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Abstract. Herman’s self-stabilisation algorithm provides a simple randomised solution to the problem of
recovering from faults in an IN-process token ring. However, a precise analysis of the algorithm’s maximum
execution time proves to be surprisingly difficult. Mclver & Morgan have conjectured that the worst-case be-
haviour results from a ring configuration of 3 evenly spaced tokens, giving an expected time of approximately
0.15N2. However, the tightest upper bound proved to date is 0.64N2. We apply probabilistic verification
techniques, using the probabilistic model checker PRISM, to analyse the conjecture, showing it to be correct
for all sizes of the ring that can be exhaustively analysed. We furthermore demonstrate that the worst-case
execution time of the algorithm can be reduced by using a biased coin.
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1. Introduction

Self-stabilisation [Dij74] is an approach for designing fault-tolerant systems in a distributed setting. A self-
stabilisation algorithm for a network of processes is a protocol that, starting from an arbitrary initial config-
uration, returns to a “stable” (legal) configuration within a finite number of steps and without any outside
intervention. It is designed to allow the system to recover from transient faults, such as those caused by the
states of individual processes becoming corrupted.

In this paper, we study the self-stabilisation algorithm of Herman [Her90], designed for a token ring of N
synchronous processes. The algorithm is randomised and guarantees that the system eventually self-stabilises
with probability 1. Another important property of the algorithm is the expected time required for stabili-
sation and, in particular, the worst-case expected time from an arbitrary system configuration. Despite the
simplicity of Herman’s algorithm, a precise analysis of this property turns out to be surprisingly difficult.
An upper bound of O(N?) has been proven by several people [MMO05], Nak05, [FMP06] and recent work
in [KMO™11] established the tightest known upper bound of approximately 0.64N?. Mclver and Morgan
[MMO05] also provided an exact expression for the expected stabilisation time from any configuration con-
taining 3 tokens and posed an interesting conjecture that the case of 3 tokens spaced evenly around the ring
always yields the worst-case behaviour of the algorithm. However, a proof of this conjecture remains elusive.
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We analyse Herman’s algorithm using probabilistic model checking, which provides a way to formally
specify and verify quantitative system properties, based on the construction and analysis of a finite-state
probabilistic model. We use the probabilistic model checker PRISM [KNPTI] to perform an exhaustive
analysis of Herman’s algorithm on all system configurations up to a ring size of N = 21. We show that, in
all these cases, the conjecture of McIver and Morgan does indeed hold. Furthermore, we then use PRISM to
study the performance of the algorithm when using a biased coin, rather than a fair coin. Firstly, we discover
that, in this case, 3 evenly spaced tokens does not always result in worst-case behaviour. More interestingly,
we also find that, by selecting an appropriate coin bias, we can actually improve the performance of the
algorithm, by reducing the worst-case expected stabilisation time.

Related Work. The problem of designing self-stabilising systems has received considerable attention; see
for example [Dol00] for a detailed overview. Other self-stabilisation algorithms include those of Israeli &
Jalfon [[J90] and Beauquier, Gradinariu & Johnen [BGJ99]; however, both of these are designed for rings
of asynchronous processes, rather than synchronous ones. A general approach for studying dependability
properties of self-stabilisation algorithms, based on metrics that can be evaluated using probabilistic model
checking was presented in [DTCT09).

As stated earlier, Herman’s algorithm has been studied by several people. Mclver & Morgan iMMOS},
in addition to making the conjecture described above, presented an elementary proof of the O(N#) upper
bound and related this to more general notions of abstraction for probabilistic programs [MMO04]. Fribourg
et al. [FMPO6] proved the same upper bound, but using the notion of coupling from probability theory.
Nakata, on the other hand, derived a more precise bound (of approximately 0.93N?) based on techniques
for the analysis of coalescing random walks. Most recently, Kiefer et al. [KMO™11] applied techniques
from annihilating particle systems to show an upper bound of approximately 0.64N2. They also show that
stabilisation is significantly faster for specific classes of faults and study an asynchronous version of the
algorithm. Finally, probabilistic model checking of Herman’s algorithm is used as an example in [KNP05],
but only for a subset of the properties considered here, and without studying the effect of biased coins.

