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Abstract— We propose novel techniques for task allocation
and planning in multi-robot systems operating in uncertain
environments. Task allocation is performed simultaneously with
planning, which provides more detailed information about indi-
vidual robot behaviour, but also exploits independence between
tasks to do so efficiently. We use Markov decision processes
to model robot behaviour and linear temporal logic to specify
tasks and safety constraints. Building upon techniques and tools
from formal verification, we show how to generate a sequence of
multi-robot policies, iteratively refining them to reallocate tasks
if individual robots fail, and providing probabilistic guarantees
on the performance (and safe operation) of the team of robots
under the resulting policy. We implement our approach and
evaluate it on a benchmark multi-robot example.

I. INTRODUCTION

In many service robot applications, such as intra-logistics,
surveillance or stock monitoring, it is desirable for a collection
of tasks to be allocated to a team of robots. In this paper,
we address applications such as these where tasks are
independent (there are no inter-task dependencies) and each
task only requires a single robot to complete it. Most existing
approaches for solving this class of problems divide the
problem into separate task allocation (TA) and planning
processes. TA determines which robot should complete which
tasks, and planning determines how each task, or conjunction
of tasks, should be completed. This separation is made to
reduce the computational complexity of the problem. It allows
each robot to plan separately for its own task set, avoiding the
need for a joint planning model which is typically exponential
in the number of team members.

This separation also allows specialised algorithms to be
used for the TA and planning parts, increasing the efficiency
with which the task-directed behaviour of the team can be
generated. When doing this, TA usually assumes a greatly
simplified model of planning in order to be able to efficiently
compute allocations. However, this separation also means
that the TA process cannot be informed by the plans of
the individual robots, which prevents it from exploiting
opportunities, or avoiding hindrances, that are only evident
once planning has been performed. For example, if the
individual robots plan with time-based models, a task may
be much quicker to complete at a particular time of day, but
with TA separated from planning, this information cannot be
exploited in the allocation process.

To address this limitation, recent work has considered
the problem of simultaneous task allocation and planning
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(STAP) [1], [2], which solves the complete problem in a single
process, and can therefore take the plans of each robot (and
their costs etc.) into account during the allocation process. In
this paper, we build upon the STAP approach and make the
following contributions. We present the first formalisation of
simultaneous task allocation and planning under uncertainty
(STAPU), and a method to solve this problem adapting
techniques from formal verification of probabilistic systems.
We also contribute an extension of the approach to deal with
reallocation of tasks when a robot fails.

Individual robots’ capabilities and environments are de-
scribed using Markov decision processes (MDPs). The set
of tasks to be completed by the team of robots is formally
specified using linear temporal logic (LTL). More precisely,
tasks are defined in the co-safe fragment of LTL. Furthermore
a safe LTL formula is provided to specify safety constraints
to be obeyed by all robots. Building upon techniques and
tools for probabilistic model checking, we propose methods
to generate multi-robot policies that maximise the probability
of successfully completing the set of tasks whilst satisfying
the safety constraints.We tackle the basic task allocation
and planning problem using a team MDP that exploits
the independence between tasks and adopts a sequential
modelling approach to build policies for each robot. We
then iteratively improve these policies, by incorporating the
possibility of reallocating tasks in the event of individual
robot failures. To do so, we construct a precise joint model of
the synchronised execution of the individual robot policies in
order to identify states where robots might fail, and build new
team policies from those states, thus providing probabilistic
guarantees on the performance (and safe operation) of the
team of robots, along with an efficient task reallocation
mechanism. We implement our approach as an extension
of the probabilistic model checker PRISM [3], and evaluate
its performance on a benchmark multi-robot example.

II. RELATED WORK

When looking at the existing literature in this area, we
can consider the following distinctions: 1) multi-agent path
finding (MAPF) approaches, which have rich models of inter-
agent spatial interactions but can only solve path planning
problems, versus more general planning approaches which
can reason about a greater range of tasks; 2) planning
approaches which explicitly model uncertainty, versus those
with deterministic models; 3) approaches which produce solu-
tions using verification-based methods (and thus can produce
guaranteed behaviour), versus other solution approaches; and
4) approaches which integrate task allocation and planning,
versus those that separate these processes.



