-Time Markov Chains (CTMCs)

The construction process for CTMCs is almost identical to that for DTMCs. First, for

each module Mi:

Ri,ind :=
∑

c∈Ci,ind

muc

Ri := id1 × · · · × idi−1 × Ri,ind × idi+1 × · · · × idm

Then, for each action a ∈ Act :

Ri,a :=
∑
c∈Ci,a

muc

Ra :=
∏

i∈{i | a∈Ai}

Ri,a ×
∏

i∈{i | a/∈Ai}

idi

Finally:

R :=
m∑
i=1

Ri +
∑
a∈Act

Ra

Markov Decision Processes (MDPs)

The process for MDPs is slightly more complicated. Again, we will use a set of k non-

deterministic variables z and assume that it is split into two sets, zs = (zs,1, . . . , zs,ks) to

encode nondeterminism arising from scheduling between modules, and zl = (zl,1, . . . zl,kl)

to encode local nondeterminism within a module.

Independent commands are treated in similar fashion to the asynchronous case. For

each module Mi, we partition Ci,ind into a number, say nl, of subsets, Ci,ind ,1, . . . , Ci,ind ,nl
,

such that the guards of the commands within each subset do not overlap. Taking

bl,1, . . . , bl,nl
to be distinct elements of IBkl , we encode each subset Ci,ind ,j with bl,j:

Stepsi,ind :=

nl∑
j=1

bl,j ×
∑

c∈Ci,ind,j

muc


where bl,j is a BDD over variables zl encoding bl,j. We then, as before, multiply by the

identity matrices for the other m−1 modules:

Stepsi := id1 × · · · × idi−1 × Stepsi,ind × idi+1 × · · · × idm

Now, we consider synchronisation over each action a ∈ Act . For this case, we require sep-

arate nondeterministic variables for each module. Hence, we assume that zl is partitioned

into m subsets zl,1, . . . , zl,m where subset zl,i contains kl,i variables, i.e.
∑m

i=1 kl,i = kl.

The MTBDD Stepsi,a is constructed from the MTBDDs muc for commands c in

Ci,a. As above, we partition this set of commands into a number, say nl, of subsets
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Ci,a,1, . . . , Ci,a,nl
, such that the guards of the commands within each subset do not over-

lap. Taking bl,i,1, . . . , bl,i,nl
to be distinct elements of IBkl,i for 1 ≤ j ≤ nl, we encode

subset Ci,a,j with bl,i,j:

Stepsi,a :=

nl∑
j=1

bl,i,j ×
∑

c∈Ci,a,j

muc


The MTBDDs Stepsi,a for modules Mi which synchronise on action a are then combined

with identity matrices for those which do not:

Stepsa :=
∏

i∈{i | a∈Ai}

Stepsi,a ×
∏

i∈{i | a/∈Ai}

(bl,i,0 × idi)

where idi is the BDD Identity(xi, yi) and bl,i,0 encodes bl,i,0 ∈ IBkl,i where bl,i,0 =

(0, . . . , 0). In this way, Stepsa represents all global transitions corresponding to action

a and each nondeterministic choice in a state is encoded with a unique element of IBkl .

Finally, the independent transitions for each module and the synchronous transitions

for each action are combined. Since all of these can potentially occur in any state, we

must encode nondeterminism between them. As before we use the ks nondeterministic

variables in zs. For this purpose, we require m+ |Act| distinct elements of IBks , which we

will denote bs,i for 1 ≤ i ≤ m and bs,a for a ∈ Act . To do this, we set ks = m + |Act|
and use elements of the form (1, 0, . . . , 0), (0, 1, 0, . . . , 0), etc. as in the asynchronous case.

The final construction step is then:

Steps :=
m∑
i=1

(bs,i × Stepsi) +
∑
a∈Act

(bs,a × Stepsa)

where bs,i and bs,a are BDDs over the variables zs encoding bs,i and bs,a, respectively.

