The International Journal of Robotics
Research

XX(X):1-28

©The Author(s) 2019

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

®SAGE

Probabilistic planning with formal
performance guarantees for mobile
service robots

Bruno Lacerda', Fatma Faruqg?, David Parker? and Nick Hawes'

Abstract

We present a framework for mobile service robot task planning and execution, based on the use of probabilistic
verification techniques for the generation of optimal policies with attached formal performance guarantees. Our
approach is based on a Markov decision process model of the robot in its environment, encompassing a topological
map where nodes represent relevant locations in the environment, and a range of tasks that can be executed in
different locations. The navigation in the topological map is modelled stochastically for a specific time of day. This is
done by using spatio-temporal models that provide, for a given time of day, the probability of successfully navigating
between two topological nodes, and the expected time to do so. We then present a methodology to generate cost
optimal policies for tasks specified in co-safe linear temporal logic. Our key contribution is to address scenarios in
which the task may not be achievable with probability one. We introduce a task progression function and present an
approach to generate policies that are formally guaranteed to, in decreasing order of priority: maximise the probability
of finishing the task; maximise progress towards completion, if this is not possible; and minimise the expected time
or cost required. We illustrate and evaluate our approach with a scalability evaluation in a simulated scenario, and
reporting on its implementation in a robot performing service tasks in an office environment for long periods of time.

Keywords
Mobile Service Robots, Planning under Uncertainty, Markov Decision Processes, Linear Temporal Logic

1 Introduction for scenarios like the above, where there is inherent
uncertainty about the system’s evolution. In general,

In recent years, we have witnessed substantial develop- planning for MDPs is performed by defining a reward

ments in the field of mobile service robots, to a point
where more and more of these platforms are deployed
amongst humans (Hawes et al. 2017). In order to have
these robots behave autonomously and face the inherent
uncertainty of human populated environments, we need
to equip them with deliberation capabilities that allow for
automatic generation and execution of plans that achieve
a set of goals. Further, by continuously running in such
environments, these robots have the opportunity to learn
about the dynamics of the environment. For example, a
robot can learn about the probability of successfully nav-
igating between two locations at a given time of day, the
probability of a doorway being open, or the expected wait
time until someone opens a door and holds it for the robot
to go through. Thus, when taking decisions about acting
in such an environment, the robot should explicitly take
these quantities into account, in order to achieve better
performance.

Markov decision processes (MDPs) are a widely used
formalism to model sequential decision-making problems

Prepared using sagej.cls [Version: 2016/06/24 v1.10]

structure over the model, and using dynamic programming
techniques such as value or policy iteration (Puterman
1994) to generate a policy that maximises the cumulative
discounted reward over an infinite horizon. This approach
has the drawback of requiring the designer to map the
planning goal into a reward structure over the MDP,
a process which can be cumbersome and error-prone.
Furthermore, the use of a discount factor can render
the value of the resulting optimisation meaningless in
real life (e.g., discounting a cost representing execution
time). An alternative approach that has been followed is
to define the goal as reaching a set of states, and then
minimise cost to do so. This approach has the limitation

1Oxford Robotics Institute, University of Oxford, UK.
2School of Computer Science, University of Birmingham, UK.

Corresponding author:
Bruno Lacerda, Oxford Robotics Institute, University of Oxford, UK.

Email: bruno@robots.ox.ac.uk

The International Journal of Robotics Research XX(X)

of providing an inexpressive specification language, where
important concepts such as goal sequencing or safety
cannot be explicitly represented. Thus, in recent years,
there has been increasing interest in the use of higher-
level formalisms to specify planning problems, in order
to allow the designer to tackle intricate goal behaviours
more naturally. In particular, linear temporal logic (LTL)
(Pnueli 1981) has been proposed as a suitable specification
language, due to it being a powerful and intuitive formalism
to unambiguously specify a variety of tasks. Furthermore,
algorithms and tools exist to generate provably correct
policies from an MDP model of the system and an LTL
task specification (Kwiatkowska et al. 2011; Ding et al.
2014b). These approaches build upon techniques from
the field of formal verification, in particular, probabilistic
model checking, which provides tools to reason not just
about the probability of satisfying an LTL specification,
but also about other quantitative metrics such as cost
structures. These might represent, for example, expected
execution time of an action in the MDP. Minimising
the expected cumulative value for such a cost structure
represents calculating a policy that achieves the goal as
quickly as possible.

This paper provides contributions on both modelling
and planning for mobile service tasks, with the overall
goal of developing a planning framework for mobile
service robot tasks that is able to utilise formal verification
techniques over an accurate environmental model, such that
the obtained formal guarantees have real world meaning.

On the modelling side, we present a general modelling
approach for mobile service robot tasks, based on a
topological map of the environment, encompassing relevant
locations for action execution. In order to tackle the inherent
uncertainty of environments populated by humans, we
model the robot navigation in the topological map, along
with other actions that can be executed, as an MDP. This
MBDP is such that the probabilistic outcomes and expected
duration of actions are obtained from the predictions of
external spatio-temporal models of the environment for a
given time of day.

On the policy generation side, we present a methodology
for generating policies for arbitrary MDPs that minimises
the expected time to achieve a task specified in the co-safe
fragment of LTL (i.e., a task that can be completed in a
finite horizon). In particular, our approach allows for the
generation of cost-optimal policies for tasks that cannot be
achieved with probability one in the model (i.e., there is
some probability that part of the co-safe LTL specification
cannot be achieved). Typically, methods for generation of
cost optimal policies assume the existence of a proper
policy, i.e., a policy that achieves the task with probability
one. This assumption, along with requiring that policies
that do not reach the goal have infinite cost, provides

Prepared using sagej.cls

a convergence guarantee of MDP solution algorithms to
the optimal policy. However, in many real life scenarios,
the probability of successfully completing the task is not
one, and explicitly reasoning about ways to maximise
this probability is of importance. Thus, we remove the
requirement of probability one for task satisfaction by
introducing the notion of partial satisfiability, and then
tackle the question of what to do when the task becomes
unsatisfiable during execution. This question is especially
relevant in the mobile robots domain (e.g., part of a task
can not be achieved because it requires navigation to an
inaccessible area of the environment), and is motivated
by our own experience with the deployment of these
techniques in mobile robots, where we want the robot to
do as much of the task as possible.

Example 1. Consider Figure 1, depicting an environment
where a robot needs to navigate to offices in a building to
perform security checks (further details on the figure will be
described throughout the paper).

During the execution of this task, some doors might be
closed, making offices inaccessible. This yields the overall
task unsatisfiable, yet we still want the robot to check as
many offices as it can.

To tackle the issue of partial task satisfaction, and
performing “as much as possible” of a given task, we
define a task progression function for co-safe LTL formulas,
which can be encoded as a reward function on the MDP.
Using this, we show that the problems of (i) maximising
the probability of satisfying a co-safe LTL formula; (ii)
maximising the task progression reward (i.e., fulfilling as
much of the formula as possible); and (iii) minimising a
cost function while achieving (i) and (ii) can be solved by a
lexicographic version of value iteration on a pruned product
MDP. We also describe how to analyse the resulting policy
to calculate for example, the distribution of locations the
robot might be in after finishing the task, or conditional
expectations such as expected cost to succeed or expected
cost to failure. The MDP solution technique we describe is
based on the work presented in Lacerda et al. (2015b,a).
Here, we contextualise the approach in the domain of
mobile service robots; improve and extend its formalisation,
providing formal proofs of its correctness; and provide a
more extensive evaluation and comparison with a state-of-
the-art approach for a similar problem.

After a literature review in Section 2, we introduce the
formalisms used and fix notation in Section 3; in Section
4 we describe our MDP-based modelling of mobile service
robot planning problems; in Section 5 we show how to solve
the MDP for partially satisfiable co-safe LTL specifications.
In Section 6 we discuss extra guarantees that can be
obtained from the policy, which can be used to obtain more
fine-grained guarantees of the expected behaviour of the

Lacerda et al.

Figure 1. A mock-up office environment with 6 rooms used for illustration and evaluation purposes throughout the paper (left),
and a mobile service robot deployed in an office scenario using the techniques presented here (right).

robot. Then, in Section 7 we illustrate and evaluate our
approach on a simulated example, and then report on two
real robot applications. We finish with a discussion on the
approach and its possible future enhancements in Section 8.

2 Related Work
2.1

In order to be autonomous in real world applications, it
is crucial for robots to act deliberately in their environ-
ment (Ingrand and Ghallab 2014). Acting deliberately here
is understood as “performing actions that are motivated by
some intended objectives and that are justifiable by sound
reasoning with respect to these objectives.” In Ingrand and
Ghallab (2014), five deliberation functions are identified:
planning, acting, monitoring, observing, and learning. Our
work is mainly focused on (task) planning, but our mod-
elling approach allows for the inclusion of learning to
define the probabilistic transition function and cost models
of the MDP; supports acting and monitoring through our
ROS implementation; and can also allow for planning to
observe by modelling observation state variables appro-
priately. Efforts to integrate task planning with execution
in robots include Cashmore et al. (2015); McGann et al.
(2008). Cashmore et al. (2015) provides a software package
that allows for the use of PDDL planners for planning
and execution using the ROS middleware. McGann et al.
(2008) provides a full deliberation framework for AUVs,
using the EUROPA temporal planner (Frank and Jénsson
2003). Other examples of mobile robots using planning and
scheduling to provide autonomy are Veloso et al. (2015);
Hanheide et al. (2015); Stock et al. (2015); Mudrova et al.
(2015).

One main distinction between the work above and ours is
our explicit (and quantitative) modelling of uncertainty, and

Planning and Robotics

Prepared using sagej.cls

our introduction of probabilistic performance guarantees
for robot behaviour. Reasoning explicitly about uncertainty
is fundamental for robust deployment of robot systems,
something we have shown through successful long-
term mobile service robot deployments in real world
scenarios (Hawes et al. 2017). Furthermore, the ability to
provide guarantees can can be used to inform other system
processes, and for execution monitoring. It can also be
important for legal certification of robot systems to be
deployed in real-life. In our opinion, frameworks simply
based on execution and replanning on unexpected events,
while more scalable, lack the performance guarantees
required for safe and robust robot deployment. As stated
in Ingrand and Ghallab (2014), “Although MDPs are
often used in robotics at the sensory-motor level (...),
[such] techniques are not as widely disseminated at the
deliberative planning and acting level”. Our work presents
an effort in this direction.

2.2 Markov Decision Processes and Linear
Temporal Logic

Finding cost-optimal policies for MDPs using LTL
specifications has been tackled in several ways. Svoreiiova
et al. (2013); Ding et al. (2014b) study the problem
of maximising the probability of satisfying an LTL
specification, while minimising the long-term average cost
to pass between two states that satisfy an “optimising”
atomic proposition, which must be visited infinitely often.
In Lacerda et al. (2014), cost-optimal policies for co-safe
LTL are generated, and a mechanism for the dynamic
addition of tasks during execution is presented. In these
cases, the cost minimisation is done only over states
where the probability of satisfying the specification is one.
Conversely, Ulusoy et al. (2012); Cizelj and Belta (2014);
Wolff et al. (2013); Lahijanian et al. (2012) deal with

The International Journal of Robotics Research XX(X)

maximising the probability of satisfying temporal logic
specifications but cost-optimality is not taken into account.

Other work on policy generation for MDPs with
temporal logic specifications has focused on using the
more traditional approach of finding policies that maximise
discounted cumulative rewards over an infinite horizon,
while constraining such policies to the class that satisfies
a set of “until” specifications (Teichteil-Konigsbuch 2012a;
Sprauel et al. 2014). In these works, the temporal logic
constraints are disconnected from the reward structure.
This means that, in general, no optimal policies exist
for such a problem. However, the authors prove that
one can always build randomised policies that achieve a
notion of e-optimality. In our work, the main focus is
the LTL specification, and the generation of cost-optimal
policies that maximise its probability of satisfaction. This
makes our class of optimal policies simpler: given that we
prioritise maximisation of the probability of satisfaction
over minimisation of the expected cost, the class of
deterministic finite-history policies suffices to solve our
problem.

There has also been work on generation of cost-optimal
policies for specifications where the probability of success
is not one. Teichteil-Konigsbuch (2012b); Kolobov et al.
(2012) present approaches to generate cost-optimal policies
to reach a target state, in the presence of unavoidable dead
ends, i.e., states which cannot be avoided with probability
one from the initial state, and for which the probability
of reaching the target is zero. Our work extends these
approaches by focusing on co-safe LTL, instead of simpler
single-state reachability. This fact requires the construction
of a product MDP from the original model and the co-
safe LTL specification, and also introduces the notion of
partial satisfiability, which is not present when the goal
is reaching a single state. Ding et al. (2013) present an
approach, based on constrained MDPs, to generate cost-
optimal policies for co-safe LTL, where the probability
of satisfying the specification is kept above a threshold.
Contrary to our approach, this requires the threshold for
probability of satisfaction to be provided by the designer
beforehand, and does not include the notion of partial task
specification.

2.3 Partial Satisfiability

In recent years, there has been interest in approaches that
deal with temporal logic specifications that cannot be fully
satisfied. Tumova et al. (2013); Castro et al. (2013); Vasile
etal. (2017) deal with the generation of minimium-violation
controllers, i..e, controllers that only violate sets of safety
rules for the shortest possible amount of time. Maly et al.
(2013) also defines a function for task progression for
co-safe LTL, and generates plans that satisfy as much
of the specification as possible. This is further extended

Prepared using sagej.cls

in Lahijanian et al. (2016), where three levels of partial
satisfiability are defined. Lahijanian et al. (2015) introduces
the notion of weighted skipping, where one can “simulate”
the occurrence of certain atomic propositions that have
not occurred at a certain point of the execution, with
a user-defined cost being associated to the skipping of
each atomic proposition. This allows the weighted skipping
approach to encode the notion of progression, and we will
compare our approach to an adaptation of this work to
MDPs. Contrary to our work, the focus of all works above
is on controlling a hybrid model of the system using a
deterministic discretisation of the continuous dynamics of
the robot, with the works that tackle uncertainty doing so
by replanning.

