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Abstract Probabilistic model checking is a powerful technique for formally veri-
fying quantitative properties of systems that exhibit stochastic behaviour. Such sys-
tems are found in many application domains: for example, probabilistic behaviour
may arise due to the presence of failures in unreliable hardware, message loss in
wireless communication channels, or the use of randomisation in distributed proto-
cols. This chapter starts with an introduction to the technique of probabilistic model
checking. We then survey some recent advances in the area, including controller
synthesis, compositional verification, probabilistic real-time systems and paramet-
ric model checking. We illustrate the application of the various techniques with a
combination of toy examples and descriptions of larger case studies. The chapter
concludes with a discussion of some of the key challenges in the field.
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3.1 Introduction

Computer systems play an important role in almost all aspects of everyday life, in-
cluding many examples where safety and reliability is critical, from control systems
for autonomous vehicles to embedded software in medical devices such as cardiac
pacemakers. There is therefore a demand for rigorous, formal techniques which
can verify that these systems function correctly and safely. Often, this requires an
analysis of quantitative aspects such as reliability, responsiveness and resource us-
age. Furthermore, since such devices often operate in unpredictable and unknown
environments, it is essential to consider the inherently probabilistic nature of real
systems, such as the random timing of events, failures of embedded components
and the loss of packets when using wireless communication networks.

Probabilistic model checking is an automated technique for formally verifying
quantitative properties of stochastic systems. This involves the construction of a
mathematical model that represents the behaviour of a system over time, i.e., the
possible states that it can be in, the transitions that can occur between states, and
information about the likelihood or timing of these transitions. Properties specifying
the required behaviour of these systems are then formally specified in temporal logic
and a systematic exploration and analysis of the system model is then performed to
ascertain whether the properties are satisfied.

This approach allows a wide variety of quantitative properties to be specified,
regarding, for example, ‘the probability of a system failure occurring’, ‘the proba-
bility of a packet being successfully delivered within 5ms’ or ‘the expected power
consumption of a sensor network during 1 hour of operation’. The basic theory and
algorithms for probabilistic model checking were first put forward in the 1980s but,
since then, substantial progress has been made in the development of theory, algo-
rithms and tools for many different types of probabilistic models and a wide range
of property specifications. This has resulted in the successful usage of probabilistic
model checking on a huge range of computerised systems, from airbag controllers to
cardiac pacemakers, and in a diverse range of applications domains, from computer
security to robotics to quantum computing.

This chapter aims to provide both an introduction to the basics of probabilistic
model checking and a survey of some of the key advances that have been made in
recent years. In both cases, we illustrate the ideas using a variety of toy examples
and real-life case studies, and provide pointers to further work and resources. We
also make available electronic copies of the files needed to study these examples
and case studies using the PRISM model checker [115].

In the first section of the chapter, we give an introduction to probabilistic model
checking applied to several different types of models: discrete-time Markov chains,
Markov decision processes and stochastic multi-player games. We then move on
to cover a section of more advanced topics. This includes: (i) controller synthesis,
which can be used to generate correct-by-construction controllers, e.g., for robots
or vehicles, along with quantitative guarantees on their behaviour; (ii) modelling
and verification techniques designed for large complex systems, including compo-
sitional (divide and conquer) approaches and the use of abstraction; (iii) verification



Probabilistic Model Checking: Advances and Applications 3

techniques for real-time probabilistic models, i.e., those that capture more realis-
tic information about the timing and duration of system events; and (iv) parametric
model checking methods, which provide more powerful ways to analyse models
whose parameters (e.g., probabilities) may vary or be difficult to quantify accu-
rately. We conclude the chapter with a discussion of the limitations of probabilistic
model checking and some of the key current challenges and research directions.

3.2 Probabilistic Model Checking

In this section, we give an overview of the basics of probabilistic model checking.
We focus on discrete-time models: discrete-time Markov chains (DTMCs), Markov
decision processes (MDPs) and stochastic multi-player games (SMGs). These all
model the behaviour of a probabilistic system as a sequence of discrete time-steps.
We introduce the key definitions and concepts, and illustrate them with some exam-
ples. For more in-depth tutorial material on probabilistic model checking, see for
example [78] (for DTMCs), [44] (for MDPs) and [105] (for SMGs).

Preliminaries. Before we start, we first introduce some definitions and notation
used in the following sections. A (discrete) probability distribution over a countable
set S is a function µ : S→ [0,1] such that ∑s∈S µ(s) = 1. For an arbitrary set S,
we let Dist(S) be the set of functions µ : S→ [0,1] such that {s ∈ S | µ(s)>0} is a
countable set and µ restricted to {s ∈ S | µ(s)>0} is a probability distribution. The
point distribution at s ∈ S, denoted ηs, is the distribution that assigns probability
1 to s (and 0 to everything else). Given two sets S1 and S2 and distributions µ1 ∈
Dist(S1) and µ2 ∈Dist(S2), the product distribution µ1×µ2 ∈Dist(S1×S2) is given
by µ1×µ2((s1,s2)) = µ1(s1)·µ2(s2). We will also often use the more general notion
of a probability measure. We omit a complete definition here and instead refer the
reader to, for example, [21] for introductory material on this topic.

3.2.1 Discrete-time Markov Chains

We now give an overview of probabilistic model checking for discrete-time Markov
chains, the simplest class of models that we consider in this chapter.

Definition 3.1 (Discrete-time Markov chain). A discrete-time Markov chain (DTMC)
is a tuple D=(S, s̄,P,L) where:

• S is a set of states;
• s̄ ∈ S is an initial state;
• P : S×S→ [0,1] is a probabilistic transition matrix such that ∑s′∈S P(s,s′) = 1 for

all s ∈ S;
• L : S→ 2AP is a labelling function assigning to each state a set of atomic propo-

sitions from a set AP.
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The state space S of a DTMC D=(S, s̄,P,L) represents the set of all possible con-
figurations of the system being modelled. The system’s initial configuration is given
by s̄ and its subsequent evolution is represented by the probabilistic transition ma-
trix P: for states s,s′ ∈ S, the entry P(s,s′) is the probability of making a transition
from state s to s′. By definition, for any state of D, the probabilities of all outgoing
transitions from that state sum to 1.

A possible execution of D is represented by a path, which is a (finite or infinite)
sequence of states π = s0s1s2 . . . such that P(si,si+1)>0 for all i>0. For a path π ,
we let π(i) denote the (i+1)th state si of the path, and π[i . . . ] be the suffix of π

starting in state si. We also let |π| be its length and, if π is finite, last(π) be its last
state. We let IPathsD(s) and FPathsD(s) denote the sets of finite and infinite paths
of D starting in state s, respectively, and we write IPathsD and FPathsD for the sets
of all finite and infinite paths, respectively.

To reason quantitatively about the behaviour of DTMC D we must determine the
probability that certain paths are executed. To do so, we define, for each state s of
D, a probability measure PrD,s over the set of infinite paths of D starting in s. We
present just the basic idea here; for the complete construction, see [76].

For any finite path π = ss1s2 . . .sn ∈ FPathsD(s), the probability of the path oc-
curring is given by P(π) = P(s,s1) ·P(s1,s2) · · ·P(sn−1,sn). The cylinder set of π ,
denoted C(π), is the set of all infinite paths which have π as a prefix, and the prob-
ability assigned to this set of paths is PrD,s(C(π)) = P(π). This can be extended
uniquely to define the probability measure PrD,s over IPathsD(s).

Using this probability measure, we can quantify the probability that, starting from
a state s, the behaviour of D satisfies a particular specification (assuming that the
behaviour of interest is represented by a measurable set of paths). For example, we
can consider the probability of reaching a particular class of states, or of visiting
some set of states infinitely often. Furthermore, given a random variable f over
the infinite paths IPathsD (i.e., a real-valued function f : IPathsD → R>0), we can
define, using the probability measure PrD,s, the expected value of the variable f
when starting in s, denoted ED,s( f ). More formally, we have:

ED,s( f ) def
=
∫

π∈IPathsD(s)
f (π)dPrD,s .

We use random variables to formalise a variety of other quantitative properties of
DTMCs. We do so by annotating the model with rewards (sometimes, these in fact
represent costs, but we will consistently refer to these as rewards). Rewards can be
used to model, for example, the energy consumption of a device, or the number of
packets lost by a communication protocol. Formally, these are defined as follows.

Definition 3.2 (DTMC reward structure). A reward structure for a DTMC D =
(S, s̄,P,L) is a tuple r=(rS,rT ) where rS : S→ R>0 is a state reward function and
rT : S×S→ R>0 is a transition reward function.

State rewards are also called cumulative rewards and transition rewards are some-
times known as instantaneous or impulse rewards. We use random variables to mea-
sure, for example, the expected total amount of reward cumulated (over some num-
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Fig. 3.1 Running example: a DTMC D representing a robot moving about a 3×2 grid.

ber of steps, until a set of states is reached, or indefinitely) or the expected value of
a reward structure at a particular instant.

Example 1. We now introduce a running example, which we will develop through-
out the chapter. It concerns a robot moving through terrain that is divided up into
a 3×2 grid, with each grid section represented as a state. Fig. 3.1 shows a DTMC
model of the robot. In each of the 6 states, the robot selects, at random, a direction
to move. Due to the presence of obstacles, certain directions are unavailable in some
states. For example, in state s0, the robot will either remain in its current location
(with probability 0.2), move east (with probability 0.35), move south (with proba-
bility 0.4) or move south-east (with probability 0.05). We also show labels for the
states, taken from the set of atomic propositions AP = {hazard,goal1,goal2}. �

3.2.1.1 Property Specifications

In order to formally specify properties of interest of a DTMC, we use quantitative
extensions of temporal logic. For the purposes of this presentation, we introduce a
rather general logic that essentially coincides with the property specification lan-
guage of the PRISM model checker [80]. We refer to it here as the PRISM logic.
This extends the probabilistic temporal logic PCTL* with operators to specify ex-
pected reward properties. PCTL*, in turn, subsumes the logic PCTL (probabilistic
computation tree logic) [60] and probabilistic LTL (linear time logic) [96].

Definition 3.3 (PRISM logic syntax). The syntax of our logic is given by:

φ ::= true | a | ¬φ | φ ∧φ | P./p[ψ ] | Rr
./q[ρ ]

ψ ::= φ | ¬ψ | ψ ∧ψ | X ψ | ψ U6k
ψ | ψ U ψ

ρ ::= I=k | C6k | C | F φ

where a ∈ AP is an atomic proposition, ./∈{<,6,>,>}, p ∈ [0,1], r is a reward
structure, q ∈ R>0 and k ∈ N.

The syntax in Defn. 3.3 distinguishes between state formulae (φ ), path formulae (ψ)
and reward formulae (ρ). State formulae are evaluated over the states of a DTMC,
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while path and reward formulae are both evaluated over paths. A property of a
DTMC is specified as a state formula; path and reward formulae appear only as
subformulae, within the P and R operators, respectively.

For a state s of a DTMC D, we say that s satisfies ψ (or ψ holds in s), written
D,s |= ψ , if ψ evaluates to true in s. If the model D is clear from the context, we
simply write s |=ψ . In addition to the standard operators of propositional logic, state
formulae φ can include the probabilistic operator P and reward operator R, which
have the following meanings:

• s satisfies P./p[ψ ] if the probability of taking a path from s satisfying ψ is in the
interval specified by ./ p;

• s satisfies Rr
./q[ρ ] if the expected value of reward operator ρ from state s, using

reward structure r, is in the interval specified by ./ q.

The core temporal operators used to construct path formulae ψ are:

• X ψ (‘next’) – ψ holds in the next state;
• ψ1 U

6k ψ2 (‘bounded until’) – ψ2 becomes true within k steps, and ψ1 holds up
until that point;

• ψ1 U ψ2 (‘until’) – ψ2 eventually becomes true, and ψ1 holds until then.

We often use the equivalences F ψ ≡ true U ψ (‘eventually’ ψ) and G ψ ≡ ¬F ¬ψ

(‘always’ ψ), as well as the bounded variants F6k ψ and G6k ψ . When restricting ψ

to be an atomic proposition, we get the following common classes of property:

• F a (‘reachability’) – eventually a holds;
• G a (‘invariance’) – a remains true forever;
• F6k a (‘step-bounded reachability’) – a becomes true within k steps;
• G6k a (‘step-bounded invariance’) – a remains true for k steps.