2. Herman’s Algorithm

Herman’s self-stabilisation algorithm assumes a network of N identical processes in a ring, indexed 1 to
N and ordered anticlockwise. The protocol operates synchronously, the ring is oriented and N must be
odd. Processes can possess tokens, which are passed unidirectionally around the ring. At every step of the
algorithm, each process with a token decides whether to keep it or pass it on to its right neighbour, with the
decision being based on the outcome of a random coin toss. When two tokens meet (i.e. are held by the same
process), they are both eliminated. Thus, if the number of tokens is initially odd, it always remains odd. A
configuration of the ring is said to be stable if exactly one process has a token. Once a stable configuration
is reached, the token should be passed around the ring forever in a fair manner.

Following the presentation of Herman [Her90], the algorithm can be implemented using a single bit for
each process. More precisely, the state of process i is represented by a bit xz; and 7 © 1 denotes the index of
process i’s left (clockwise) neighbour. Process i is said to have a token if its bit z; equals z;51. At each step
of the algorithm, process ¢ checks the values of x; and z;51 for equality. If the values differ, then process i
inverts its bit, making it the same as its neighbour (z; := x;01); if the values are the same, then process i
randomly sets x; to either 0 (with probability p) or 1 (with probability 1—p).

Figure [I] shows an example of two successive steps of the algorithm for N = 9 processes. We use x; and
Z; to indicate that process i’s bit is 1 or 0, respectively, and draw shaded grey circles to indicate processes
that have tokens. Initially, processes 1, 4 and 6 have tokens; thus, each of the other six processes set their
bit equal to their left neighbour’s, while processes 1, 4 and 6 set their bits randomly. In the example, they
select values 0, 1 and 1, respectively. The resulting configuration is shown in the centre of Figure |1} Now,
processes 1, 5 and 6 have tokens, i.e. process 4 has passed its token to process 5. In the second step, processes
1, 5 and 6 randomly select values 1, 1 and 0, respectively. This means that process 6 keeps its token, but
process 5's token is passed to the right, resulting in the elimination of both them. In the subsequent (stable)
configuration, only process 1 has a token.
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Fig. 1. Example successive configurations of Herman’s ring for N = 9; we write x; and T; to denote the fact
that bit z; is 1 or 0, respectively; processes with a token are shaded grey.
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3. Probabilistic Model Checking

Probabilistic model checking is an approach for formally verifying systems with stochastic behaviour. It
works by constructing and analysing a probabilistic model of the system. In this paper, we assume that
models are discrete-time Markov chains (DTMCs), which specify the probability of making a transition from
one system state to another. Formally, we have the following definition.

Definition 1 (Discrete-time Markov chain). A discrete-time Markov chain (DTMC) is a tuple D =
(S,S,P, L) where S is a (finite) set of states, S C S is a set of possible initial states, P : SxS — [0,1] is
a transition probability matrix satisfying > g P(s,s’) = 1forall s € S,and L : S — 24P i5 a labelling
function mapping each state to a set of atomic propositions taken from a set AP.

An execution of a DTMC D = (S, S, P, L) is represented by a path, which is an infinite sequence of states
w = 808183 . . . such that P(s;, s;41)>0 for all i > 0. To reason about the likelihood of certain events occurring,
we define, in standard fashion [KSK76], a probability measure Prs over the set of all paths starting from a
given state s. Events of interest are then defined as measurable sets of paths.

We formally specify properties to be verified against DTMCs using probabilistic temporal logics such as
PCTL [HJ%4] or PCTL* |[ASBT95|. A key element of these logics is the probabilistic operator P. A formula
Poap[¥], where 1 € {<, <, >, >}, p is a probability and ¢ is a path formula, asserts that the probability of
1 being true (starting from some state s) satisfies the bound t p. Typical examples are:

o P4 [F “terminate” | — “the algorithm eventually terminates with probability 17;

® P>09s[GS60 =“fail” ] — “with probability at least 0.98, no failures occur within the first 60 steps”.
We also use rewards (or, equivalently, costs) to specify additional system properties, such as those concerning
resource usage. A reward structure r : Sx S — Rx>( augments the transitions of a DTMC with (non-negative)
reward values. We then specify properties using an R operator [KNP07], which takes a similar form to the P

operator from above. This refers to the expected amount of reward accumulated over a system’s execution.
For example, using a simple reward structure time that assigns a reward of 1 to all transitions, we have:

e RUZC[F “terminate” ] — “the expected termination time of the algorithm is less than 20 seconds”;

