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Abstract— To ensure real-time response to passengers, exist-
ing solutions to the vehicle dispatch problem typically optimize
dispatch policies using small batch windows and ignore the
spatial-temporal dynamics over the long-term horizon. In this
paper, we focus on improving the long-term performance of
ride-sharing services and propose a deep reinforcement learning
based approach for the ride-sharing dispatch problem. In
particular, this work includes: (1) an offline policy evaluation
(OPE) based method to learn a value function that indicates
the expected reward of a vehicle reaching a particular state;
(2) an online learning procedure to update the offline trained
value function to capture the real-time dynamics during the
operation; (3) an efficient online dispatch method that optimizes
the matching policy by considering both past and future
influences. Extensive simulations are conducted based on New
York City taxi data, and show that the proposed solution further
increases the service rate compared to the state-of-the-art far-
sighted ride-sharing dispatch approach.

I. INTRODUCTION

In ride-sharing, a key goal is to assign and route vehicles
to serve as many requests as possible. The most common
approach is batch assignment, which uses dispatch windows
to allocate multiple requests at the same time. It is well
suited for real-world ride-sharing production systems and
enables a “global” optimization for each dispatch window
[1], [2]. However, because of the lack of future information
in the subsequent batch windows, an assignment decision
that is “optimal” now may cause potential efficiency losses
in the future and leaves room for further optimizations [3],
[4]. Fig. 1 shows an example that, instead of choosing the
red schedule with the maximum immediate reward, the best
policy is to assign the blue one to the vehicle now and adjust
the schedule according to the appearance of newly revealed
requests to get maximum total reward.

Meanwhile, the rapid development of online ride hailing
services (e.g., Uber, Lyft, DiDi and Grab) provides rich
information on urban mobility patterns, which has led to
research on the far-sighted vehicle dispatch problem [5]–
[7]. To leverage transit information to learn urban mobility
patterns and improve transportation efficiency, the following
technical challenges need to be addressed:
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Fig. 1: An example with one vehicle, three revealed requests
and two requests that will arrive in the future but are not
known at present. Triangles (4) and inverted triangles (5)
represent the origins and destinations, respectively. When
myopically optimizing over the current epoch, the vehicle
will go towards the top right of the map to serve requests
1 and 2 and earn a reward of 2. However, if it chooses to
serve request 3 and instead travels towards the bottom left
of the map, it will eventually earn a reward of 3.

1) Learning Efficiency. Applying extensive learning explo-
ration on real world deployments is inefficient and may
lead to unintended behavior. Operating in simulations
requires an accurate simulator that is typically hard to
build and may slow down the learning process due to
simulation computations.

2) Real-Time Fluctuations. Besides the systematic patterns
of mobility (e.g., people are more likely to travel to res-
idential areas during the evening peak hours), the non-
stationary dynamics (e.g., people may go to different
restaurants on different days), which cannot be easily
learned from historical data, also needs to be captured.

3) Value Deviation. The learned mobility pattern is an
approximation of the value of real-world dynamics. If
the dispatch policy is solely based on learned values,
there will be deviations that need to be corrected.

Most existing work on the far-sighted vehicle dispatch
problem does not allow ride-sharing [5]–[7]. Some work
studies double-occupancy fleets, but they formulate assign-
ment decisions with no more than five candidate options [8],
[9], which cannot be directly extended to higher occupancy
ride-sharing and therefore cannot fully take advantages of
ride-sharing services.

In this paper, we study the long-term optimization of ride-
sharing and present a learning-based approach that is flexible



in adjusting the dispatch policy based on real-time dynamics
to maximize the objective. The proposed approach models
the vehicle dispatch problem as a Markov Decision Process
(MDP), combines offline evaluation and online learning to
obtain a value function that captures the spatial-temporal
dynamics of ride-sharing trips, and employs a re-optimization
strategy to mitigate the deviation between the learned value
and the actual value. To summarize our contributions:

1) We develop an offline policy evaluation (OPE) based
method to capture systematic mobility patterns, using a
neural network to learn a value function from historical
vehicle movement data.

2) We adopt an online learning procedure to continuously
update the offline learned value function to handle non-
stationary dynamics, using only the states of vehicles in
the current operating epoch.

3) We combine the learned value function with the re-
optimization dispatch method in [2] to optimize the
objective over a long horizon, including both recent and
upcoming epochs.

4) We conduct simulation experiments on real world large-
scale taxi datasets to evaluate our proposed approach
and analyze the impact of long-term optimization.