More generally, path formulae allow temporal operators to be be combined. In fact
the syntax of path formulae ψ given in Defn. 3.3 is that of linear temporal logic
(LTL) [96].1 This logic can express a large class of useful properties, core examples
of which include:

• G F ψ (‘recurrence’) – ψ holds infinitely often;
• F G ψ (‘persistence’) – eventually ψ always holds;
• G (ψ1→ X ψ2) - whenever ψ1 holds, ψ2 holds in the next state;
• G (ψ1→ F ψ2) - whenever ψ1 holds, ψ2 holds at some point in the future.

For reward formulae ρ , we allow four operators:

• I=k (‘instantaneous reward’) – the state reward at time step k;
• C6k (‘bounded cumulative reward’) – the reward accumulated over k steps;
• C (‘total reward’) – the total reward accumulated (indefinitely);
• F φ (‘reachability reward’) – the reward accumulated up until the first time a state

satisfying φ is reached.

1 The bounded until operator ψ1 U
6k ψ2 is not usually included in the syntax of LTL, but it can be

derived from other operators so its inclusion is not problematic.
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Numerical queries. It is often of more interest to know the actual probability with
which a path formula is satisfied or the expected value of a reward formula, than
whether or not the probability or expected value meets a particular bound. To allow
such queries, we extend the logic of Defn. 3.3 to include numerical queries of the
form P=?[ψ ] or Rr

=?[ρ ], which yield the probability that ψ holds and the expected
value of reward operator ρ using reward structure r, respectively.

Example 2. We now return to our running example of a robot navigating a grid (see
Example 1 and Fig. 3.1) and illustrate some properties specified in the PRISM logic.

• P>1[F goal2 ] – the probability the robot reaches a goal2 state is 1.
• P>0.9[G ¬hazard ] – the probability it never visits a hazard state is at least 0.9.
• P=?[¬hazard U6k (goal1∨goal2)] – what is the probability that the robot reaches

a state labelled with either goal1 or goal2, while avoiding hazard-labelled states,
during the first k steps of operation?

• Rr1

64.5[C
6k ] where r1=(r1

S,r
1
T ), r1

S(s)=1 if s is labelled hazard and 0 otherwise
and rT (s,s′)=0 for all s,s′ ∈ S – the expected number of times the robot visits a
hazard labelled state during the first k steps is at most 4.5.

• Rr2
=?[F (goal1 ∨ goal2)] where r2=(r2

S,r
2
T ), r2

S(s)=0 for all s ∈ S and rT (s,s′)=1
for all s,s′ ∈ S – what is the expected number of steps required for the robot to
reach a state labelled goal1 or goal2? �

The formal semantics of the PRISM logic, for DTMCs, is defined as follows.

Definition 3.4 (PRISM logic semantics for DTMCs). For a DTMC D=(S, s̄,P,L),
reward structure r=(rS,rT ) for D and state s ∈ S, the satisfaction relation |= is
defined as follows:

D,s |=true always
D,s |=a ⇔ a ∈ L(s)

D,s |=¬φ ⇔ D,s 6|=φ

D,s |=φ1∧φ2 ⇔ D,s |=φ1 ∧ D,s |=φ2
D,s |=P./p[ψ ] ⇔ PrD,s{π ∈ IPathsD(s) | D,π |=ψ} ./ p
D,s |=Rr

./q[ρ ] ⇔ ED,s(rewr(ρ)) ./ q

where for any path π = s0s1s2 . . . ∈ IPathsD :
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D,π |=φ ⇔ D,s0 |=φ

D,π |=¬ψ ⇔ D,π 6|=ψ

D,π |=ψ1∧ψ2 ⇔ D,π |=ψ1 ∧ D,π |=ψ2
D,π |=X ψ ⇔ D,ψ[1 . . . ] |=ψ

D,π |=ψ1 U
6k ψ2 ⇔ ∃i ∈ N.( i6k∧D,π[i . . . ] |=ψ2∧∀ j<i.(D,π[ j . . . ] |=ψ1))

D,π |=ψ1 U ψ2 ⇔ ∃i ∈ N.(D,π[i . . . ] |=ψ2∧∀ j<i.(D,π[ j . . . ] |=ψ1))

rewr(I=k)(π) = rS(sk)

rewr(C6k)(π) = ∑
k−1
j=0

(
rS(s j)+ rT (s j,s j+1)

)
rewr(C)(π) = ∑

∞
j=0
(
rS(s j)+ rT (s j,s j+1)

)
rewr(F φ)(π) =

{
∞ if ∀ j ∈ N.D,s j 6|=φ

∑
mφ−1
j=0

(
rS(s j)+ rT (s j,s j+1)

)
otherwise

and mφ = min{ j | D,s j |=φ}.

3.2.1.2 Model Checking

Verifying formulae in this logic against a DTMC requires a combination of graph-
based algorithms, automata-based methods using deterministic Rabin automata
(DRAs) and solving systems of linear equations. The main components of the model
checking procedure are computing the probability that a path formula is satisfied
and the expected value of a reward formula. Computing the probability that a path
formula is satisfied requires first translating the formula into a DRA, finding the
bottom strongly connected components on the product of the DTMC (informally,
these are the sets of states of a DTMC which once entered are never left) and the
constructed automaton and finally solving a linear equation system [15]. Comput-
ing the expected value of a reward formula, for unbounded cumulative and reach-
ability reward formulae, also involves graph based analysis (either finding the bot-
tom strongly connected components for unbounded cumulative reward properties
or finding the states that reach a target with probability 1 for reachability reward
properties) and solving a system of linear equations [78]. For the remaining reward
formulae, computation of expected values involves iteratively solving a set of linear
equations.

The overall complexity of model checking is doubly exponential in the formula
and polynomial in the size of the DTMC, but can be reduced to a single exponential.
For scalability reasons, when implementing model checking of DTMCs, iterative
numerical methods such as Jacobi and Gauss-Seidel, as opposed to direct methods
such as Gaussian elimination, are often employed when solving systems of linear
equations.
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Fig. 3.2 An example of a NAND multiplexing unit with one restorative stage (M=1).

3.2.1.3 Case Study: NAND Multiplexing

We now describe a case study in which the system is modelled as a DTMC. This
is taken from [92] and concerns the analysis of defect-tolerant systems used in
computer-aided design. The system under study uses multiplexing, a technique in-
troduced by von Neumann [90] which enables reliable computations when using un-
reliable devices. The approach was developed due to the unreliability of the valves
(also known as vacuum tubes) that were used in computers, and these techniques are
becoming relevant again for systems developed using nanotechnology where, due
to their small-scale, components are again unreliable.

Multiplexing involves replacing a single processing unit by a multiplexing unit
which has N copies of the inputs and outputs of the original processing unit. In
the multiplexing unit, the N inputs are processed in parallel, giving N outputs. If
the inputs and devices are reliable, then each of the N outputs would equal the
output of the single processing unit. However, if there are errors in the inputs or the
processing is unreliable, then there will also be errors in the outputs. To give a value
to the output of the multiplexing unit, we define a critical level ∆ ∈ [0,0.5) and, if at
least (1−∆)·N of the outputs take a certain value (i.e., either true or false), this
is taken as the output value. If this criteria is not met by either true or false, the
output value of the multiplexing unit is unknown and an error occurs.

The design of a multiplexing unit comprises an executive stage, which carries
out the basic function of the unit to be replaced, and M restorative stages, which
reduce the degradation of the output from the executive stage caused by errors in
the inputs and unreliable processing. For the case of NAND multiplexing, the focus
of this case study, a design with a single restorative stage is shown in Fig. 3.2.

Fig. 3.3 presents results obtained with the probabilistic model checker PRISM [80,
114] when analysing: (i) the probability of errors being less than than 10 percent;
and (ii) the expected percentage of incorrect outputs of the system. The values are
plotted as the number of restorative units (M) and the probability that a NAND gate
is unreliable (err) vary. The first property can be expressed as the numerical query
P=?[F below ], where below is an atomic proposition labelling states of the DTMC
where the computation has finished and the number of errors is below 10%. The sec-
ond property can be expressed as the query Rr

=?[F done ], where done labels states of
the DTMC where the computation has completed, and the reward structure r labels



10 Marta Kwiatkowska, Gethin Norman and David Parker

Fig. 3.3 Probabilistic model checking results for the NAND case study.

the transitions entering this state with a reward equal to the percentage of incorrect
outputs. When studying this model with PRISM [92], an error was found in the ana-
lytical analysis of [57]. The dashed lines in Fig. 3.3 show the results obtained in this
case and demonstrate that this error can cause both under- and over-approximations
of the reliability of a NAND multiplexing unit.

3.2.2 Markov Decision Processes

The second discrete-time model we consider is Markov decision processes (MDPs).
These extend DTMCs by allowing nondeterministic as well as (discrete) probabilis-
tic behaviour. Nondeterminism is a valuable tool for a modeller and can be used to
represent a variety of unknown aspects of a system’s environment or execution. For
example, it can model the scheduling between a set of components running con-
currently, the instructions and inputs provided to a robot to control its execution,
or the unknown behaviour of an adversary trying to attack a security system. More
generally, nondeterminism can also be used to abstract parts of a system that are
unknown, under-specified or unimportant.

Definition 3.5 (Markov decision process). A Markov decision process (MDP) is a
tuple M=(S, s̄,A,δ ,L) where:

• S is a finite set of states;
• s̄ ∈ S is an initial state;
• A is a finite set of actions;
• δ : S×A→ Dist(S) is a (partial) probabilistic transition function, mapping state-

action pairs to probability distributions over S;
• L : S→ 2AP is a state labelling function.

In a state s of an MDP M=(S, s̄,A,δ ,L), there is first a nondeterministic choice
between a set of actions that are available in the state. This set, denoted A(s),
includes the actions for which a probabilistic transition is defined: A(s)={a |
δ (s,a) is defined}. We assume that the set A(s) is non-empty for all states s ∈ S.
Once an available action a ∈ A(s) has been chosen in s, the action is performed and
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Fig. 3.4 Running example: an MDP M representing a robot moving about a 3×2 grid.

the successor state s′ is chosen probabilistically, where the probability of moving to
state s′ is δ (s,a)(s′).

Like for DTMCs, a path is a sequence of states corrected by transitions, but now
also incorporates the action choice made. A (finite or infinite) path of M is of the
form π = s0

a0−→ s1
a1−→ ·· ·, where ai ∈ A(si) and δ (si,ai)(si+1)>0 for all i>0. The

sets of all finite and infinite paths from state s of M are denoted FPathsM(s) and
IPathsM(s), respectively, and the sets of all such paths are FPathsM and IPathsM.

As for DTMCs we can define a reward structure over an MDP. State rewards
remain unchanged, however for MDPs, instead of rewards beging associated with
individual transitions, rewards are associated with performing actions in states.

Definition 3.6 (MDP reward structure). A reward structure for an MDP M =
(S, s̄,A,δ ,L) is a tuple r=(rS,rA) where rS : S→ R>0 is a state reward function
and rA : S×A→ R>0 is an action reward function.

Example 3. We now return to our running example of a robot moving through ter-
rain that is divided up into a 3×2 grid (see Example 1 and Fig. 3.1). We extend
our earlier DTMC model so that, instead of the robot choosing a direction to move
at random, the choice is modelled using nondeterminism in an MDP. The model is
shown in Fig. 3.4. The probabilistic transition function is drawn as grouped, labelled
arrows and, when the probability is 1, it is omitted. In each state, one or more actions
from the set A={north,east,south,west,stuck} are available, which move the robot
between grid sections. As for the DTMC model, due to the presence of obstacles,
certain directions are unavailable and in this case the obstacles can also cause the
robot to probabilistically move to an alternative grid section. We use the action stuck
to indicate that the robot cannot move in any direction in the states s2 and s3. �

To reason about the behaviour of an MDP, we need the notion of strategies (also
called policies, adversaries and schedulers in other contexts). A strategy resolves
the nondeterminism in the model, that is, the choices of which action to perform in
each state. This choice can depend on the history of the MDP’s execution and can
be made either deterministically or randomly.

Definition 3.7 (MDP strategy). A strategy of an MDP M=(S, s̄,A,δ ,L) is a func-
tion σ : FPathsM→Dist(A) such that σ(π)(a)>0 only if a ∈ A(last(π)). The set of
all strategies of M is denoted ΣM.
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We classify strategies in terms of both their use of randomisation and of memory.