C.6 Reachability

After construction of a DTMC, CTMC or MDP, we compute its set of reachable states

and remove any unreachable ones. Reachability is performed by executing a breadth-first

search, implemented as a BDD fixpoint algorithm. We first build the MTBDD T over

variables x and y, representing the transition relation of the underlying graph. Depending

on the model type, this is constructed as:

• T := Threshold(P, >, 0)

• T := Threshold(R, >, 0)

• T := ThereExists(z,Threshold(Steps, >, 0))
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We assume that the initial state s ∈ S is represented by a BDD init over variables x, i.e.

finit[x = enc(s)] is equal to 1 if s = s and 0 otherwise for all s ∈ S. The algorithm to

compute the BDD representing the set of reachable states is then Reach(init):

Reach(init)

1. sol := ReplaceVars(init, x, y)

2. done := false

3. while (done = false)

4. sol′ := sol ∨ThereExists(x,T ∧ReplaceVars(sol, y, x))

5. if (sol′ = sol) then done := true

6. sol := sol′

7. endwhile

8. return ReplaceVars(sol, y, x)

This algorithm returns a BDD over variables x, which we will denote reach, representing

the set of reachable states. We then use this BDD to remove unreachable states from the

model. In fact, rather than sacrifice our efficient state space encoding, we actually just

remove any non-zero entries from rows and columns corresponding to these states. Since,

by definition, we cannot reach an unreachable state from a reachable one, we only need

to do this for rows, not columns. This is performed as follows:

• P′ := reach× P

• R′ := reach× R

• Steps′ := reach× Steps

Finally, we identify any deadlock states in the model, i.e. reachable states with no outgoing

transitions. This is done by computing a BDD T′, representing the transition relation of

the new model with no unreachable states:

• T′ := Threshold(P′, >, 0)

• T′ := Threshold(R′, >, 0)

• T′ := ThereExists(z,Threshold(Steps′, >, 0))

We then use the ThereExists operator to identify states which have at least one outgoing

transition and negate:

• deadlocks := reach ∧ ¬ThereExists(y,T′)

after which, deadlocks is a BDD over the variables x identifying all deadlock states.
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MTBDD Model Checking

Algorithms

This appendix contains the algorithms for implementing PCTL and CSL model checking

with MTBDDs. The original algorithms were presented in Chapter 3 and the issues

involved in developing a symbolic implementation were discussed in Chapter 5.

The bulk of the work for model checking constitutes calculation of the probabilities

for the P operator of PCTL and the P and S operators of CSL. Typically, this requires

two phases: application of precomputation algorithms to quickly identify states where the

probability is exactly 0 or 1; and numerical computation to determine the probabilities

for the remaining states. The algorithms for each phase are covered in Sections D.1 and

D.2, respectively. The complete list of algorithms described here is:

Precomputation Numerical computation

DTMCs MDPs CTMCs

Prob0 PctlNext PctlNextMax CslNext

Prob1 PctlBoundedUntil PctlNextMin CslUntil

Prob0A PctlUntil PctlBoundedUntilMax CslBoundedUntil

Prob1E PctlUntilMax CslSteadyState

Prob0E PctlUntilMin

PctlUntilMinFair

In the following, we assume that x = (x1, . . . , xn) and y = (y1, . . . , yn) are sets of row and

column variables, respectively. A DTMC is represented by an MTBDD P over x and y

and a CTMC is represented by an MTBDD R over x and y. For an MDP, we also use the

set of nondeterministic variables z = (z1, . . . , zk) and represent the model by an MTBDD

Steps over x, y and z. We use a BDD reach over variables x to denote the set of reachable

states of the model.

182
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D.1 Precomputation Algorithms

We use five precomputation algorithms. These are: Prob0, Prob1, Prob0A, Prob1E

and Prob0E. The algorithms were described in Sections 3.3.1 and 3.3.2 and their sym-

bolic implementation was discussed in Section 5.2.

All five algorithms are entirely BDD-based. As in the algorithm for reachability in

Appendix C, only the existence of a transition is relevant, not the actual probabilities or

rates associated with it. This information is stored in a BDD T which, depending on the

model type, this is computed as follows:

• T := Threshold(P, >, 0) (for DTMCs)

• T := Threshold(R, >, 0) (for CTMCs)

• T := Threshold(Steps, >, 0) (for MDPs)

Note that in the case for MDPs, the BDD T is different from the one used to perform

reachability in Appendix C; for these algorithms, we have to preserve information about

which transitions correspond to which nondeterministic choice.

All five algorithms take the sets Sat(φ1) and Sat(φ2) as arguments. These are repre-

sented by the BDDs phi1 and phi2, respectively. The algorithm Prob1 takes the result of

Prob0 as an additional argument. This is represented by the BDD prob0.