In robotics, MAPF [4] is a widely-studied problem which
focuses on ensuring efficient, collision-free movement of a
robot team through an environment. By focusing purely on
path finding, domain-specific heuristics and algorithms can
be used to efficiently solve larger problem instances than
would otherwise be possible [5]. A more general class of
problems is multi-agent planning, which allows robot actions
to have preconditions and effects across state variables in
the problem, and can therefore represent a wider range of
robot tasks [6], [7]. These typically focus on problems where
interactions and coordination between agents are required to
solve a single task (e.g. one robot needs to place an object
onto a second robot), but these techniques do not usually
involve explicit allocation of tasks.

A small number of approaches have looked into combining
multi-agent TA and planning into a single problem [1], [2],
[8], [9]. Of particular relevance to this paper is the work
described in [1] and [2] . They use a logical model of robot
operation plus a team task specification in LTL and propose
an algorithm that allocates tasks to robots in order to minimise
the maximum cost any robot will take to complete its tasks.
Combining TA with planning allows TA to reason directly
about how each robot can perform a task, but introduces the
complexity of reasoning in a space which grows exponentially
in the number of robots. To overcome this, the authors propose
an approach where separate planning models for each robot
are linked sequentially by switch transitions, which allow one
robot to pass tasks to the next robot in the team. They exploit
these transitions to produce multi-robot plans which allocate
tasks across the team in order to minimise the aforementioned
solution metric of minimising the largest robot cost. This
paper takes that work as a basis, but extends it to include
uncertainty in the effects of robot actions. In multi-robot
systems, if uncertainty is not modelled, it is usually dealt with
sub-optimally through execution monitoring and replanning.

The various planning fields surveyed above also have
analogues which include uncertainty. MAPF approaches
have included uncertainty to account for the performance
of mobile robot localisation and navigation reliability [10],
[11]. Many single robot planning approaches assume that the
environment is fully observable but responds probabilistically
to robot actions and thus formulate planning problems using
MDPs [12], [13]. Approaches in this space include our prior
work [14], [15] which uses verification-based methods to
produce probabilistically-guaranteed behaviour policies for a
mobile robot, where elements of the MDP are learnt from
experience. When extending MDP planning approaches to
multi-robot settings, authors either assume communication
and sparse interactions between robots in order to maintain
full observability and mitigate scalability issues [16], [17];
resort to auctioning approaches for TA, thus keeping the plan-
ning over single robot models [18], [19], [20]; or otherwise
use the computationally-demanding decentralised, partially-
observable MDP (DecPOMDP) formalisation which accounts
for the unknown state of other robot in the problem [21].
As is appropriate in many service robot domains, we make
the assumption of perfect communication, thus allowing this

work to retain the MDP formalisation.

III. PRELIMINARIES

A. Markov Decision Processes

We use Markov decision processes (MDPs) to model the
evolution of robots and their environment. An MDP is a
tuple M = 〈S,s,A,δM ,AP,Lab〉, where: S is a finite set of
states; s ∈ S is the initial state; A is a finite set of actions;
δM : S×A×S→ [0,1] is a probabilistic transition function,
where ∑s′∈S δM (s,a,s′) ∈ {0,1} for all s,s′ ∈ S, a ∈ A; AP is
a set of atomic propositions; and Lab : S→ 2AP is a labelling
function, such that p ∈ Lab(s) iff p is true in s ∈ S.

We define the set of enabled actions in s ∈ S as As =
{a ∈ A | δM (s,a,s′) > 0 for some s′ ∈ S}. An infinite
path through an MDP is a sequence σ = s0

a0→ s1
a1→ . . .

where δM (si,ai,si+1) > 0 for all i ∈ N. A finite path
ρ = s0

a0→ s1
a1→ ...

an−1→ sn is a prefix of an infinite path. The
choice of action to take at each step of the execution of an
MDP M is made by a policy, which can base its decision on
the history of M up to the current state. Formally, a policy
is a function π from finite paths of M to actions in A such
that, for any finite path σ ending in state sn, π(σ) ∈ Asn . In
this work, we will use memoryless policies (which only base
their choice on the current state) and finite-memory policies
(which need to track only a finite set of “modes”).