• Randomisation: we say that strategy σ is deterministic (or pure) if σ(π) is a
point distribution for all finite paths π , and randomised otherwise.

• Memory: a strategy σ is memoryless if σ(π) depends only on last(π) for all
finite paths π , and finite-memory if there are finitely many modes such that, for
any π , σ(π) depends only on last(π) and the current mode, which is updated
each time an action is performed; otherwise, it is infinite-memory.

Under a strategy σ ∈ΣM of MDP M, all nondeterminism of M is resolved, and hence
the behaviour is fully probabilistic. We can represent this using an (infinite) induced
discrete-time Markov chain, whose states are the finite paths of M. For a given state s
of M, we can then use this DTMC (see Sect. 3.2.1) to construct a probability measure
Prσ

M,s over the infinite paths IPathsM(s), capturing the behaviour of M when starting
from state s under strategy σ . Furthermore, for a random variable f : IPathsM →
R>0, we can define the expected value Eσ

M,s( f ) of f when starting from state s
under strategy σ . Formally, the induced DTMC can be defined as follows.

Definition 3.8 (Induced DTMC). For an MDP M=(S, s̄,A,δ ,L) and strategy σ ∈
ΣM for M, the induced DTMC is the DTMC Mσ=(FPathsM, s̄,P,L′) where, for any
π,π ′ ∈ FPathsM:

P(π,π ′) =
{

σ(π)(a) ·δ (last(π),a)(s) if π ′ = π
a−→ s for some a ∈ A and s ∈ S;

0 otherwise;

and L′(π)=L(last(π)) for all π ∈FPathsM. Furthermore, a reward structure r=(rS,rA)
over M induces the reward structure rσ=(rσ

S ,r
σ
T ) over Mσ where for any π,π ′ ∈

FPathsM:

rσ
S (π) = rS(last(π))

rσ
T (π,π

′) =

{
rA(last(π),a) if π ′ = π

a−→ s for some a ∈ A and s ∈ S;
0 otherwise.

An induced DTMC has an infinite number of states. However, in the case of finite-
memory strategies (and hence also the subclass of memoryless strategies), we can
construct a finite-state quotient DTMC [44].

To specify properties of MDPs, we again use the PRISM logic defined for
DTMCs in the previous section. The syntax (see Defn. 3.3) is identical, and the se-
mantics (see Defn. 3.4) is very similar, the key difference being that, for the P./p[ψ ]
and Rr

./q[ρ ] operators, we quantify over all possible strategies of the MDP. The
treatment of reward operators is also adapted slightly to consider action, as opposed
to transition, reward functions.

Definition 3.9 (PRISM logic semantics for MDPs). For an MDP M=(S, s̄,A,δ ,L)
and reward structure r=(rS,rA) for M, the satisfaction relation |= is defined as for
DTMCs in Defn. 3.4, except that, for any state s ∈ S:
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M,s |=P./p[ψ ] ⇔ Prσ

M,s{π ∈ IPathsM(s) |M,π |=ψ} ./ p for all σ ∈ ΣM

M,s |=Rr
./q[ρ ] ⇔ Eσ

M,s(rewr(ρ)) ./ q for all σ ∈ ΣM

and, for any path π = s0
a0−→ s1

a1−→ ·· · ∈ IPathsM:

rewr(I=k)(π) = rS(sk)

rewr(C6k)(π) = ∑
k−1
j=0

(
rS(s j)+ rA(s j,a j)

)
rewr(C)(π) = ∑

∞
j=0
(
rS(s j)+ rA(s j,a j)

)
rewr(F φ)(π) =

{
∞ if ∀ j ∈ N.M,s j 6|=φ

∑
mφ−1
j=0

(
rS(s j)+ rA(s j,a j)

)
otherwise

where mφ = min{ j |M,s j |=φ}.

The main components of the model checking procedure for this logic against an
MDP are computing the optimal probabilities that a path formula is satisfied and
the optimal expected values for a reward formula. More precisely we are concerned
with the following optimal values for an MDP M and state s:

Prmin
M,s(ψ)

def
= infσ∈ΣM

Prσ

M,s{π ∈ IPathsM(s) |M,π |=ψ} (1)

Prmax
M,s (ψ)

def
= supσ∈ΣM

Prσ

M,s{π ∈ IPathsM(s) |M,π |=ψ} (2)

Emin
M,s(r,ρ)

def
= infσ∈ΣM

Eσ

M,s(rewr(ρ)) (3)

Emax
M,s (r,ρ)

def
= supσ∈ΣM

Eσ

M,s(rewr(ρ)) (4)

where ψ is a path formula, r is a reward structure of M and ρ is a reward formula.
For example, verifying the property φ = P<p[ψ ] in state s of M can be achieved

by computing the optimal probability Prmax
M,s (ψ) since the state s satisfies φ if and

only if Prmax
M,s (ψ)<p. Similarly to DTMCs, rather than fixing a specific bound,

we can query the (optimal) values directly. In the case of MDPs, the syntax of
the PRISM logic is extended to include numerical queries of the form Pmin=?[ψ ],
Pmax=?[ψ ], Rr

min=?[ρ ] and Rr
max=?[ρ ].

Model checking for an MDP reduces to building DRAs, performing graph anal-
ysis and numerical computation. As for DTMC model checking, DRAs are built
to represent path formulae. The graph analysis involves identifying states of the
MDP for which the probability is 0 or 1 and finding maximal end components of the
MDP (or of the product of the MDP and a DRA). Informally, end components of an
MDP are sets of states for which it possible (i.e., assuming certain nondeterministic
choices are made) to remain in forever once entered.

The numerical computation can be achieved using various methods including:
solving a linear programming problem; policy iteration (which builds a sequence
of strategies until an optimal one is reached); and value iteration, which computes
increasingly precise approximations to the optimal probability or expected value.
The overall complexity for model checking is doubly exponential in the formula
and polynomial in the size of the MDP.
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Further details on the techniques needed to analyse MDPs can be found in, for
example, [44, 15, 36] and in standard texts on MDPs [20, 64, 98].

3.2.3 Stochastic Multi-Player Games

The final model we consider in this introductory section is stochastic multi-player
games (SMGs). These extend MDPs by allowing different players to resolve the
nondeterminism (MDPs can thus be considered as 1-player stochastic games).
SMGs allow us to reason about the strategic decisions of several agents either com-
peting or collaborating to achieve some objective. We restrict our attention to turn-
based stochastic games, in which a single player is responsible for the nondeter-
ministic choices available in each state. We have the following formal definition.

Definition 3.10 (Stochastic multi-player game). A (turn-based) stochastic multi-
player game (SMG) is a tuple G=(Π ,S,(Si)i∈Π , s̄,A,δ ,L), where:

• (S, s̄,A,δ ,L) represents an MDP (see Defn. 3.5);
• Π is a finite set of players;
• (Si)i∈Π is a partition of S.

In a state s of an SMG G, the evolution is similar to an MDP: first an available action
is nondeterministically chosen and then the successor state is chosen according to
the distribution δ (s,a). The difference is that the nondeterministic choice is resolved
by the player that controls the state s, that is, the player i ∈ Π for which s ∈ Si. As
for MDPs, we can define the set of finite and infinite paths FPathsG (FPathsG(s))
and IPathsG (IPathsG(s)) of G. Furthermore, we can define reward structures for
SMGs in the same way as for MDPs (see Defn. 3.6).

To resolve the nondeterminism in an SMG, we again use strategies, however we
now define a separate strategy for each player of the game.

Definition 3.11 (SMG strategy). For an SMG G=(Π ,S,(Si)i∈Π , s̄,A,δ ,L), a strat-
egy σi for player i of G is a function σi : {π | π ∈ FPathsG∧ last(π)∈ Si}→Dist(A)
such that, if σi(π)(a)>0, then a ∈ A(last(π)). The set of all strategies for player
i ∈Π in SMG G is denoted by Σ i

G.

For an SMG G=(Π ,S,(Si)i∈Π , s̄,A,δ ,L) and strategies σ1, . . . ,σk for multiple play-
ers 1, . . . ,k, we can combine them into a single strategy σ = σ1, . . . ,σk which con-
trols the nondeterminism when the game is in the states S1∪·· ·∪Sk. If a combined
strategy σ is constructed from all the players Π of G (sometimes called a strategy
profile), then the nondeterminism is resolved in all the states of the game and, as for
MDPs, we can construct probability measures Prσ

G,s over the infinite paths of G.

To specify properties of SMGs, we consider an extension of the PRISM logic
used earlier for DTMCs and MDPs, adding the coalition operator 〈〈C〉〉 from al-
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ternating temporal logic (ATL) [6]. The result is (essentially) the logic RPATL*
proposed in [28].2

Definition 3.12 (RPATL* syntax). The syntax of RPATL* is given by:

φ ::= true | a | ¬φ | φ ∧φ | 〈〈C〉〉 P./p[ψ ] | 〈〈C〉〉 Rr
./q[ρ ]

where path formulae ψ and reward formulae ρ are defined in identical fashion to the
PRISM logic in Defn. 3.3, C⊆Π is a coalition of players, a∈AP, ./∈{<,6,>,>},
p ∈ [0,1], r is a reward structure and q ∈ R>0.

Intuitively, the formulae 〈〈C〉〉 P./p[ψ ] and 〈〈C〉〉 Rr
./q[ρ ] mean that it is possible

for the players in C to collectively ensure that P./p[ψ ] or Rr
./q[ρ ], respectively, is

satisfied, no matter what the other players of the game decide to do. We can also
adapt these to numerical queries, writing for example 〈〈C〉〉 Pmax=?[ψ ] to represent
the maximum probability of ψ that the players in C can ensure, regardless of the
choices of the other players of the game.

In order to formalise the semantics of RPATL*, we define coalition games.

Definition 3.13 (Coalition game). Given an SMG G=(Π ,S,(Si)i∈Π , s̄,A,δ ,L) and
coalition of players C ⊆ Π , the coalition game of G induced by C is the stochas-
tic two-player game GC=({1,2},S,(S′1,S′2), s̄,A,δ ,L) where S′1 = ∪i∈C Si and S′2 =
∪i∈Π\C Si.

Definition 3.14 (RPATL* semantics). For an SMG G=(Π ,S,(Si)i∈Π , s̄,A,δ ,L)
and reward structure r = (rS,rA) for G, the satisfaction relation |= is defined as
in Defn. 3.9 except that, for any state s ∈ S:

G,s |=〈〈C〉〉 P./p[ψ ] ⇔ there exists σ1 ∈ Σ 1
GC

such that, for any σ2 ∈ Σ 2
GC

,

we have Prσ1,σ2
GC ,s
{π ∈ IPathsGC(s) | G,π |=ψ} ./ p

G,s |=〈〈C〉〉 Rr
./q[ρ ] ⇔ there exists σ1 ∈ Σ 1

GC
such that, for any σ2 ∈ Σ 2

GC
,

we have Eσ1,σ2
GC ,s

(rewr(ρ)) ./ q

where GC=(S,(S′1,S
′
2), s̄,A,δ ,L) is the coalition game of G induced by C.

As can be seen in Defn. 3.14, model checking of RPATL* reduces to the analysis
of stochastic two-player games. The exact complexity of analysing such games is a
long-standing open problem [31], but key properties such as reachability probabil-
ities and expected cumulated rewards can be efficiently approximated using meth-
ods such as value iteration [32]. The overall model checking problem can be per-
formed in a similar manner to the algorithms described for model checking MDPs
described in Sect. 3.2.2. For further details, see [28]. SMG model checking has
been applied to case studies across a number of application domains, including au-
tonomous transport, security protocols and energy management systems. See, for
example, [28, 111, 116] for details.

2 Strictly speaking, the definition of reward operators differs in [28].
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3.2.4 Tool Support

There are several software tools available for probabilistic model checking. One
of the most widely used of these is PRISM [80], which incorporates the majority
of the techniques covered in this chapter. In particular, it supports model check-
ing of DTMCs and MDPs, as described above, as well as probabilistic automata,
continuous-time Markov chains and probabilistic timed automata, which are dis-
cussed in later sections. PRISM-games [86] is an extension of PRISM for the
verification of SMGs. Another widely used tool is MRMC [73], which can be
used to analyse Markov chains and Markov reward models, and also has support
for continuous-time MDPs (a model combining nondeterministic, probabilistic and
real-time features, see Sect. 3.5). Other general purpose probabilistic model check-
ing tools include the Modest Toolset [61], iscasMc [55] and PAT [104]. More spe-
cialised tools, focusing on techniques such as parametric model checking or abstrac-
tion refinement, are mentioned in the corresponding sections of this chapter. A more
extensive list of available tools is maintained at [117].