For both the P and R operators, we also adopt a quantitative (numerical) form, which simply returns the
actual probability or expected reward value, rather than comparing it to a specified threshold:

e P_;[F “terminate” ] — “what is the probability of the algorithm eventually terminating?”;

e RUTC[F “terminate” ] — “what is the expected time taken for the algorithm to terminate?”.
Model checking for the properties given above reduces to a combination of graph-based algorithms (e.g.,

determining the set of states from which a target set can be reached) and numerical computation (typically
solving linear equation systems). See, for example, [KNPQOT, [BKOS| for details.
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4. Probabilistic Verification of Herman’s Algorithm

We now describe how to model and analyse Herman’s algorithm using probabilistic model checking. In
particular, we will use the probabilistic model checker PRISM [KNP11]. We first show how the algorithm
can be modelled and then describe the verification of various properties, focusing first on the correctness of
the algorithm and then its performance, specifically its expected execution time. Finally, we use PRISM to
evaluate the influence that a biased coin has on the performance of the algorithm.

4.1. Modelling

It is straightforward to model Herman’s self-stabilisation algorithm as a DTMC. For N processes, and
assuming that the algorithm works with a fair coin (i.e. p = 1), we use a DTMC D = (5, 5, P, L) where:

e 5 =10, l}N7 i.e. each state is a vector z = (z1,...,zN), where the ith element corresponds to the value
of process i’s bit;

e S =5, ie. the system can start in any of its possible states;
e P: SxS — [0,1] is such that, for any states z=(z1,...,2y) and y=(y1,...,yn) we have P(z,y) =
HzNﬂ 6((zio1, i), yi) where, for x,2',y € {0, 1}:

1 if 2’ and y=2'
§((z',2),y) =< 3 ifa=a'
0 otherwise;
e the set of atomic propositions is AP = {tokeny, ..., tokeny, stable} and, for any state z=(z1,...,zn),
we have token; € L(z) if x;01=x; and stable € L(x) if exactly one of {tokenq,...,tokeny} is in L(z).

Returning to the example steps of the algorithm shown in Figure [1| (where N=9), the corresponding path
fragment of the DTMC is (101100101)(010110010)(101010101) where:

P((101100101), (010110010)) = 1-1-1-
P((010110010), (101010101)) = 1.1-1-

1 _
13111 =

1
2
1.1 _
il1111 =

ool 0ol

We next introduce a PRISM language description for this DTMC model of Herman’s algorithm. Models in
PRISM are described in a high-level language based on guarded commands. The basic components of the
modelling language are modules and wvariables. A system model is defined by specifying a set of modules,
each of whom’s state is represented by a finite number of variables. The behaviour of each module is given
by a set of guarded commands of the form:

[<action>] <guard> — <prob>:<update> + :-- 4+ <prob> : <update>;

The action label is used to force modules to synchronise (i.e. execute their commands simultaneously) and
the guard is a predicate over all the variables of the model, indicating when the command is enabled. The
updates describe the probabilistic transitions that the module can make when the command is executed, i.e.
the changes made to its own variables; primed variables indicate the next values of variables.

A PRISM model of Herman’s algorithm, for the case N=5, is shown in Figure|2|(left). We have one module
for each process, and one variable for each module. Since the algorithm is synchronous, each command is
labelled with the same action step, ensuring that all modules synchronise at each stage of the algorithm. The
model description uses module renaming since the modules of processes 2, ...,5 are identical in structure to
the module for process 1. The fact that all possible system configurations can be initial states is expressed
using the init...endinit construct. The model includes a reward structure time, which we will use to
reason about the expected execution time of the algorithm. This is measured in terms of the number of
steps performed, so it assigns a reward of 1 to every transition of the model. We also include a formula that
calculates the number of tokens in a state, and then use this to define a label (an atomic proposition) for
the stable configurations, i.e. states in which there is precisely one token. Figure [2] also shows the size of the
resulting DTMC when constructed by PRISM, for varying N.
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dtmc
const double p = 0.5;

module processl

z1 : [0..1];
(step] (w1=25) — p : (21'=0) + 1—p : (s1'=1); N States Transitions
[step] W(z1=25) — (z1'=z5); 3 8 28
endmodule 5 32 244
7 128 2,188
module ;m"ocess? = processé { z; ::/1727 z?:xé % endmodule 9 512 19’ 684
module process3 = process zl=z83, vo=x endmodule
module 27'006534 = irocessl [z1=xz4, 25=x3 ] endmodule 1 27 048 1777 148
module process5 = processl | x1=z5, 5=/ ] endmodule 13 87 192 1, 594, 324
- , . - 15 32,768 14, 348,908
l/n/lfii;gezggi;alltstates all possible configurations 17 1317 072 129’ 1407 164
) 19 524,288 1,162,261,468
// Reward structure for time (number of steps) 21 2’ 0977 152 10, 460, 353, 204