B. Linear Temporal Logic

Linear temporal logic (LTL) is an extension of proposi-
tional logic which allows reasoning about infinite sequences
of states. We provide a brief overview of LTL and its safe/co-
safe fragments here, and direct the reader to [22] and [23],
respectively, for a more complete introduction to these two
topics. LTL formulas ϕ over atomic propositions AP are
defined using the following grammar:

ϕ ::= true | p | ¬ϕ | ϕ ∧ϕ | Xϕ | ϕ Uϕ, where p ∈ AP.

The X operator is read “next”, meaning that the formula
it precedes will be true in the next state. The U operator is
read “until”, meaning that its second argument will eventually
become true in some state, and the first argument will be
continuously true until this point. The other propositional
connectives can be derived from the ones above in the usual
way. Moreover, other useful LTL operators can be derived
from the ones above. Of particular interest for our work are the
“eventually” operator Fϕ , which requires that ϕ is satisfied
in some future state, and the “always” operator Gϕ , which
requires ϕ to be satisfied in all future states: Fϕ ≡ trueUϕ
and Gϕ ≡ ¬F¬ϕ .

Given an infinite path σ , we write σ � ϕ to denote that
σ satisfies formula ϕ . Furthermore, we write Prmax

M ,s(ϕ)
to denote the maximum probability (over all policies) of
satisfying ϕ from state s in MDP M . The semantics of full
LTL is defined over infinite paths. However, in this work, we
are interested in specifying behaviours that occur within finite
time. So, we use two well-known subsets of LTL for which
properties are meaningful when evaluated over finite paths:
safe and co-safe LTL. These are based on the notions of bad



prefix and good prefix. A bad prefix for ϕ is a finite path that
cannot be extended in such a way that ϕ is satisfied, and a
good prefix for ϕ is a finite path that cannot be extended in
such a way that ϕ is not satisfied. Safe LTL is defined as
the set of LTL formulas for which all non-satisfying infinite
paths have a finite bad prefix. Conversely, co-safe LTL is the
set of LTL formulas for which all satisfying infinite paths
have a finite good prefix.

For simplicity, we assume a syntactic restriction for safe
and co-safe LTL. We assume that all formulas are in positive
normal form (negation can only appear next to atomic
propositions). Syntactically safe LTL is the set of formulas
for which only the G and X temporal operators occur, and
syntactically co-safe LTL is the set of formulas for which
only the X, F and U temporal operators occur.

For any (co-)safe LTL formula ϕ written over AP, we
can build a deterministic finite automaton (DFA) Aϕ =
〈Q,q,QF ,2AP,δAϕ 〉, where: Q is a finite set of states; q ∈ Q
is the initial state; QF ⊆ Q is the set of accepting states;
2AP is the alphabet; and δAϕ : Q× 2AP→ Q is a transition
function. If ϕ is safe, Aϕ is a DFA that accepts exactly
the finite paths (or, more precisely, the sequences of state
labellings from those paths) that are not a bad prefix for ϕ .
Conversely, if ϕ is co-safe, Aϕ is a DFA that accepts exactly
the finite paths that are a good prefix for ϕ [23]. Typically,
one wants to remain in an accepting state of safe DFA, thus
never generating a bad prefix, and reach an accepting state
of co-safe DFA, thus generating a good prefix.

C. Optimal Policies for (Co)-Safe Specifications

For any (co-)safe LTL specification ϕ and MDP M ,
we can build a product MDP Mϕ = M ⊗Aϕ = 〈S ×
Q,sϕ ,A,δMϕ ,AP,Labϕ〉. Mϕ behaves like the original MDP
M , but is augmented with information about the satisfaction
of ϕ . Once a path of Mϕ reaches an accepting state (i.e., a
state of the form (s,qF) for qF ∈QF ), it is a good prefix for ϕ
if ϕ is safe, or a bad prefix if it is co-safe. We then know that
ϕ is satisfied, or not satisfied, respectively. The construction
of the product MDP Mϕ is well known (see, e.g., [24]) and
is such that it preserves the probabilities of paths from M .
Thus, we can reduce, for example, the problem of finding a
policy for Prmax

M ,s(ϕ) for a co-safe ϕ to a reachability problem
in the product MDP Mϕ , for which optimal policies can be
found using standard techniques such as value iteration [25].
Such policies are memoryless in Mϕ , and thus finite-memory
in M , with |Q| modes.