3.3 Controller Synthesis

In this section, we describe a technique that is closely related to probabilistic model
checking: controller synthesis. For probabilistic models that include nondetermin-
ism, such as MDPs and SMGs, there are two, dual ways that we can reason about
them. First, as done in the earlier sections of this chapter, we can verify that the
model satisfies some formally specified property for all possible resolutions of non-
determinism. Secondly, we can synthesise a controller (i.e., a means of resolving the
nondeterminism) under which a formally specified property is guaranteed to hold.

In this section, we describe controller synthesis techniques applied to MDPs. For
SMGs, model checking of the logic RPATL*, discussed earlier, provides a good ba-
sis for controller synthesis in the context of multiple agents. Later, in Sect. 3.5, we
will illustrate controller synthesis for real-time probabilistic systems using proba-
bilistic timed automata.

3.3.1 Controller Synthesis for MDPs

To apply controller synthesis to a system modelled as an MDP, we use strategy
synthesis, which generates a strategy under which a particular formally-specified
property is guaranteed to be true. We focus on a subset of the PRISM logic from
Defn. 3.3 comprising a single instance of a P./p[ · ] or Rr

./q[ · ] operator. In particular,
further instances of these operators are not allowed to be nested within path formulae
or reward formulae (these cases are known to be more challenging [13, 23]).
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A formal definition of strategy synthesis is given below. For this, we use a slightly
different form of the satisfaction relation |=, where we write M,σ ,s |= φ to state that
property φ is satisfied by MDP M under the strategy σ (which is essentially the same
as the satisfaction of φ under the induced DTMC Mσ ).

Definition 3.15 (Strategy synthesis). The strategy synthesis problem is: given an
MDP M with initial state s̄ and a formula φ of the form P./p[ψ ] or Rr

./q[ρ ] (see
Defn. 3.3), find, if it exists, a strategy σ∗ ∈ ΣM such that M,σ∗, s̄ |= φ .

Like for probabilistic model checking of MDPs, as discussed in Sect. 3.2.2, the
problem of strategy synthesis for a P./p[ψ ] or Rr

./q[ρ ] operator can be solved by
computing an optimal value (i.e., minimum or maximum value) for ψ or ρ . For
example, when attempting to synthesise a strategy for φ = P6p[ψ ], we can compute
Prmin

M,s̄(ψ). Then, there exists a strategy σ∗ satisfying φ if and only if Prmin
M,s̄(ψ)6p,

in which case we can take σ∗ to be a corresponding optimal strategy, i.e., one that
achieves the optimal value Prmin

M,s̄(ψ). So, in general, rather than fixing a specific
bound p, we can just use a numerical query such as Pmin=?[ψ ] to specify a strategy
synthesis problem, and directly compute an optimal value and strategy for it.

We already sketched the techniques required to compute optimal values for such
properties of MDPs in Sect. 3.2.2. In the sections below, we recap the required com-
putations, additionally discussing which classes of strategies need to be considered
for optimality (i.e., the smallest class of strategies guaranteed to contain an optimal
one) and the methods required to generate them.

3.3.1.1 Probabilistic Reachability

For probabilistic reachability queries Pmin=?[F a ] or Pmax=?[F a ], memoryless de-
terministic strategies achieve optimal values, and so this class of strategy suffices
for strategy synthesis. Determining optimal probability values requires an analysis
of the underlying graph structure of the MDP, followed by a numerical computation
phase using, for example, linear programming, policy iteration or value iteration.

The construction of an optimal strategy σ∗ then depends on the method used in
the numerical computation phase. Policy iteration is the most direct as an optimal
strategy is constructed as part of the algorithm. For the remaining methods, the opti-
mal strategy corresponds to selecting locally optimal actions in each state, although
maximum probabilities require care.

In the case of a bounded reachability query Pmin=?[F
6k a ] or Pmax=?[F

6k a ],
memoryless strategies do not achieve optimal values and instead we need to con-
sider the larger class of finite-memory deterministic strategies. Strategy synthesis
and the computation of optimal reachability probabilities for step-bounded reacha-
bility corresponds to working backwards through the MDP and determining, at each
step, the actions that yields optimal probabilities in each state.

Example 4. We now return to the MDP M from Fig. 3.4 and synthesise a strategy for
the numerical probabilistic reachability query Pmax=?[F goal1 ]. Therefore, we first
compute the optimal value Prmax

M,s0
(F goal1), which we find equals 0.5. Synthesising
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Fig. 3.5 Running example: an MDP M representing a robot moving about a 3×2 grid.

an optimal strategy, we find the memoryless deterministic strategy (see Fig. 3.5) that
selects east in s0, south in s1 and east in s4 (there is no choice needed in s2 or s3,
and the choice in s5 is not relevant as the target goal1 has been reached).

Next, consider the bounded probabilistic reachability query Pmax=?[F
6k goal2 ].

We find that the maximum probability equals 0.8, 0.96 and 0.99 for k = 1,2 and
3, respectively. In the case where k=3, the synthesised strategy is deterministic and
finite-memory. In particular the strategy, when arriving in state s4, after 1 step, se-
lects east (since goal2 is reached with probability 0.9). On the other hand, arriving
in state s4 after 2 steps, the strategy selects west (since otherwise goal2 cannot be
reached within k−2=1 steps). �

3.3.1.2 Reward Properties

Strategy synthesis for a numerical reward query Rr
min=?[ρ ] or Rr

max=?[ρ ] is similar
to probabilistic reachability queries. In the case of reachability rewards, i.e. when ρ

is of the form F a, as for unbounded probabilistic reachability, first there is a pre-
computation phase (identifying the states for which the expected reward is infinite),
and then a numerical computation phase using methods such as value iteration, pol-
icy iteration or linear programming. As for unbounded probabilistic reachability, it
is sufficient to consider the class of memoryless and deterministic strategies. For
unbounded cumulative rewards, i.e. when ρ is of the form C, one must additionally
identify the maximal end components containing non-zero rewards.

For bounded cumulative rewards (ρ = C6k) and instantaneous rewards (ρ = I=k)
the situation is the same as for bounded probabilistic reachability: the class of de-
terministic finite-memory strategies are required and a strategy can be synthesised
by stepping backwards through the MDP.

Example 5. Returning to our running example we consider strategy synthesis for
the query Rmoves

min=?[F goal2 ] where the reward structure moves returns 1 for all state-
action pairs and all state rewards are zero. This will therefore return a strategy that
minimises the expected number of moves that the robot needs to make to reach a
state satisfying goal2. We find that the minimum expected number of steps equals 19

15
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and the synthesised memoryless deterministic strategy (not represented in the figure)
chooses the actions south, east, west and north in s0, s1, s4 and s5 respectively. �

3.3.1.3 LTL Properties

We now consider strategy synthesis for a numerical query of the form Pmin=?[ψ ]
or Pmax=?[ψ ] where ψ is an LTL formula. For a given MDP M, the problem can
be reduced to the strategy synthesis of a reachability query (see Sect. 3.3.1.1) on
the product of M and a deterministic Rabin automaton (DRA) representing ψ [36].
Since for any strategy σ we have:

Prσ

M,s̄(ψ) = 1−Prσ

M,s̄(¬ψ)

the problem of finding a minimum probability and strategy for achieving this value
can be reduced to finding the maximum probability and corresponding strategy by
considering the negated LTL formula. Hence, for the remainder of this section we
restrict our attention to the case of maximum numerical queries.

For any LTL formula ψ using atomic propositions from AP, we can construct a
DRA Aψ with alphabet 2AP that represents it [109, 33]. More precisely, we have that
an infinite path ω = s0

a0−→s1
a1−→s2 · · · of M satisfies ψ if and only if the infinite word

L(s0)L(s1)L(s2) . . . is in the language of Aψ . To perform strategy synthesis, we pro-
ceed by constructing the product MDP, denoted M⊗Aψ , of M and Aψ . Next we find
the maximal end components of this MDP which meet the acceptance conditions of
Aψ and label the states of these components with the atomic proposition acc. This
then reduces the problem to a maximum probabilistic reachability query since:

Prmax
M,s̄ (ψ) = Prmax

M⊗Aψ ,(s̄,q̄)(F acc) .

We can now follow the approach described in Sect. 3.3.1.1 to synthesise a memory-
less deterministic strategy for M⊗Aψ which maximises the probability of reaching
accepting end components (and then stays in those end components, visiting each
state infinitely often). This strategy can then be used to construct an optimal finite-
memory deterministic strategy of M for the query Pmax=?[ψ ].

Example 6. Returning again to the running example of a robot (Fig. 3.4), we con-
sider synthesising a strategy for the query Pmax=?[ (G ¬hazard)∧ (G F goal1) ]. This
corresponds to finding a strategy which maximises the probability of avoiding a
hazard-labelled state and visiting a goal1 state infinitely often. We find that the max-
imum probability equals 0.1 and that, in this case, a memoryless strategy suffices for
achieving optimality. The synthesised strategy selects south in state s0, which leads
to state s4 with probability 0.1. We then remain in states s4 and s5 indefinitely by
choosing actions east and west, respectively. �
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3.3.2 Multi-objective Controller Synthesis

We now extend the synthesis problem to multi-objective queries, this concerns find-
ing a strategy σ that simultaneously satisfies multiple quantitative properties. We
first describe the case for LTL properties and then outline how this can be extended.

Definition 3.16 (Multi-objective probabilistic LTL). A multi-objective probabilis-
tic LTL property is a conjunction φ = P./1p1 [ψ1 ]∧ . . .∧P./npn [ψn ] where ψ1, . . .ψn
are LTL formulae and, for 16i6n, ./i∈{<,6,>,>} and pi ∈ [0,1]. For MDP M
and strategy σ , we have M,σ , s̄ |=φ if M,σ , s̄ |=P./ipi [ψi ] for all 16i6n.

The first algorithm for multi-objective probabilistic LTL strategy synthesis was pre-
sented in [42]. Here we outline an adapted version of this, based on [45], which
uses DRAs. The overall approach is similar to standard (single-objective) LTL strat-
egy synthesis in that it constructs a product automaton and reduces the problem to
(multi-objective) reachability.

First, for each 16i6n, we can ensure that ./i is a lower bound (> or >) in each
formula P./ipi [ψi ] by negating the formulae ψi where necessary. The next step is to
build a DRA Aψi to represent each LTL formula. Using these automata we then build
the product MDP M′ =M⊗Aψ1⊗·· ·⊗Aψn . For each combination X ⊆ {1, . . . ,n} of
objectives we find the end components of M′ that are accepting for each of the DRAs
in the set {Ai | i ∈ X}. A special sink state for X is then added to the product MDP
M′ for X where for 16i6n we label this sink with acci if and only if i ∈ X and we
add transitions from states in the end components found to this sink state. After we
have added these components, the problem on M reduces to a multi-objective prob-
abilistic reachability problem on M′ of the form P./1p1 [F acc1 ]∧ . . .∧P./npn [F accn ]
which can be solved through a linear programming (LP) problem [42], or a value
iteration based solution method [46].

The class of strategies required for multi-objective probabilistic LTL is finite-
memory and randomised. A memoryless randomised strategy for the product au-
tomaton M′ can be obtained, for example, directly from the solution of the LP prob-
lem and then, similarly to LTL objectives (in Sect. 3.3.1.3), we can convert this to a
finite-memory, randomised strategy for M.

We now summarise several useful extensions and improvements. For details of the
algorithms and any restrictions or assumptions that are required see the relevant
references.

Boolean combinations of LTL objectives. The approach can be extended to gen-
eral Boolean combinations of formulae, rather than just conjunctions as presented
in Defn. 3.16. This is achieved by translating into disjunctive normal form [42, 45].

Expected reward objectives. One can allow unbounded cumulative reward for-
mulae in addition to LTL formulae. The method outlined above has been extended
in [45] to include such reward formulae. In addition, an alternative approach, using
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Fig. 3.6 Pareto curve (dashed line) for maximisation of the probabilities of LTL formulae ψ1 =
G ¬hazard and ψ2 = G F goal1 (see Example 7).

value iteration, presented in [46], allows bounded cumulative reward formulae. This
approach has also been shown to provide significant efficiency gains in practice.