rewards “time”
[step] true : 1;
endrewards

// Formula/label for use in properties

formula num_tokens = (z1=z571:0) + (22=2x171:0)+
(28=2271:0) + (24 =2371:0) + (z5=12471:0);

label “stable” = (num_tokens=1);

Fig. 2. Left: PRISM code for N=5; Right: Statistics showing model size as N varies.

4.2. Correctness

We begin by verifying that the protocol is correct, namely that, from any initial state, the ring eventually
reaches a stable configuration with probability 1. In fact, it is relatively straightforward to prove that this
property holds for any value of N (and any value of p) [Her90]. However, for completeness, we illustrate how
this can checked using PRISM (for fixed N). The required property is given by:

P>1[F “stable” ]

where “stable”, as shown in Figure[2] identifies states of the model with one token. This property, along with
the others that we will use in this section are also summarised in Table [] for reference.

Since this a qualitative property (meaning that the probability bound is 0 or 1), model checking reduces to
an analysis of the underlying graph of the DTMC, i.e., the exact probability values labelling its transitions are
not important. This makes verification relatively efficient (compared to properties that also require numerical
computation). Furthermore, PRISM’s symbolic implementation (using binary decision diagrams) allows the
analysis to be performed for a large range of values of N. For example, in the case where N = 31, and the
DTMC has 23! = 2,147, 483, 648 states, the model can be built and verified in under a second.

We also consider a second correctness property, namely that, after a stable configuration is reached,
the token is passed around the ring in a fair manner. Since we already know that a stable configuration is
reached with probability 1, to verify this property, it suffices to check that (from any possible initial state)
each process gets a token infinitely often with probability 1. Formally this can be expressed by:

P>q] /\fil(G F “token;”) ]

)

where “token;” is true for states in which x; = z;01.

As already mentioned, for qualitative properties such as the ones given here, the actual probability values
of the DTMC are not used during the analysis. Therefore, although we have to specify a fixed value of the
probability p to PRISM, it in fact follows from the definition of the model that checking for one value of
p € (0,1) implies that the above two properties hold for all values of p € (0,1).
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(a) Worst-case expected times from PRISM; with lower and
upper bounds from [MMO05] and [KMO™11], respectively.

(b) Worst-case expected times, over initial configurations
containing k tokens

Fig. 3. Worst-case expected time for self-stabilisation.

4.3. Execution Time

Next, we consider a more interesting property of Herman’s algorithm: the expected amount of time required
for its execution, i.e. the expected number of steps required until stabilisation occurs. From a fixed initial
configuration of the ring, this corresponds to the PRISM query:

RUTE[F “stable” |

where time denotes the reward structure shown in Figure [2| that assigns 1 to every transition of the model.
Unlike the formulas used in the previous section, this is a quantitative property, whose verification requires
numerical computation to be performed; here, this amounts to the solution of a linear equation system.

Of particular interest is the worst-case expected stabilisation time, from any possible initial configuration.
We can check this with PRISM in a similar fashion. In fact, computationally, this is no more expensive than
the previous property, since verification of that property proceeds by computing the expected time from all
states of the model. In PRISM’s property specification language, the required query uses a filter:

filter (maz, RETC[F “stable” ], “init”).

A filter takes the form filter(op, prop, states), where op is a (commutative and associative) operator, prop is
an (arbitrary) PRISM property and states is a Boolean-valued PRISM property. The filter applies operator
op to values of prop over all states of the model that satisfy states.

A lower bound on the worst-case expected time for Herman’s algorithm can be established from the
results of McIver and Morgan [MMO05]. They show that, for an initial configuration containing 3 tokens, the
expected stabilisation time is 4abc/N, where a, b and ¢ are the distances between the three tokens. The
worst 3-token configuration, i.e. the one from which the execution time is the highest, is where the tokens
are distributed evenly (or as evenly as possible) throughout the ring. In this case, since a+b+c = N, the
execution time is %N 2 2 0.15N2, which provides us with a lower bound on the worst-case expected time.
Mclver and Morgan also conjecture that this scenario actually constitutes the worst case over all possible
initial configurations. However, a proof of this statement remains elusive.