Prob0(phi1, phi2)

1. sol := phi2
2. done := false

3. while (done = false)

4. sol′ := sol ∨ (phi1 ∧ThereExists(y,T ∧ReplaceVars(sol, x, y)))

5. if (sol′ = sol) then done := true

6. sol := sol′

7. endwhile

8. return ¬ sol

Prob1(phi1, phi2, prob0)

1. sol := prob0

2. done := false

3. while (done = false)

4. sol′ := sol ∨ (phi1 ∧ ¬ phi2 ∧ThereExists(y,T ∧ReplaceVars(sol, x, y)))

5. if (sol′ = sol) then done := true

6. sol := sol′

7. endwhile

8. return ¬ sol
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Prob0A(phi1, phi2)

1. sol := phi2
2. done := false

3. while (done = false)

4. tmp := ThereExists(y,T ∧ReplaceVars(sol, x, y))

5. sol′ := sol ∨ (phi1 ∧ThereExists(z, tmp))

6. if (sol′ = sol) then done := true

7. sol := sol′

8. endwhile

9. return ¬ sol

Prob1E(phi1, phi2)

1. sol := reach

2. done := false

3. while (done = false)

4. sol′ := phi2
5. done ′ := false

6. while (done ′ = false)

7. tmp1 := ForAll(y,T→ReplaceVars(sol, x, y))

8. tmp2 := ThereExists(y,T ∧ReplaceVars(sol′, x, y))

9. sol′′ := sol′ ∨ (phi1 ∧ThereExists(z, tmp1 ∧ tmp2))

10. if (sol′′ = sol′) then done ′ := true

11. sol′ := sol′′

12. endwhile

13. if (sol′ = sol) then done := true

14. sol := sol′

15. endwhile

16. return sol

Prob0E(phi1, phi2)

1. sol := phi2
2. done := false

3. while (done = false)

4. tmp := ThereExists(y,T ∧ReplaceVars(sol, x, y))

5. sol′ := sol ∨ (phi1 ∧ ForAll(z, tmp))

6. if (sol′ = sol) then done := true

7. sol := sol′

8. endwhile

9. return ¬ sol
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D.2 Numerical Computation

PCTL over DTMCs

The algorithms to compute probabilities for the PCTL next (X φ), PCTL bounded until

(φ1 U≤k φ2) and PCTL until (φ1 U φ2) operators over DTMCs were described in Sec-

tion 3.3.1. The corresponding MTBDD algorithms are PctlNext, PctlBoundedUntil

and PctlUntil. The arguments of these algorithms, Sat(φ), Sat(φ1) or Sat(φ2), are rep-

resented by BDDs phi, phi1 and phi2, respectively. PctlBoundedUntil has a additional

argument: the bound k. All three return the vector of probabilities as an MTBDD.

PctlNext(phi)

1. probs := MVMult(P, phi)

2. return probs

PctlBoundedUntil(phi1, phi2), k

1. sno := ¬ (phi1 ∨ phi2)

2. syes := phi2
3. s? := ¬ (sno ∨ syes)

4. P′ := s? × P

5. probs = syes

6. for (i = 1 . . . k)

7. probs := MVMult(P′, probs)

8. probs := probs + yes

9. endfor

10. return probs

PctlUntil(phi1, phi2)

1. sno := Prob0(phi1, phi2)

2. syes := Prob1(phi1, phi2, sno)

3. s? := ¬ (sno ∨ syes)

4. P′ := s? × P

5. A := Identity(x, y)− P′

6. b := syes

7. probs := SolveJacobi(A, b, b)

8. return probs

In the above, the function SolveJacobi(A, b, init) takes MTBDDs representing a matrix

A and vectors b and init , respectively. It returns the solution to the linear equation

system A · x = b, computed using the Jacobi method with initial approximation init .