II. RELATED WORK

Ride-sharing holds great promise for improving urban
mobility efficiency and is becoming an emerging academic
research problem. A study in New York City demonstrates
that, using pairwise ride-sharing, up to 80% of taxi rides
and 40% of total travel time can be saved [10]. To enable
high occupancy ride-sharing, a scalable batch assignment
algorithm is developed in [1] to utilize the full capacities
of vehicles. The efficiency of the fleet is further improved
in [2] by exploring all possible ride-sharing combinations in
real time and dynamically altering the assignment policy to
keep it “optimal” at any given time. However, to provide
a good passenger experience, the above approaches involve
using small batch periods and are myopic in nature.

There has been some research on leveraging knowledge
about the future to dispatch vehicles in a more far-sighted
way. They can be categorized into two groups: forecast-
based dispatch and value-based dispatch. The former usually
partitions the road network into zones and estimates the
future demand distribution over the zones at each time step.
The predicted travel demand is then used to generate a set
of artificial requests to compute sophisticated matching and
scheduling policies [11]–[13]. However, considering future
requests in the computing process yields higher computa-
tional complexity that requires tighter heuristics to solve
the problem, which would in turn reverse the improvement
achieved by lookahead. Moreover, results in [13] show that,
when properly trained, value-based dispatch obtains higher
service rates than forecast-based dispatch.

Value-based dispatch learns a value function, which eval-
uates the potential long-term return of assignments, to assist
in finding the best matching policy. It does not affect the
computational complexity of online matching and scales well

for large fleets. Most of the literature on value based dispatch
has focused on unit capacity vehicle fleets. They model the
movement of each vehicle as a semi-Markov decision process
and adopt the deep reinforcement learning framework to
estimate the state-action value function of the vehicle [5]–
[7]. Only a few studies consider pairwise ride-sharing [8],
[9], but the action space is not granular enough for high
occupancy ride-sharing.

A similar work to this paper is presented in [4], which
allows a vehicle to be shared by more than two requests.
However, the simulator-reliant training process is inefficient
and takes around one week to learn a value function [13].
Moreover, solely using a value function trained on historical
data may not handle dynamic environments well.

III. PROBLEM STATEMENT

A. Definitions

We assume a central dispatcher computes vehicle-request
matches in a rolling horizon framework, with time window
length ∆T . It operates a fleet of m vehicles. At each planning
epoch, it receives a set of n new requests and allocates them
to vehicles to maximize the service rate, i.e., percentage of
requests served. A trip Γ denotes that a group of requests is
merged with ride-sharing. The order in which a vehicle picks
up and drops off requests in a trip is called a schedule l =
{q, . . . , o1, . . . , d1, . . . , o2, . . . , dnΓ

}, where q is the vehicle’s
current location, oi and di are the origins and destinations
of requests. A schedule must satisfy two constraints: (1) the
number of requests on board cannot exceed the capacity κ
of the vehicle, (2) the waiting time (the difference between
when it is on board and when it is submitted) and travel delay
(the difference between when it arrives via ride-sharing and
when it will arrive if travelling alone) of each request cannot
exceed thresholds Ω and Λ, respectively.

B. An MDP Formulation

We model the vehicle dispatch problem as an MDP,
with an agent representing an individual vehicle. In this
framework, a vehicle interacts with an environment over a
sequence of discrete time steps t ∈ {0, 1, . . . , nend}, where
nend is the terminal time, e.g., end of an operating hour
or day. At each time step t, the vehicle receives a state st,
based on which it selects an action at. It then receives a
scalar reward rt+1 and transitions to st+1, according to en-
vironmental dynamics. The goal of a vehicle is to maximize
the expected discounted return Gt =

∑nend

k=t+1 γ
k−t−1 · rk,

where 0 < γ ≤ 1 is the discount rate. The main components
of the MDP are as follows:

State. The state of a vehicle consists of the spatial status lt,
the associated temporal status ζt, the real world time stamp
ut and the exogenous information wt. Formally, it is defined
as st = (lt, ζt, ut, wt). The temporal status ζt represents the
remaining delay time when the vehicle visits each location in
schedule lt, reflecting how much further deviation from the
current path the vehicle can take to pick up a new passenger.
For example, assuming a vehicle is travelling to location d1
to drop off a passenger, the deadline to arrive is 400 sec



and the travel time is 200 sec, then the vehicle has 200 sec
(i.e., the remaining delay time) to make a detour to pick
up a new passenger. Passengers that require more than 200
sec to pick up will not be feasible for the vehicle. The time
stamp ut indicates the time scale across the entire operating
horizon of the ride-sharing system and is independent of the
algorithmic time t. The exogenous information wt consists
of two scalars: the number of new requests at the current
dispatch epoch and the number of nearby vehicles at the
location q = lt[0].