Numerical multi-objective queries. One can again consider numerical queries
which return optimal values rather than true or false. For example, rather than
synthesising a strategy satisfying P./1p1 [ψ1 ] ∧ P./2p2 [ψ2 ], we can instead find a
strategy that maximises the probability of satisfying the path formula ψ1, whilst
simultaneously satisfying P./2p2 [ψ2 ]. The method outlined above using linear pro-
gramming is easily extended to handle such numerical queries through the addition
of an objective function.

Pareto queries. To analyse the trade-off between multiple objectives we can con-
struct the corresponding Pareto curve or an approximation of it [46]. For example,
suppose we are interested in maximising the probabilities of two LTL formulae ψ1
and ψ2 for the MDP M, then the Pareto curve consists of the bounds (p1, p2)∈ [0,1]2
such that:

• there exists a strategy σ such that Prσ

M,s̄(ψ1)>p1 and Prσ

M,s̄(ψ2)>p2;
• if either bound p1 or p2 is increased, no strategy σ exists satisfying Prσ

M,s̄(ψ1)>p1

and Prσ

M,s̄(ψ2)>p2 without decreasing the other bound.

Example 7. We return again to the robot example presented in Fig. 3.4. Recall that,
in Example 6, we considered the numerical query Pmax=?[ (G ¬hazard)∧ (G F goal1) ]
and found that the optimal probability was 0.1. Instead here we consider each
conjunct of the LTL formula as a separate objective and, to ease notation, let
ψ1 = G ¬hazard and ψ2 = G F goal1.

Consider the numerical multi-objective query that maximises the probability of
satisfying ψ2 whilst satisfying P>0.7[ψ1 ]. We find that the optimal value, i.e. the
maximum probability for satisfying ψ2, equals 41

180 ≈ 0.2278. The corresponding
strategy is randomised and, in state s0, chooses east with probability approximately
0.3226 and south with probability approximately 0.6774.

Finally, the Pareto curve for maximising the probabilities of the LTL formulae
ψ1 and ψ2 is presented in Fig. 3.6. The dashed line in the figure form the Pareto
curve, while the grey shaded area below shows all points (x,y) for which there is a
strategy satisfying P>x[ψ1 ]∧P>y[ψ2 ]. �
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3.4 Modelling and Verification of Large Probabilistic Systems

In practice, models of real-life systems are often large and complex, and their state
space has a tendency to grow exponentially with the size of the system itself, a
phenomenon known as the state space explosion problem.

In this section, we discuss some approaches that facilitate both the modelling and
verification of large complex probabilistic systems. We first describe higher level
modelling of systems comprising multiple components using the notion of paral-
lel composition. Then we describe verification techniques designed to scale up to
large, complex systems. Many such approaches exist; examples include symbolic
model checking [12, 95], partial order reduction [50], symmetry reduction [77, 39],
and bisimulation minimisation [72]. In this presentation, we focus on two particu-
lar methods: compositional verification, using an assume-guarantee framework, and
abstraction refinement. We conclude the section with a case study that illustrates
both of these techniques.

3.4.1 Compositional Modelling of Probabilistic Systems

Complex system designs usually comprise multiple components operating in paral-
lel. For such a system, if there is probabilistic behaviour present in the system, then
an MDP is the natural mathematical model for the system as nondeterminism can
be used to represent the concurrency between the components. However, for com-
positional modelling and analysis, probabilistic automata (PAs) [101, 102], a minor
generalisation of MDPs, are a more suitable formalism. The key difference is that
states of a PA can have more than one transition labelled by the same action.

Definition 3.17 (Probabilistic automaton). A probabilistic automaton (PA) is a
tuple M=(S, s̄,A,δ ,L), where:

• S is a finite set of states;
• s̄ ∈ S is an initial state;
• A is a finite alphabet;
• δ ⊆ S×(A∪{τ})×Dist(S) is a finite probabilistic transition relation;
• L : S→ 2AP is a state labelling function.

The difference from Defn. 3.5 is that we now have a transition relation as opposed
to a transition function and allow transitions to be labelled with the silent action τ ,
representing transitions that are internal to the component being represented.

The notions basic for MDPs presented in Sect. 3.2.2, such as paths and strategies,
carry over straightforwardly to PAs. Reward structures for PAs can be defined in ex-
actly the same way as for MDPs (see Defn. 3.6), although here a strategy chooses a
particular transition (element of δ ) as opposed to an action in a state. The semantics
of the PRISM logic (see Defn. 3.3) and corresponding model checking algorithm
presented in Sect. 3.2.2 for MDPs also carry over to PAs.

We next describe parallel composition of PAs, first introduced in [101, 102].
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Definition 3.18 (Parallel composition of PAs). If Mi=(Si, s̄i,Ai,δi,Li) are PAs for
i=1,2, then their parallel composition M1‖M2=(S1×S2,(s̄1, s̄2),A1∪A2,δ ,L) is the
PA where ((s1,s2),a,µ) ∈ δ if and only if one of the following holds:

• a ∈ A1∩A2, µ = µ1×µ2, (s1,a,µ1) ∈ δ1 and (s2,a,µ2) ∈ δ2;
• a ∈ A1\A2, µ = µ1×ηs2 and (s1,a,µ1) ∈ δ1;
• a ∈ A2\A1, µ = ηs1×µ2 and (s2,a,µ2) ∈ δ2;

and L((s1,s2)) = L1(s1)∪L2(s2).

The above definition allows several components to synchronise over the same ac-
tion, so called multi-way synchronisation, as used by the process algebra CSP [100].
It also assumes that the components M1 and M2 synchronise over their common ac-
tions A1∩A2. Defn. 3.18 can easily be adapted to use other definitions of synchroni-
sation, such as the two-way synchronisation used by the process algebra CCS [89],
or to incorporate additional process algebraic operators for hiding or renaming ac-
tions.

Below, we demonstrate how a reward structure for a system can be constructed
from the reward structures of its components. In this definition we have used addi-
tion as this is used in later case studies, however we can easily use other arithmetic
operations depending on the quantities that the reward structure represents.

Definition 3.19. If Mi=(Si, s̄i,Ai,δi,Li) are PAs with reward structures ri=(rSi ,rAi)
for i=1,2, then the composed reward structure r=(rS,rA) for M1‖M2 is such that
for any (s1,s2) ∈ S1×S2 and a ∈ A1∪A2:

rS((s1,s2)) = rS1(s1)+rS2(s2)

rA((s1,s2),a) =

 rA1(s1,a)+rA2(s2,a) if a ∈ A1∩A2
rA1(s1,a) if a ∈ A1\A2
rA2(s2,a) if a ∈ A2\A1.

3.4.2 Compositional Probabilistic Model Checking

We now describe an approach for compositional verification of probabilistic au-
tomata presented in [81], based on the popular assume-guarantee paradigm. This
allows the verification of complex system to be performed through the analysis of
individual components of the system in isolation, rather than verifying the much
larger complete system. We begin by defining the underlying concepts and then il-
lustrate two of the assume-guarantee proof rules.

The approach is based on the use of linear-time, action-based properties Ψ ,
which are defined in terms of the actions that label the transitions of a probabilistic
automaton (or MDP). This is in contrast to the properties discussed elsewhere in
this chapter, which are defined in terms of the atomic propositions that label states.3

3 In fact, state and action-labelled variants of temporal logics are equally expressive [91].
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More precisely, a property Ψ represents a set of infinite words over the set A of
action labels of a probabilistic automaton M. An infinite path ω of M satisfies Ψ ,
written M,ω |=Ψ , if the trace of π (the sequence of actions labelling its transitions,
ignoring silent τ actions) is in the set of infinite words defining Ψ . Then, following
the same style as the other property specifications introduced earlier, the property
P./p[Ψ ] states that, for all strategies of the probabilistic automaton M, the probabil-
ity of a path satisfying Ψ is within the interval given by ./ p.

We focus our attention here on compositional verification of a class of linear-time
action-based properties called regular safety properties.

Definition 3.20 (Regular safety property). A safety property ΨP represents a set of
infinite words over an alphabet α which is characterised by a set of ‘bad prefixes’:
finite words of which any extension is not in the set. A regular safety property is a
safety property whose set of bad prefixes can be represented as a regular language.

Probabilistic safety properties are of the form P>p[ΨP ], where ΨP is a regular safety
property. These can be used to capture a variety of useful properties of probabilistic
models, including:

• the probability of no failures occurring is at least 0.99;
• event a always occurs before event b with probability at least 0.75;
• the probability of completing a task within k steps is at least 0.9.

A technical requirement of the compositional verification approach described here
is the use of partial strategies, which can opt to (with some probability) take none
of the available actions and remain in the current state. In [81] it is shown that by
considering only fair strategies, that is the strategies that choose an action from each
component of the system infinitely often, this requirement can be removed. We first
define the alphabet extension of a PA.

Definition 3.21 (Alphabet extension of PA). For a PA M=(S, s̄,A,δ ,L) and set
of actions α , we extend M’s alphabet to α , denoted by the PA M[α], as follows:
M[α]=(S, s̄,A∪α,δ ′,L) where δ ′=δ∪{(s,a,ηs) | s∈S∧a∈α\A}.
The approach uses probabilistic assume-guarantee triples. These take the form
〈P>pA [ΨA]〉M〈P>pG [ΨG]〉whereΨA,ΨG are regular safety properties (see Defn. 3.20)
and M is a PA. Informally, the triple means: ‘whenever M is part of a system sat-
isfying ΨA with probability at least pA, the system satisfies ΨG with probability at
least pG’. Formally, we have the following definition.

Definition 3.22 (Probabilistic assume-guarantee triple). If ΨA,ΨG are regular
safety properties, pA, pG ∈ [0,1] bounds, M=(S, s̄,A,δ ,L) is a PA and αG ⊆ αA∪A,
then 〈P>pA [ΨA]〉M〈P>pG [ΨG]〉 is a probabilistic assume-guarantee triple, meaning:

∀σ∈ΣM[αA]
.
(
M[αA],σ , s̄ |=P>pA [ΨA]→M[αA],σ , s̄ |=P>pG [ΨG]

)
.

The use of M[αA], i.e. M extended to the alphabet of ΨA, in the above is needed
to allow the assumption to refer to actions not used in M. Verifying that a triple
〈P>pA [ΨA]〉M〈P>pG [ΨG]〉 holds requires the use of multi-objective model checking,
as discussed in Sect. 3.3.2, as the following proposition demonstrates.
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Proposition 3.1 ([81]). If ΨA,ΨG are regular safety properties, pA, pG ∈ [0,1] and
M is a PA, then 〈P>pA [ΨA]〉M〈P>pG [ΨG]〉 if and only if

¬∃σ∈M[αA] .
(
M[αA],σ , s̄ |=P>pA [ΨA]∧M[αA],σ , s̄ 6|=P>pG [ΨG]

)
.

Based on the definitions given above, [81] presents the following asymmetric
assume-guarantee proof rule for a two component system M1‖M2.

Proposition 3.2 ([81]). If ΨA,ΨG are regular safety properties, pA, pG ∈ [0,1] and
M1,M2 are PAs such that αA ⊆ A1 and αG ⊆ A2∪αA, then the following proof rule
holds:

M1, s̄1 |=P>pA [ΨA]

〈P>pA [ΨA]〉M2 〈P>pG [ΨG]〉

M1 ‖M2,(s̄1, s̄2) |=P>pG [ΨG]

(ASYM)

Proposition 3.2 presents a method to verify the property P>pG [ΨG] on M1‖M2 in
a compositional fashion. More precisely, verification reduces to two sub-problems,
one for each premise of the rule:

1. computing the optimal probability of a regular safety property on M1;
2. performing multi-objective model checking on M2[αA].

A limitation of the above rule is the fact it is asymmetric: we analyse the component
M2 using an assumption about the component M1, but when verifying M1 we cannot
make any assumptions about M2. Below, we give a proof rule which does allow the
use of additional assumptions in this way.

Proposition 3.3 ([81]). If ΨA1
,ΨA2

,ΨG are regular safety properties, pA1
, pA2

, pG ∈
[0,1] and M1,M2 are PAs such that αA2

⊆ A2, αA1
⊆ A2∪αA2

and αG ⊆ A1∪αA1
,

then the following proof rule holds:

M2, s̄2 |=P>pA2
[ΨA2

]

〈P>pA2
[ΨA2

]〉M1 〈P>pA1
[ΨA1

]〉
〈P>pA1

[ΨA1
]〉M2 〈P>pG [ΨG]〉

M1 ‖M2,(s̄1, s̄2) |=P>pG [ΨG]

(CIRC)

For further details of the assume-guarantee proof rules, including extensions to al-
low both ω-regular properties and reward-based properties, see [81].