As discussed in Section 5.3.1, this and several other iterative algorithms presented here

are terminated when the maximum relative difference between elements of consecutive

vectors drops below some threshold ε. This is checked using the function MaxDiff.
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SolveJacobi(A, b, init)

1. d := Abstract(max, y,A× Identity(x, y))

2. A′ := A×Const(−1)× ¬Identity(x, y)

3. A′ := A′ ÷ d

4. b′ := b÷ d

5. sol := init

6. done := false

7. while (done = false)

8. sol′ := MVMult(A′, sol)

9. sol′ := sol′ + b′

10. if (MaxDiff(sol, sol′) < ε) then

11. done := true

12. endif

13. sol := sol′

14. endwhile

15. return sol

The algorithm above can trivially be converted to the JOR method, with over-relaxation

parameter ω, by adding the following statement between lines 9 and 10:

sol′ := (sol′ ×Const(ω)) + (sol×Const(1− ω))

PCTL over MDPs

The algorithms to compute probabilities for the PCTL next (X φ), PCTL bounded un-

til (φ1 U≤k φ2) and PCTL until (φ1 U φ2) operators over MDPs were described in Sec-

tion 3.3.2. For each, we must consider two cases: one for computing maximum probabil-

ities, pmax
s (·), and one for computing minimum probabilities, pmin

s (·).
As above, the arguments of the algorithms, Sat(φ), Sat(φ1) or Sat(φ2), are represented

by BDDs phi, phi1 and phi2, respectively and the vector of probabilities is returned as an

MTBDD. For the PCTL next operator, the required algorithms are PctlNextMax and

PctlNextMin.

PctlNextMax(phi)

1. probs := MVMult(Steps, phi)

2. probs := Abstract(max, z, probs)

3. return probs

PctlNextMin(phi)

1. probs := MVMult(Steps, phi)

2. probs := Abstract(min, z, probs)

3. return probs
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For computing pmax
s (φ1 U≤k φ1), we use PctlBoundedUntilMax. This has an addi-

tional argument: the bound k.

PctlBoundedUntilMax(phi1, phi2, k)

1. sno := ¬ (phi1 ∨ phi2)

2. syes := phi2
3. s? := ¬ (sno ∨ syes)

4. Steps′ := s? × Steps

5. probs = syes

6. for (i = 1 . . . k)

7. probs := MVMult(P′, probs)

8. probs := Abstract(max, z, probs)

9. probs := probs + yes

10. endfor

11. return probs

The dual function for computing pmin
s (φ1 U≤k φ1) is PctlBoundedUntilMin. This can

be obtained from the above by replacing the ‘max’ in line 8 with ‘min’.

For PCTL until formulas, we must also distinguish between the case for all adversaries

and the case for fair adversaries only. The algorithm PctlUntilMax below computes

pmax
s (φ1 U φ1) over all adversaries.

PctlUntilMax(phi1, phi2)

1. sno := Prob0A(phi1, phi2)

2. syes := Prob1E(phi1, phi2)

3. s? := ¬ (sno ∨ syes)

4. Steps′ := s? × Steps

5. probs := syes

6. done := false

7. while (done = false)

8. probs′ := MVMult(Steps′, probs)

9. probs′ := Abstract(max, z, probs′)

10. probs′ := probs′ + yes

11. if (MaxDiff(probs, probs′) < ε) then

12. done := true

13. endif

14. probs := probs′

15. endwhile

16. return probs

The dual function PctlUntilMin, which computes pmin
s (φ1 U φ1) over all adversaries,

can be seen below. There are only two differences: the substitution of ‘max’ for ‘min’ in

line 9; and the use of alternative precomputation algorithms.



188 Appendix D - MTBDD Model Checking Algorithms

PctlUntilMin(phi1, phi2)

1. sno := Prob0E(phi1, phi2)

2. syes := phi2
3. s? := ¬ (sno ∨ syes)

4. Steps′ := s? × Steps

5. probs := syes

6. done := false

7. while (done = false)

8. probs′ := MVMult(Steps′, probs)

9. probs′ := Abstract(min, z, probs′)

10. probs′ := probs′ + yes

11. if (MaxDiff(probs, probs′) < ε) then

12. done := true

13. endif

14. probs := probs′

15. endwhile

16. return probs

As described in Section 3.3.2, the calculation of pmax
s (φ1 U φ1) remains unchanged when

considering fair adversaries only. Hence, we can reuse PctlUntilMax from above. For

pmin
s (φ1 U φ1) over fair adversaries, the computation is different, requiring conversion to

a dual problem. This is handled by the algorithm PctlUntilMinFair below.