Action. The eligible actions for a vehicle include all
possible candidate schedules zi,t = {l1, l2, . . . } (i stands
for the vehicle id), where each one indicates a candidate
vehicle-trip match that assigns the requests included in the
trip to the vehicle. Formally, an action defined as at = lt+1.
Note that a vehicle has |zi,t| actions. There are basically
two types of actions. The first type is to add (or remove)
one or more requests to (from) the vehicle and replace its
schedule with the action schedule. The other type is “remain
the same” which leaves the vehicle to follow its current
schedule. Executing action at means replacing the schedule
of the vehicle with l′t+1 and transitioning to lt+1, where l′t+1

is the status of lt+1 at time t.
Reward function. The reward is the number of requests

added to the vehicle when it takes an action at. Formally, it
is defined as R(st, at) = (|l′t+1|−|lt|)/2. The output value of
R(st, at) is denoted by rt+1. The “remain the same” action
produces a reward of 0 (i.e., rt+1 = 0). Note that rt+1 could
be negative if requests that are assigned to the vehicle at t−1
are re-assigned to other vehicles at t.

State transition. When a vehicle is in state st and takes
an action at, its transition to state st+1 is denoted by st+1 =
f(st, at, wt+1). However, in practice, the decisions have to
be made at t before the realization of the exogenous informa-
tion wt+1 (arriving between t and t+ 1), so as not to affect
the passenger experience. Therefore, a post-decision state sat
[14] (also called afterstate [15]) is introduced to split the
transition function into two components: sat = f (1)(st, at)
and st+1 = f (2)(sat , wt+1). The post-decision state is a
segregation of deterministic and stochastic information about
the future and explicitly captures the most recent state.

A common way to solve an MDP is to find a value
function that measures potential future rewards to guide
the interaction of the agent. As the full dynamics of a
ride-sharing system are not known to the dispatcher when
deciding the matching between vehicles and requests at
time step t, we choose to learn a post-state value function
that incorporates the most recent information we have. This
would produce a more efficient method than learning an
action-value function [15], [16].

C. Method Overview

Fig. 2 illustrates the proposed framework, which optimizes
the objective of ride-sharing over a long horizon while main-
taining an efficient online matching procedure that yields a
short response time. It has three components:
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Fig. 2: Framework of the long-term optimization logic.

OPE. Given a set of historical state transitions collected
from vehicles, denoted by {(sai,t−1, ri,t+1, s

a
i,t)} (i stands

for vehicle id), the dispatcher performs a policy evaluation
with a neural network to learn a post-decision state value
function Vope(s

a), by applying the Bellman squared error
and Temporal Difference (TD) update.

Online Dispatch. The dispatcher uses the candidate gener-
ation method in [2] to compute actions for all vehicles. It then
employs the learned value function to match vehicles and
requests in a far-sighted way, by scoring candidate matches
(i.e., candidate schedules) with the sum of instant rewards
and long-term expectations. The dispatcher also considers re-
optimization by adjusting the matching between vehicles and
previously received requests with the most recent knowledge
about the system, so as to extend the matching horizon for
a more “global” optimization.

Online Learning. During the online dispatch procedure, a
new set of state transitions is generated at each epoch, which
reflects the real-time dynamics of the current operational
state. The dispatch leverages these real-time transitions to
continuously update the value function, so that it can quickly
adapt to any fluctuations in the system.

IV. VALUE-BASED VEHICLE DISPATCH SCHEME

We assume the dispatcher is equipped with a matching
policy that maximizes the objective function at each dispatch
epoch and remains unchanged over the training period. The
value function is trained for an individual vehicle, under
the assumption that all vehicles are homogeneous and have
a common goal of maximizing the global service rate.
Learning a shared value function, not a separate network for
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Fig. 3: Structure of the value network.

each vehicle, utilizes the historical data in a more efficient
way and requires a simpler training pipeline [5], [17].