Finally, the work in Lahijanian and Kwiatkowska (2016)
adapts the work in Lahijanian et al. (2015) to MDPs. It
replaces the notion of skipping cost with a substitution cost
that explicitly represents the cost to ignore an occurrence
of a certain atomic proposition, and substitute it by the
occurrence of another atomic proposition. The substitution
cost can allow for a reduction of the size of the model to
be solved when compared to weighted skipping, as one
just need to enumerate the possible substitutions instead of
all the possible skippings. However, encoding progression
using a substitution cost adds an extra design burden. It
requires the designer to know beforehand what occurrences
of atomic propositions need to be substituted (and what that
substitution should be) in order for the robot to progress
towards the goal. Our work further expands on the works
above by providing a fully (ROS) integrated framework for
task planning and execution, and implementing it on a real
robot that has been deployed for long periods of time.

An alternative way of modelling partial satisfiability
is the use of real-valued logics, such as signal temporal
logic (STL) or metric temporal logic (MTL), where one
can represent the level of satisfaction of the specification,
instead of simply considering boolean satisfaction such as
with LTL. Using such logics, there has been research on
building robust controllers that keep the level of satisfaction
of the temporal logic specification as high as possible
during execution (Fainekos and Pappas 2009; Donzé and
Maler 2010; Raman et al. 2014). Compared to our work,
these works do not explicitly model uncertainty thus cannot
provide probabilistic guarantees of performance. Sadigh
and Kapoor (2016) propose a probabilistic version of STL.
In their work however, uncertainty is included on the logic
side, with the underlying model considered to be a hybrid
dynamical system. The extra expressibility of STL and
MTL entail an increase in complexity when compared to
the use of LTL. This can hinder the scalability of these
approaches. Furthermore, these works consider lower level
control of systems with continuous dynamics, in contrast
with our focus on higher level task planning.

Lacerda et al.

3 Preliminaries

We start by providing some notation and the notions of
MDPs and LTL needed for the remainder of the paper.

3.1 Notation

With X denoting a set, we define: (i) 2% as the set
containing all subsets of X; (ii) X* as the set containing
all the finite sequences of elements of X; (iii) X* as the set
containing all the infinite sequences of elements of X; and
(iv) Dist(X) as the set of probability distributions over X.
For discrete sets X, we denote elements of Dist(X) as p; :
1+ oo + Pyt Ty, Where py, ..., py € (0, 1] are such that py +
..+pn=1,and x4, ..., z, are elements of X. Furthermore,
given § € Dist(X), we write supp(J) to denote the support
of 4, ie., the largest set X' c X such that 6(x) >0
for all xeX'. Let p=po...pn-1,0 =pb-- Popq € X*
and o =0p01...€ X¥. We define (i) the length of p
as |p| =n; (i) the concatenation of p and p’ as p-p’ =
PO -+ Pm-1P(- - - Prp_q1 € X *; and (iii) the concatenation of
pandoasp-oc=pg...Pm-10001... € X%,

3.2 Markov Decision Processes

We will model the environment for our mobile service
robot as a Markov decision process (MDP) with atomic
propositions labelling states. In Section 4 we will describe
how this is done. Here, we introduce MDPs, fixing notation
and present the results we build our methodology upon.

Definition 1. Flat MDP. A (flat) MDP is a tuple M =
(S,3, A, dpm, AP, Lab), where:

e S is a finite set of states;
e 5 € S isthe initial state;
e A is a finite set of actions;

e Ipm S x Ax S —[0,1] is a probabilistic transition
Sfunction, where Y. ;15 0pm(s,a,s") €{0,1} forall s €
S, aeA;

e AP is a set of atomic propositions;

e Lab: S — 24T is a labelling function, such that p €
Lab(s) iffpistruein s € S.

Definition 2. Enabled Actions. Let M=
(S,5,A,0pm, AP, Lab) be an MDP, and seS. We
define the set of enabled actions in s as:

Ag={aecA|dpm(s,a,8") >0 for somes €S} (1)

An MDP model represents possible (probabilistic)
evolutions of the state of a system: in each state s, any of the
enabled actions a € A, can be selected and the probability
of evolving to a successor state s’ is then (s, a, s").

Prepared using sagej.cls

Definition 3. Paths. An infinite path through /\/l =
(5,5, A,0p, AP, Lab) is a sequence o =s5— s = ...
where 6M(5,,az,sz+1) >0 for all ieN. A finite path
P =50 hat S1 4.0 Sy, IS a prefix of an infinite path. We
denote the sets of all finite and infinite paths of M starting
Sfrom state s by FPath aq,s and IPath p s, respectively.

The choice of action to take at each step of the execution
of an MDP M is made by a policy, which can base its
decision on the history of M up to the current state.

Definition 4. Policy. Letr M =(S,s, A, 6, AP, Lab) be
an MDP. A (deterministic) policy over M is a function
m: FPathpa s — A such that, for any finite path o ending
in state s, w(0) € As, . The set of all policies over M is
denoted by 1l p.

In this work, we restrict ourselves to deterministic
policies, as opposed to randomised policies where the
choice of action is defined as a distribution over
enabled actions in s,. As we will see, for the problem
tackled here, there always exists an optimal deterministic
policy. Important classes of policy include those that are
memoryless (which only base their choice on the current
state, i.e., defined over S, also known as stationary or
Markovian) and finite-memory (which need to track only a
finite set of “modes”, i.e., defined over S x {1,...,m}, m €
N).

Under a particular policy = for M, all nondeterminism
is resolved and the behaviour of M is fully probabilistic.
Formally, we can represent this using an (infinite) induced
discrete-time Markov chain, whose states are finite paths of
M. This leads us, using a standard construction (Kemeny
et al. 1976), to the definition of a probability measure
Pr, over the set of infinite paths [Path 4.

Definition 5. Probability Measures and Expected Values
for a Policy. Let P c IPathps. We write Pri, ((P)
to denote the probability of an infinite run of M under
w yielding an infinite path in P. Analogously, let f:
IPathp,s - R. We write E3, (f) to denote the expected
value of f with respect to the probability measure Pr’TM’S.
We can then consider the maximum probabilities or
expected values over all policies:

max(P) = sup PT’M <(P) 2)

Exs(f) = sup ERq o (f) 3)

Minimum values Pri" (P) or EX.(f) are defined
analogously by replacmg sup with inf.

Using the definition above, we can now formalise the
main problems we are interested on.

The International Journal of Robotics Research XX(X)

Problem 1. Probabilistic Reachability. Let
M =(5,5,A,6p,AP, Lab) be an MDP, and GcS.
We define reachg € IPathaq s as:

reache = {(so =5 513 ...) | s; € G for some i e N} (4)

Calculate the maximum probability of reaching a state in G,
along with the corresponding optimal policy 7%, i.e., find:

Privi’(reachc) (5)
7" = argmax Pry (reachq) (6)

Problem 2. Expected Cumulative Reward. Let M =
(S,s,A, 0, AP, Lab) be an MDP, and r:S x A - Ry
be a reward structure over M. We define cumul, :
IPathp,s = Ry such that:

cumul., (g P o) = Zr(si,ai) 7
i=0

Calculate the maximum expected value for cumul,., along
with the corresponding optimal policy 7%, i.e., find:

EXs (cumaul,.) 8)
7" = argmax Ey (cumul,))

The expected cumulative cost problem is defined
analogously for a cost structure c:Sx A - Ry and
replacing max with min in equations 8 and 9.

The problems above can be solved using standard MDP
algorithms such as value or policy iteration (Puterman
1994) (which for these problems yield memoryless
policies). Note that for the cumulative rewards and costs
problems, the expected value might not converge. Thus,
as part of a preprocessing step, one needs to perform
graph analysis to identify states for which the reward is
infinite (Forejt et al. 2011). Also, in order to guarantee
convergence of solution methods such as value iteration,
non-accepting zero-cost strongly connected components
are removed as part of the preprocessing step (de Alfaro
1997).

3.3 Factored MDP Representation

The above representation of an MDP is known as a
flat representation. While presenting most of our results,
we will use such representation. However, in modelling
terms, enumerating all the possible states and the transition
function can be very cumbersome. Thus, we will use
a factored representation for our models, where the
state is decomposed into relevant state features, and the
transition function is encoded over such features. We use a
probabilistic STRIPS-like representation of factored MDPs,
based on the PPDDL (Younes and Littman 2004) and
PRISM (Kwiatkowska et al. 2011) modelling languages.

Prepared using sagej.cls

Definition 6. State Features. A set of state features is
a set X ={X1,...,X,}, where each X; can take values
in a finite domain dom(X;). We write val(X) to denote
the set of (partial) assignments over state features in X,
ie, val(X) = (dom(X;) U{T}) x ... x (dom(X,,) u{T})
where T is used to denote that there is no assignment to
a specific state feature. Given an assignment v € val(X),
we write v(X;) to denote the assignment of state feature
X, by v.

We will use assignments over state features to represent
factored states, action preconditions, and action effects.
Furthermore, to simplify the presentation, in some cases
we will represent assignments in the form v = ((X; =
%;),...,(X; =x;)), representing that v(X;)=x;, and
v(X;) = x;, and omitting the state features X}, such that
v (X k) =T.

Definition 7. Factored MDP. A (factored) MDP is a tuple
M =(X,x, A) where:

o X ={Xy,....,X,.} is a set of state features;

e Teval(X) is the initial state, represented as a
total assignment of values to the state features, i.e.,
T(X;) #Tforall X; € X;

o A={ay,...,an} is afinite set of actions. Each a € A
is a tuple of the form a = (pre,, eff ,), where:

— preg € val(X) is a set of preconditions over
the state features that must hold for a to be
applicable. pre,(X;) = T means that the value
of X; is irrelevant for the applicability of a;

- eff , € Dist(val(X)) is the distribution of
possible outcomes (effects) of a, ie., eff,=
Yiiapseffo s eff o ; € val(X). In this case,
effuj(Xi) =T means that the j-th possible
outcome of a does not change the value of state
feature X;;

Definition 8. Enabled Actions. Let M=
(X,z,A, AP, Lab) be an MDP and x edom(X;) x
... xdom(X,,) a factored state. The set of enabled actions
in x is defined as:

Ay ={acA|pre,(X;) =Torpre,(X;) = 2(X;),
forallie{0,...,n}}
(10

Definition 9. Action Outcome. Ler zeval(X) be
a factored state, and a=(preq, Yt pj:eff, ;)€ A
Outcome j of action a has probability p;, and yields state
xJ defined as:

o(Xs) ifeff(Xo)=T

eﬁj(Xi) otherwise (11

) (X;) :{

Lacerda et al.

The flat and factored MDP representations are equivalent
in terms of modelling power: a flat MDP can be represented
as a factored MDP with one state factor, and we can also
build a flat MDP from a factored MDP.

Definition 10. Equivalent Flat MDP. Ler M/t =
(X, =, A) be a factored state representation of an MDP. The

equivalent flat state MDP representation is given by tuple
MFat = (S T A, 6, AP, Lab) where:

o S=dom(X7) x ... x dom(X,,);

o Fors,s' €S anda = (preg, eff ,) € Ay the transition
function is defined as:

. !/ q
ifaeAsand s’ = s,

otherwise (12)

5/\4(5’@78,) = { gj

* AP = U;L:I Uvedom(X,;)(Xi = ’U),'

e Lab maps to each state the values of its correspond-
ing state features.

Example 2. Consider a robot that can move between two
locations v1 and vs. A water bottle is placed in location
v1 and the robot can pick it up and place it back in
both locations. We assume a probability 0.8 of successfully
picking up the object without breaking it, a probability 0.9
of successfully placing the object without breaking it, and
that the robot can navigate between locations vy and vy
without failing. We can model this example as a factored
MDP, with X = {robot_loc, obj _state}, where:

dom(robot_loc) = {vy, v} (13)

dom(0bj _state) = {at_v;, at_ve, with_rob, broken} (14)

We assume both the robot and the object start at location
v1, hence:

Z = ((robot_loc = v1), (obj_state = at_v;)) as)

The action set is formed of navigation actions between
v1, and vo, and the ability to pick up and place the object in
v1 and vo. We exemplify the action definitions for location
v1, with the actions for location vy being analogous”

pre = {(robot_loc = v1))
eff =1.0: ((robot_loc = v3))

move_to_vg = (16)

pick_at_v; = pre = ((robot_loc = vy),
(obj_state = at_vy))
eff =0.8:((obj_state = with_rob))+
0.2 : ((obj_state = broken))

A7)

Prepared using sagej.cls

move_to_vs

move_to_v;

move_to_vg

move_to_v;

Figure 2. Transition system representation of the flat MDP
described in Example 2.

place_at_v; = pre = ((robot_loc = vy),
(obj_state = with_rob))
eff =0.9: ((obj_state = at_v;))+
0.1: ((obj_state = broken))
(18)
One can “flatten” the representation, resulting on the flat
MDP depicted in Figure 2 as a transition system.

Note that the factored representation is much more
compact than the flat one. In fact, the size of the equivalent
flat MDP representation is exponential in the number of
state features in the factored MDP representation. The
traditional approaches for solving MDPs, such as value
iteration, are based on full (flat) state enumeration. There
are other search techniques that try to take advantage of
the compactness of the flat representation, but in this work
we use an adaptation of value iteration to solve our model,
and leave adapting more efficient search techniques to our
problem as future work.

*For simplicity, in this work we only use grounded action definitions, i.e.,
we do not allow the use of variable symbols in the action definitions.

The International Journal of Robotics Research XX(X)

Finally, another representation of factored MDPs is
based on representing the action outcomes as dynamic
Bayesian networks (DBNs) (Boutilier et al. 1999). A
DBN representation of the transition function can be more
compact than the representation used in our work, when
a given action has an exponential number of outcomes.
We choose the STRIPS-like factored representation because
it is much more intuitive for non-specialists, hence it
makes modelling problems much easier from the user
point-of-view. Furthermore, in our mobile robot application
domains, actions do not typically have an exponential
number of outcomes, thus the use of DBNs does not bring
any advantage in terms of model compactness. In fact,
modelling the navigation actions for the mobile robot using
DBNSs is quite cumbersome.

3.4 Linear Temporal Logic

3.4.1 Syntax and Semantics

Linear temporal logic (LTL) is an extension of
propositional logic which allows reasoning about infinite
sequences of states. It was developed as a means for
formal reasoning about concurrent systems (Pnueli 1981),
and provides a convenient, flexible, and powerful way to
formally specify a variety of qualitative properties. Due to
this fact, its use as a specification language for robot tasks is
becoming more widespread (Belta et al. 2007; Kress-Gazit
et al. 2009).