3.4.3 Quantitative Abstraction Refinement

An alternative way to verify large, complex systems is using abstraction-refinement
techniques, which have been established as one of the most effective ways of per-
forming non-probabilistic model checking on complex systems [30]. The basic idea
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is to build a small abstract model, by removing details of the complex concrete sys-
tem which are not relevant to the property of interest, which is consequently easier
to analyse. The abstract model is constructed in such a way that, when the property
of interest is verified true for the abstraction, the property also holds for the con-
crete system. On the other hand, if the property does not hold for the abstraction,
then information from the model checking process (typically a counterexample) is
used either to show that the property is false in the concrete system or to refine the
abstraction. This process forms the basis of a loop which refines the abstraction until
the property is shown either to be true or false in the concrete system.

In the case of probabilistic model checking a number of abstraction-refinement
approaches exist. D’Argenio et al. [34] introduce an approach for verifying reach-
ability properties of PAs based on probabilistic simulation [101] and implement
a corresponding tool RAPTURE [66]. Properties are analysed on abstractions ob-
tained through successive refinements, starting from a coarse partition derived from
the property under study. This approach only produces lower (upper) bounds for
the minimum (maximum) reachability probabilities. Based on [34] and using pred-
icate abstraction [48], an abstraction-refinement framework for PAs is developed
in [110, 63] and implemented in the PASS tool [53]. The framework is used for ver-
ifying or refuting properties of the form ‘the maximum probability of error is at most
p’ for a given probability threshold p. Since abstractions produce only upper bounds
on maximum probabilities, to refute a property, probabilistic counterexamples [58]
(comprising multiple paths whose combined probability exceeds p) are generated.
If these paths are spurious, then they are used to generate further predicates using
interpolation.

An alternative framework is presented in [75] where the key idea is to maintain
a distinction between the nondeterminism from the original PA and the nondeter-
minism introduced during the abstraction process. To achieve this, abstractions of
PAs are modelled as stochastic two player games (see Sect. 3.2.3), where the two
players correspond to the two different forms of nondeterminism. Analysis of these
abstract models results in a separate lower and upper bound for the property of inter-
est (e.g. an optimal reachability probability or expected reward value). These bounds
both provide quantitative measure of the quality (or preciseness) of the abstraction
and an indication of how to improve it. The abstraction-refinement framework is
presented in Fig. 3.7. The framework starts with a simple, coarse abstraction (i.e.
partition of the state space) and then refines the abstraction until the difference be-
tween the bounds is below some threshold value ε . Two methods for automatically
refining abstractions are considered. The first is based on the difference between
specific strategies that achieve the lower and upper bounds. The second method dif-
fers by considering all the strategies that achieve the bounds. In [74] and [79], this
game-based abstraction and refinement framework has been used to develop veri-
fication techniques for probabilistic software and probabilistic timed automata (see
Sect. 3.5.1), respectively.
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Fig. 3.7 Quantitative abstraction-refinement framework for PAs [75].

3.4.4 Case Study: The Zeroconf Protocol

This case study concerns the ZeroConf dynamic configuration protocol for IPv4
link-local addresses [29] used to enable devices to connect to a local network. The
protocol is a distributed ‘plug-and-play’ solution to IP address configuration. This
case study was originally introduced and analysed using probabilistic model check-
ing in [82]. The compositional approach present in Sect. 3.4.2 and abstraction-
refinement framework present in Sect. 3.4.3 have since been used to analyse this
model in [81] and [75], respectively.

The protocol is used to configure an IP address for a device when it first joins a
local network. This address is then used for the communication between the device
and others within the network. When connecting to the network, a device first ran-
domly selects an address from the 65,024 possible local IP addresses. The device
then waits a random time of between 0 and 2 seconds before sending a number of
probes including the chosen address over 4 second intervals. These probes are sent
all of the other hosts of the network and are used to check whether any other device
is using the chosen address. If the original device gets a message back saying the
address is already in use it will restart the protocol by reconfiguring. If the host re-
peats this process 10 times, it ‘backs off’ and remains idle for at least one minute.
If the host does not get a reply to any of the probes it commences to use the chosen
IP address. We assume that messages can also get lost with a fixed probability.

The model of this system studied in [81] consists of the parallel composition of
two PAs: one automaton representing a new device joining the local network and the
other representing the environment, i.e. the existing network including the devices
present in the network. Using the composition approach, [81] analysed the following
properties:

• the minimum probability that the new host employs a fresh IP address;
• the minimum probability that the new host is configured by time T ;
• the minimum probability that the protocol terminates;
• the minimum and maximum expected time for the protocol to terminate.

The first two can be expressed using regular safety properties and were verified com-
positionally by applying the rules presented in Proposition 3.2 and Proposition 3.3.
In the case of the final two properties extensions of the rules to LTL and reward
properties were used.
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(b) N=8 and M=64

Fig. 3.8 Zeroconf case study: maximum probability device not configured successfully by T [75]

The case study developed in [75] using the game based abstraction-refinement
described in Sect. 3.4.3 also considers a new device joining a network. The net-
work consists of N devices and there are M available addresses. The model is the
parallel composition of 2·N+1 component PAs: the device joining the network and
N pairs of channels for the two-way communication between the new device and
each of the configured devices. Fig. 3.8 presents, for a fixed abstraction, the upper
and lower bounds obtained when calculating the maximum probability that the new
device has not configured successfully by time T . The figure also includes the re-
sults obtained when model checking the concrete system. The graphs demonstrate
how the differences between the lower and upper bounds can be used to quantify the
utility of the abstraction. For the fixed abstraction, the number of states in the ab-
straction is independent of M and equals 881, on the other hand, the concrete system
has 432,185 states when M=32 and 838,905 states when M=64.

3.5 Real-Time Probabilistic Model Checking

So far, we have seen discrete-time models which exhibit just probabilistic behaviour
(DTMCs) or both probabilistic and nondeterministic behaviour (MDPs and SMGs).
However it is also often important to model the real-time characteristics and the in-
terplay between the different types of behaviour. Relevant application areas range
from wireless communication, automotive networks to security protocols. We will
first give an overview of probabilistic timed automata, a formalism that allows for
the modelling of systems exhibiting nondeterministic, probabilistic and real-time
behaviour and a case study using this formalism. The final part of this section con-
cerns continuous-time Markov chains, which are also suitable for modelling systems
with probabilistic and real-time characteristics.
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3.5.1 Probabilistic Timed Automata

Probabilistic timed automata (PTAs) [68, 84, 17] extend classical timed automata [5]
with discrete probabilistic choice. Real-time behaviour is modelled through clocks
which are variables whose values range over the non-negative reals and increase at
the same rate as time. For the remainder of this section we assume a finite set of
clocks X . Before we give the formal definition of PTAs we require the following
notation and definitions relating to clocks.

A function v : X → R>0 is called a clock valuation and we denote the set of all
clock valuations by RX

>0. For a clock valuation v ∈ RX
>0, real-time delay t ∈ R>0

and set of clocks X ⊆X , we use v+t to denote the clock valuation obtained from v
by incrementing all clock values by t and v[X :=0] for the clock valuation obtained
from v by resetting the clocks in X to 0. We let 0 denote the clock valuation that
assigns 0 to all clocks in X . We define the set of clock constraints over X , denoted
CC(X ), by the syntax:

ζ ::= true | x6 d | c6 x | x+c6 y+d | ¬ζ | ζ ∧ζ

where x,y ∈ X and c,d ∈ N. A clock valuation v satisfies a clock constraint ζ ,
denoted v |= ζ , if the constraint ζ resolves to true after substituting the occurrences
of each clock x with v(x).

Definition 3.23 (PTA syntax). A probabilistic timed automaton (PTA) is a tuple of
the form P=(L, l,X ,Act, inv,enab,prob,LP) where:

• L is a finite set of locations and l ∈ L is an initial location;
• X is a finite set of clocks;
• Act is a finite set of actions;
• inv : L→ CC(X ) is an invariant condition;
• enab : L×Act→ CC(X ) is an enabling condition;
• prob : L×Act→ Dist(2X ×L) is a (partial) probabilistic transition function;
• LP : L→ 2AP is a labelling function.

A state of a PTA is a pair (l,v)∈ L×RX
>0 such that v |= inv(l). In any state (l,v), there

is a nondeterministic choice between either a certain amount of time elapsing, or an
action being performed. If time elapses, then the choice of time t ∈R>0 requires that
the invariant inv(l) remains continuously satisfied while time passes. The resulting
state after this transition is (l,v+t). In the case where an action is performed, an
action a can only be chosen if it is enabled, i.e., if the clock constraint enab(l,a)
is satisfied by v. Once an enabled action a is chosen, a set of clocks to reset and a
successor location are selected at random, according to the distribution prob(l,a).

Definition 3.24 (PTA semantics). Let P=(L, l,X ,Act, inv,enab,prob,LP) be a PTA.
The semantics of P is defined as the (infinite-state) MDP [[P]] = (S, s̄,A,δ ,L) where:

• S = {(l,v) ∈ L×RX
>0 | v |= inv(l)};

• s̄ = (l,0);
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Fig. 3.9 Running example: a PTA P representing a robot moving about a 3 × 2 grid.

• A = R>0∪Act;
• for any (l,v)∈ S and a∈ Act∪R>0, we have δ ((l,v),a) = λ if and only if either:

– (time transitions) a ∈ R>0, v+t ′ |= inv(l) for all 06t ′6a, and λ = η(l,v+a);
– (action transitions) a ∈ Act, v |= enab(l,a) and for each (l′,v′) ∈ S:

λ (l′,v′) = ∑
{∣∣prob(l,a)(X , l′) | X ∈ 2X ∧ v′=v[X :=0]

∣∣} ,
• for any (l,v) ∈ S we have L(l,v) = LP(l)∪{ζ | ζ ∈ CC(X )∧ v |= ζ}.

The set of atomic propositions of [[P]] is the union of the atomic propositions used
for labelling the locations L and the clock constraints obtained from the clocks X .
We now return to our running example of a robot and extend our MDP model to
exhibit real-time behaviour.

Example 8. Fig. 3.9 shows a PTA model of our robot moving through terrain that
is divided up into a 3×2 grid, extending the MDP model described in Example 3.
The PTA has two clocks x and y and each grid section is represented as a loca-
tion (with initial location l0). In each location, one or more actions from the set
Act={north,east,south,west,stuck} are again available. As before, due to the pres-
ence of obstacles, certain directions are unavailable in some states or probabilisti-
cally move the robot to an alternative state.

The invariant x64 in the locations l0, l1, l4 and l5 and the fact that the clock x is
reset on all transitions entering these locations implies that at most 4 time units can
be spent in these locations. While the inclusion of the constraint x>2 in all guards
of the transitions leaving these locations, implies that the robot must remain in these
location for at least 2 time units. In addition, the inclusion of y68 in the guards
on the transitions labelled north and south and the fact the clock y is never reset,
means that the robot can only move ‘north’ and ‘south’ during the first 8 time units
of operation. �

As for DTMCs and MDPs (see Sect. 3.2), we can define reward structures for PTAs.

Definition 3.25 (PTA reward structure). For PTA P with locations L and actions
Act, a reward structure is given by a pair r=(rL,rAct) where:
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• rL : L→ R>0 is a function assigning to each location the rate at which rewards
are accumulated as time passes in that location;

• rAct : L×Act→ R>0 is a function assigning the reward of executing each action
in each location.

The location rewards of a PTA assign the rate at which rewards are accumulated
as time passes in a state, and therefore the corresponding reward structure of the
MDP [[P]] consists of only action rewards. More precisely, in the corresponding
reward structure of [[P]] we have rA((l,v), t)=rL(l)·t and rA((l,v),a)=rAct(l,a) for
all (l,v) ∈ L×RX

>0, t ∈ R>0 and a ∈ Act. PTAs equipped with reward structures are
a probabilistic extension of linearly-priced timed automata (also known as weighted
timed automata) [19, 8]. Parallel composition (see Sect. 3.4) can also be extended
to PTAs [93] under the restriction that the sets of clocks of the component PTAs are
disjoint.