PctlUntilMinFair(phi1, phi2)

1. a+ := ¬Prob0A(phi1, phi2)

2. a# := a+ ∧ ¬phi2
3. probs := PctlUntilMax(a#,¬a+)

4. probs := Const(1)− probs

5. return probs

CSL over CTMCs

The probabilities required for model checking the CSL next, time-bounded until, until

and steady-state operators over CTMCs are computed as described in Section 3.3.3. As

above, in the corresponding MTBDD algorithms, the arguments Sat(φ), Sat(φ1) and

Sat(φ2) are represented by BDDs phi, phi1 and phi2, respectively. The time-bounded until

model checking algorithm has an extra argument t. In all cases, the vector of probabilities

is returned as an MTBDD.

For the CSL next and until operators, we compute the embedded DTMC P, repre-

sented by MTBDD P, of the CTMC, and reuse the algorithms for PCTL over DTMCs

given above. This is done by the algorithms CslNext and CslUntil.
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CslNext(phi)

1. diags := Abstract(+, y,R)

2. P := R÷ diags

3. return PctlNext(phi)

CslUntil(phi1, phi2)

1. diags := Abstract(+, y,R)

2. P := R÷ diags

3. return PctlUntil(phi1, phi2)

For the time-bounded until operator, we use the algorithm CslBoundedUntil.

CslBoundedUntil(phi1, phi2, t)

1. sno := Prob0(phi1, phi2)

2. syes := phi2
3. s? := ¬ (sno ∨ syes)

4. diags := Abstract(+, y,R)×Const(−1)

5. Q := R + (diags× Identity(x, y))

6. Q := Q× s?

7. q := −1.02× FindMin(diags× s?)

8. P := Identity(x, y) + Const(1/q)× Q

9. (Lε, Rε, {γi}i=Lε...Rε) := FoxGlynn(q · t, ε)
10. sol := yes

11. for (k := 1 . . . Lε−1)

12. sol′ := MVMult(P, sol)

13. if (MaxDiff(sol, sol′) < ε) then

14. return sol′

15. endif

16. sol := sol′

17. endfor

18. probs := Const(0)

19. for (k := Lε . . . Rε)

20. if (k > 0) then

21. sol′ := MVMult(P, sol)

22. if (MaxDiff(sol, sol′) < ε) then

23. return probs + Const(
∑Rε

i=k γi)× sol′

24. endif

25. sol := sol′

26. endif

27. probs := probs + (sol×Const(γk))

28. endfor

29. return probs

Note that the above includes an additional optimisation proposed in [BHHK00a]. We

check to see if the iteration vector converges before reaching the upper bound Rε. If
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so, the iterative method can be terminated prematurely. Intuitively, this means that the

time bound t is high enough that the steady-state has already been reached. The function

FoxGlynn in line 9 implements the method of [FG88] to compute Poisson probabilities.

This was discussed in Section 3.3.3.

Finally, we give the algorithm CslSteadyState, which computes the steady-state

probabilities of the CTMC, as required for model checking the S operator.

CslSteadyState(phi, n)

1. diags := Abstract(+, y,R)×Const(−1)

2. Q := R + (diags× Identity(x, y))

3. probs := SolveJacobiTrans(Q,Const(0),Const(1/n))

4. sol := Abstract(+, x, probs× phi)

5. return sol

The bulk of the work is done by the SolveJacobiTrans function. Given the MTBDD

A representing a matrix A, and MTBDDs b and init, representing vectors b and init ,

SolveJacobiTrans(A, b, init) solves the linear equation system x · A = b, using the

Jacobi method with initial approximation init .

In this case, init is set to an equiprobable distribution over all states. The number

of states n is passed in as a parameter. SolveJacobiTrans can be implemented either

by transposing the matrix A and using the algorithm SolveJacobi given previously or,

more efficiently, by rewriting SolveJacobi to solve the transposed system directly. The

only significant difference is that it is based on vector-matrix multiplications, rather than

matrix-vector multiplications.



Appendix E

Case Studies

In order to test our implementation of probabilistic model checking, we applied the tech-

niques described in this thesis to a large number of case studies from the literature. The

selection of these for which we have presented results in the preceding chapters was chosen

to demonstrate the applicability and effectiveness of our techniques on as wide a range

as possible of models, logics and model checking algorithms. This appendix gives a brief

description of each of these case studies and the properties for which verification results

were presented in the thesis. We also provide the PRISM language description for one of

the case studies. Information about further properties considered for each example and

additional case studies can be found on the PRISM web site [Pri]. Particular thanks go

to Gethin Norman, who was responsible for modelling many of these examples in PRISM.