IV. SIMULTANEOUS TASK ALLOCATION AND PLANNING
UNDER UNCERTAINTY (STAPU)

A. Problem Formulation

Let R = {r1, ...,rn} be a set of robots (agents). The
operation of each individual robot ri as it attempts to perform
tasks is modelled by an MDP Mi. Probabilities in the MDP
may represent either uncertainty in its environment or the
possibility of failure. For the latter, we assume that Mi has a
designated failure state from which, once reached, the robot
cannot execute more tasks.

Consider a mission M = (Φ,ϕsafe) where Φ = {ϕ1, ...,ϕm}
is a set co-safe LTL task specifications and ϕsafe is a
safety specification. We assume the mission to fulfil the
two decomposition properties used in [1], in particular LTL
formulas must be independent, i.e., (non-)satisfaction of
one specification must not violate any other specification
in the mission; and completion of all mission specification
implies the completion of the overall mission (defined as the
conjunction of all specifications).

We define a simultaneous task allocation and planning un-
der uncertainty (STAPU) problem as finding a task allocation
mapping T ∗ : Φ→ R such that:

T ∗ = max
{T :Φ→R}

n

∏
i=1

Prmax
Mi

(ϕT
i ) (1)

where the LTL specification ϕT
i is defined as the conjunc-

tion of tasks for robot i given task allocation T :

ϕT
i = ϕsafe∧

∧
{ϕ∈Φ | T (ϕ)=ri}

ϕ (2)

We also need to compute the corresponding optimal policies
π1, . . . ,πn for the MDPs M1, . . . ,Mn. Since we assume
task independence, solving a STAPU problem is effectively
finding a joint policy (i.e. allocation of tasks and the actions
performed by each robot) that maximises the probability of
the team achieving the mission. For now, we assume that a
task that is in progress when a robot fails is never completed;
we will see how to deal with this situation in Section V.

B. Solution

In order to solve the problem described above efficiently,
we extend the approach proposed in [1], which ignores
possible physical interactions between robots and exploits
the assumption that tasks have no interdependencies and can
each be completed by a single robot. Although tasks will
ultimately be executed by robots in parallel, solving a single
STAPU problem is done using a sequential model in which
we consider each robot independently in turn, avoiding the
construction of the fully synchronised team model1.

Each independent model is a local product MDP, encoding
the dynamics of an individual robot, the definitions of the
tasks and the extent to which they have so far been completed.
These models are joined into a team MDP through the use of
switch transitions which represent changes in the allocation
of a task from robot ri to ri+1 (the next robot in the sequential
model). For the STAPU problem we add switch transitions
from every state in robot ri’s model where it completes
a task to every initial state for ri+1. This next robot has
an initial state for every possible combination of allocated
tasks. Considered sequentially, this model allows each robot
a choice, on task completion, of whether it or the subsequent
robot should tackle the next task. When the model is solved to
create a team policy, the switch transitions result in a policy

1In such a model, commonly known as a multi-agent MDP [26], both
states and actions are considered jointly, which results in an exponential
blow-up of the number of states and of the action space.



which creates the optimal task allocation across the team that
optimises Equation (1), along with the optimal action choices
for each robot, i.e. a solution to the STAPU problem. We
formalise these steps below.

1) Local Product MDPs: The first step of the approach is
encoding the task definitions into each robot model Mi. To
do so, we build the product MDP M M

i = Mi⊗Aϕ1 ⊗·· ·⊗
Aϕm ⊗Aϕsafe = 〈SM

i ,sM
i ,Ai,δM M

i
,AP,Lab〉, i.e., we include a

separate DFA for each LTL formula making up the mission
specification M. The state space of the resulting MDP is SM

i =
Si×Qϕ1× ...×Qϕn×Qϕsafe , allowing us to keep track of the
state of satisfaction for each part of the mission specification
separately. Finding a policy that maximises the probability
of achieving a subset of the mission tasks can be done by
calculating the policy that maximises the probability, in M M

i ,
of reaching the accepting states of the corresponding DFAs
whilst remaining in an accepting state of Aϕsafe .