A. Offline Policy Evaluation With Neural Networks

As we do not distinguish individual vehicles, a com-
plete historical transition tuple can be presented as
(sat−1, wt, st, at, rt+1, s

a
t , wt+1, st+1). If t = 0, we set

sat−1 = s0. Let V (s) denote the state-value function of a
vehicle, the Bellman equation can be written as:

V (st) = E{rt+1 + γ ·Gt+1|s = st}
= E{rt+1 + γ · V (st+1)} (1)

Considering the transition from st to st+1 and applying the
TD method [15], the state-value function is updated as:

V (st)← V (st) + α[rt+1 + γ · V (st+1)− V (st)] (2)

where α > 0 is the learning rate, st is the current state and
st+1 is the next state of the vehicle following the schedule
indicated by at. Using the post-decision state and letting
Vope(s

a) denote the post-state value function learned by
OPE, Eq. (1) is decomposed into two steps:

V (st) = E{rt+1 + γ · Vope(sat )} (3)
Vope(s

a
t ) = E{V (st+1)|sat } (4)

The advantage of this decomposition is that the right hand
side of Eq. (3) is deterministic, which makes it easier to use
deterministic algorithms [18]. Similar to Eq. (2), the post-
decision state value function is updated as:

Vope(s
a
t−1)←Vope(sat )

+ α[rt+1 + γ · Vope(sat )− Vope(sat−1)] (5)

which is similar to Eq. (2), except that the value function is
updated around the previous post-decision state.

In ride-sharing systems, both the state space and ac-
tion space grow exponentially, especially with regard to
the number of state variables. To overcome the curse of
dimensionality, a neural network is used to approximate the
post-decision state value function, which is inspired by [4]
and represented in Fig. 3. The network takes a post-decision
state sat = f (1)(st, at) = (lt+1, ζt+1, ut+1, wt) as input and
outputs a scalar as the estimation of the value. It uses an
embedding layer to learn the geographical feature, a Long
Short-Term Memory (LSTM) layer to learn the sequence-
level temporal feature, and a hidden layer to combine the
spatial-temporal features with the exogenous information.

Algorithm 1 OPE with Neural Network

Input : A prioritized replay buffer filled with historical
state transitions Doffline = {(sat−1, rt+1, s

a
t )}, the num-

ber of iterations niter, the discount factor γ and the target
smoothing factor ρ.

Output: The post-decision state value function Vope(sa).
1: Vope, θope ← InitializeValueNetwork();
2: V̂ope, θ̂ope ← InitializeValueNetwork();
3: for i← 1 to niter do
4: B ← SampleMiniBatch(Doffline);

5: L = 1/|B| ·
∑|B|
j=1(rj,t+1 + γ · V̂ope(saj,t) −

Vope(s
a
j,t−1))2;

6: θope ← GradientDescent(L, θope);
7: θ̂ope ← ρ · θope + (1− ρ) · θ̂ope;

We collect a set of historical transition tuples and store
them in a replay buffer Doffline . Each tuple (sat−1, rt+1, s

a
t )

represents that a vehicle transitions from sat−1 to sat within
one time step and receives a reward of rt+1. We use
Double Q-Learning [19] and TD error to train the net-
work Vope(s

a) offline. The main procedure is described
in Algorithm 1. It uses prioritized experience replay [20]
to make the training more efficient by sampling impor-
tant transitions more frequently, where the importance of
a transition is measured by the magnitude of its TD error.
Function InitializeValueNetwork returns a network using
the structure in Fig. 3 with random weights, where θope is
the weights of Vope(sa), and V̂ope(sat ) is the target network
that is designed to reduce overestimation [21]. Function
SampleMiniBatch returns a small set of transitions using
prioritized sampling, which is then used to compute the
mean-squared loss L and perform a gradient descent step
to update the network weights θope (line 6). In the last line
of the algorithm, a soft update [22] is applied to the target
network weights θ̂ope, which tries to improve the stability of
learning by changing the target network very slowly.

The resultant value function Vope(sa) captures the general
systematic patterns of the supply-demand conditions from
historical data, and will serve as the basis for the online
value function during operation (i.e., online dispatching).

B. Online Learning With Value Ensemble

To capture the non-stationary dynamics in real time, we
present a new value network Vol(sa) that uses the transitions
of vehicles in the current dispatching epoch. The main
difference between Vol(s

a) and Vope(s
a) is that the online

value function Vol(sa) cares more about the spatial dynamics
of the supply-demand conditions, and fixes time to tnet to
utilize the sparse online transition data more efficiently.