E.1 DTMC Case Studies

E.1.1 Bounded Retransmission Protocol (BRP)

The bounded retransmission protocol (BRP) of Helmink, Sellink and Vaandrager [HSV94]

is a simplified version of a Philips telecommunication protocol. Its purpose is to commu-

nicate messages over unreliable channels. The messages can be of arbitrary size and are

transmitted as a number of packets. Packets which are not successfully sent are retrans-

mitted, but only a fixed number of times, hence the name of the protocol. The model has

two parameters: N , the number of packets to be sent, and K, the maximum number of

times that each packet can be retransmitted. In the examples used in this thesis, we fix

the value of K as 3. We verify that the probability of the sender eventually not reporting

a successful transmission is sufficiently low. This can be expressed as a PCTL property

of the form P<p[♦ error ].

191
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E.2 MDP Case Studies

E.2.1 Rabin’s Randomised Mutual Exclusion Algorithm

Rabin’s randomised algorithm for mutual exclusion [Rab82] presents a probabilistic so-

lution to the well known problem of controlling a set of processes which periodically

require exclusive access to some shared resource. The parameter N of the model rep-

resents the number of processes present. We model check the liveness property: “if the

shared resource is free and there is a process requesting access to it, then eventually, with

probability 1, some process is given access to the resource”. This can be expressed as a

PCTL property of the form: request → P≥1[♦ access ].

E.2.2 Lehmann and Rabin’s Randomised Dining Philosophers

In [LR81], Lehmann and Rabin proposed a randomised algorithm as the solution to the

classic, distributed resource-allocation problem: “the dining philosophers”. The problem

consists of N philosophers sat round a circular table who do nothing except think and

eat. There is a bowl of food in the centre and N forks, placed between the philosophers.

A philosopher can only eat if he has both his left and right forks. The task is to devise a

protocol whereby the philosophers do not starve.

This case study is based on Lehmann and Rabin’s algorithm and its analysis by Lynch,

Saias and Segala [LSS94]. We build an additional constraint into the model that when a

philosopher is hungry, at most K time steps can pass before it makes a move, where K

is a parameter of the algorithm. This allows us to model a similar notion of fairness to

that used in [LSS94].

We consider two model checking problems. Firstly, we verify that, “if any philosopher

is hungry, then with probability at least 1
8
, some philosopher eats within t time steps”.

In PCTL, this becomes hungry → P≥ 1
8
[♦≤t eat ]. This is checked for several values of t.

Secondly, we verify that the algorithm is livelock-free, meaning that if some philosophers

are hungry, then eventually, with probability 1, some philosopher will eat. This is ex-

pressed as a PCTL property of the form hungry → P≥1[♦ eat ]. This second property can

be model checked with precomputation algorithms alone.

E.2.3 Randomised Consensus Coin Protocol

A distributed consensus protocol is an algorithm for ensuring that a set of distributed

processes can all agree on the outcome of some decision. Here, we assume that there

are only two possible outcomes: 1 and 2. In [AH90], Aspnes and Herlihy presented a
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randomised solution to this problem. A crucial component of their algorithm is its shared

coin protocol, which controls a counter, shared between the processes. Each process

periodically increments or decrements the value of the counter, based on the outcome of

a random coin toss. There are fixed lower and upper bounds for the value of the counter.

The choice between outcomes 1 and 2 is made on the basis of which of these bounds is

exceeded first. Our model of this coin protocol has two parameters: N , the number of

processes; and K, which is used to determine the counter’s bounds.

We model check two properties, the first of which is “with probability 1, all processes

that enter the shared counter phase eventually leave it”. This is expressed by a PCTL

property of the form P≥1[♦ leave]. Since the bound attached to the P operator is 1, this

can be verified using precomputation algorithms alone. Secondly, we compute, for each

value v ∈ {1, 2}, the probability that processes entering the shared counter phase leave

it having selected v. This is then compared to a bound p, giving a PCTL formula such

as P≥p[♦ decidev]. Model checking this formula requires numerical computation. For full

details of the analysis, see [KNS01].