2) Team MDP: The team MDP G is the union of the
n local product MDPs M M

1 , . . . ,M M
n . Instead of building

a fully synchronised multi-agent MDP, we build upon the
approach of [1] and construct a team MDP that represents
each robot sequentially. More precisely, we build the team
MDP G = 〈SG ,sG ,AG ,δG ,APG ,LabG 〉 where:
• SG keeps track of the robot currently being considered

and its current state (within its local product MDP):⋃n

i=1
{i}×SM

i

• sG = (1,sM
1 ), i.e., we start planning for robot r1, with it

in its initial state;
• AG = {ζ} ∪ ⋃n

i=1 Ai, i.e., the action space comprises the
individual robot actions plus a special switch transition ζ
that is used to make the planning process move from
allocating tasks for ri to allocating tasks for ri+1;

• For a ∈ ⋃n
i=1 Ai, the transition function mirrors the

corresponding local product transition function:

δG ((i,si),a,(i,si
′)) = δM M

i
(si,a,si

′)

For a = ζ , the transition function updates the system
state such that it can start planning for the next robot, i.e.,
δG ((i,s),ζ ,( j,s′)) = 1 if all of the following conditions
hold:

– j = 1+(i mod n), i.e., we connect the robots in a
ring topology;

– The state of all the tasks is preserved and we do
not switch during the execution of a task, i.e., we
keep all the DFA components of the state the same,
and they must correspond to either the initial or
the accepting state of the DFA: s = (si,q) and s′ =
(s j,q), where q = (qϕ1 , ...,qϕm ,qϕsafe) and each qϕ
is either the initial state q or an accepting state in
QF from the corresponding DFA Aϕ ;

– s′ corresponds to an initial state of robot j, i.e.,
s′ = (s j,q).

For all other pair of states, δG ((i,s),ζ ,( j,s′)) = 0. We
omit details of the propositions APG and labelling
function LabG , since they are not required here.

Note that in the team MDP task allocation and planning
are addressed in a sequential fashion, but the generated
policies are to be executed in parallel by the team. This
can create ambiguity at execution time. For example, robot
i+1’s policy might have different actions corresponding to
different possible (probabilistic) executions of robots 1, ..., i’s
policies. However, when execution is starting, robot i+1 still
does not know how robots 1, ..., i’s policies will evolve. This
means that at the start of execution robot i+1 does not know
which part of its policy should be executed. In fact, this is a
source of partial observability as robot i+1 can only have a
belief over what the execution of robots 1, ..., i will be.

In the current paper, we tackle this by imposing restrictions
over the probabilistic nature of the underlying models. In
particular, to avoid the ambiguity described above, we require
that the single robot models Mi are such that the policy that
optimises Equation (1) contains at most one switch transition
per robot. Note that, after building the optimal policy, we can
easily check for the uniqueness of switch transitions. However,
it is not straightforward to check if arbitrary single robot
MDPs fall within this class without solving the team MDP.
This motivates our use of a particular class of single robot
MDPs where this uniqueness of switch transitions occurs:
MDPs with a designated failure state s⊥ ∈ S such that, for
all s ∈ S,a ∈ As and for some s′ ∈ S, either δ (s,a,s′) = 1 or
δ (s,a,s′)+δ (s,a,s⊥) = 1. i.e., where actions either move to
a next state s′ with probability x or fail with probability 1−x.
For such MDPs, the optimal policy for the team MDP has a
single switch transition for each robot i, corresponding to the
state where robot i has executed all the tasks it was allocated
with (note however that the robot might fail execution; this
will be addressed in the next section). In our experiments,
the single robot MDPs will be instances of this class.

The solution of a team MDP formed using the aforemen-
tioned class of MDPs solves the STAPU problem since
we assume that tasks are independent and ignore robot
interactions. More concretely, the order in which tasks are
completed is not relevant, due to task independence and we
can plan for each robot ignoring the state of the other robots
due to the non-interacting robot assumption. Given that the
team MDP encompasses all possible task allocations and all
possible ways a robot might complete each task, maximising
the probability of reaching an accepting state for all DFA
components is equivalent to finding a sequence of policies that
optimise Equation (1) when executed in a parallel fashion.