Definition 11. Syntax. Let p € AP. LTL formulas p over
atomic propositions AP are defined using the following
grammar:

pu=true [p|-p|lorp| Xp|pUp (19)

The propositional connectives have the usual meaning.
The X operator is read “next”, meaning that the formula it
precedes will be true in the next state. The U operator is read
“until”, meaning that its second argument will eventually
become true in some state, and the first argument will be
continuously true until this point.

Definition 12. Semantics. Let o = gor... € (247)". The
notion of satisfaction, k&, is defined as follows:

* 0k lrue;

e o Epifandonly ifp € oo,

e gk (-p) ifand only if o ¥ p;

s o= (pAv)ifand only if o E @ and o = 1,

e 0= (Xy)ifand only if 0105... E ¢;

o & (¢U) if and only if there exists t' > 0 such that
opOpi1... v and forall t <t', oi0¢41... E .

Prepared using sagej.cls

We also define the w-language of all infinite sequences that
satisfy ¢ as:

Lip)={oe @) |orp) (20)
The other propositional connectives can be derived from
the ones above in the usual way. Other useful LTL operators
can be derived from the ones above. Of particular interest
for our work is the “eventually” operator F¢, which
requires that ¢ is satisfied in some future state:
Fo=trueUp 2n
One can straightforwardly adapt the notion of satisfaction

to infinite paths over an MDP.

Definition 13. Evaluation of MDP Paths. For an MDP M
and o = sy X S1 4o IPath a5, we say that o satisfies
an LTL formula ¢ if Lab(sg)Lab(sl)... & ¢. We also write
0 & @ in this case.

Thus, the notion of satisfaction can be seen as a property
evaluated over infinite paths of M, and we can define the
problem of maximising the probability of satisfaction of an
LTL formula.

Problem 3. Probabilistic Satisfaction. Let M=
(S,3,A,0pm, AP, Lab) be an MDP, and ¢ an LTL
formula over AP. Calculate the maximum probability of
satisfying @, along with the corresponding optimal policy
w*, Le., find:

Prigex(p) = Priwx({o € [Pathps |0 E 9}) (22)

7" = argmax Pri, ((p) (23)

It is known that this problem can be reduced to a
probabilistic reachability problem (Problem 1) on an MDP
obtained by the product of M with a deterministic Rabin
automaton obtained from ¢ (Vardi 1985). In this work we
are interested in the co-safe fragment of LTL, as defined
below, where deterministic finite automata (DFA) suffice.
Hence, we refer the reader to Vardi (1985) for more details
about Problem 3 for LTL formulas outside the co-safe
fragment, and focus on co-safe LTL.

3.4.2 Co-safe LTL and Deterministic Finite Automata

The semantics of LTL is defined over infinite sequences
of atomic propositions. However, in this work, we are
interested in minimising expected time to task completion.
Thus, we will use the fragment of LTL that can be
unambiguously satisfied by finite sequences. This fragment
is named co-safe LTL, and is composed of the LTL formulas
that always have a finite good prefix (Kupferman and Vardi
2001).

Lacerda et al.

Definition 14. Good Prefix. Let ¢ be an LTL formula

and 0 = 0¢07]... € (QAP)W such that o & @. We say that o

has a good prefix for o if there exists n € N for which the

truncated finite sequence o, = 0g01...0,, is such that for
’ AP\ . /

every o' € (2°°)" the concatenation o|,-c’ E .

Definition 15. Co-safe LTL. Let ¢ be an LTL formula. We
say that @ is a co-safe LTL formula if for all o € L(p), o

has a good prefix for .

Remark 1. Syntactic Restriction. In this work, we will
only use the syntactically co-safe class of LTL formulas,
i.e., formulas where negation () is only applied to atomic
propositions, and only the X, U, and F operators occur.
While there are co-safe LTL formulas that do not satisfy
this syntactic restriction, these happen mostly due to
redundancy in the specification, thus, from a specification
point of view, the language of interest is the syntactically
co-safe fragment.

As stated above, any co-safe LTL formula ¢ can be
translated to a DFA that accepts exactly the set of good
prefixes for ¢, i.e., the set of finite sequences that will
satisfy ¢ regardless of how they are “completed” (for all
suffixes of infinite length).

Definition 16. DFA. A deterministic finite automaton
(DFA) is a tuple A = (Q,7, QF, X, 4), where:

e Q) is a finite set of states;

e g € Q is the initial state;

* Qp € Q is the set of accepting states;

e 3l is the alphabet;

* da, : Qx X — Q is atransition function.

The transition function 64 is extended to a function
over finite sequences 6% :Q xX* - Q by applying it
sequentially to the finite sequence of visited states. The
language accepted by A is then defined as:

L(A) ={peX"[4(q,p) € Qr}

Proposition 1. Kupferman and Vardi (2001). Let ¢
be a co-safe LTL formula. There exists a DFA A, =
(Q,7,Qr, 2Ap,5Aw) such that:

L(A,)={pe (2AP)* | p is a good prefix for ¢}

Given that a good prefix satisfies ¢ regardless of how it is
“completed’, once a run reaches an accepting state, it never
leaves Q from then on.

(24)

(25)

Proposition 2. Let ¢ be a co-safe LTL formula, and A, =
(qua QF; 2AP7 6.A¢)

Forall gr € QF and o € 247, oa,(qr,a) eQr (26)

Prepared using sagej.cls

true

{a, b}

Figure 3. ADFA A, for ¢ = ((-a)Ub) A ((-a) Uc), with the
transition labels depicted.

Proof. Let ¢ € Qr and o € 247, Given that, by Propo-
sition 1, all p € (24F)" such that 0%(q,p) = qr is a good
prefix for ¢, then p.av € (247)" is also a good prefix for .
Thus, 0%(q, p.a) = d4,(qr,) € Qr because A, accepts
exactly the good prefixes for a.

Given Proposition 2, we will assume that the DFA is
simplified such that Qp is a singleton {gr} such that
0a,(qr,a) =qp forall a e 24P,

Example 3. Consider the syntactically co-safe LTL
specification ¢ = ((-a)Ub) A ((-a)Uc). In Figure 3, we
depict the corresponding DFA A,,. Note that the transitions
are labelled by subsets of AP, depicted next to each
transition. Each subset of AP labelling a transition can
trigger it, evolving the DFA state from the transition source
to its target.

3.4.3 Product MDP and Policies for Co-Safe LTL

The restriction of Problem 3 to co-safe LTL specifications
can be reduced to an instance of Problem 1, by building a
product MDP.

Definition 17. Product MDP. Let M=
(S,5,A,0m, AP, Lab) be an MDP, and A, =
(Q,7,{qr}, QAP,(SAw) be a DFA obtained from co-
safe LTL formula ¢. We define the product MDP
My =M®&A, =(5,,55,A,0Mm,, AP, Lab,), where:

.« S,=8xQ
* 5 = (5,04, (g Lab(s)))

¢ 5M¢ ((s,9),a, (slv ql)) =

dm(s,a,8") ifq =04,(q, Lab(s"))
0 otherwise

+ Lab,((s,q)) = Lab(s)
We also define the set of accepting states acc, € S, as:

accy, = {(s,qr) € Sy} 27

10

The International Journal of Robotics Research XX(X)

Note that, since we know the initial state s of the original
MDP, we can build the state space of the product MDP in
a forward reachability fashion, thus only considering the
set of states that are reachable from the initial state. The
product MDP M., behaves like the original MDP M, but
is augmented with information about the satisfaction of .
Once a path of M, reaches an accepting state (i.e., a state
of the form (s, qr)), it is a good prefix for ¢, and we are
sure that ¢ is satisfied. Furthermore, M, preserves the
probabilities of paths from M (see, e.g., Baier and Katoen
(2008)). Thus:

Proposition 3. Let M =(S,3,A,0pm, AP, Lab) be an
MDP and ¢ be a co-safe LTL formula. Then:
Prigis(e) = Priyi’ . (reachqcc,) (28)

Thus we can reduce Problem 3 in M to an instance of
Problem 1 in M.,.

Remark 2. Policy Class. As already mentioned, finding
optimal solutions for Problem 1 can be found using
standard MDP techniques such as value or policy iteration,
and there always exists an optimal memoryless policy.
Thus, when solving for M, we obtain a policy 7 : S x
Q — A. This policy can be seen as a finite-memory policy
Jfor M, where the states of Q) represent the different policy
modes. Intuitively, the elements q of states (s,q) in M,
represent the modes of the finite-memory policy, which keep
track of the relevant (for the satisfaction of) parts of
the path executed by the MDP so far, and 7*(s,q) gives
the action to take in state s for mode q. Precise details
of a similar policy construction (for probabilistic safety
properties) can be found in Forejt et al. (2011). Thus, finite-
memory policies suffice to solve Problem 3.

4 MDP Model of Mobile Service Robot
Tasks

In this section, we describe how we model a mobile
service robot working in indoor environments as an MDP.
This model has been developed in the context of the
STRANDS project (Hawes et al. 2017), with the aim of
deploying mobile robots in everyday environments during
long periods of time. It has been used for robot deployments
in the project’s later years, with a total combined time
of more than 8 months of robot execution. In order to
achieve this robustness, we have focused on a model
where probabilistic guarantees of robot performance can
be obtained, while also considering scalability of the
state space, in order to provide the ability for online
policy generation. This allows for the system to be easily
integrated with other components used for higher level task
management and scheduling (Mudrova et al. 2015).

Prepared using sagej.cls

4.1 Primitive Skills

In this work, we assume the robot has a set of implemented
primitive skills. Examples of such skills are navigating
between locations in the environment, checking whether
a door is open, waiting for it to open, or searching for
an object at a certain location. We also assume that the
primitive skill implementations are in charge of deciding
whether to retry a given behaviour or not. When a
skill outputs failure, it means that it cannot be executed
successfully on the current instance of task execution. This
is to avoid situations where the robot keeps trying the same
action until it is successful, allowing for the generation of
policies that reason about what to do when a certain action
fails. This allows the robot to try other ways of achieving
the goal. In our implementation, the set of skills is assumed
to be implemented as actionlib action servers within the
ROS middleware.

4.2 Topological Map

Topological map representations typically consist of a set of
nodes that represent physical locations in the environment
and a set of edges representing the robot’s ability to move
between these locations. The nodes are associated with
descriptions of the locations (e.g. kitchen, workstation, etc),
and the edges represent a connection between two of these
locations. In our representation, each edge is associated
with a particular continuous navigation action (e.g, laser
based navigation, door crossing, docking to charging
station, ...) that moves the robots between the associated
nodes. This representation allows one to implement a
unified system that can tackle different challenges in terms
of continuous navigation.

Definition 18. Topological Map. A fopological map is a
tuple T = (V, E, N, nav), where:

o V ={v1,...,u,} is a set of relevant locations in the
environment, encoded as robot poses on a global
frame, i.e., each v; is of the form (x,y,0);

o E cV xV represents the ability to navigate between
two environment locations without visiting another
location;

* N is a finite set of possible continuous navigation
action implementations that the robot can execute,
part of its primitive skills;

e nav: E — N is a function that maps each edge e =
(vi,vj) to the continuous navigation action to be
executed to drive the robot from v; to v;.

Example 4. The graph structure presented in Figure |
represents a topological map, where (bi-directional) edges
represent possible navigation actions between nodes,

Lacerda et al.

11

overlayed over the 2D metric representation of the office
environment. We define N = {laser, door}, with laser
representing standard laser based navigation, and door
representing a special behaviour for traversing narrow
doors. Red edges (v,,v.) in the figure are such that
nav(vy,v,.) = door, and blue edges (vy,v;) are such that
nav(vy, vy) = laser.

4.3 Navigation Edge Partition

We also distinguish between two types of edges. We split
the set of edges between edges the robot can try to navigate
through normally, and edges for which a guard fulfilling
action must be executed. This guard fulfilling action can be
for example a checking action (e.g., waiting for a closed
door to be opened by a human, checking if a narrow
corridor is clear and navigation through it is possible), or
a manipulation action (if the robot has an arm, opening
the door), and is assumed to be implemented as part of the
robot’s primitive skills.

Definition 19. Navigation Edge Partition. We partition the
set of edges I of a topological map T as E =E, U L,
where:

e E, is a set of unguarded edges that the robot can
try to navigate through without any guard fulfilling
action;

» I, is a set of guarded edges where a guard fulfilling
action is required to be executed before navigation.

For e € 4, we write guard, to represent the guard fulfilling
action associated to e.

Example 5. For the topological map depicted in Figure I,
we define E to be the set of edges depicted in red, as these
are representing navigation through a door that might be
closed. Hence, the robot can only navigate on these edges
after checking if the corresponding door is open. We assume
the robot has a check_door behaviour implemented that
returns true if and only if the door is open. Thus, for all
e € Iy, guard, = check_door.

4.4 Probabilistic Edge Models

We assume that, while moving in its environment, the robot
gathers data on the failure or success of navigation through
an edge, and the time taken to do so. One can use this data
to build probabilistic edge models, for example using the
technique presented in Pulido Fentanes et al. (2015).

Definition 20. Edge Model. Let E = FE,u E, be edges
of a topological graph, and e = (v;,v;) € E. We define the
outcome probabilities when navigating from v; to v; at time
teRyo as p' e Dist(Vu{L}), where pL.(v) represents
the probability of visiting v immediately after v; when

Prepared using sagej.cls

trying to navigate between v; and v;, and pt (1) represents
the probability of failing to navigate between v; and vy,
i.e., getting into as situation from which the robot cannot
recover. We also define the expected time for the navigation
attempt from v; to v; at time t as L.

Similarly, we assume the existence of models for guard
fulfilling actions.

Definition 21. Guard Fulfilling Action Model. Let e =
(vi,vj) € E,. For time t € Ry, we define the probability
distribution of the guard fulfilling action guard, being
successful as p;u ara, € Dist({0,1}) and the expected time
for its execution as T

guard,*

Example 6. Consider edge (vs,v4) from the topological
map depicted in Figure I. A possible edge model for a
given time t (e.g., tomorrow at 9am) can be pi&m =0.7:
vg4+0.2:v9+0.1: 1. This distribution means that when
trying to navigate between vs and vy at time t, the robot can
successfully reach vy with probability 0.7 The laser based
navigation is able to avoid obstacles, such as humans.
While doing so, the robot sometimes ends up in vy with
probability 0.2. Finally, when the area is too crowded,
the robot is not able to perform the navigation action
successfully and gets stuck, requiring human help. This
is represented by L in our model. The prediction for the
probability of such occurrence in this case is 0.1. Note
that, for a different time of day, these predictions might
be different. For example, assume vs and vy are located
around the staff kitchen, hence the area is more crowded at
lunch time. Thus, for a time t' around lunch time the edge
traversal model can be, for example, pf);m =0.6:v4+04:
L, i.e., with probability 0.4 the action will fail. Regarding

expected time, one can assume, for example, T£3~,U4 = 8.5,
and 7'5 504 = 12, meaning that at time t, the expected time to

attempt to navigate between vs and vy is 8.5 seconds, and
at time t', due to the larger crowd, is 12 seconds.