Considering that at time step t, after the matching policy
has been made, we will have an online state transition
(si,t, ai,t, ri,t+1, s

a
i,t) for each vehicle i ∈ [1, 2, . . . ,m]. We

allow the dispatcher to make a backup of the transitions
at time step t − 1, and use it to generate an online buffer
Donline = {(sai,t−1, ri,t+1, s

a
i,t)}. Note that |Donline| = m.



Algorithm 2 Online Learning With Value Ensemble

Input : The offline learned value network Vope with its
weights θope, the discount factor γ, the value ensemble
step size nensemble, the value ensemble factor ψ and the
target smoothing factor ρ.

1: Vol, θol ← InitializeValueNetwork();
2: V̂ol, θ̂ol ← InitializeValueNetwork();
3: tnet ← 0;
4: for t← 0 to nend do
5: if t mod nensemble = 0 then
6: θol ← ψ · θope + (1− ψ) · θol;
7: tnet ← t;

8: Donline ← SolveMatchingProblem(Vol);
9: L = 1/m ·

∑m
i=1(ri,t+1 + γ · V̂ol(Ψ(sai,t, tnet)) −

Vol(Ψ(sai,t−1, tnet)))
2;

10: θol ← GradientDescent(L, θol);
11: θ̂ol ← ρ · θol + (1− ρ) · θ̂ol;

The one-step TD update for each vehicle’s transition is
slightly different from Eq. (5), given by:

Vol(Ψ(sai,t−1, tnet))← Vol(Ψ(sai,t, tnet))+

α[rt+1 + γ · Vol(Ψ(sai,t, tnet))− Vol(Ψ(sai,t−1, tnet))] (6)

where a new function Ψ(·) is introduced to fix the time
of the states. As an example, for sat−1 = (lt, ζt, ut, wt−1)
and sat = (lt+1, ζt+1, ut+1, wt), we have Ψ(sat−1, tnet) =
(lt, ζt, utnet

, wt−1) and Ψ(sat , tnet) = (lt+1, ζt+1, utnet
, wt).

The main procedure for online training is presented in Al-
gorithm 2, which is a joint procedure with online dispatching.
The algorithm initializes Vol(sa) with random weights θol at
the beginning of operations and updates it in two processes:
(1) periodically update its weights using a weighted ensemble
with a snapshot of the offline learned network Vope(s

a)
(line 6); (2) update its weights using real-time transitions in
Donline at each dispatch epoch (line 8-10). The ensemble
factor ψ > 0 is a hyperparameter similar to the target
smoothing factor ρ. It determines how much importance we
place on historical and immediate experience, by adjusting
the weighting between the offline trained network Vope(sa)
and the online learned network Vol(sa) [7].

The resultant online value function Vol(s
a) is actually

an augmentation of Vope(sa), by continuously updating the
value function using the most recent information to capture
the real-time variations of the moment. It relies on the
ensemble with Vope(s

a), as only partial vehicle trajectories
are available for online training, which makes it hard to learn
a global value function. Also, solely using online learning
suffers from sample-inefficiency.

C. Re-Optimization and Value-Based Allocating

Function SolveMatchingProblem in Algorithm 2 solves
a maximum matching problem. Considering a fleet of m
vehicles, a set of previously matched yet not served requests
REQprev , a set of newly submitted requests REQnew, and
a set of candidate action pools {z1,z2, . . . ,zi} that have

been computed for each vehicle, it is formulated as an integer
linear program:

argmin
xi,j ,εk

m∑
i=1

|zi|∑
j=1

xi,j ·Q(si, aj) (7)

s.t.

|zi|∑
j=1

xi,j = 1, ∀i ∈ [1, 2, . . . ,m] (8)

m∑
i=1

|zi|∑
j=1

xi,j ·Θaj (k) + εk = 1, ∀k ∈ REQall

(9)
εk = 0, ∀k ∈ REQprev (10)

where Q(si, aj) = R(si, aj) + γ · Vol(sai ), Θaj (k) is an
function indicating whether action aj serves k (Θaj (k) = 1)
or not (Θaj (k) = 0), and REQall = REQprev ∪REQnew.