V. STAPU WITH REALLOCATION

In the previous section, when a task fails to be completed
by a robot, it is removed from the set achievable by the system.
However, this task can be reallocated to another member
of the team for completion. In this section we extend the
approach described above such that tasks are redistributed
among the other team members when a robot fails. In order
to do so, we add new switch transitions which are used to
perform this reallocation.

When a failure occurs, robots have already started executing
policies obtained from the solution of the STAPU problem. So,



the outcomes of the switch transitions for reallocation must
describe in which states the robots might be at the point in
time when the failure occurred. This need for synchronisation
across multiple robots breaks the assumptions which allowed
us to build a sequential model for the basic STAPU solution.

In order to tackle this issue, while avoiding building a full
joint multi-agent MDP, we build a joint model representing the
synchronised evolution of the system just under the computed
STAPU policies, i.e., we build the synchronised multi-robot
policy for the STAPU solution, where, at each state, each
robot executes the action corresponding to its policy in a
joint fashion. This model has a set of reallocation states,
corresponding to situations where some robot has failed
(i.e., the probability of that robot achieving more tasks has
become 0). We then choose one of these reallocation states
as the initial state of a new STAPU instance, adding switch
transitions to it.

More precisely, let (s1, ...,sn,qϕ1 , ...,qϕm ,qϕsafe) be such
a reallocation state in the synchronised multi-robot policy,
where si is the failure state to be addressed. We create a new
(sequential) team MDP as described in IV-B.2 except we now
consider the initial state to be sG = (si,qϕ1 , ...,qϕm ,qϕsafe) and
the switch transitions now point to the current state of the
next robot in the reallocation state s1+(i mod n) rather than
to the initial state of the next robot s1+(i mod n). By solving
this new STAPU instance, we effectively find a reallocation
policy from the chosen reallocation state. We can then use
the reallocation policy to continue building the synchronised
multi-robot policy from (s1, ...,sn,qϕ1 , ...,qϕm ,qϕsafe), and then
choose a new reallocation state to address. We choose the next
reallocation state to address in decreasing order of reachability
probability, i.e., we start by addressing the most probable
reallocation states. When all reallocation states have been
addressed, we terminate the procedure. Note that because we
choose the next reallocation state to address in decreasing
order of reachability probability the algorithm is anytime,
in that it can be terminated at any point and provide a
(incomplete) solution, and the longer it runs the more cases
it will cover. Fig. 1 shows a summary of the full procedure
for STAPU with reallocation.

We finish by noting that this approach can be extended
to also include expected team sum of costs minimisation by
defining a cost structure (representing navigation duration for
example) for each robot and using nested value iteration
(NVI) [27] to generate policies. NVI enforces a strict
preference of objectives, by choosing, from all policies that
maximise the probability of success, one that minimises the
expected cumulative cost.

VI. EVALUATION

We implement STAPU with reallocation in the PRISM
model checker [3], which supports solving MDPs for LTL
properties. We evaluate the scalability of the approach with
respect to the number of robots and tasks in the model.

For our evaluation, we assume homogeneous robots per-
forming simple reachability tasks. We create an MDP model
of a topological map for one of the environments in the

Get next fail state (s1, ...,sn,qj1 , ...,qjm ,qjsafe) and set initial state of G accordingly

⌦
⌦

⌦

M1 Mn

M M
nM M

1

p1, ...,pn

pjoint

j1 jm jsafe

AjsafeAj1 Ajm

⌦
⌦
⌦

Find STAPU solution

Get next fail state (s1, ...,sn,qj1 , ...,qjm ,qjsafe) and set initial state of G accordingly

...

...

...

...

...

...