The tightest upper bound on the worst-case time provided so far comes from recent work by Kiefer et al.
, who prove a bound of (%2 — HJ8)N? ~ 0.64N2. In Figure (a), we show results obtained from
PRISM using the query given above, for values of N between 3 and 21, along with the lower and upper
bounds from the results of [MMO05] and [KMO¥11], respectively. Notice that the worst-case times coincide
precisely with the lower bound, corroborating the conjecture of [MMO05].
The fact that worst-case expected times always result from configurations with 3 tokens (for N=3,...,21)
is more clearly illustrated using the following query:

filter (maz, RETC[F “stable” |, num_tokens=k)
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Fig. 4. Worst-case expected times in the “random pass” model for various values of p; individual points are
obtained from PRISM and dotted lines show times for the worst 3-token configuration, from [KMO™11].

which gives the maximum expected time from k-token configurations. Figure (b) shows the results as the
value of k varies.

Lastly, we note that, since PRISM performs an exhaustive search and analysis of the models it constructs,
it can also report precisely which states result in the worst-case times. For all models analysed, these states
are the ones proposed in [MMO05], i.e. those in which the three tokens are evenly spaced around the ring.

4.4. Biased Coins

To complete our analysis of Herman’s algorithm, we consider how its performance varies for different values
of the probability p, used to randomise the processes’ choices at each step. Herman’s original presentation of
the algorithm includes p as a parameter, but the analysis of expected time assumes a fair coin (i.e. p = 0.5).
We will show in this section that the worst-case performance can actually be improved using a biased coin.

Some previous analyses of Herman’s algorithm do consider variations in p, including [KMO™11]. However,
there is a subtlety to be aware of in the way that biased coins are introduced. Our presentation of the
algorithm, and our corresponding model in PRISM, follow the original description of Herman [Her90]: when
process i has a token (i.e. x;=x;51), he sets his bit z; to 0 with probability p and to 1 with probability
1—p. If p = 0.5, as used in the analysis of [Her90], then an equivalent interpretation of the algorithm is
as follows: when process i has a token, he passes it to his neighbour with probability p; if this results in
a process possessing two tokens, then both are removed. We will refer to these two interpretations of the
algorithm as the “random-bit” model and “random-pass” model, respectively.

In the case where p # 0.5, however, these two interpretations do not coincide. When using the “random
pass” model, in each state where a process has a token, the probability of him passing it to his neighbour is
fixed and equals probability p. On the other hand, when using the “random-bit” model, his actions depend
on both the relationship between his bit and his neighbour’s (i.e. whether he has a token) and the actual
current value of his bit. For example, in the case where a process’s bit does equal that of his neighbour, the
probability of him passing his token is:

(1—p)?+p?  if left neighbour has a token
Prob|passes token] = P if left neighbour does not have a token and current bit value is 1
1-p if left neighbour does not have a token and current bit value is 0.

From the above, it is clear that, for p = 0.5, the probability of passing a token is fixed at 0.5; however,
for any other value of p € (0,1), the three probability values in the expression are distinct. It is also worth
noting that, for any p # 0.5, when its left neighbour has a token, the probability of passing on the token is
strictly greater than 0.5.

Our analysis will focus mainly on the “random bit” model (which is the one shown in the PRISM code in
Figure, however, we briefly also consider the “random pass” version, which is the one studied in [KMO™11].
Our PRISM model is easily adapted to this version by replacing the first command in module process! with:

[step] (z1=z5) — p : (xl'=1—z1) + 1—p : (z1'=21);
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Fig. 5. Worst-case expected time for varying probability p.
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Fig. 6. Magnified portions of the plots from Figure a) for ring sizes 7, 9 and 11.

The analysis of generalises the expression given in [MMO05] for the expected time required from
3-token configurations to abc/p(1—p)N, where a, b and ¢ are the distances between the tokens. In Figure
we plot the worst-case expected times over all configurations of the “random pass” model, computed by
PRISM, against the worst-case expected timed for a 3-token configuration, obtained from the expression
above. It appears that, as for the case where p = 0.5, a 3-token configuration again always results in the
worst-case behaviour.