We also illustrate models for guard fulfilling actions.
For example, for e = (vs,vs),]otgumde =0.9:1+0.1:0,
meaning that at time t there is a probability of 0.9 of the
door being open. Checking if the door is open can be done
very quickly and in almost constant time, hence one can
assume that T;uaTdc =0.01 for all time points t. Finally,
traversing the door can be easily done by the specialised
door passing behaviour, hence pZM}S =0.99:v5+0.01: 1,
and Tt . =3.

Vq,V5

4.5 Navigation MDP

With the models presented in the previous subsections, we
are now able to present the underlying probabilistic high-
level navigation model we propose for a mobile robot. This
is a navigation MDP, which is instantiated to a specific

12

The International Journal of Robotics Research XX(X)

time ¢ using the edge models described above, creating a

“snapshot” of the world model at that given time instance.
The definition of Navigation MDP is presented using the

factored MDP representation presented in Subsection 3.3.

Definition 22. Navigation MDP. Let T =(V,E, N, nav)
be a topological map, with E=E,uFE, veV be the
initial location of the robot, and t € R be a point in time. We
define the navigation MDP as MY = (X7, zl, Al) where:

* X7 ={loc} UUcep, trave, where dom(loc)=V u
{1} and dom(trav.) = {-1,0,1}, i.e., the state space
is composed of a feature indicating the location of
the robot, along with whether it failed to navigate,
and, for each e ¢ E,, a feature indicating whether
e is traversable: —1 indicates that traversability is
still unknown, i.e., the guard fulfilling action has not
been executed, O indicates e is not traversable, i.e.,
the guard fulfilling action failed, and 1 indicates that
the edge is traversable, i.e., the guard fulfilling action
was successful;

. J;tT =UX Xeep, —1, where U is the location of the
robot at time t (which can be observed at model
building time). The robot starts in its initial location,
and, for edges requiring a guard fulfilling action,
all edge traversability features are initialised as
unknown;

¢ AtT = Ueer nave U UeEEg guard, where, for e=
(v,0"):
- Ifec E,, then:

pre = {(loc = v)),

eff = X) (e =v))
v'esupp(pt)

(29)

nave =

- Ifee Ey, then:

nave = pre = ((loc = v), (trave = 1)),
eff = 3 pe(v'):{(loc =v"))
v'esupp(pt)
(30)
guard, = pre = {(loc = v), (trave = -1)),

eff = Puara, (0) : ((trave = 0))+
p;uarde(l) : ((t”’aﬂe = 1))
€29

Example 7. Consider the topological map depicted in
Fig 1, and the edge models described in Example 6. Assume
the robot starts in node vs. The navigation MDP at time t is
such that:

Prepared using sagej.cls

o X7 ={loc} u{trav. | e € E.}, where E, is the set
of edges depicted in red, and :
dom(loc) = {vg, ..., v15, L} (32)

dom(trav.) = {-1,0,1} foralle € E, (33)
° E: (’U37—1,—1,—1,—1,—17—1)

e We present the definition of some of the available

actions:
Ny 0, = pre = {(loc =v3)),
eff =0.7: ((loc = vq))+
0.2: ((loc=vp)) +0.1:((loc= 1))
(34)
NQVyy 0y = Dre = {(loc = v3), (travy, 4, = 1)),
eff =0.99: ((loc = va))+
0.01: ((loc= 1))
(35)
guard,, ., = pre = {((loc = v3),

(trcvaM = _1»7
eff =0.9: ((travy, v, = 1))+
0.1: ((travy, v, =0))
(36)

Other action definitions are analogous.

Remark 3. Resetting Guard Fulfilling Actions Result. In
Definition 22, we assume that the outcome of a guard
fulfilling action is persistent, in the sense that, once a
given guard fulfilling action is executed, the value of the
associated state variable does not change any more. This
approach assumes that the environment is not changed by
external agents, for example, after the robot successfully
opens a door, the door is not closed any more. In
many cases, this assumption is not valid, as the robot is
deployed alongside humans that also change the state of the
environment (e.g., a human closes a door). Hence, one can
also take the approach where the successful guard fulfilling
action outcomes are forgotten immediately after the action
is executed successfully. To do so, one can replace all
actions a that have as precondition the robot being in the
origin node of the guarded edge by copies a™, a° and
a', each for a possible value of the guard fulfilling action
outcome. One of the copies resets the value of the outcome
to —1 when it is 1, while the other copies keep the other two
possible values unchanged.

Lacerda et al.

13

4.6 Modelling General Actions

In the previous subsections, we have discussed how to
model the robot’s navigation actions and their outcomes as
an MDP. In order to allow for more involved behaviours
than simple navigation, we also model the execution of
actions in certain locations of the environment. We model
these actions using a set of state features that are used
to define the preconditions and effects of the action, and
temporal models for probabilities of action effects and
expected time for action execution, in the same vein as
the probabilistic edge models described in Subsection 4.4.
As with our definition of factored MDP, the following
is based on the PPDDL (Younes and Littman 2004) and
PRISM (Kwiatkowska et al. 2011) modelling languages.

Definition 23. General Action. A general action is defined
as a tuple o = (X, pre,,, p',, 7L,) where:

o Xo={Xo1,....Xqa,} is the set of state features
relevant for the execution of o, i.e., the state features
used to define o’s preconditions and effects;

* preq € val(X,) is the set of preconditions that must
hold for o to be executable;

e pl € Dist(X,) is a temporal probabilistic model that
represents the distribution of possible effects of o, at
time t € Rsq;

o 7! represents the expected time for the execution of o
at time t € Rs.

Action « is also associated to a primitive skill implementing
the action behaviour on the mobile robot.

Example 8. Searching for an Object. Consider the
topological map in Figure 1, and assume the robot
can search for an object that might be located in v;.
We can model such a search action as search_at_v; =

t t
(XSEM”CthtJ-U 7presem"ch,at,v] ’psearch,at,vz ’ Tsearch,at,vl >’
where:

o Xearch_atv, = {loc, object_at_v; }, with dom(loc) =
V u{l} representing the position of the robot
in the topological map, and dom(object_at_v;) =
{-1,0,1}. For object_at_v;, —1 represents that the
robot does not know whether the object is at vi, 0
represents that the robot has searched for the object
at v1 and has not found it, and 1 represents that the
robot found the object at v1;

PTr€search_atv; = ((lOC = Ul)? (ObjeCt*atljl = _1)>;

Phcarchatv, € Dist({0,1}) is obtained form a
probabilistic model of object location over time. For
example, for a given t (e.g., tomorrow, at 10am),
we can have pl.. .y o, =0.7: (object_at_v; =

Prepared using sagej.cls

0) +0.3: (object_at_v; =1), and for t' (eg.,
tomorrow, Spm) we can have p’;'eamhiatim =04:
(object_at_v; =0) +0.6 : (object_at_v; =1)7;

Similarly to the model of location over time, one
can have T;aarah,at,v; =55 and Tstearch,at,vj =33.
The different expected times can be explained by
the implementation of the primitive skill associated
to search_at_vy;. If one assumes a timeout is
implemented such that the primitive skill outputs
“object not found” after a period of time, when the
probability of the object being at vy is higher, the
expected time for execution of the action is lower, as
the action will finish before the timeout is reached
more often.

We require the action definitions to be consistent between
each other, and in relation to the navigation MDP, in the
sense that shared state features have the same domain and
the same initial assignment.

Definition 24. Consistent Action Definitions.
Let o1 = (Xa1, €0 1,05 15T 1) and Qg =
(Xa,2,Pr€0 9,Dh 2, Th o) be action definitions, and
dom; and domy the domains of the state features in
Xa,1 and X, o, respectively. We say that oy and oo are
consistent with one another if for all X € X, 11 Xy 2:

domy(X) = domo(X) and T1(X) = T2(X) 37

With the (consistent) general action models presented
above, we can build a general actions MDP, that represents
the initial assignment of the state features relevant to
the general actions, and the effects of those actions at a
particular time ¢.

Definition 25. General Actions MDP. Let
A={aq,...,a} be a set of general actions, and t € Ry
a point in time. The General Actions MDP is defined as
M = (X, zly, AL), where:

o Xp={Xy,...,X,} is the union of all n distinct
state features relevant for the actions in A, i.e.:
Xp=U Xa (38)
ael

Note that certain actions can have state features in
common, i.e., it is possible that X, N Xo, # @ for
some i, j;

. a edom(X1) x ... x dom(X,,) is the assignment of
values to the state variables at time t;

T As with the spatio-temporal edge models, details of how such model can
be learnt are outside the scope of this work. Here, we assume the model is
an outside component that the robot can query.

14

The International Journal of Robotics Research XX(X)

o A ={dl, ,....al, }, where each al, is obtained
directly from the general action definition of o; =
ot
(X T, Poyys Ty,)s 1€

a,, = pre=(pre,,)

eff = (p.,) &

Example 9. Searching for an Object. Assume that it is
unknown whether the object is at vy and the robot is
at vs. The General Actions MDP for the search action
defined in Example 8 at time t' is defined as Mt

search_at_v; —
— t i
(Xsearch,at,ul y Usearch-at_v; » {a’search,at,vl }); where:

Esearch,at,vl = (v37 _1) (4’0)

’

a pre = ((loc =v1), (object_at_v; = -1)),
eff =0.4: ((object_at_v; =0))+

0.6 : (object_at_v; = 1))

search_at_v; —

4D

Adding more action definitions to the General Actions

MDP would be done by adding their state features to the

MDP, and their action preconditions and effects at time t'

to the set of actions of the MDP, in a similar manner to the
one described above.

The General Actions MDP is used to extend the
navigation MDP model in order to incorporate general
action execution. This is done by joining the state features
and action definitions together.

Definition 26. Navigation and General Actions MDP.
Let t € R be a point in time, MY = (XT,ziA%—) be a
navigation MDP for time t and M’ = (X, z%, A) be a
General Actions MDP for time t. We define the Navigation
and General Actions MDP M- \ = (X7 A, x5y, A%)
where:

e X7ra=X7UXp

- a0 -{ T

® AT,A :AtTUAf\

ifX e Xy
if X € Xa

4.7 Expected Time Cost Structure

We finish the presentation of our modelling approach by
defining a cost function over the (flat representation of the)
Navigation and General Actions MDP. This represents the
expected time to execute an action in MZ?_, and is obtained
directly from the probabilistic models of action execution
time.

Prepared using sagej.cls

General Action
Definitions A

Spatio-temporal Edge|

|T0pological Map Tl and Action Models

Instantiate to time ¢ Instantiate to time ¢ |

[Navigation MDP M| [General Actions MDP M |

Navigation and General
Actions MDP M%—)A

Figure 4. Diagram of the modelling approach.

Definition 27. Expected Time Cost Function. Let M%— A=
(S,3,A,0pm, AP, Lab) be the flat state representation of
a Navigation and General Action MDP. We define the
expected time cost function ¢t : S x A — Ry as:

t

Te if a = nav, for some e e K
(s,0) =1 Tguara, ifa= guard, for some e € E,
Tt if a = ag, for some a € A

(42)

We define the expected time cost function over S x
A as is standard with MDPs. This way, we can apply
known results, such as the solution of Problem 2 directly.
Furthermore, the technique presented in the next section
also assumes a cost structure over state-action pairs.

4.8 Summary and Discussion

In Figure 4, we depict the overall approach presented in
this section. The designer provides a topological map and
general action definitions. These are instantiated into MDPs
for a specific point in time ¢ using the spatio-temporal
models. Finally, the two MDPs are put together into a
Navigation and General Action MDP.

We note the relevance of the spatio-temporal models
for longer autonomy applications: by having a dynamic
model we can more accurately capture the environment.
In turn, this allows us to provide more accurate formal
performance guarantees using the techniques presented
in the next section. Note that our approach of taking a
“snapshot” of the dynamic model and using it for planning
also allows for much better scalability, as each planning
instance keeps Markovian action outcomes. We argue that
this approach provides a good trade-off between model
accuracy and planning scalability. Finally, note that these
models are optional, and for applications where spatio-
temporal models are not present or needed, one can use
a stationary model instead, for example a simple model
based on the distance between locations and assuming
a constant speed. Our implementation provides general
interfaces to plug in different environmental models to the
MDP construction.

Lacerda et al.

15

5 Policy Generation for Partially
Satisfiable Task Specifications

In this section, we present a general approach for
minimising the expected cost to satisfy a co-safe LTL
specification ¢, where the probability of satisfying ¢ can
be less than one. Furthermore, the approach allows for one
to do “as much of the task as possible”, generating policies
that get as close to the co-safe LTL goal as possible, given
the environmental restrictions (e.g., a closed door that the
robot cannot pass through). This is done by maximising a
notion of progression defined over the DFA A, obtained
from the co-safe LTL specification ¢.

Broadly speaking, we tackle the following problem
(we provide a more exact description of the problem in
Subsection 5.2).

Problem 4. Given an MDP M, a cost structure c: S x
A - Ry, and a co-safe LTL specification ¢ such that
Priyi5() >0, find a policy that fulfils the following
objectives, in decreasing order of priority:

01 Maximises the probability of satisfying . Problem 5
provides a more exact description of this objective;

0o When ¢ becomes unsatisfiable (i.e., when we reach
a state s such that Priyi” () = 0), gets as close as
possible to satisfying . Problem 6 provides a more

exact description of this objective; and

03 Has a minimal expected cost to achieve o1 and os.
Problem 7 provides a more exact description of this
objective.

Note that the approach presented in this section is
applicable to arbitrary MDPs, non-negative cost structures
and co-safe LTL specifications, not only the MDP models
of mobile robot tasks /\/ltT A and the cost structure
ct presented in the previous section. It was, however,
developed with planning for mobile robots in mind, with the
theoretical notion of partial satisfiability being motivated
directly from issues we encountered while deploying the
techniques introduced in Lacerda et al. (2014) in the real
world. The approach presented here was first introduced
in Lacerda et al. (2015b,a). Here, we present a modified
notion of progression, by introducing a normalisation
factor. By doing so, the values for the distance to acceptance
function are now more intuitive. Furthermore, we also
provide a more thorough formalisation and illustration of
the different steps of the approach.