Current joint policy

Sequential policies
Team MDP G

Build joint policy and add to pjoint
Build joint policy and add to pjointGet next reallocation state

<latexit sha1_base64="1o+iJH+yWr1Y4BerBXNse6oySU4=">AAACBHicbVC7SgNBFJ2Nrxhfq5ZpBoNgFXbTaBm00DKCeUCyhNnJTTJkdnaZuSuGJYWNv2JjoYitH2Hn3zh5FJp4YOBwzj3cuSdMpDDoed9Obm19Y3Mrv13Y2d3bP3APjxomTjWHOo9lrFshMyCFgjoKlNBKNLAolNAMR1dTv3kP2ohY3eE4gSBiAyX6gjO0UtctXgNSBQ9IbUrKeK5Tgwyh65a8sjcDXSX+gpTIArWu+9XpxTyNQCGXzJi27yUYZEyj4BImhU5qIGF8xAbQtlSxCEyQzY6Y0FOr9Gg/1vYppDP1dyJjkTHjKLSTEcOhWfam4n9eO8X+RZAJlaQIis8X9VNJMabTRmhPaOAox5YwroX9K+VDphlH21vBluAvn7xKGpWy75X920qpermoI0+K5IScEZ+ckyq5ITVSJ5w8kmfySt6cJ+fFeXc+5qM5Z5E5Jn/gfP4Ao6uYFA==</latexit><latexit sha1_base64="1o+iJH+yWr1Y4BerBXNse6oySU4=">AAACBHicbVC7SgNBFJ2Nrxhfq5ZpBoNgFXbTaBm00DKCeUCyhNnJTTJkdnaZuSuGJYWNv2JjoYitH2Hn3zh5FJp4YOBwzj3cuSdMpDDoed9Obm19Y3Mrv13Y2d3bP3APjxomTjWHOo9lrFshMyCFgjoKlNBKNLAolNAMR1dTv3kP2ohY3eE4gSBiAyX6gjO0UtctXgNSBQ9IbUrKeK5Tgwyh65a8sjcDXSX+gpTIArWu+9XpxTyNQCGXzJi27yUYZEyj4BImhU5qIGF8xAbQtlSxCEyQzY6Y0FOr9Gg/1vYppDP1dyJjkTHjKLSTEcOhWfam4n9eO8X+RZAJlaQIis8X9VNJMabTRmhPaOAox5YwroX9K+VDphlH21vBluAvn7xKGpWy75X920qpermoI0+K5IScEZ+ckyq5ITVSJ5w8kmfySt6cJ+fFeXc+5qM5Z5E5Jn/gfP4Ao6uYFA==</latexit><latexit sha1_base64="1o+iJH+yWr1Y4BerBXNse6oySU4=">AAACBHicbVC7SgNBFJ2Nrxhfq5ZpBoNgFXbTaBm00DKCeUCyhNnJTTJkdnaZuSuGJYWNv2JjoYitH2Hn3zh5FJp4YOBwzj3cuSdMpDDoed9Obm19Y3Mrv13Y2d3bP3APjxomTjWHOo9lrFshMyCFgjoKlNBKNLAolNAMR1dTv3kP2ohY3eE4gSBiAyX6gjO0UtctXgNSBQ9IbUrKeK5Tgwyh65a8sjcDXSX+gpTIArWu+9XpxTyNQCGXzJi27yUYZEyj4BImhU5qIGF8xAbQtlSxCEyQzY6Y0FOr9Gg/1vYppDP1dyJjkTHjKLSTEcOhWfam4n9eO8X+RZAJlaQIis8X9VNJMabTRmhPaOAox5YwroX9K+VDphlH21vBluAvn7xKGpWy75X920qpermoI0+K5IScEZ+ckyq5ITVSJ5w8kmfySt6cJ+fFeXc+5qM5Z5E5Jn/gfP4Ao6uYFA==</latexit><latexit sha1_base64="1o+iJH+yWr1Y4BerBXNse6oySU4=">AAACBHicbVC7SgNBFJ2Nrxhfq5ZpBoNgFXbTaBm00DKCeUCyhNnJTTJkdnaZuSuGJYWNv2JjoYitH2Hn3zh5FJp4YOBwzj3cuSdMpDDoed9Obm19Y3Mrv13Y2d3bP3APjxomTjWHOo9lrFshMyCFgjoKlNBKNLAolNAMR1dTv3kP2ohY3eE4gSBiAyX6gjO0UtctXgNSBQ9IbUrKeK5Tgwyh65a8sjcDXSX+gpTIArWu+9XpxTyNQCGXzJi27yUYZEyj4BImhU5qIGF8xAbQtlSxCEyQzY6Y0FOr9Gg/1vYppDP1dyJjkTHjKLSTEcOhWfam4n9eO8X+RZAJlaQIis8X9VNJMabTRmhPaOAox5YwroX9K+VDphlH21vBluAvn7xKGpWy75X920qpermoI0+K5IScEZ+ckyq5ITVSJ5w8kmfySt6cJ+fFeXc+5qM5Z5E5Jn/gfP4Ao6uYFA==</latexit>