Binary variable xi,j ∈ {0, 1} indicates whether an action
aj (i.e., a candidate schedule) is selected (xi,j = 1) or
not (xi,j = 0) for vehicle i. Binary variable εk indicates
whether a request k is matched (εk = 0) or not (εk = 1).
Constraint (8) ensures that each vehicle selects exactly one
action, constraint (9) ensures that each request is matched
to at most one vehicle. While assigning vehicles to new
incoming requests, the dispatcher also considers adjusting
the matches of previous requests (i.e., re-optimization) based
on the latest knowledge of the supply-demand conditions
(including both revealed and estimated). At the same time,
constraint (10) ensures the passenger experience, by guaran-
teeing that no previously matched requests will be rejected
even if rejecting them yields a higher objective value.

The re-optimization procedure adjusts the previous match-
ing, both by considering new requests and by updating the
weights of actions with the latest value function Vol(s

a).
When producing the matching policy at time step t, each
candidate vehicle-trip match (i.e., the action) is scored with
the expected future reward (i.e., R(st, at) + γ · Vol(sat ))
that might have potential prediction bias. Then, at time step
t+ 1, while using TD error to update the value function, the
dispatcher also implicitly uses a Bellman-style update of the
form R(st, at) +R(st+1, at+1) + γ ·Vol(sat+1), to adjust the
score of each candidate match, to alter the matching policy.

V. EXPERIMENTAL STUDY

We evaluate the proposed far-sighted dispatcher using taxi
trip data in Manhattan [23] and compare it to the state-of-
the-art. All algorithms are implemented and run on the same
machine for a fair comparison.

A. Simulation Details

The experiments are conducted using data from two days:
25th and 26th May 2016. The value network Vope(s

a) is
trained using data from nine days (3rd-5th, 10th-12th and
17th-19th May 2016) and validated on 24th May 2016. The
selected days are Tuesday, Wednesday and Thursday and
follow a similar request pattern [7]. Simulations are run for
the hour with peak demand (19:00-20:00), where the average



TABLE I: Parameter settings (defaults in bold).

Parameters Settings
Vehicle Capacity κ 2, 4, 6, 8

Fleet Size m 1200, 1500, 1800
Maximum Waiting Time Ω (sec) 180, 300, 420

Batch Period ∆T (sec) 10, 30, 60, 120

number of requests is 18,789. The road map and travel times
of Manhattan are produced using the method proposed in
[10]. The main experimental parameters are summarized in
Table I, where we vary the supply and demand conditions to
evaluate the algorithms. Besides, the maximum travel delay
is set to be twice the maximum wait time Λ = 2Ω. The
hyperparameters of the value network are tuned by running
the validation simulation and then fixed when running the
evaluation simulation. Specifically, we set the discount factor
to γ = 0.95, the learning rate to α = 0.01, the target
smoothing factor to ρ = 0.05, the value ensemble step size
to nensemble = 600 sec/∆T and the value ensemble factor
to ψ = 0.9. When running the simulation, each request will
be considered by the dispatcher for up to five epochs before
rejecting it for not finding a feasible match. The results are
averaged over five experiment runs.

B. Algorithm Comparison

We examine and compare the service rates of the following
algorithms. The key difference between them is how many
batch windows are optimized, as shown in Fig. 4.
• LTO (Long-Term Optimization): The method proposed

in this paper that optimizes the objective for all available
requests over a long horizon.

• LTO-Basic: A method that emulates the one presented in
[4], which is the state-of-the-art far-sighted ride-sharing
dispatch approach. It only optimizes the objective for
newly received requests, with a value function estimat-
ing the expected reward in the future. It is obtained
by removing the online learning and re-optimization
components of LTO.

• OSP (Optimal Schedule Pool): The method from [2]
that maximizes the objective for all available requests,
but does not have any knowledge about the future.

• Baseline: A method that only optimizes the current
dispatch epoch by maximizing the objective for newly
received requests. It is a simplified version of OSP that
does not allow re-optimization.

C. Results

The average service rates for the 25th and 26th May,
under different parameters, are shown in Fig. 5. In general,
by considering a longer planning horizon and real-time
dynamics, LTO always achieves the highest service rates.