An important issue with regard to the analysis of models exhibiting real-time
behaviour is that of time divergence. More precisely, we do not consider executions
in which time does not advance beyond a certain point. These can be ignored on the
grounds that they do not correspond to actual, realisable behaviour of the system
being modelled [3, 7]. For a PTA P this corresponds to restricting the analysis of the
MDP [[P]] to the class of time-divergent (or non-Zeno) strategies (those strategies for
which the probability of time passing beyond any bound is 1). This clearly has an
impact on the complexity of any analysis. However, there are syntactic conditions,
derived from analogous results on timed automata [107, 108], which guarantee that
all strategies will be time-divergent, see [93] for further details.

The PRISM logic (see Defn. 3.3) previously used for specifying properties for
DTMCs and MDPs can also be applied to PTAs. There is one key difference since
time is now dense as opposed to discrete: the bounds appearing in formulae cor-
respond to bounds on the elapsed time as opposed to bounds on the number of
discrete steps. More precisely, path formula ψ1 U6k ψ2 holds if a state satisfying
ψ2 is reached before k time units have elapsed and, up until that point in time, ψ1
is continuously satisfied, and the reward formulae I=k and C6k represent the reward
at time instant k and the reward accumulated up until k time units have elapsed. As
the underlying semantics of a PTA is an MDP the semantics of the logic for PTAs
is as given in Defn. 3.9, modified for bounded properties due to the different inter-
pretation for PTAs given above [93]. The logic can also be extended to allow more
general timing properties through formula clocks and freeze quantifiers [84].

There are a number of different model checking approaches for PTAs which
support different classes of properties. Each is based on first constructing a finite
state MDP and then analysing this MDP (either computing the optimal probability
of a path formula or the expected value of a reward formula). Approaches for model
checking PTAs include:

• the region graph construction [84];
• the boundary region graph [70];
• the digital clocks method [82];
• forwards reachability [84];
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Fig. 3.10 Running example: Time-bounded probabilistic reachability for the PTA model of the
robot.

• backwards reachability [85];
• abstraction refinement with stochastic games [79].

For a discussion of the advantages and disadvantages of these approaches, see [93].

Example 9. For the PTA model of the robot given in Example 8 and Fig. 3.9 the
maximum probability of reaching a goal1 labelled state (Pmax=?[F goal1 ]) is now
0.4744 as opposed to 0.5 for the MDP model (see Example 3). This is due to the
fact that the north and south actions are only available during the first 8 time units
of operation and the robot must remain in the locations l0, l1, l4 and l5 for be-
tween 2 and 4 time units. The minimum expected time to reach a goal2 state equals
2.5333 and is obtained through the query Rr

min=?[F goal2 ] where the reward struc-
ture r=(rL,rAct) is such that r(l)=1 and r(l,a)=0 for for all locations l and actions
a. Finally, Fig. 3.10 plots results for the time-bounded maximum reachability prop-
erties Pmax=?[F

6k goal1 ] and Pmax=?[F
6k goal2 ] as the time bound k varies. �

Extensions to PTAs. One way of extending PTAs is to allow more general contin-
uous dynamics to model hybrid systems (see Sect. 3.7). We also mention the in-
troduction of continuously-distributed time delays, see for example [83, 2, 88] and
probabilistic timed games (see for example [70, 9]), which can build on the success
of (non-probabilistic) timed games for the analysis of synthesis problems [18].

3.5.1.1 Case Study: Processor Task Scheduling

This PTA case study is taken from [93] and is based on the task-graph scheduling
problem described in [22] using (non-probabilistic) timed automata. The case study
concerns determining optimal schedulers for either the (expected) time or energy
consumption required to compute the arithmetic expression D× (C× (A+B)) +
((A+B)+(C×D)) using two processors (P1 and P2) that have different speed and
energy requirements. Fig. 3.11 presents a task graph for computing this expression
and shows both the tasks that need to be performed (the subterms of the expression)
and the dependencies between the tasks (the order the tasks must be evaluated in).
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Fig. 3.11 Processor task scheduling problem: computing D×(C×(A+B))+((A+B)+(C×D)).

The specification of the processors, as given in [22], is as follows:

• time for addition: 2 and 5 picoseconds for processors P1 and P2;
• time for multiplication: 3 and 7 picoseconds for processors P1 and P2;
• idle energy usage: 10 and 20 Watts for processors P1 and P2;
• active energy usage: 90 and 30 Watts for processors P1 and P2.

The system is formed as the parallel composition of three PTAs - one for each pro-
cessor and one for the scheduler. In Fig. 3.12(a) we give a timed automaton repre-
senting P1. The labels p1 add and p1 mult on the transitions represent an addition
and multiplication task being scheduled on P1 respectively, while the label p1 done
indicates that the current task has been completed. The PTA includes a clock x which
is used to keep track of the time that a task has been running and is therefore reset
when a task starts and the invariants and guards correspond to the time required
to complete the tasks of addition and multiplication for P1. The reward structure
for computing the expected energy consumption associates a reward of 10 with the
stdby location and reward 90 with the locations add and mult (corresponding to the
energy usage of process P1 when idle and active respectively) and all action rewards
are 0. The PTA and reward structure for processor P2 are similar except for the
names of the labels, invariants, guards and reward values correspond to the speci-
fication of P2. After forming the parallel composition, the reward structure for the
expected energy consumption then includes the addition of the reward structures for
energy consumption of P1 and P2. The reward structure for computing the expected
time associates a reward of 1 with all locations of the composed system.

In [93] the model of [22] is extended in the following ways.

• A third processor P3 that has faulty behaviour is added to the sytem. We assume
the faulty processor consumes the same energy consumption as P2, but is faster
(addition takes 3 picoseconds and multiplication 5 picoseconds) and has proba-
bility p of failing to successfully complete a task. The PTA model of the P3 is
given in Fig. 3.12(b).

• The processors P1 and P2 are changed to have random execution times. We as-
sume that, if the original time to perform a task was t, then the time taken is now
uniformly distributed between the delays t−1, t and t+1. Fig. 3.12(c) presents
the resulting PTA model of P1.
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(b) Faulty PTA model of processor P3
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Fig. 3.12 PTAs for the task-graph scheduling case study

For each model we synthesise the optimal schedulers for both the expected time and
energy usage to complete all tasks. To achieve this we used the numerical reward
queries Rtime

min=?[F complete ] and Renergy
min=?[F complete ] with the reward structures de-

scribed above.

Basic model. For the basic (non-probabilistic) model, as proposed in [22], an op-
timal scheduler for minimising the elapsed time to complete all tasks, takes 12 pi-
coseconds to complete all tasks and schedules the tasks as follows:

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task4 task6

P2 task2

When considering the energy consumption to complete all tasks, an optimal sched-
uler makes the following choices:

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task4

P2 task2 task5 task6

The above scheduler requires 1.3200 nanojoules and 19 picoseconds to complete all
tasks. Since processor P1 consumes additional energy when active, the first sched-
uler described, optimising the time to complete all tasks, requires 1.3900 nanojoules.

Faulty processor. When adding the faulty processor P3 we find that for small values
of p (the probability of P3 failing to successfully complete a task), as P3 has better
performance than P2, both the optimal expected time and energy consumption can
be improved using P3. However, as the probability of failure increases, P3’s better
performance is outweighed by the chance of its failure and using it no longer yields
optimal values. For example, below, we give an optimal scheduler for minimising
the expected time when p=0.25 which takes 11.0625 picoseconds (the optimal ex-
pected time is 12 picoseconds when P3 is not used). The dark boxes are used to
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denote the cases when P3 is scheduled to complete a task, but experiences a fault
and does not complete the scheduled task correctly.

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task6

P2

P3 task2 task4

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task2 task4 task6

P2

P3 task2 task5

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task2 task4 task5 task6

P2

P3 task2 task5

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task4 task6

P2

P3 task2 task4

This optimal scheduler uses the processor P3 for task2 and, if this task is completed
successfully, it then uses P3 for task4. However, if the processor fails to complete
task2, P3 is instead then used for task5 with task4 being rescheduled on P1.

Random execution times. For this model the optimal expected time and energy
consumption are 12.226 picoseconds and 1.3201 nanojoules respectively. The opti-
mal schedulers change their decision based upon the delays of previously completed
tasks. For example, a scheduler that optimises the elapsed time starts by following
the choices for the optimal scheduler described for the basic model: first scheduling
task1 followed by task3 on P1 and task2 on P2. Due to the random execution times it
is now possible for task2 to complete before task3 (if the execution times for task1,
task2 and task3 are 3, 6 and 4 respectively) and in this case the optimal decision
differ from those made for the basic model. To illustrate this we give one possible
set of execution times for the tasks and a corresponding optimal scheduling.

time 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P1 task1 task3 task5 task6

P2 task2 task4

3.5.2 Continuous-time Markov Chains

Continuous-time Markov chains (CTMCs) are an alternative way to model systems
exhibiting probabilistic and real-time behaviour. This model type is very frequently
used in performance analysis and can be considered as a real-time extension of
DTMCs. While each transition between states in a DTMC corresponds to a discrete
time-step, in a CTMC transitions occur in real time.
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Definition 3.26 (Continuous-time Markov chain). A continuous-time Markov chain
(CTMC) is a tuple C=(S, s̄,R,L) where:

• S is a finite set of states;
• s̄ ∈ S is an initial state;
• R : S×S→ R>0 is a transition rate matrix;
• L : S→ 2AP is a state labelling function.

For a CTMC C=(S, s̄,R,L) and states s,s′ ∈ S, a transition can occur from s to s′ if
and only if R(s,s′)>0 and, when a transition can occur, the time until the transition is
triggered is exponentially distributed with parameter R(s,s′), i.e. the probability the
transition is triggered within t ∈ R>0 time-units equals 1− e−R(s,s′)·t . If more than
one transition can occur from a state, then the first transition triggered determines
the next state. This is known as a race condition.

Using properties of the exponential distribution, we can alternatively consider
the behaviour of the CTMC as follows: for any state s the time spent in the state is
exponentially distributed with rate E(s) def

= ∑s′∈S R(s,s′) and the probability that a
transition to state s′ is then taken equals R(s,s′)/E(s).

As for DTMCs and MDPs, an execution of a CTMC is represented as a path.
However, here, we must also consider the time at which a transition is taken. For-
mally, a path of a CTMC is a (finite or infinite) sequence π = s0t0s1t1s2t2 . . . such
that R(si,si+1)>0 and ti ∈ R>0 for all i>0. Furthermore, let time(π, i) denote the
time spent in the (i+1)th state, that is ti.

To define a probability measure over infinite paths of a CTMC, we need to ex-
tend the cylinder sets used in the probability measure construction for DTMC (see
Sect. 3.2.1) to include time intervals. More precisely, if s0, . . . ,sn is a sequence of
states such that R(si,si+1)>0 for all 06i<n and I0, . . . , In−1 are non-empty intervals
in R>0, then the cylinder set C(s0, I0, . . . , In−1,sn) is the set of infinite paths such that
π ∈ C(s0, I0, . . . , In−1,sn) if and only if π(i) = si and time(π, i) ∈ I j for all 06i6n
and 06 j<n. We can then construct a probability measure PrC,s0 over the infinite
paths of the CTMC. For further details on this construction see [14].

Reward structures can be defined for a CTMC and, as for PTAs, state rewards as-
sign the rate at which rewards are accumulated as time passes in a state. Also, as for
PTAs, when applying the PRISM logic to CTMCs, the bounds appearing in path and
reward formulae correspond to the elapsed time as opposed to the number of steps
performed. It follows that the only difference between model checking DTMCs and
CTMCs concerns the analysis of bounded properties. The standard approach for
verifying such time-bounded properties is to use uniformisation [67, 49]. For more
details on the model checking algorithms for CTMCs see, for example, [14, 78].

To express nondeterministic behaviour, CTMCs can be extended to continuous-
time Markov decision processes and related models such as interactive Markov
chains [62] and Markov automata [41]. For such models the main difference from
model checking MDPs is again when verifying bounded properties which is consid-
erable more complex in the continuous-time setting where the bounds correspond
to elapsed time as opposed to the number of discrete steps. Model checking al-
gorithms for such models have been developed, see for example [25], as well as
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temporal logics which allow specification of more expressive timing requirements;
see for example [40].