Fig. 1. Outline of the overall approach. The mission MDP M M
i for each

robot ri is built as the product of the robot MDP and the specification DFAs.
Then, we build the team MDP G and solve a STAPU for the initial state
of the robots. The obtained sequential policies are then used to build a
synchronised joint policy πjoint . A reallocation state is chosen from πjoint , the
initial state of the team MDP, along with its switch transitions, are updated to
represent the chosen reallocation state, and a new STAPU is solved. We keep
choosing new reallocation states and solving new STAPUs until no more
reallocation states exist, or the procedure is interrupted, at which point the
current joint policy πjoint is returned, along with the associated guarantees
on probability of achieving the mission.

TABLE I
COMPARING STAPU WITH REALLOCATION AND VI OVER THE FULLL

MAMDP MODEL

Tasks STAPU with reallocation VI over MAMDP model
Model Size Time Model Size Time
|SG| |δG| (s) |SG| |δG| (s)

3 480 1442 0.09 7200 64800 1.17
5 1920 5788 0.12 28800 259200 11.96
7 7680 23226 0.51 115200 1036800 195.55
9 30720 93176 4.40 460800 4147200 3218.47

Patrolling Sim simulator [28]. The map consists of 30 states.
In this MDP model, we assume that when navigating to certain
states, which we will refer to as failure points, the robots can
fail (meaning the robot MDP can move to its failure state s⊥)
with a certain probability. This matches the class of models
for which our STAPU solution yields single robot policies that
can be executed in parallel without ambiguity, as discussed
in Section IV. The mission M = (Φ,ϕsafe) is specified as
Φ = {ϕ1, ...,ϕm} where ϕi = F pi and ϕsafe = G¬ p, pi ∈ AP.

Table I compares model sizes and computation time for
STAPU with an approach based on using value iteration over
the full multi-agent MDP (MAMDP) model, which we also
implemented in PRISM. Due to the large size of the resulting
MAMDP, we limit the number of robots to 2 and the number
of failure points to 5 per robot model. We can see that our
approach entails significant gains in both model sizes as well
as solution times. Furthermore, whilst the policy generated
from STAPU with reallocation may be sub-optimal, in our
experiments with the class of MDP models of topological
maps described above, STAPU with reallocation achieved
the same probability of satisfaction as directly solving the
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Fig. 3. Number of reallocations performed with respect to the number of
failure points per robot model.

MAMDP, i.e., our approach yielded the optimal solution.
Fig. 2 shows that keeping all other factors constant, the

total computation time including model building and solving
increases exponentially with the number of tasks. This is a
consequence of the way the local product is built (IV-B.1),
where each new task is added by doing the product of the
MDP with the DFA corresponding to that task.

As the number of failure points grows, more reallocations
take place. Fig. 3 shows the number of reallocations for
multiple failure points per robot model. More reallocations
also increase the computation time. As noted in Section V an
anytime approach can be beneficial in reducing these steps.
Since reallocations are performed assuming the initial policy
will be executed, a hybrid online-offline version of STAPU
is a natural extension of this work.

VII. CONCLUSION

We have presented an approach to simultaneous task
allocation and planning in multi-robot systems which are
operating in uncertain environments and prone to failures,
building on techniques for LTL model checking of MDPs.
Future work includes handling the policy ambiguity issues
yielded by our sequential approach to planning, thus extending
the approach presented here to more general MDP models;
optimising the policy generation process, e.g. through the re-
use of reallocation states; incorporating more realistic models
of time and robot collisions; and exploiting our anytime
approach for online policy execution.
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