Now, we consider the “random bit” model. Figure a) shows the worst-case expected time over all
configurations as p varies and for a range of values of N. Interestingly, we observe that, for N < 9, setting p
to 0.5 results in the minimum worst-case expected time, but for larger values of N, this is not the case. In
fact, for N > 9, we can actually improve the worst-case behaviour of the algorithm by using a biased coin
with an appropriate value of p. By contrast, in the “random pass” version of the algorithm, the worst-case
time is always minimised by choosing p = 0.5 and is higher than for the “random bit” model. Figure b)
illustrates this comparison for ring sizes 11, 13 and 15.

Also, whereas the worst-case time for the “random pass” model appears to be given by the simple
expression abe/p(1—p)N (i.e. assuming that the 3-token case is worst), the times for the “random bit” model
follow a more complex pattern. This can be seen in Figure [6] which magnifies several of the plots from
Figure a) around the central point p=0.5.

Finally, we observe that, in the “random bit” model, 3-token configurations do not always result in the
worst-case behaviour. The PRISM query:

filter (range, num_tokens, filter (argmaz, RETC[F “stable” ], “init”))

reveals the different possible numbers of the tokens that occur in the configurations yielding maximum
expected times. For all values of N we considered, the worst-case number of tokens appears to be unique for
each value of p, but varies between 3 and N for different values of p.
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Table 1. Summary of the PRISM properties used in the paper.

Name PRISM notation Meaning

A stable configuration is eventually reached

3 N ” 13 ”»”
terminate P> [F “stable” | with probability 1.
. Each process gets a token infinitely often
« ” N « Bl b g y
fairness P21[ A2y (G F “token;”)] with probability 1.
“eap_time” RHMC[F “stable” | Expt.e{:ted. time (number of steps) until
= stabilisation.
. i Worst-case expected time until
« 9 time « 9] s
worst-time filter(max, RZFS[F “stable” ], “init”) stabilisation, from any initial configuration.
. ; Worst-case expected time until stabilisation
« 9 time « 2 _ )
worst_time_k filter(maz, RZ7°[F “stable” |, num.tokens=F) from any initial configuration with k tokens.
yporst states” filter(argmaz, RET[F “stable” |, “init”) True if a state results in the worst-case
- 9 »h=T ’ expected time until stabilisation.
“worst_tokens” filter(range, num _tokens, “worst_states”) Range of values of the number of tokens in

states satisfying property “worst_states”.

5. Conclusions

In this paper, we applied probabilistic model checking to analyse a simple randomised self-stabilisation
algorithm due to Herman [Her90]. In particular, we investigated the worst-case expected time required for
the algorithm to execute, providing experimental evidence to corroborate the unproven conjecture of Mclver
and Morgan [MMO05] that 3 tokens, spaced evenly around the ring, always yields the maximum execution
time. We also studied the effect of using a based coin in the algorithm, discovering that this can actually
improve the worst-case behaviour of the algorithm.

This example gives a good illustration of the benefits of probabilistic model checking. Firstly, it provides
languages, techniques and tools that make it simple to model probabilistic systems and then analyse a
variety of quantitative properties against them. Another key advantage of the approach is that it performs
an ezhaustive analysis: in this case, that amounts to computing values of a given property for all system
configurations, then determining the maximum possible value and identifying the precise configurations that
yield this value. By contrast, other analysis methods, such as those based on Monte Carlo simulation, are
unable to perform an exhaustive analysis of this kind.

On the other hand, a disadvantage is that probabilistic model checking is typically restricted to analysing
finite-state models. Furthermore, the size of such models that can be analysed is in practice always limited by
the amount of time and space available. In this paper, the largest models for which we studied quantitative
properties (that require numerical solution) contained about 2 million states and 10 billion transitions. In
this instance, PRISM’s symbolic engines can handle these (and slightly larger) models without problems;
the limiting factor is actually the time required to solve the models. But, more typically, it is the model size
that represents the bottleneck in terms of scalability.

Progress has been made in recent years on the development of techniques to automatically construct
finite abstractions of large or infinite-state probabilistic models [HWZ08, [KKNP10]. However, for a com-
prehensive analysis of systems like Herman’s algorithm, we really require automated tools and techniques
that can perform a parametric verification of the algorithm, i.e. for an arbitrary number of processes N.
This represents a very challenging area of future work. On the other hand, promising steps have been taken
[HHZ11] in the related problem of computing symbolic results expressed in terms of model parameters that
affect probabilities (e.g. p in Herman’s algorithm), rather than the size of the model.
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