5.1

We start by defining what we mean by satisfying a co-
safe LTL specification as much as possible. We propose
a notion of rask progression, defined from a distance

Task Progression Function

Prepared using sagej.cls

function d, : Q — Ry that maps each state of A, to a value
representing how close we are to reaching an accepting
state, in terms of how many sets of atomic propositions
still need to be satisfied in order to reach an accepting
state. In the following, let ¢ be a co-safe LTL formula, and
A, =(Q,7,{qr}, 247, o4,). We write ¢ —* ¢’ if there is a
path in A, that leads it from state ¢ to state ¢'.

Definition 28. Let Suc, € Q) be the set of successors
of state q, and |6, 4| €{0,....2 8P} be the number of
transitions from q to q'. We define the distance to
acceptance function d, : Q@ — Rxg as:

0 fq=qr
min dy(q") +h(q,q") ifq#qr and
do(g) = o<5uea
q-"qr
|AP||Q| otherwise

(43)
The function h : Q x Q — Ry represents the difficulty of
moving from q to q' in the DFA, and is defined as:

|AP|
)

This function represents the number of states that need
to be visited, starting in ¢, to reach the accepting state
qr, balanced by the “difficulty” of transitioning between
these states. This balancing is done because we assume
that the more transitions there are between two DFA states,
the easier it should be for the system to evolve to a state
that satisfies one of the transition labels. Given that the
maximum number of possible transition labels between
two states is exponential in the total number of atomic
proposition, and the fact that typically the number of
transition labels between two states is exponential in the
atomic propositions that are required to hold (or required
to not hold) for the transition to be valid, we use logs to
“linearise” the difficulty function. This provides values for
the distance function that better align with the intuition
of how a distance function should perform. However, it
provides the same ordering of states in terms of their
distance to the goal, yielding a qualitatively equivalent
representation. Note that the maximum transition difficulty
is |AP|, when |044|=1, and the minimum transition
difficulty is 0, when |8, /| = 2471, Hence, if there is no path
from ¢ to gr, we set d,(¢) to the maximum value |AP||Q).

(44)

Remark 4. Calculating d,. The values d, can be
calculated by finding the fixed-point of the following
recursive calculation:

do(q):{o ifq€Qr
%2}

APQ| ifqtQr 45)

d"'(g) = min {d’;(q), i dy(q") +h(g, q’)} (46)

16

The International Journal of Robotics Research XX(X)

Finally, we note that all non-accepting states have a
distance to satisfaction strictly greater than 0.

Proposition 4. Forall g€ Q ~ {qr}, dy(q) > 0.

Proof. To have distance to gr equal to 0, by definition of
d,, there would have to exist a state g € Q \ {gr} such
that |3, 4,.| = 2471, But then any o yielding a run of A,
reaching ¢ would also be a good prefix for ¢, because
8(q,) = qp for all o € 247 This leads to a contradiction
because A, accepts exactly the set of good prefixes for .

Using this distance function, we define the notion of
progression towards the accepting state as a measure of
how much the distance to an accepting state is reduced by
moving from q to ¢'.

Definition 29. Progression Function. The progression p, :
Q x Q = Ry between two states of A, is defined as:

max{0,d,(q) —dy(¢")} ifq € Sucg and
a+"q

0 otherwise

Po(q.q") =
47)

We require ¢’ 4" ¢ in the first condition to guarantee
that there are no cycles in the DFA with non-zero values
for p,. This is needed in order to guarantee convergence
of infinite sums of values of p,. Moreover, we only take
positive progression values into account.

Proposition 5. Let p=qoqiqz... € Q¥ be an infinite
sequence of states visited by an infinite run of A,. The
following holds:

> Py (i, giv1) converges. (48)

i=0

Proof. Note that, by definition, p,(g,¢") >0 for all ¢,¢ €
Q. Thus, we only need to prove that there exists only
a finite number of consecutive states ¢,q’ in p such that
Py (q,q") > 0. Any pair ¢, ¢’ of consecutive states occurring
infinitely often in p need to be such that ¢’ —* ¢. Thus,
by definition of p.,, p,(g,¢") = 0. In other words, ¢, ¢’ can
only occur consecutively in p an infinite number of times if
P4 (q,q") = 0. Hence the sum converges.

We can check the existence of paths between ¢’ and ¢ by
computing the strongly connected components of A,

Finally, all state evolutions to an accepting state entail
progression strictly greater than 0.

Proposition 6. p,(q,qr) > 0forall g € Q ~ {qr} such that
qr € Sucy.

Proof. Direct consequence of Proposition 4, and the fact
that 6.4, (qr,) = qp for all a € 247

Prepared using sagej.cls

Figure 5. The DFA from Figure 3, with states labelled with the
distance function d,, and transition labelled with number of
transitions ||, and progression p.,.

Example 10. In Figure 5, we show the progression function
calculation for the DFA depicted in Figure 3. We depict the
value d,(q;) inside each state, and we label each edge with
the number of transitions corresponding to that edge |)|,
and the value of p, for the states connected by that edge.
Note that d,,(qs) = 40 because there is no path from q4 to
the accepting state.

Remark 5. Usage of minimal DFA. It is known that
any DFA can be minimised into a DFA with a minimum
number of states that accepts the same language as the
original DFA (Hopcroft et al. 2006). Different DFA will
generate slightly different distance to acceptance functions.
However, since the DFA we use are representing a specific
co-safe LTL formula, distance to acceptance maps to a
measure of how close the formula is from being satisfied
regardless of the DFA being minimal or not. Thus, our
approach makes no assumption on the DFA structure. We
note that, in spite of the above, the most sensible approach
is to use the minimal form, as it reduces the size of the
product MDP that has to be solved.

Remark 6. Other notions of “distance to acceptance”.
Other works (Bhatia et al. 2010, 2011; Ding et al. 2014a)
use a notion of “distance to acceptance” similar to
ours. However, in those works the notion of distance to
acceptance is not used for partial satisfaction. Instead,
in Ding et al. (2014a) the distance function is used as an
“energy function” to be minimised by a receding horizon
control procedure. Given this fact, the distance is defined
over the product model, instead of over the DFA model.
This does not allow for the encoding of the notion of doing
as much as possible, even when the probability of reaching
the accepting state in the product becomes zero, because
for such states the distance to acceptance in the product
is infinity. In order to address such cases, our approach is
based on a notion of distance over the DFA, which allows

Lacerda et al.

17

us to reason about all the possible ways to satisfy the
specification, regardless of the limitations imposed by the
environment model. In Bhatia et al. (2010, 2011) there is a
notion of distance to acceptance in the DFA, but it is mixed
with other quantities obtained from a lower level planner
in order to guide a sampling procedure. In this case, the
authors to not use the number of labels in each transition
to normalise the distance to acceptance and simply find the
shortest path. This means that for the DFA in Fig. 5 states
qo, q1 and qo will have the same distance to acceptance,
which does not match the notion of doing as much as
possible we want to encode in the distance function. We will
further explain the decision to define the distance function
over the DFA further when addressing Objective o> next.

5.2 Individual Problem Formulation and
Solution

We are now in a position to formalise each objective stated
in Problem 4 in isolation. We will discuss how to prioritise
them in the next section; here we focus on building a
common model where the three objectives can be optimised
using standard techniques, such as value iteration. In the
following, let M be an MDP, ¢ a cost structure over M,
and ¢ a co-safe LTL formula.

5.2.1 Maximise Probability of Success. Objective 01 is
formalised in the following way.

Problem 5. Calculate Priy;(y), and find the correspond-
ing policy:

7 = argmax, Pri, s(p) (49)

This is the standard problem of maximising the
probability of satisfying a co-safe LTL specification
(Problem 3), and can be solved by value iteration on
the product MDP M., (see Definition 17), as stated in
Proposition 3.

5.2.2 Maximise Progression. Before we formally define
Objective 02, we introduce the notion of accumulated
progression of a run of an MDP.

Definition 30. Accumulated Progression.
Let o =8g X S1 - IPath a5, and q =
64, (@ Lab(so)Lab(s1) ... Lab(s;)). We define the
accumulated progression of o as:

prog(e) = 3 P (4], 47i) (50)

i=0
Objective 09, is formalised in the following way.
Problem 6. Calculate E}y%(prog), and find the corre-
sponding policy:

Ty = argmax, B} (prog) (51)

Prepared using sagej.cls

Problem 6 can also be solved using value iteration on
the product MDP, by defining a progression reward on the
product by lifting the progression function from the DFA to
the product MDP.

Definition 31. Progression Reward. The progression
reward over the product MDP M, is a function r : (S x
Q) x A > Ryq where:

Ttp((SaQ)>a): z

(s'.4")eSxQ

o, ((s,q),a, (s, 4"))po(a:q")
(52)

The progression reward is simply the expected progres-
sion (taking into account the transition function of the
MDP) of executing action « in state (s,q) €S, =5 x Q.
Note that the expected cumulative progression reward is
greater than zero for all states (s,q) where we can reduce
the distance to an accepting state (in the DFA), even if the
probability of reaching an accepting state in the product
MDP for (s, q) is already 0. Such states are easy to identify
at the DFA level, but impossible to identify at the product
MDP level as some of the DFA structure can be lost due to
the restrictions imposed by the original MDP model. This
is the main reason why we define the distance to acceptance
function over the DFA, without taking into account the
restrictions imposed by the original MDP model.

max

Proposition 7. The value of E}}%(prog) converges, and
the following equality holds:

EXi5(prog) = EX{ 5 (cumul,.,) &)

Proof. The fact that E}{(prog) converges is a direct
consequence of Proposition 5 and the fact that the expected
value of a distribution over finite values is finite. The
equality holds because M., preserves the probabilities of
paths from M, and 7,((s,q),a) represents the expected
value for p,, (g, ") when executing action « in state (s, q) €
S, =S x @, evolving the MDP state to s’ according to the
probabilistic transition function of M, and the DFA state to
q', according to the the transition function of A, and the
value of Lab(s").

Thus, Problem 6 can be reduced to an expected
cumulative reward maximisation problem (Problem 2) on
M., which can be solved by standard techniques such as
value iteration.

Remark 7. Maximise Probability vs. Maximise Progres-
sion. Given that one gathers progression as the DFA gets
closer to its accepting state, there is some relation between
maximising the probability of satisfying the specification,
and maximising cumulative progression. However, note
that the two objectives can be conflicting. For example,

18

The International Journal of Robotics Research XX(X)

maximising progression might lead to policies that get close
(according to the distance function) to an accepting state
with high probability but have probability zero of reaching
it, instead of policies that reach an accepting state with
some probability. We will deal with this issue by prioritis-
ing probability of success over progression. However, the
approach presented in this paper can be easily changed so
that progression is prioritised over probability of success,
i.e., the designer can choose the priority order between o0y
and 0s.

5.2.3 Minimise Expected Cost. Before we formally
define Objective 03, we introduce the notion of final
progression point of an infinite run, and accumulated cost
until a final progression point is reached. In the following,

leto =sg = 51 = ... € [Pathp s.

Definition 32. Final Progression Point.
progression point kgw as:

We define the final

ky =min{k e N| B0 (prog) =0} (54)

Dy

Note that, according to Proposition 5, the value of

prog(o) always converges. Thus, we are guaranteed that
the final progression point always exists.

Definition 33. Cumulative Cost until Final Progression
Point. We define the cumulative cost until no more
progression p,, can be accumulated as:

ke o
cumul"? (o) = > e(si, a;)

=0

(55)

Finally, Objective o3 can be formalised in the following
way.

. kS
Problem 7. Calculate E7y".(cumul.”"), and find the
corresponding policy:

o
73 = argmin, B}, s(cumul."*)

By lifting the cost structure to the product, we can pose
the problem above on the product MDP.

Proposition 8. Let ¢, : (S x Q) x A > R such that:

C@((SaQ)aa) = C(Saa) (56)
The following equality holds:
oo
Emln (cumul PeY = m“;’%(cumulciv’ (57)

Proof. The result follows given that M, preserves the
probabilities of paths from M and the cost function c,, is
directly mirroring c.

Prepared using sagej.cls

Note that solely minimising expected cost until no more
progression can be accumulated can lead to bad policies.
For example, when the cost of reaching a state from where
 is not satisfiable is lower than the cost of reaching an
accepting state, the solution for Problem 7 will be a policy
that tries to make ¢ not satisfiable as soon as possible
(as the shortest path to a final progression point might be
through making ¢ unsatisfiable). Our approach of giving
least priority to this objective ensures this behaviour does
not occur.

Furthermore, in contrast with the previous problems,
Problem 7 cannot be solved directly on the product MDP
M, because the value k" is not constant, being dependent
on the path 0. In the next subsectlon we tackle this issue by
introducing a pruning operation over M,,. This operation
preserves the values for Objectives 0, and 02, and provides
a way of stopping the accumulation of cost when no more
progression can be attained while still using a standard
solution method such as value iteration.

5.3 Pruned Product MDP

We provide an approach to prune the product MDP based
on the progression reward, removing states from M,
for which it is not possible to accumulate more r,, and
removing all the transitions (along with the corresponding
costs) from all such states.

Definition 34. Pruned Product MDP. Let M, =M®
Ay =(84,55,A,0Mm,,, AP, Lab,) be a product MDP.
We define the pruned product MDP as MZE™" =
(SErme 5, A, S pprne s AP, Lab,,), where:

o Sg“me = Sprog U Sucs,,,,, where Sproq €S, is the
set of product states from which more progression
can be accumulated, and Sucg _ is the set of their
SUCCcessors:

prog

Sprog = {(5,9) € S, | Ex¢5 (prog) > 0}

Sucspmg = {(qu) € SL/J N Sprog |
3s), € Sprogsa € As. t. Opm, (8, a,8,) > 0}}

(58)

(59)
¢ The transition function is defined as:
5/\/11:;“"e ((Sv Q)v a, (5,7 q,)) =
6M4p((57q)7a7(5,7q,)) UC(S’Q) € S}’”‘Og
0 otherwise
(60)

We also add a zero-cost self-loop, labelled by a dummy
action T, to every state in Sucs,,,, so that the pruned
product MDP can generate infinite sequences.