E.2.4 FireWire Root Contention Protocol

IEEE 1394 (also known as FireWire) is a standard defining a high performance serial

bus. It is designed to allow networking of a wide range of electronic devices in a flexible

and scalable fashion. It is also ‘hot-pluggable’, meaning that devices can be added and

removed from the bus while it is active. When the bus is reset, the network has to be

reconfigured and a root node (the device which will act as manager of the bus) elected.

Conflicts can occur when two nodes compete to become the root. The FireWire standard

includes a randomised algorithm, called the root contention protocol, which resolves this.

This case study is based on Stoelinga and Vaandrager’s model [SV99] of this ran-

domised root contention protocol. We compute the probability that a root node is elected

before some time deadline passes. The deadline is built into the model and is repre-

sented by a parameter N . To analyse this, we model check a PCTL property of the form

P≥p[♦ deadline] where the atomic proposition deadline denotes states where the deadline

has passed. In fact, we do not verify the property for specific values of the probability

bound p, but instead determine the actual probability. For full details of the analysis of

this protocol, see [KNS02, DKN02].
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E.3 CTMC Case Studies

E.3.1 Kanban Manufacturing System

In [CT96], Ciardo and Tilgner present a model of a Kanban manufacturing system, which

uses ‘Kanban’ tickets to control the flow of jobs between different machines in a production

network. This model consists of four machines. The parameter N denotes the maximum

number of jobs in each machine at any one time. We compute the steady-state probability

distribution of the model. This can be used to model check any CSL formula which is

based on the S operator.

E.3.2 Cyclic Server Polling System

This case study is based on Ibe and Trivedi’s model of a cyclic server polling system from

[IT90]. The system comprises N queues which are serviced by a single server. The server

polls the queues in a cyclic fashion, determining whether or not there are jobs in the

queue to be processed. We model check a CSL property of the form S<p[busy i ∧ ¬serve i]

which states that, in the long-run, the probability that queue i is waiting to be served is

less than some bound p.

E.3.3 Tandem Queueing Network

In [HMKS99], Hermanns et al. present a CTMC model of a tandem queueing network.

It consists of an M/Cox2/1-queue sequentially composed with an M/M/1-queue. Both

queues have the same capacity, determined by a parameter N . We model check a CSL

property of the form P<p[♦≤t full1] which states that the probability of the first queue

becoming full within t time units is less than some bound p.

E.3.4 Flexible Manufacturing System (FMS)

We use Ciardo and Trivedi’s [CT93] model of a flexible manufacturing system. It consists

of three separate machines which collaborate to process and then assemble several different

types of part. A parameter N of the model determines the maximum number of parts

which each machine can handle. For some time bound t and probability bound p, we

verify that the probability of machine 1 reaching its full capacity within t time units is

less than p. This can be expressed by the CSL formula P<p[♦≤t full1].



E.4 PRISM Language Description

Finally, by way of example, we include the PRISM language description for one of our

case studies: the cyclic server polling system with parameter N equal to 2.

ctmc

rate mu = 1;

rate gamma = 200;

rate lambda = 0.5; // mu/N

module server

s : [1..2] init 1; // station

a : [0..1] init 0; // action: 0=polling, 1=serving

[loop1a] (s = 1) ∧ (a = 0) → gamma : (s′ = s+ 1);

[loop1b] (s = 1) ∧ (a = 0) → gamma : (a′ = 1);

[serve1] (s = 1) ∧ (a = 1) → mu : (s′ = s+ 1) ∧ (a′ = 0);

[loop2a] (s = 2) ∧ (a = 0) → gamma : (s′ = 1);

[loop2b] (s = 2) ∧ (a = 0) → gamma : (a′ = 1);

[serve2] (s = 2) ∧ (a = 1) → mu : (s′ = 1) ∧ (a′ = 0);

endmodule

module station1

s1 : [0..1] init 0; // state of station: 0=empty, 1=full

[loop1a] (s1 = 0) → 1 : (s1′ = 0);

[] (s1 = 0) → lambda : (s1′ = 1);

[loop1b] (s1 = 1) → 1 : (s1′ = 1);

[serve1] (s1 = 1) → 1 : (s1′ = 0);

endmodule

// construct second module through renaming

module station2 =

station1 [ s1 = s2, loop1a = loop2a, loop1b = loop2b, serve1 = serve2 ]

endmodule
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