Vehicle Capacity. With higher vehicle capacity, the ride-
sharing system has more seats and thereby serves more re-
quests. But the new increased seats are bundled with existing
trips and require the dispatcher to capture a more complex
mobility pattern when the capacity is larger than 4. The
performance of OSP is robust as the re-optimization strategy

0 ∆T 2∆T 3∆T 4∆T 5∆T 6∆T 7∆T 8∆T
Baseline: 

0 ∆T 2∆T 3∆T 4∆T 5∆T 6∆T 7∆T 8∆T
OSP: 

0 ∆T 2∆T 3∆T 4∆T 5∆T 6∆T 7∆T 8∆T
LTO-Basic: 

0 ∆T 2∆T 3∆T 4∆T 5∆T 6∆T 7∆T 8∆T
LTO: 

Current
 Dispatch
 Epoch

Fig. 4: A schematic comparison of how many dispatch
epochs are considered for optimization by different algo-
rithms. The epochs considered are marked in light orange,
and the intensity of the color indicates how much the
information within that epoch contributes to the optimization.

always explicitly uses all the precisely revealed information.
But value-based approaches suffer from a decrease in the
accuracy of estimation that comes with the increase in
the complexity of the supply-demand conditions. When the
capacity increases from 4 to 8, LTO’s improvement relative
to Baseline drops by 0.42%, from 7.33% to 6.91%. However,
the drop for LTO-Basic is 1.01%, from 3.48% to 2.47%.
This indicates that, by employing online learning and re-
optimization, LTO can learn a better value function and
correct for prediction bias.

Fleet Size. When the fleet size increases, the system
has more independent seats, which gives more flexibility
to the dispatcher and reduces the dispatcher’s reliance on
sophisticated algorithms. As the number of vehicles increases
from 1200 to 1800, the lift in LTO-Basic relative to Baseline
decreases from 3.62% to 0.48%, which is consistent with the
results in [4]. The reason for this may be that a far-sighted
dispatcher will tend to ignore immediate rewards and save
empty seats for future orders. When the number of vehicles is
sufficient (m = 1800), most of the future requests are quickly
picked up by vehicles and there are not many left. It is also
possible that, because the value network is trained on 1500
vehicles, when the number of vehicles increases, which ac-
tually increases the supply and decreases the average reward
of vehicles, the value becomes overestimated and inaccurate.
Using online learning to update the value network, the lifts in
LTO relative to OSP are 4.04% and 1.26% when using 1200
and 1800 vehicles, respectively, indicating that LTO learns a
better value function than LTO-Basic.

Maximum Waiting Time. The increase in travel delay
constraint allows for more detours and therefore makes it
easier to carry more passengers. Thus, all algorithms achieve
higher service rates as the delay tolerance increases. When
the constraint increases from 180 sec to 420 sec, the improve-
ment yielded by LTO-Basic relative to Baseline increases
from 2.65% to 3.17%. Enhanced by online learning and re-
optimization, LTO further improves on the basis of LTO-
Basic by 2.03%, 4.63% and 5.17%, when the time constraints
are 180 sec, 300 sec and 420 sec. Overall, the trends in
different algorithms’ performance, as the constraint becomes
looser, are similar to what happens when changing vehicle
capacities. When the constraint is tight (Ω = 180 sec), LTO-
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Fig. 5: A comparison of services rates (%) for varying vehicle capacities, fleet sizes, values of maximum waiting time
constraint and lengths of batch period. In each case, we start with the default configuration and vary the chosen parameter.

TABLE II: A comparison of service rate (%) during the peak
hour for using online learning.

Date of Experimental Data LTO LTO Without Online Learning
25th May 2016 91.80 91.32
26th May 2016 92.34 92.08

TABLE III: A comparison of service rate (%) of LTO during
the peak hour for varying discount factors.

Date of Experimental Data Discount Factor γ
0.90 0.95 0.97 0.99

25th May 2016 90.65 91.80 91.44 90.25
26th May 2016 91.53 92.34 91.97 90.87

Basic performs better than OSP. But when the constraint
becomes looser, LTO-Basic has a significant drop in service
rate compared to OSP and becomes worse than it. The
performance of LTO shows that online learning can slow
the drop. This is because passengers are more likely to be
pooled together, which produces a more complex scheduling
problem that requires the dispatcher to be more sophisticated.

Batch Period. When the window length increases, more
requests are received per epoch, but the response time of
passengers also grows and in turn actually leads to a tighter
maximum waiting time constraint. The service rates of OSP
and LTO decrease by 2.93% and a 4.22%, respectively, when
the window length is increased from 10 sec to 120 sec. This
is because, through re-optimization, they are actually using
a batch period as large as possible to perform matching
by considering all available requests. For them, a larger
batch window would only reduce the time available for
detours and produce worse performance. For LTO-Basic
and Baseline, because they optimize only the current batch
window, receiving more new orders offsets the drop in detour
time and makes their service rates drop by less than 1%.