Remark 8. Constructing MU™"¢. The main challenge
when constructing ML™"¢ is to find Sprog. That can be

Lacerda et al.

19

done by finding the fixed-point of the following recursive
calculation:

pmg ={s,eSxQ|3acAs t.ry(s,,a)>0} (61)
S = Sk g U{sp, €5 xQ|3s, €Sk, aeAst
Im, (54,0, g,) >0}

(62)

The calculation above starts with the states S’pmg for

which there is an immediate progression reward and

then incrementally adds states for which there is some

probability of reaching a state in S°,_ in k steps, according
to the transition function o p4.,.

prog

We now present the relevant relation between the product
MDP, the final progression point, and the pruned product
MDP.

Proposition 9. All paths in IPath a,, 5 are of the form:

apo _ apo
kp 1 k

aop al s Py
o d
kg,

— ®
0=8,—>8 > .. —

(63)

Furthermore, state Skg € S, is such that the following
7
properties hold:

1. EX7 .. (cumul,) =0;
Pvﬂ

2. Sk, € Sucg

prog’

n’lll’l
sSEo
k2.,

(reachac%) =0.

3 pmm_Pr
P max

©15kg

(reachace,) =1 or pmax =

Proof. Equation 63 holds because the final progression
point kgw is always a finite value. This follows directly from
Proposition 5.

Property 1 is a direct consequence of Proposition 7 and
the definition of final progression point for o.

Property 2 is a direct consequence of the definition of
Sucsmq it is the set of states s such that E}{f" (prog) =0
and s is an immediate successor of a state s’ such that
EX(prog) > 0.

For Property 3, we start by showing that pp,.x € {0,1}
Assume 0 < ppax < 1. Then there is some probability of
reaching an accepting state, i.e, a state of the form (s, gr).
From Proposition 6 and the definition of r, (Definition 31),
this means that E?\l/ta;,skgw (cumul,.) >0, which is a

contradiction with Property 1.
Now, following the same argument, one can see that if
Pmax = 1, then Sk is an accepting state, i.e., it is of the
Py

form (s, qp): if this is not the case, E™ (cumaul,.,) >

sSEo
Py
0 and there is a contradiction. Thus, Pmin = 1 because

€ .
Skg €accy

Prepared using sagej.cls

This proposition means that the pruned product MDP
MUET™E preserves the probabilities of finite paths relevant
to the satisfaction of ¢ (01) and the maximisation of r,
(02). This is because Sucg,,, is the set of terminal states
of the MP™"¢, and the pruned states are not required for
the calculation of 0; and o-, because we do not need to take
into account the evolution of M, after the final progression
point of each sequence in IPath,, 5, has been reached.
Furthermore, given that states in Sucg,,,, only have zero-
cost self-loops, we can reduce the indefinite horizon cost
minimisation of Objective o3 to an infinite horizon cost
minimisation that is guaranteed to converge.

Proposition 10. The following equalities hold:

PIS(0) = PP (reachas,) (60
ER(prog) = Bt —(cumal,,) (65)
Emm (cumul w) Eﬂ%‘“ﬂﬂg(cum“l%) (66)

Proof. Given Proposition 3, to prove Equality (64) it
suffices to prove that:
Priyg s; (67)

s (reachace,) = PrMpxmne f(reachac%)

By construction of MP™"¢, its behaviour mirrors the
behaviour of M., until the final progression point Sk is
reached. Furthermore, by Property 3 of Proposition 9, after
reaching Skg,» ACCy will either (i) be reached regardless
of the policy, or (ii) never be reached regardless of the
policy. Thus, the behaviour of M™"¢ after reaching Sk,
is irrelevant for the probability of reaching acc and the
result follows.

Given Proposition 7, to prove Equality (65) it suffices to
prove that:

By eumuly,) = By g(cumaly,) (68

This can be done with a similar argument as the one used
above, but now using Property 1 of Proposition 9 instead of
Property 3.

Finally, given Proposition 8, to prove Equality (66) it
suffices to prove that:

(69)

B o (cumuls(?)) = B (cumul,)

The above follow using a similar argument as the one
used above, but now noting that, according to Property 2
of Proposition 9, Skg, € Sucs,,,, and by construction of
MU the only action available from states in Sucg,,,
is a zero-cost dummy action. Thus the indefinite horizon

. kp,
sum associated to cumulcz“’ in M, is equal to the infinite
horizon sum associated to cumul.., in Mg’"“"e.

20

The International Journal of Robotics Research XX(X)

[co-safe LTL specification ¢|

DFA A

[Product MDP M,
| Pruned product MDP MP7"< |

Progression function p¢|

Figure 6. Diagram of the approach for the problem reduction,
with our contributions in bold.

Thus, Problem 5 can be reduced to solving a reachability
problem, and Problems 6 and 7 can be reduced to expected
cumulative reward/cost problems, where convergence is
guaranteed. These problems can be solved on the same
underlying model MP™"¢ using standard techniques, such
as value iteration. The construction of the product MDP is
depicted in Figure 6.

5.4 Nested Value lteration

In order to optimise 01, 02 and o3 in decreasing order of
priority, we introduce a “nested” version of value iteration
in Algorithm 1.

Algorithm 1 keeps track of a value table per objective,
and uses the lower level priority objectives to break ties, i.e.,
using them to decide which action to execute only when the
value for a pair of actions is the same for the higher-priority
objective(s). Given that all objectives are guaranteed to
converge in ME™", as proved in Proposition 10, the
procedure is guaranteed to converge to the optimal policy
for Objectives 0y, 0, and o3. This approach has similarities
to the work in Teichteil-Konigsbuch (2012b); Kolobov et al.
(2012). However, they just take into account single state
reachability, while we use co-safe LTL goals, which are
more general, and introduce the notion of task progression.
It can also be seen as a simplified version of lexicographic
value iteration, as introduced in Wray et al. (2015), where
we do not introduce the notion of slack between objectives,
and have a fixed number of objectives. Extending the
algorithm to use slack is straightforward, but for our case
where the three objectives are closely related, will not yield
significantly different results.

6 Verification of Policy Guarantees

While we optimise our policy for probability of satisfaction
and expected cost, there are other relevant metrics that we
can obtain by performing verification over the obtained
policy. In this section, we provide two relevant properties
that can be analysed, one specific to the mobile robot model
presented in Section 4, and a general one that can be applied
to any MDP. This is by no means an extensive description of
possible guarantees that can be obtained from the policy, it
is just an example of some particularly relevant properties.

Prepared using sagej.cls

Algorithm 1 NESTED VALUE ITERATION
Input: Pruned product MY™"¢, cost c,,, progression reward r,
Output: Optimal policy 7% : S x Q - A

1: forall s, € S xQ do

. 1 ifs, =(s,qr), where gp € Qp
z Vo(se) < { 0 otherwise

3: Vi(sp) <0
0 if s, is a terminal state
4 Ve(se) (_{ 00 oth:rwise
5: end for
6: while V), or V- or V. have not converged do
7: for all s, € S x Q which are not terminal do
8: foralla € A(s,) do
9: vpe 3o (s(p,a,sfﬂ)vp(sfp)
s1,eSxQ ®
10: vr < rp(sp,a)+ Y BML}’ (sw,a,sfp)Vr(sfp)
sfpeSxQ
11: Ve < Cp(Sp,a) + Y. 6/\/!:,“) (sw,a,s;)Vc(sfp)
sfpeSxQ
12: if vp > V(s) then
13: Vo (sp) < vp
14: Vi(sp) < vr
15: VC(SLp) <~ Ve
16: m(sp) < a
17: else if v, = Vj,(sy) A vr > Vi(s4) then
18: V'r(sgp) <« Up
19: Ve(sep) < ve
20: m(sp) < a
21: elseif v, = Vj(sp) Avr = Vie(8p) Ave < Ve(sy) then
22: Ve(sy) < ve
23: T(sp) < a
24: end if
25: end for
26: end for

27: end while
28: return 7w «

Central to the verification of properties of the obtained
policies is the notion of discrete-time Markov chain
(DTMC) induced by a policy.

Definition 35. Induced Discrete-Time Markov Chain. Let
M =(5,5,A,6pm, AP, Lab) be an MDP, and w:S — A
a memoryless policy over M. The DTMC induced by ©
is a tuple C = (S,s,0c, AP, Lab), where the probabilistic
transition function §¢ : S x S — [0, 1] is such that:

50(878,) :5/\/1(8777(8)75,) (70)

Note that, even though the potential state space of C' is
the same as the state space of M, the fact that the actions
available at each state are fixed as defined by the policy
means that the set of reachable states of C'is typically much
smaller than the set of reachable states of M. This means
that in general policy verification (i.e., model checking of
C) can be done much quicker than policy generation (i.e.,
model checking of M).

In our case, we wil use DITMC C,=
(Sg"“"e,g, d¢c,, AP, Lab,), which is the DTMC induced

Lacerda et al.

21

by 7 (calculated using Algorithm 1) for ME™"¢. We
remind the reader that while 7* is a finite-memory policy
for M, it is a memoryless policy for MZ™"¢.

6.1 Calculation of Conditional Expectations

We start with a property of interest for policies generated
using our methodology, for arbitrary models (in contrast
with policies generated for the mobile robot model
presented in Section 4). Our approach allows us to generate
apolicy 7* where the optimised expected cumulative cost is
the expectation to reach a state from which it is not possible
to gather more cumulative progression reward. This value
can have a very large variance because the expected costs
to reach each of these states can be very different. For
example, consider the environment on Figure 1, and assume
that the task is to visit location v; and visit location vg. The
expected time for the execution of 7* when the doors are
closed is very different to the expected time for execution
of m* when the doors are open. Furthermore, it is relevant
to ask whether it is possible to achieve the whole co-safe
LTL specification, what is the expected time to do so. Thus,
one can be interested in “splitting” the expected cumulative
cost value, into expected cost fo success, and expected
cost fo failure. These conditional expectations are more
informative and can be used for execution monitoring, or
for a higher level task scheduler. More concretely, we are
interested in the following problem.

Problem 8. Find the expected cost of ™ until success and
until failure, i.e., find:

E}\r:lg-um’%(cumul% | acc,) = Ec, 5 (cumul,,, | accy)

(71)

Eﬂgm,,{%(cumul% | ~acc,) = (72)
Ec, 5;(cumul, | ~acc,)

In order to calculate the conditional expectation

Ec, s> (cumul., | acc,) efficiently, one can prune C, in
order to keep only the paths that lead to satisfaction of (.

Definition 36. Let C,, = (S,3,0¢, AP, Lab) be the induced
DTMC. The DTMC representing the successful runs of C,
is defined as Cj; = (S©,5, dcr, AP, Lab), where:

o ST =8PrneN{seSPne | Pre, s(reachace, =

0)}

e The probabilistic transition function 605 155 x
S= — [0,1] is such that:

Pre, o (reachace,)

50;(575,) = 504,(575,) (73)

Pre, s(reachace,)
So, to build C. we simply remove all states for which

the probability of satisfying the specification is zero, and
normalise the transition function accordingly.

Prepared using sagej.cls

Proposition 11. Baier et al. (2014). The following equality
holds:
Ec, s;(cumul., | acc,) = EC$ sz (cumulc,) (74

Thus, we reduced the problem of calculating a condi-
tional expectation to an expected cumulative cost calcula-
tion (i.e., an instance of Problem 2 for DTMCs). This can
be calculated efficiently using standard techniques such as
value iteration. Furthermore, during the calculation of 7*,
the value Prg, s;(reachacc,) = Pr szune,g(machaccg’)
is calculated for all states of C',. Hence those values do
not be to be recalculated in order to build C; . We refer
the interested reader to Baier et al. (2014), where a a proof
of Proposition 11 is presented, along with a more general
discussion on the calculation of conditional expectations for
Markovian models.

Finally, we can directly calculate the expected cost to
failure Ec, 55 (cumul., | —reachace,), since we know
Ec, s;(cumul.,), Ec,s;(cumul., | reachqe,) and
Prc, 5;(reachqce,)

©srSp

6.2 Probabilities of Robot Location after Task
Completion

For the model of a mobile service robot presented in
Section 4, one can also be interested in the distributions over
possible final locations of the robot, as this information can
be used for future planning.

Problem 9. Let term,, be the set of terminal states where
locationisv eV, ie.:

term, = {s € S0 | s € Sucg,,,, and s(loc) = v} (75)

prog
Calculate the probability of reaching one such state
under ¥, i.e.:

Pr}r\/lgm,g(reachtermv) = Pro, s (reachierm,) (76)

The problem above is an instance of Problem 1 over
C,. Note that we can calculate the probability above for
different locations, or even sets of locations. Furthermore,
after calculating Prc,, 5-(reachierm,), we can calculate
the expected cost (remember that for the mobile robot
model this represents expected time) given that the
robot finishes in a certain location by a straightforward
adaptation of the conditional expectations calculation
presented in the previous subsection — one just needs to
replace Prc, s (reachqce,) with Preo, s-(reachierm,)
when pruning the DTMC.

22

The International Journal of Robotics Research XX(X)

7 Implementation and Evaluation

In this section, we empirically evaluate our approach.
We start by evaluating the scalability of the approach,
comparing it with a version of weighted skipping, an
alternative approach to deal with partially satisfiable co-safe
LTL specifications. Then, we report on an implementation
which has been used for long-term deployments of mobile
service robots in real office environments Hawes et al.
(2017). To illustrate the use of our approach, we provide
details on our implementation of a fetch-and-carry task.

7.1

In this subsection, we evaluate the approach presented in
Section 5 in terms of scalability, and compare it to an
alternative approach based on an adaptation of the weighted
skipping approach (Lahijanian et al. 2015) to MDPs.

The weighted skipping approach is based on defining an
extra cost structure which encodes the penalty associated
with ignoring the occurrence (or non-occurrence) of a
certain atomic proposition. In broad terms, this defines a
notion of preference over the atomic propositions. Like our
approach, weighted skipping can deal with specifications
that cannot be satisfied with probability one in the model
and allows for the generation of policies that “do as much
as possible”. Furthermore, it also allows for reasoning about
ignoring a part of the specification with lower associated
skipping cost in order to achieve a part of the specification
with higher skipping cost, something our approach does not
allow. For example, with weighted skipping, one can choose
to visit a region that should be avoided in order to reach a
goal region that could not be reached otherwise. However,
this extra flexibility requires the construction of an extended
product MDP MZ*, which encodes all possible skipping
options at each state. This yields a large increase in the
size of the model that needs to be solved, and substantially
affects the scalability of the method, as we will show below.
In our adaptation of the approach, we use a version of nested
value iteration to first minimise the expected skipping cost,
and then minimise the expected cost of the cost structure
given as input to the problem.