3.6 Parametric Probabilistic Model Checking

In this section, we consider another extension to the basic technique of probabilistic
model checking which provides parametric techniques for analysing models. One
or more values in definition of the model (for example, a transition probability) or in
the property to be verified (for example, a time bound) are provided as a parameter
to the verification problem, rather than being instantiated to a specific value. For
a numerical query, parametric model checking can compute a symbolic expression
for the result, as a function of the parameters, rather than a concrete value. For
Boolean-valued queries, parameter synthesis can be applied to determine the set of
all parameter values for which the model is true.

We first consider the parametric model checking of DTMC models and, follow-
ing this, consider approaches for other probabilistic models.

3.6.1 Parametric Model Checking for DTMCs

Parametric model checking of DTMCs was first proposed by Daws [35] for the logic
PCTL. The basic idea is to represent transition probabilities as rational functions and
then use a language-theoretic approach to compute the probability of reaching a set
of target states. This is done by treating the transition probabilities as letters of an
alphabet, converting the DTMC to a finite automaton over this alphabet and then
using the state elimination method to determine a rational function representing the
probability of reaching the target.

Since the approach of [35] was first presented, a variety of extensions and im-
plementations have been developed. For example, [54] builds on the basic ideas of
Daws, incorporating various optimisations and integrating bisimulation minimisa-
tion to improve efficiency. This was implemented in the tool PARAM [52] and later
also added to PRISM [80]. Since then, further improvements to parametric model
checking of DTMCs have been proposed [65], including the use of strongly con-
nected component decompositions and optimised approaches to the generation of
rational functions; these have been implemented in the PROPhESY tool [37].

Below, we explain the key definitions and illustrate the approach on some exam-
ples. We refer the reader to the references above for more details.

Definition 3.27 (Rational function). Let V={x1, . . . ,xn} be a set of real-valued
variables. A rational function f over V is a function of the form f (x1, . . . ,xn) =
g1(x1, . . . ,xn)/g2(x1, . . . ,xn) where g1 and g2 are polynomials each taking the form
∑

m
i=1 ai x1

ki,1 · · ·xn
ki,n for m ∈ N, ai ∈ R for 16i6m and ki, j ∈ N for 16i6m and

16 j6n. The set of all rational functions over variables V is denoted FV .
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Given a rational function f over the variables V , a subset V ′ ⊆V of the variables and
an evaluation u : V ′→R of V ′, we let f [V ′/u] denote the rational function obtained
from f by substituting any occurence of a variable v′ ∈ V ′ with the value u(v′). If
V ′ =V , then u is a total evaluation and f [V ′/u] is a rational constant.

Definition 3.28 (Parametric DTMC). A parametric DTMC (PDTMC) is a tuple
D=(S, s̄,P,L,V ) where the set of states S, initial state s̄ and labelling L are as for a
DTMC (see Defn. 3.1) and:

• V = {x1, . . . ,xn} is a set of real-valued variables called parameters;
• P : S×S→FV is a probabilistic transition matrix mapping each pair of states to

a rational function over the parameters.

A PDTMC retains the same basic structure as a DTMC, but transition probabilities
are expressed as functions of its parameters. Evaluations for this set of parameters
(satisfying certain conditions) then induce normal DTMCs.

Definition 3.29 (Induced DTMC). Let D=(S, s̄,P,L,V ) be a PDTMC and u :V→R
be a total evaluation of its parameters. Let Pu(s,s) : S×S→R be the matrix defined
by Pu(s,s) = P(s,s)[V/u]. We say that the evaluation u is well defined for D if
Pu(s,s′) ∈ [0,1] and ∑s′∈S Pu(s,s′) = 1 for all s,s′ ∈ S. In this case, the induced
DTMC of the evaluation u is the DTMC Du=(S, s̄,Pu,L).

Since the behaviour of a DTMC can be qualitatively different if its underlying tran-
sition graph changes, we assume that parameter evaluations u are graph preserving,
meaning that, P(s,s′)6=0 implies Pu(s,s′)>0 for all s,s′ ∈ S. The basic property of
interest for parametric DTMCs can then be defined as follows.

Definition 3.30 (Probabilistic reachability for PDTMCs). Let D=(S, s̄,P,L,V ) be
a PDTMC and a∈ AP be an atomic proposition. The probabilistic reachability prob-
lem is to find a rational function f ∈FV such that, for any well-defined and graph
preserving evaluation u : V→R for D, we have:

f [V/u] = PrDu,s̄ {π ∈ IPathsDu(s̄) | Du,π |= F a} .

Parametric probabilistic model checking of DTMCs has been applied to various
problems, including model repair [16] and sensitivity analysis [43]. Below, we il-
lustrate its usage on a simple example.

Example 10. We return to our running example, and adapt the DTMC version of
the robot navigation model presented in Example 1 (see Fig. 3.1). Fig. 3.13 (left)
shows a modified version of this model, to which we have added to parameters p
and q which occur in some of the transition probabilities. The original DTMC results
from the parameter evaluation u that chooses u(p) = 0.05 and u(q) = 0.75.

We consider the property P=?[¬goal1 U goal2], i.e., the probability of reaching
goal 2 before goal 1. Applying parametric probabilistic model checking yields the
rational function (25·p·q+40·p−10·q−24)/(40·p−34) as a result, which is plot-
ted for the valid ranges of p and q in Fig. 3.13 (right). �
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Fig. 3.13 Parametric model checking applied to an adapted version of the DTMC from Fig. 3.1.

Fig. 3.14 Parametric model checking results for the NAND case study.

Example 11. As a second example, we revisit the NAND multiplexing case study
described in Sect. 3.2.1.3. There are two parameters we consider for this case study:
err representing the probability that a NAND gate is unreliable and prob1 the prob-
ability the initial input is correct (takes the value true). In Fig. 3.14, for the case
when there are five copies of the inputs and outputs (N=5) and one restorative stage
(M=1), we have plotted the probability that the error is less than 10 percent (the first
property considered in Sect. 3.2.1.3) as the parameters err and prob1 vary. �

3.6.2 Parametric Model Checking for Other Probabilistic Models

Parametric model checking techniques have also been developed for several of the
other probabilistic models described in this chapter. For example, Hahn et al. [54]
extend the approach described above to the analysis of MDPs, where the nondeter-
ministic choices are encode as additional (binary) parameters. They found, however,
that this method was limited by the number of nondeterministic choices available in
a state and the fact that it could not be extended to nested properties.

They have since proposed an alternative method for parametric model checking
of MDPs [51]. Instead of finding a rational function corresponding to an optimal
probability or expected reward value, this approach finds parameter values for which
a given property holds (or does not hold), i.e., it solves the parameter synthesis
problem. This is achieved by repeatedly dividing the parameter space into regions
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(hyper-rectangles) until regions are found over which the property of interest holds
or does not hold. Checking this requirement over a region is performed by first
finding an optimal strategy for the ‘middle’ point of the region, using standard (non-
parametric) MDP model checking of MDPs, and then performing parametric model
checking on the induced (parametric) DTMC of this strategy over the region.

Techniques also exist for CTMCs. Parametric model checking of unbounded
properties for CTMCs can use the same methods as those developed for DTMCs.
For time-bounded properties, [59] proposes an approach which approximates the set
of parameter values for which a time-bounded probabilistic reachability property
holds, based on a discretisation of the parameter space. We also mention [24, 26],
which allows for precise parametric model checking of time bounded properties of
CTMCs. This works by iteratively dividing the parameter space into regions through
the computation of upper and lower bound approximations for the time-bounded
reachability probability of interest over the regions.

Finally, concerning PTAs, both [11] and [69] study the problem of synthesis-
ing timing constraints of a PTA to ensure the satisfaction of a given property. The
approach of [11] is based on the inverse method for parametric (non-probabilistic)
timed automata [10], while [69] extends the forwards reachability [84] and game-
based [79] approaches for model checking PTAs.

3.7 Future Challenges and Directions

This chapter has provided an overview of probabilistic model checking and surveyed
some of the significant advances that have been made in the area in recent years.
Probabilistic model checking has shown itself to be a powerful, flexible and broadly
applicable verification technique, but a number of key challenges remain and work
continues on many fronts to improve the state of the art.

As with most areas of formal verification, a recurring limitation of probabilis-
tic model checking is its scalability to large, complex systems. We have discussed
various efforts to tackle this problem in earlier sections. Another related and funda-
mental issue, which is true of any model-based analysis technique, is that the results
of verification are only as reliable as the model itself. For models with quantitative
aspects such as probability and time, which may be difficult to measure accurately,
this is particularly pertinent.

We conclude this chapter by highlighting some of the key challenges and research
directions in the area of probabilistic model checking, many of which aim to tackle
these issues.

Hybrid systems. Probabilistic model checking has many applications in the do-
main of embedded and cyber-physical systems, for example in the verification of
sensor networks or robotic applications. In this setting, the interaction of (discrete)
computerised systems with their (continuous) environment becomes a crucial issue.
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Such hybrid systems (or cyber-physical systems) raise new challenges because they
require more powerful models such as stochastic hybrid automata.

Hybrid automata allow both discrete behaviour and continuous flows defined
through differential equations, for example to model thermodynamics. The verifi-
cation of hybrid automata is in general undecidable, therefore the analysis is re-
stricted to certain subclasses and considering only approximate results. Early work
on probabilistic hybrid automata concerned decidability results for different sub-
classes [103]. Recent work [113, 56] combines abstraction approaches for non-
probabilistic hybrid automata [4, 99] with the abstraction-refinement approaches for
MDPs [34, 75] discussed in Sect. 3.4. We also mention [38], where two approxima-
tion techniques for classical hybrid automata are extended to the probabilistic case
and [47] which, using stochastic satisfiability modulo theories, presents a decision
procedure for verifying time-bounded properties.

Probabilistic software and programs. Although the modelling languages of tools
such as PRISM are sufficiently expressive for many purposes, direct support for the
probabilistic model checking of mainstream programming languages such as C or
Java or of system-level modelling languages such as SystemC will be required for
the verification of real applications. Programs in these languages yield extremely
large, or infinite state, models, which need dedicated techniques to tackle. A related
area, which has attracted interest in recent years, is the verification of probabilistic
programming languages [71], which have applications both for the specification
of randomised or probabilistic software and for the development of probabilistic
models used for inference and machine learning.

Ubiquitous computing. The vision of ubiquitous or pervasive computing sees thou-
sands of computerised devices integrating seamlessly in daily life. This emphasises
the need for techniques to ensure their correctness, but also demands the develop-
ment of new modelling formalisms and analysis techniques that can handle both the
dynamic nature and the enormous scale of these systems. One key aspect to mod-
elling ubiquitous computing devices is autonomous behaviour, as can be seen in
for example driverless cars and drone missions. In addition, we need to model the
constrained resources (often devices have limited memory and CPU processing and
are battery powered) and the fact that devices need to be adaptive as requirements
and the environment evolve.

Partial observability. In this chapter we have assumed that the state of the sys-
tem and history are fully visible to a strategy when making decisions. However, in
many situations, this is unrealistic, for example to verify that a security protocol
is functioning correctly, it may be essential to model the fact that some data held
by a participant is not externally visible, or, when synthesising a controller for a
robot, the controller may not be implementable in practice if it bases its decisions
on information that cannot be physically observed.

Partially observable MDPs (POMDPs) are a natural extension of MDPs for mod-
elling such strategies and they are widely used in areas such as planning and arti-
ficial intelligence, but verification of POMDPs is considerably more difficult than
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MDPs since key problems are undecidable [87]. Work in this area towards practical
verification of POMDPs includes [27, 106, 94].

Robustness and uncertainty. In many potential applications, such as the generation
of controllers in embedded systems, it may be difficult to formulate a precise model
of the stochastic behaviour of the system’s environment. Thus, developing appro-
priate models of uncertainty, and corresponding methods to synthesise strategies
that are robust in these environments, is important. Developing more sophisticated
approaches is an active area of research [112, 97].

Counterexamples. One final challenge is to improve the quality and usefulness of
the results that are generated by probabilistic model checking. One of the main rea-
sons for the success of non-probabilistic modeling checking is the generation of
counterexamples which provide, when the property being verified does not hold,
evidence of this violation. This evidence is usually in the form of a path demon-
strating the violation. In the probabilistic case, there is the complication that, to
refute a property, a single path is in general not sufficient as more than one path
can contribute to the probability of the property not holding. Initial research [58],
focused on DTMCs and reachability properties and generating a finite set of paths.
Recent research has focused on generating a more useful representation for coun-
terexamples, including regular expressions, hierarchical representations and critical
sub-systems, for further information see, for example, the survey [1].
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