To analyse the role of online learning, we observe the
difference when this component of LTO is removed. Table II
shows the corresponding service rates over the two days.
Online learning yields an average improvement of 0.37% and
achieves greater improvements on the 25th, which indicates
that mobility patterns can vary on different days and that
the dispatcher can benefit from adapting the value function
to real-time fluctuations. The results in Table II show that
online learning only contributes 0.48% and 0.26% to the

TABLE IV: A comparison of computation time (sec) of
different procedures during the peak hour for varying vehicle
capacities (m = 1500, Ω = 300 sec, ∆T = 30 sec).

Procedures Vehicle Capacity κ
2 4 6 8

Scoring Process in OSP 0.05 0.07 0.07 0.07
Scoring Process in LTO 2.71 2.71 2.75 2.77
Online Training in LTO 4.12 4.18 4.21 4.26

performance of LTO on the 25th and 26th, suggesting that
the supply-demand conditions may vary very little during
the peak hour. We then examine the role of online learning
during 00:00 - 08:00, where the change in the number of
requests is greater than during the peak hour (19:00-20:00),
and find that the contributions of online learning to the ser-
vice rates increase to 1.57% and 1.21% on the 25th and 26th,
respectively. This suggests that greater improvements can be
achieved through online learning when real-time fluctuations
are high. Typically, a 0.5% gain can be considered significant
on real taxi systems [5].

We further investigate the impact of varying discount
factors. Table III shows the service rates of LTO over the two
days. In general, the discount factor implicitly determines
the number of future epochs we take into consideration
when computing the matching policy. A small discount
factor results in a short-sighted strategy, whereas a large one
provides a long-sighted goal. We see that the service rate
rises when γ is increased from 0.9 to 0.95, making it more
far-sighted. But the rate falls if we continue to increase γ.
This might be because a very large discount factor induces
the dispatcher to optimize the objective over the next few
hours, which is longer than the length of our experiments.

Finally, we investigate the computation times of the
scoring process using the value network and the online
training process. Table IV shows the comparison for varying
capacities. OSP only needs to retrieve the already calculated
travel delays from the candidate schedule pool, so it takes
very little time for scoring. Although LTO takes tens of
times more computation time for scoring, the time cost is
less than 3 sec. Therefore, LTO is able to run in real-time,
i.e., the total computation time is less than 30 sec when the
dispatch window is 30 sec. Note that the computation of OSP
is around 10 sec [2]. As for the time consumed by the online



training process, since it can run separately from dispatching,
it can meet the requirements of real-time deployment as long
as the computation time is shorter than the dispatch window.

D. Discussion

Considering a longer horizon when computing a matching
policy results in better performance than Baseline. Solely
optimizing over all possible past epochs, OSP produces an
increase of up to 5.39% (Ω = 420 sec). LTO-Basic, solely
optimizing over the future epochs, yields an increase of up
to 3.41% (∆T = 10 sec). While optimizing over both the
future and the past epochs, LTO achieves an improvement
over Baseline by up to 8.42% (∆T = 10 sec). Learning a
good state value function can improve the performance of
a dispatcher. Besides, due to the highly dynamic nature of
mobility and the unavoidable prediction bias, the ability to
continuously alter the matching policy online is also very im-
portant. Moreover, updating the value function during online
dispatch has the potential to further improve performance.
By employing online learning and re-optimization, LTO
captures real-time supply-demand conditions and corrects for
deviations with newly revealed requests. Compared to OSP
and LTO-Basic, LTO improves the service rate by up to
4.61% (κ = 4) and up to 5.17% (Ω = 420 sec), respectively.
Moreover, as not relying on simulators, the training process
of the value function of LTO can be done in serval hours,
which is much more efficient than that of LTO-basic.

VI. CONCLUSION

In this paper, we have proposed a value-based approach for
vehicle dispatch in ride-sharing. Our work aims to investigate
the role of optimization over a long horizon, including
both the past and the future. The developed offline learning
method can efficiently learn a value function that captures
general urban mobility patterns from historical data. The
developed online updating procedure can quickly adapt the
offline learned value function to real-time dynamics of the
ride-sharing system during operation. The value function is
embedded into an online dispatcher that uses re-optimization
for better performance. Numerical experiments show that, by
optimizing over a longer horizon and adapting to real-time
dynamics, the proposed method yields a higher service rate
than the state-of-the-art (up to 5.17% at peak hour). Future
work will investigate the role of idle vehicle rebalancing and
dynamic fleet sizing.
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