We implemented both our approach and the adaptation
of the weighted skipping approach in the widely used
PRISM model checker Kwiatkowska et al. (2011), which
already has support for solving MDPs against properties
in LTL, in particular allowing for the maximisation of the
probability of satisfying an LTL formula, i.e., a solution
to Problem 3. We will refer to this approach as MaxProb,
and will also compare our approach to it, in order to report
on the overhead of maximising progression towards the
goal and minimising expected cost, in conjunction with the
probability maximisation.

We evaluate the approaches on the environment depicted
in Figure 1. We assume that the robot starts in v3 and

Evaluation of Policy Generation

Prepared using sagej.cls

the probability of each door being open is 0.9, ie.,
the check_door guard fulfilling action is defined as in
Equation 36. Furthermore, we assume that all navigation
actions are successful with probability 1, except from v3 to
vy, which will successfully make the robot reach vy with
probability 0.8, but might finish in vy, with probability 0.2.
A cost structure, representing the expected time taken to
move between each pair of nodes is defined using a coarse
distance metric and assuming constant speed. We depict this
as weights on the graph in Figure 1. Finally, we assume that
the check_door actions take 0.01 seconds.

Assume that vy should always be avoided (e.g., to prevent
the robot blocking a fire exit), and that our task is to visit
nodes v1, vg and v1g (i.e., visit three rooms). We represent
the atomic propositions loc = v, with v eV as at, This
specification can be written in co-safe LTL as:

= A

ve{v1,v6,v18}

((=aty,) Uat,) (77

The policy obtained for ¢ using our approach tries to visit
v1, vg and v1g in the order which minimises expected cost
(i.e., expected time). However, since there is a chance the
robot will end up in vy when navigating directly between
vs and vy, the policy takes a “detour” through wvqq. This is
because our approach prioritises robustness — in the form of
maximisation of the probability of success — over optimality
of expected time. If a closed door is encountered during
execution, the policy simply tries to go to the next unvisited
closest node, a behaviour that comes from maximising
the progression reward. Based on the values in Figure 1|
the probability of the policy satisfying the specification is
0.729, with an expected time of 17.27 seconds. The values
for the expected time of success and failure are 18.27 and
14.58, respectively. The lower time for failure is explained
by the fact that the more of the specification the robot fails
to satisfy (due to closed doors), the less it has to do.

The policy obtained using weighted skipping is the same
as the one described above, and the one using MaxProb
differs when the robot finds a closed door. Given that this
makes the overall specification unsatisfiable, the policy is
not defined for further states and the robot stops executing
the task.

In Figures 7 and 8, we present the model sizes (defined
as the number of states plus the number of transitions) and
time for solving the model, for the MaxProb approach, for
our approach, and for the weighted skipping approach. On
the left hand side of the figures, we show the size of the
original (flat) model or of the specification DFA (depending
on whether we are analysing scalability in terms of model
size or specification size), and the sizes of the product MDP
(used to maximise probability of success), of the pruned
product MDP (used by our approach), and of the weighted
skipping product MDP. On the right hand side of the

Lacerda et al.

23

le7 Problem Sizes

=—a MaxProb - M,

151 e—e Partial Satisfaction - [M2 |
*—+ Weighted Skipping - |M"|

1.0+

0.5}

0.0 =
4 5 6

of Rooms in Model

Solution Times

=—a MaxProb - VI
70|| ®—® Partial Satisfaction - NVI
*—+ Weighted Skipping - NVI

4 5 6 7 8 9 10
of Rooms in Model

Figure 7. Model sizes and solution times for a specification where the robot must visit 3 rooms, while varying the total number of

rooms modelled.

5 1le6 Problem Sizes
a—a A
=—a MaxProb - M|
4F ®—e Partial Satisfaction - [MD"|
— Weighted Skipping - | Mts‘
3l
21
1l
4-_;"4'
o= L d 5 "
1 2 3 4 5 .

of Rooms to Visit

Solution Times

14 || == MaxProb - VI
e—e Partial Satisfaction - NVI
— Weighted Skipping - NVI

12

10+

Seconds

0 4 n
1 2 3 4 5 6
of Rooms to Visit

Figure 8. Model sizes and solution times for a model with 6 rooms, while varying the total number of rooms to be visited.

figures, we give the time taken to solve the models (on an
Intel® Core™;i7 at 2.70GHz x 8 processor, 16GB of RAM),
using “vanilla” value iteration on M, for probability
maximisation, nested value iteration on Mf;mne for our
approach, and nested value iteration (adapted to optimise
two objectives, as explained above) on MJ* for weighted
skipping. Note that we are only comparing times to solve
the models, in order to provide a fair comparison where
optimisations of the procedures to build the product models
are not taken into account. In particular, our implementation
of the construction of MZ* is particularly slow when
compared with the pruning operation required to build
MET"E, By only comparing times to solve the model, we

Prepared using sagej.cls

are comparing exactly the same solution algorithm (nested
value iteration). We also note that the time for the pruning
operation is less than for solving the model afterwards, even
though it can take some seconds for the larger models we
analyse.

In Figure 7, we report on scalability in terms of model
size, by varying the number of rooms in the model.
The specification is to visit the two leftmost rooms and
the rightmost room in the model, while avoiding vy (for
example, Equation 77 is the specification used for 6
rooms). One can see that the weighted skipping approach
scales poorly compared to the other approaches, with our
implementation running out of memory when trying to

24

The International Journal of Robotics Research XX(X)

build Mggs for 8 rooms. On the other hand, the sizes of
M, and ME™"¢ are of the same order of magnitude as
the size of the original model M. Furthermore, the pruning
operation does not reduce the state space substantially, as
progression towards the goal is achievable in most states
of the model. In terms of solution times, one can see that
the overhead of optimising three objectives using nested
value iteration only stops being negligible for the larger
model of 10 rooms. In fact, the main contributor for the
increase of solution times is the size of the original model
M, which grows exponentially with the number of rooms,
as each room added requires adding an extra state feature
representing the state of the corresponding door.

In Figure 8, we report on scalability in terms of
specification size, by varying the number of rooms to visit,
for a model with 6 rooms. One can see that the size of A,
is negligible (it varies from 15 to 8385) when compared to
the size of the product structures, with it not even being
visible in the plot. This is a common trend in this type of
problems, where typically the model size is much larger
than the specification size. In this case, weighted skipping
scales worse because, as we add more atomic propositions
to the specification, more possible combination of possible
“skippings” need to be added to M{*. For 4 rooms, the
size of M%® is 1.70 x 107, and our procedure to build ML®
ran out of memory for 5 rooms. The other approaches scale
much better as the number of rooms to visit increases, with
the overhead of nested iteration only being noticeable for
the largest specification.

We finish by noting that the specification we tested is
computationally challenging, featuring the combinatorial
explosion of choosing the best order to visit a set
of locations. Furthermore, when compared to a simpler
approach of only maximising the probability of task
satisfaction, our approach does not incur a substantial
overhead. However, it is able to generate policies that not
only maximise the probability of task satisfaction, but are
also defined for states where the probability of satisfying the
full task is zero but there still is some possible progression
towards the goal, and minimise the expected cumulative
cost while doing so.

7.2 Robot Implementation

In this subsection, we report on the use of our approach in a
real mobile service robot, deployed for long periods of time
in everyday environments, in the context of the STRANDS
project®.

In Figure 9, we provide a high level depiction of the
architecture for the implementation in the real robot. The
implementation runs on ROS and connects the policies
generated by the PRISM implementation of our approach
with an executable policy on the robot platform. The
framework assumes the implementation of spatio-temporal

Prepared using sagej.cls

edge and action outcome and duration models, a set of
primitive skills implemented as ROS actionlib actions, and
a set of continuous navigation actions implemented in ROS.

The designer defines the topological map (according
to Definition 18), overlaying it on the 2D metric map
of the environment, using an extension of the RVIZ
tool. They also represent the action definitions (according
to Definition 23). The action definitions also include a
matching between possible outcomes of the execution of
primitive skills on the robot with each possible successor
state in the MDP. Finally, the specification is defined as a
co-safe LTL task and an execution time .

The MDP constructor then takes as input the topological
map, the action definitions, and the spatio-temporal model
prediction at time ¢ to build a navigation and general actions
MDP M-, (according to Definition 26). The PRISM
language translator then takes the representation of MtT A
and the co-safe language specification and generates an
input problem in the PRISM modelling language. This
problem is solved using our PRISM implementation of
the approach presented in Section 5, obtaining a PRISM
representation of the optimal policy 7. The policy parser
then uses this policy and the representation of Mf,— A tO
generate an executable representation of the policy in ROS.
This representation is then executed by the policy executor.
It appropriately calls the navigation actions and primitive
skills available, according to 7, and matches the outcomes
from the execution of these behaviours on the robot with
the corresponding MDP successor state. This matching is
done using the action definitions, and is required in order
to evolve the current state of the system and find the next
action associated to 7, which is then triggered by the
executor.

The implementation is open source and available
online®. It has been deployed on the robot depicted in
Figure 1 (however, note that the approach is platform
independent), which has been used in several human-
populated environments in the context of the STRANDS
project, for periods of up to four months. Such
environments include public spaces at the project’s research
partners premises; Haus der Barmherzigkeit, an elder-
care facility in Vienna, Austrial; office spaces of G4S
Technology in Tewkesbury, United Kingdom'; and the
Transport Systems Catapult (TSC) Innovation Centre, in
Milton Keynes, United Kingdom™. We refer the interested

*http://strands-project.eu
Shttps://github.com/strands-project/strands_
executive/tree/kinetic-devel/mdp_plan_exec
Ihttps://www.hausderbarmherzigkeit.at/en
Ihttp://www.g4s.com/
**https://ts.catapult.org.uk/

http://strands-project.eu
https://github.com/strands-project/strands_executive/tree/kinetic-devel/mdp_plan_exec
https://github.com/strands-project/strands_executive/tree/kinetic-devel/mdp_plan_exec
https://www.hausderbarmherzigkeit.at/en
http://www.g4s.com/
https://ts.catapult.org.uk/

Lacerda et al.

25

(

Designer)

'\ %EEEROS)

Co-safe LTL
specification ¢

PRISM
language
translator
PRISM
Policy 7* Policy
(PRISM) parser

l l l

Topological Action
deﬁr

map T

R
Spatio-
MDP temporal
constructor| models
Primitive éu
skills «—> g'
Policy =
executor
Navigation|
actions le—>
—/

Figure 9. High level view of the architecture for the real robot implementation. Blue circles represent the different structures
used on the implementation, red squares represented the methods implemented for policy execution and in order to connect
between the ROS code and the PRISM software, and green rounded squares represent external pieces of code that can be

plugged in to the framework.

reader to Hawes et al. (2017) for details on these
deployments.

Here, we report on a particularly interesting task on the
largest environment in which the robot was deployed: a
delivery task at the TSC Innovation Centre. The overall
area of the environment was more than 2000m?2, and the
topological map had 94 nodes. There were also 4 doors
where the robot needed to wait for someone to hold the
door before it could go through. This was modelled using
guarded navigation actions for each door.

The robot is fitted with a basket in which users at the site
can put and retrieve objects. The task was for the robot to
navigate to the sender and wait for the object to be placed in
its basket. Then, navigate to the location of the receiver, and
wait for the object to be retrieved. If the receiver does not
retrieve the object, the robot needs to navigate back to the
sender to give the object back. After this, the robot needs
to navigate to one of a pre-defined set of locations final.
This is needed to avoid the awkward behaviour where the
robot just stands next to the human after the interaction is
finished.

Using a speak-and-wait primitive skill, where the robot
speaks and then waits for a button press from the user
or for a timeout, we created action retrieve for retrieving
the object, action deliver for delivering the object, and
action return for returning the object to the sender. These

Prepared using sagej.cls

actions correspond to calls to the speak-and-wait primitive
skill with different speeches to be performed (e.g., for the
action of retrieving the object, the speech argument for the
primitive skill is “Hi, please place the object to be delivered
in my basket and press the button on my screen when you
are done.”). We also defined three state features retrieved,
delivered and returned, all with domain {-1,0,1}. For
example, retrieved = —1 represents that the robot has not
tried to retrieve the object for delivery yet, retrieved =0
means that the speak and wait primitive skill timed-out
when trying to retrieve the object (i.e., the sender was not
there to send the object), and retrieved = 1 means that the
sender has pressed the button on the robot screen (and we
assume that they have placed the object in the basket). The
values for delivered and returned have similar meanings.
We also only allow each action to be executed only once,
i.e., they have the corresponding state feature equal to —1
as one of their preconditions. This is because the robot has
other tasks to execute, and cannot wait indefinitely for a
user to place or retrieve an object.

The specification is to reach a state where the retrieve
action has timed-out (i.e., the sender did not place the object
in the basket), or the deliver action was successful (i.e., the
receiver retrieved the object from the basket), or the return
action was successful (i.e., the robot successfully returned
the object back to the sender, because the receiver did not

26

The International Journal of Robotics Research XX(X)

retrieve it). After that, the robot must navigate to one of the
locations in final. This can be written as:

o =F(((retrieved = 0) v (delivered = 1)v
(returned = 1))A
(F \/UEﬁnal(loc = U)))

The model for this problem has 10, 976 states and 31, 624
transitions. The product MDP has 16, 672 states and 48, 040
transitions, and the full pipeline described in Figure 9,
i.e., building the MDP representation, solving it in PRISM
against ¢ using the approach presented in Section 5, and
parsing the policy back into an executable structure in ROS
is done under 7 seconds. This means the approach allows
for online integration on the real robot, as the procedure is
done in a relatively short amount of time, even for a large
environment and an involved task specification. A video
showing our mobile robot performing this task is available
online at https://youtu.be/MFS-bOdCW6Q.

(78)

8 Conclusions

In this paper, we presented an automated framework for
deployment of policies for mobile service robots, based
on probabilistic model checking techniques. The modelling
approach is based on three main ingredients, (i) using
Markov decision processes to represent the uncertainty
associated with the robot’s navigation and other action exe-
cutions; (ii) using co-safe linear temporal logic, a flexible,
unambiguous, and well-tested specification language, to
encode goals; and (iii) allowing for the plugging of accurate
spatio-temporal environmental models, learned from expe-
rience, for filling the probabilistic outcomes of the MDP,
and defining a cost function representing expected time for
execution. We then present a general method for the genera-
tion of cost-optimal policies for co-safe LTL specifications
over MDP models, which can be applied to specifications
that are not satisfiable with probability one. This policy
generation approach also encodes a notion of satisfying
as much of the specification as possible, by introducing
a function that represents a notion of progression towards
the goal and also maximising the expected value of this
function.

By applying our policy generation approach to the
MDP models of mobile robot tasks we propose, we are
able to provide meaningful formal performance guarantees
on the robot’s behaviour, such as probability of task
satisfaction and expected time for task completion. Finally,
our framework has been implemented on a real mobile
service robot, and used for its long term deployment in
real office environments, thus proving its suitability for real
world use. It can also be easily ported to other platforms, as
it is implemented in the ROS middleware as a set of robot-
independent packages.

Prepared using sagej.cls

There are several avenues for further work. Of particular
relevance are the use of probabilistic planning techniques
such as heuristic search or sampling-based approaches to
improve the scalability of our methodology while still
being able to provide formal performance guarantees;
the introduction of more fine-grained timing guarantees
such as time-bounded guarantees; and the extension of
these techniques to multi-robot systems, allowing for the
deployment of robot teams with probabilistic guarantees
both at global (team) and local (individual robot) levels.

Funding

The research leading to these results has received funding from the
EU Seventh Framework Programme (FP7/2007-2013) under grant
agreement No 600623, STRANDS; UK Research and Innovation
and EPSRC through the Robotics and Artificial Intelligence
for Nuclear (RAIN) research hub [EP/R026084/1]; and the
PRINCESS project, funded by the DARPA BRASS programme.

References

Baier C and Katoen JP (2008) Principles of Model Checking. MIT
Press.

Baier C, Klein J, Kliippelholz S and Mircker S (2014) Computing
conditional probabilities in Markovian models efficiently. In:
Tools and Algorithms for the Construction and Analysis of
Systems. Springer.

Belta C, Bicchi A, Egerstedt M, Frazzoli E, Klavins E and Pappas
G (2007) Symbolic planning and control of robot motion
[grand challenges of robotics]. IEEE Robotics & Automation
Magazine 14(1): 61-70.

Bhatia A, Kavraki LE and Vardi MY (2010) Sampling-based
motion planning with temporal goals. In: Proc. of the 2010
IEEE Int. Conf. on Robotics and Automation (ICRA).

Bhatia A, Maly MR, Kavraki LE and Vardi MY (2011) Motion
planning with complex goals. IEEE Robotics & Automation
Magazine (RAM) 18(3).

Boutilier C, Dean T and Hanks S (1999) Decision-theoretic
planning: Structural assumptions and computational leverage.
Journal of Artificial Intelligence Research 11(1).

Cashmore M, Fox M, Long D, Magazzeni D, Ridder B, Carrera
A, Palomeras N, Hurtés N and Carreras M (2015) Rosplan:
Planning in the robot operating system. In: Proc. of the 25th
Int. Conf. on Planning and Scheduling (ICAPS).

Castro L, Chaudhari P, Tumova J, Karaman S, Frazzoli E and
Rus D (2013) Incremental sampling-based algorithm for
minimum-violation motion planning. In: Proc. of 52nd IEEE
Conf. on Decision and Control (CDC).

Cizelj I and Belta C (2014) Control of noisy differential-drive
vehicles from time-bounded temporal logic specifications.
Int. Journal of Robotics Research 33(8).

de Alfaro L (1997) Formal Verification of Probabilistic Systems.
PhD Thesis, Stanford University.

https://youtu.be/MFS-bOdCW6Q

Lacerda et al.

27

Ding X, Lazar M and Belta C (2014a) LTL receding horizon
control for finite deterministic systems. Automatica 50(2).

Ding X, Pinto A and Surana A (2013) Strategic planning under
uncertainties via constrained Markov decision processes. In:
Proc. of the 2013 IEEE Int. Conf. on Robotics and Automation
(ICRA).

Ding X, Smith S, Belta C and Rus D (2014b) Optimal control
of Markov decision processes with linear temporal logic
constraints. IEEE Trans. on Automatic Control 59(5).

Donzé A and Maler O (2010) Robust satisfaction of temporal logic
over real-valued signals. In: Proc. of the Int. Conf. on Formal
Modeling and Analysis of Timed Systems (FORMATS).

Fainekos GE and Pappas GJ (2009) Robustness of temporal
logic specifications for continuous-time signals. Theoretical
Computer Science 410(42).

Forejt V, Kwiatkowska M, Norman G and Parker D (2011)
Automated verification techniques for probabilistic systems.
In: Formal Methods for Eternal Networked Software Systems
(SFM), LNCS, volume 6659. Springer.

Frank J and Jonsson A (2003) Constraint-based attribute and
interval planning. Constraints 8(4).

Hanheide M, Gobelbecker M, Horn GS, Pronobis A, Sjoo K,
Aydemir A, Jensfelt P, Gretton C, Dearden R, Janicek M
et al. (2015) Robot task planning and explanation in open and
uncertain worlds. Artificial Intelligence .

Hawes N, Burbridge C, Jovan F, Kunze L, Lacerda B, Mudrova
L, Young J, Wyatt JL, Hebesberger D, Kortner T, Ambrus R,
Bore N, Folkesson J, Jensfelt P, Beyer L, Hermans A, Leibe
B, Aldoma A, Faulhammer T, Zillich M, Vincze M, Al-Omari
M, Chinellato E, Duckworth P, Gatsoulis Y, Hogg DC, Cohn
AG, Dondrup C, Fentanes JP, Krajnik T, Santos JM, Duckett
T and Hanheide M (2017) The STRANDS project: Long-
term autonomy in everyday environments. /EEE Robotics and
Automation Magazine 24(3): 146-156.

Hopcroft JE, Motwani R and Ullman JD (2006) Introduction
to Automata Theory, Languages, and Computation (3rd
Edition). Addison-Wesley Longman Publishing Co. Inc.

Ingrand F and Ghallab M (2014) Deliberation for autonomous
robots: A survey. Artificial Intelligence .

Kemeny J, Snell J and Knapp A (1976) Denumerable Markov
chains. 2nd edition. Springer-Verlag.

Kolobov A, Mausam and Weld D (2012) A theory of goal-oriented
MDPs with dead ends. In: Proc. of 28th Conf. on Uncertainty
in Artificial Intelligence (UAI).

Kress-Gazit H, Fainekos GE and Pappas GJ (2009) Temporal
logic-based reactive mission and motion planning. [EEE
Trans. on Robotics 25(6): 1370-1381.

Kupferman O and Vardi M (2001) Model checking of safety
properties. Formal Methods in System Design 19(3).

Kwiatkowska M, Norman G and Parker D (2011) PRISM 4.0:
Verification of probabilistic real-time systems. In: Computer
Aided Verification (CAV), LNCS, volume 6806. Springer.

Prepared using sagej.cls

Lacerda B, Parker D and Hawes N (2014) Optimal and dynamic
planning for Markov decision processes with co-safe LTL
specifications. In: Proc. of 2014 IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS).

Lacerda B, Parker D and Hawes N (2015a) Nested value iteration
for partially satisfiable co-safe LTL specifications. In: Proc.
of AAAI Fall Symposium on Sequential Decision Making for
Intelligent Agents (SDMIA).

Lacerda B, Parker D and Hawes N (2015b) Optimal policy
generation for partially satisfiable co-safe LTL specifications.
In: Proc. of the 24th Int. Joint Conf. on Artificial Intelligence
(IJCAI).

Lahijanian M, Almagor S, Fried D, Kavraki LE and Vardi MY
(2015) This time the robot settles for a cost: A quantitative
approach to temporal logic planning with partial satisfaction.
In: Proc. of the 29th AAAI Conf. on Artificial Intelligence
(AAAI). pp. 3664-3671.

Lahijanian M, Andersson S and Belta C (2012) Temporal logic
motion planning and control with probabilistic satisfaction
guarantees. I[EEE Trans. on Robotics 28(2).

Lahijanian M and Kwiatkowska M (2016) Specification revision
for Markov decision processes with optimal trade-off. In:
Proc. of the 55th Conf. on Decision and Control (CDC 2016).
IEEE.

Lahijanian M, Maly MR, Fried D, Kavraki LE, Kress-Gazit H
and Vardi MY (2016) Iterative temporal planning in uncertain
environments with partial satisfaction guarantees. [EEE
Transactions on Robotics 32(3).

Maly M, Lahijanian M, Kavraki L, Kress-Gazit H and Vardi M
(2013) Iterative temporal motion planning for hybrid systems
in partially unknown environments. In: Proc. of 16th Int.
Conf. on Hybrid Systems: Computation and Control (HSCC).

McGann C, Py F, Rajan K, Thomas H, Henthorn R and McEwen R
(2008) A deliberative architecture for auv control. In: Proc. of
the 2008 IEEE Int. Conf. on Robotics and Automation (ICRA).

Mudrové L, Lacerda B and Hawes N (2015) An integrated control
framework for long-term autonomy in mobile service robots.
In: Proc. of the 7th European Conf. on Mobile Robotics
(ECMR). Lincoln, United Kingdom.

Pnueli A (1981) The temporal semantics of concurrent programs.
Theoretical Computer Science 13.

Pulido Fentanes J, Lacerda B, Krajnik T, Hawes N and Hanheide
M (2015) Now or later? predicting and maximising success of
navigation actions from long-term experience. In: Proc. of the
2015 IEEE Int. Conf. on Robotics and Automation (ICRA).

Puterman M (1994) Markov Decision Processes: Discrete
Stochastic Dynamic Programming. Wiley.

Raman V, Donzé A, Maasoumy M, Murray RM, Sangiovanni-
Vincentelli A and Seshia SA (2014) Model predictive control
with signal temporal logic specifications. In: Proc. of the 53rd
Conf. on Decision and Control (CDC).

28

The International Journal of Robotics Research XX(X)

Sadigh D and Kapoor A (2016) Safe control under uncertainty
with probabilistic signal temporal logic. In: Proc. of Robotics:
Science and Systems (RSS).

Sprauel J, Teichteil-Konigsbuch F and Kolobov A (2014)
Saturated path-constrained MDP: Planning under uncertainty
and deterministic model-checking constraints. In: Proc. of
28th AAAI Conf. on Artificial Intelligence (AAAI).

Stock S, Mansouri M, Pecora F and Hertzberg J (2015)
Hierarchical hybrid planning in a mobile service robot. In:
Proc. of the 38th Joint German/Austrian Conf. on Artificial
Intelligence (KI).

Svorefiova M, Cerné I and Belta C (2013) Optimal control of
MDPs with temporal logic constraints. In: Proc. of 52nd IEEE
Conf. on Decision and Control (CDC).

Teichteil-Konigsbuch F (2012a) Path-constrained Markov deci-
sion processes: bridging the gap between probabilistic model-
checking and decision-theoretic planning. In: Proc. of 2012
European Conf. on Artificial Intelligence (ECAI).

Teichteil-Konigsbuch F (2012b) Stochastic safest and shortest
path problems. In: Proc. of the 26th AAAI Conf. on Artificial
Intelligence (AAAI).

Tumova J, Hall G, Karaman S, Frazzoli E and Rus D (2013)
Least-violating control strategy synthesis with safety rules.
In: Proc. of 16th Int. Conf. on Hybrid Systems: Computation
and Control (HSCC).

Ulusoy A, Wongpiromsarn T and Belta C (2012) Incremental
control synthesis in probabilistic environments with temporal
logic constraints. In: Proc. of 51st IEEE Conf. on Decision
and Control (CDC).

Vardi M (1985) Automatic verification of probabilistic concurrent
finite state programs. In: Proc. of 26th IEEE Annual Symp. on
Foundations of Comp. Sci. (FOCS).

Vasile CI, Tumova J, Karaman S, Belta C and Rus D (2017)
Minimum-violation scLTL motion planning for mobility-on-
demand. In: Proc. of the 2017 IEEE Int. Conf. on Robotics
and Automation (ICRA).

Veloso MM, Biswas J, Coltin B and Rosenthal S (2015) CoBots:
Robust symbiotic autonomous mobile service robots. In:
Proc. of the 24th Int. Joint Conf. on Artificial Intelligence
(IJCAI).

Wolff E, Topcu U and Murray R (2013) Efficient reactive
controller synthesis for a fragment of linear temporal logic.
In: Proc. of 2013 IEEE Int. Conf. on Robotics and Automation
(ICRA).

Wray KH, Zilberstein S and Mouaddib AI (2015) Multi-objective
MDPs with conditional lexicographic reward preferences. In:
Proc. of the 29th AAAI Conf. on Artificial Intelligence (AAAI).
pp. 3418-3424.

Younes HLS and Littman ML (2004) PPDDL 1.0: An extension
to PDDL for expressing planning domains with probabilistic
effects. Technical Report CMU-CS-04-162.

Prepared using sagej.cls

	1 Introduction
	2 Related Work
	2.1 Planning and Robotics
	2.2 Markov Decision Processes and Linear Temporal Logic
	2.3 Partial Satisfiability

	3 Preliminaries
	3.1 Notation
	3.2 Markov Decision Processes
	3.3 Factored MDP Representation
	3.4 Linear Temporal Logic
	3.4.1 Syntax and Semantics
	3.4.2 Co-safe LTL and Deterministic Finite Automata
	3.4.3 Product MDP and Policies for Co-Safe LTL

	4 MDP Model of Mobile Service Robot Tasks
	4.1 Primitive Skills
	4.2 Topological Map
	4.3 Navigation Edge Partition
	4.4 Probabilistic Edge Models
	4.5 Navigation MDP
	4.6 Modelling General Actions
	4.7 Expected Time Cost Structure
	4.8 Summary and Discussion

	5 Policy Generation for Partially Satisfiable Task Specifications
	5.1 Task Progression Function
	5.2 Individual Problem Formulation and Solution
	5.2.1 Maximise Probability of Success.
	5.2.2 Maximise Progression.
	5.2.3 Minimise Expected Cost.

	5.3 Pruned Product MDP
	5.4 Nested Value Iteration

	6 Verification of Policy Guarantees
	6.1 Calculation of Conditional Expectations
	6.2 Probabilities of Robot Location after Task Completion

	7 Implementation and Evaluation
	7.1 Evaluation of Policy Generation
	7.2 Robot Implementation

	8 Conclusions

